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Abstract

Preference queries become more and more important in applications
like OLAP, data warehousing, or decision support systems. In these envi-
ronments the Preference SQL GROUPING operation and aggregate func-
tions are extensively used in formulating queries. In this report we present
the full specification of the GROUPING operation in Preference SQL.
This specification describes the grouping and aggregation known from
standard SQL as well as the grouping with substitutable values (SV) se-
mantics to allow a flexible and powerful grouping functionality in compar-
ison to standard SQL. Furthermore, we introduce novel algebraic transfor-
mation laws for grouped preference queries and numerical ranking which
are one of the most intuitive and practical type of queries. We explain how
Preference SQL can be modified to integrate these optimization laws into
the existing rule-based query optimizer. Our study upon the well-known
TPC-H benchmark dataset shows that significant performance gains can
be achieved.

1 Introduction

Database queries containing grouping constructs are highly important for a wide
field of applications, e.g., in business intelligence, the OLAP approach or data
warehouses. Such decision support systems use the SQL operation of Group-by
and aggregate functions extensively in formulating queries. For example, queries
that create summary data are of great importance in such applications. These
queries partition data in several groups (e.g., in business sectors) and aggregate
on some attributes (e.g., sum of total sales).

Beyond this, the concept of Preference queries [7, 8, 9] has been established
in the database community and was intensively studied in the last decade. Pref-
erence queries become more and more important in decision support environ-
ments, because they are an effective method to reduce very large datasets to



a small set of highly interesting results and to overcome the empty result set
and flooding effect as described in [7]. In general, a preference query selects
those objects from the database that are not dominated by any others. There-
fore, preferences have shifted retrieval models from exact matching of attribute
values to the notion of best matching database objects. Since Group-by and
aggregating are essential in decision support systems, it thus makes sense to
extend preference queries by grouping and aggregating functionality. In the
following we show an example of a simple preference query using grouping.

Example 1. The wish for a car having the highest power and the lowest price
can be expressed in Preference SQL as follows.

SELECT id, power, price

FROM car

PREFERRING power HIGHEST AND price LOWEST
GROUPING make;

Thereby the part of the query beginning with PREFERRING is called preferring
clause. The connection of two preferences by AND is called Pareto composition
and states the equal importance of two preferences. The query returns all cars,
which belong to the maximal power / minimal price preference respective to
their make.

Assume the sample dataset in Table 1. Then, each make forms its own
group. Thus, in the BMW group the tuple with ID 1 is dominated by tuple
3, because the latter has more power and is cheaper than tuple 1. Therefore,
the result is given by the IDs {3,2,5,4} where BMW, Mercedes, and Audi each
forms one group.

Table 1: Sample dataset of cars.
make power | price | ownerid
BMW 180 35000
Mercedes 200 38000
BMW 230 34000
Audi 170 32000
Mercedes 220 40000

car
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We generalize this concept by allowing arbitrary equivalence relations in-
stead of the grouping by single attributes. While grouping on attributes is
completely analogous to the group by clause in standard SQL, grouping on
equivalence classes is described with the substitutable values (SV) construct,
where the grouping is based on distinct values of an attribute. Furthermore
we allow aggregating over the result, for example we can count the size of the
BMO-set for every make. We show this in the next example, where a ranking
function is used to specify the preference.



Example 2. Assume one wants to retrieve those cars, which are minimal with
respect to the following ranking function: f(power, price) = 0.01-price—1-power,
i.e., a weighted compromise of high power and low price is preferred. This is
done with the subsequent query, where indentiyScoreF denotes the identity
and sumRankF is the weighted sum rank function. Furthermore, we want to
retrieve the best cars for each federal state of Germany. This means, group all
cars together which are made in Bavaria (Audi, BMW), in Baden-Wiirttemberg
(Mercedes), and so on. This is done using the SV keyword, cp. Section 4.2.
Then, Audi and BMW are grouped together, and Mercedes builds one group in
our sample dataset. This leads to the following query.

SELECT state, id
FROM car
PREFERRING (power SCORE 'identityScoreF' |
price SCORE 'identityScoreF')

RANK 'sumRankF' '-1,0.01"'
GROUPING make SV (

("Audi', 'BMW') AS 'bavarian',

('"Mercedes') AS 'baden-wuerttemberg') as state;

The query returns tuple 3 in the group of Bavarian cars, and tuples 2 and 5
in the group of Baden-Wiirttemberg cars. In the latter one both cars have the
same ranked score value.

Nowadays the size of databases increases drastically and complex business
analysis becomes progressively more important. Motivated by this and the high
significance of preferences, the question of efficient processing and optimization
of such (SV-)grouping queries arises. Unfortunately, this problem has so far
received little attention.

In this report we discuss Group-by and aggregation in preference queries.
We provide a specification for (SV-)grouping which allows user-defined SV-
relations for a flexible and powerful grouping functionality. Furthermore, we
present significant novel optimization techniques of grouping preference queries
which exploits the knowledge about the grouping clause in a query. For this
we introduce transformation laws that make it possible to push a preference
grouping operation over one or more joins and can potentially reduce the cost
of processing a query significantly.

It turned out that the grouping constructs are also useful by means of opti-
mization for non-grouping queries. Thereby the enrichment of queries with “re-
dundant” grouping constructs allows the application of the optimization rules
which require the occurrence of grouping constructs in the query. Hence the
optimization of grouping preference queries is also fruitful for non-grouping
preference queries and thus has high significance for the field of preferences
in general.

In addition to these practical advances, the algebraic approach presented
here demonstrates how to find clear and compact proofs by using the very
general concept of a point-free preference algebra.



The remainder of this report is organized as follows: Section 2 contains the
formal background used in this report and an introduction to Preference SQL.
Section 3 discusses a point-free algebra for preference relations. Based on this,
we specify grouped preference queries in Section 4. Afterwards we will develop
relational query transformation laws and show the benefit for preference query
optimization in Section 5. We conduct an extensive performance evaluation
on the TPC-H benchmark dataset [1] in Section 6. Section 7 contains our
concluding remarks.

2 Preference Background

Preference queries have been in focus for some time, leading to diverse ap-
proaches, e.g. [3, 7, 8. We follow the preference model from [8] which is a
direct mapping to relational algebra and declarative query languages, e.g., Pref-
erence SQL which is discussed in Section 2.2. It is semantically rich, easy to
handle and very flexible to represent user preferences which are ubiquitous in
our life.

Definition 1 (Preference). A preference P = (A,<p), where A is a set of at-
tributes, is a strict partial order on the domain of A. Thus <p is irreflexive and
transitive. The term x <p y is interpreted as “I like y more than x”. Two tuples
x and y are indifferent, if -(z <py) A =(y <p x), i.e., neither z is better than
y nor y is better than x.

The result of a preference is computed by the preference selection [7, 8], also
called winnow by [3].

Definition 2 (Preference Selection, BMO-SET). The Best-Matching-Objects
(BMO-set) of a preference P = (A, <p) on an input database relation R contains
all tuples that are not dominated w.r.t. the preference. It is computed by the
preference selection operator o[ P](R) and finds all best matching tuples ¢ for
P, where t[ A] is the projection to the attribute set A.

o[PI(R):={te R| & e R:t[A] <p U'[A]}

Best-Matches-Only offers a cooperative query answering behavior by auto-
matic matchmaking: The BMO query result adapts to the quality of the data in
the database, defeating the empty result effect and reducing the flooding effect
by filtering out worse results.

Note that the projection to the attribute set A in Definition 2 is often omit-
ted. For a preference P = (A,<p) the expression ¢t <p ¢’ is equivalent with
t[A] <p t'[A], i.e., whenever two tuples are compared w.r.t. a preference they
have to projected to the respective domain.



2.1 Preference Constructors

To specify a preference, a variety of intuitive base preference constructors to-
gether with some complex preference constructors has been defined. Subse-
quently, we present some selected preference constructors used in this report.
More preference constructors as well as their formal definition can be found in
[7, 8, 9]

2.1.1 Base Preference Constructors

Preferences on single attributes are called base preferences. There are base
preference constructors for discrete (categorical) and for continuous (numerical)
domains. Figure 1 shows the taxonomy of several frequently occurring base
preferences [9]. Subsequently we describe some numerical base preferences.

SCORE,
EXPLICIT
LAYERED,, CONTAINS SPATIAL, BETWEEN,
POS/POS POS/NEG NEARBY, WITHIN,; AROUND,
ONROUTE,; BUFFER,
POS NEG LOWEST, HICHEST,

Figure 1: Taxonomy of base preference constructors

Definition 3 (SCORE, Preference). Given a scoring function f : dom(A) —
R{, and some d € R§. Then P is called a SCORE, preference, iff for z,y €
dom(A):

z<py = fa(z)> fa(y)
where fq:dom(A) - R is defined as:

| f) it d=0
Ja(v) = {[ffi)] if d>0

Note that in the case of d = 0 the function f(v) models the distance to the
best value. That means fy(v) describes how far the domain value v is away
from the optimal value. A d-parameter d > 0 represents a discretization of f(v),
which is used to group ranges of scores together. The d-parameter maps different
function values to a single number. Choosing d > 0 effects that attribute values
with identical f4(v) value become indifferent.

Next, we discuss some sub-constructors of SCORE,.



Definition 4 (Numerical Base Preferences). We define the following prefer-
ences on a continuous domain:

e The BETWEEN;(A, [low, up]) preference expresses the wish for a value
between a lower and an upper bound. If this is infeasible, values having
the smallest distance to [low, up] are preferred, where the distance is dis-
cretized by the discretization parameter d. The scoring function equals
f(v) = max{low — v,0,v — up}.

e Specifying low = up (=: z) in BETWEEN, yields the AROUND,(A, z)
preference, where the desired value should be z, i.e., f(v) = |z -]

e Furthermore, the LOWEST4(A,inf4) constructor and the HIGHEST,
(A,sup ) constructor prefer the minimum and maximum of the domain of
A, where inf 4 and sup 4 are the infimum and supremum of dom(A). The
scoring function equals f(v) = v —inf4 and f(v) =sup,4 — v, respectively.

Example 3. In the introductory Example 1 the HIGHEST and LOWEST pref-
erence constructors were used to express the wish for the maximal power and the
minimal price of a car. Using the described preference constructors this leads to
HIGHEST( (power, sup,,pye,) and LOWEST(price, infyice ), both with d = 0.

We now describe some categorical base preferences for frequently occurring
cases.

Definition 5 (Categorical Base Preferences). We define the following prefer-
ences on a discrete domain:

e The positive preference POS(A, POS-set) expresses that a user has a set
of preferred values, the POS-set, in the domain of A. For d = 0 we have

F(v) = 0 iff zePOS-set
YY1 if x ¢ POS-set

e The negative preference NEG(A, NEG-set) is the counterpart to the POS
preference, formally

NEG(A, NEG-set) := POS(A,dom(A) \ NEG-set).

It is possible to combine the POS and NEG preferences to POS/POS or
POS/NEG. For the POS/POS(A, POS1-set, POS2-set) preference a desired value
should be amongst a finite set POS1-set. Otherwise it should be from a disjoint
finite set of alternatives POS2-set. If this is also not feasible, any other value is
acceptable; this is still better than getting nothing. There are many more base
preference constructors (cp. Figure 1), all described in [7, 8, 9].



Example 4. The wish for an Audi or BMW leads to a POS preference
Py := POS(make, {’Audi’,’BMW’})

The preference selection o[ P;](car) on the car dataset in Table 1 leads to the
cars with IDs {1,3,4}.

If we prefer a horsepower around 170, where a difference of 5 does not matter,
i.e. d =5, this can be expressed by

P, := AROUNDj (power, 170)

The result is given by the tuple with ID 4 because it has a perfect match of
170 hp.

2.1.2 Complex Preference Constructors

If one wants to combine several preferences into more complex preferences, one
has to decide the relative importance of these given preferences. Intuitively, peo-
ple speak of “this preference is more important to me than that one” or “these
preferences are all equally important to me”. Equal importance is modeled by
the so-called Pareto preference.

Complex preferences are built of constructs like “Better w.r.t. P;, equal
w.r.t. to P,”, where P, and P, are preferences. Hence we need a notion of
equality w.r.t. a preference. A simple approach for this is to use strict equality
of the domain values. But often we have base preferences where values x, z’ are
equally good in the sense that x <p y < 2’ <p y for all y. For example, this is
the case if fy(x) = fa(z'), i.e., the tuples have the same score. This behavior
is called regular substitutable values semantics (SV semantics), denoted by ~p.
In contrary, requiring strict equality leads to the trivial SV-semantics, denoted
by =p. We formalize this in the following definition.

Definition 6 (SV-Relations). Let P = (A,<p) be a preference, and A an at-
tribute set. We define the following:

a) A general SV-relation (2, A) on attribute set A, where 2 has to be an equiv-
alence relation on dom(A).

b) A SV-relation (2p, A) for a preference P = (A, <p) has to be compatible to
P which means that we have for all z,y, z € dom(A):
e r2py = —(x<py vV y<px)
¢ T<pY NYy=zpz = T<pz
e T=ZpY NYy<pz = r<pz
Note that the attribute set is often omitted, i.e. we just write 2p for (2p, A).

By convention, if P is a preference, then Zp is always the SV-relation asso-
ciated with preference P.



¢) The identity relation on attribute set A, denoted by id4. For a preference
P = (A, <p) this is also called the trivial SV-relation and denoted by =p, i.e.
we always have
=p:=idy .

d) The regular SV-relation ~p for a preference P, the equivalence relation in-
duced by the equivalence classes of f4(v).

Note that the above definition is well defined in the sense that the trivial
and regular SV-relation are indeed compatible with their respective preferences.
Also note that this definition of SV-semantics is needed to preserve the strict
order property of complex preferences, cp. [8]. In the following we define two
important complex preference constructors.

Definition 7 (Pareto). In a Pareto preference P:= Py ® Py = (A1 x Ag,<p) all
preferences P; = (A4;,<p,) on the attributes A; are of equal importance, i.e., for
two tuples z = (z1,22), ¥y = (y1,y2) € dom(A;) x dom(As) we define:

(z1,22) <p (Y1,42) <=
(.131 <p, Y1 AN (3:‘2 <p, Y2 V T2 =p, yz)) \Y

(22 <p, Y2 A (1 <p, Y1 V T1=2p y1))

If we restrict the attention to LOWEST /HIGHEST as input preferences for a
Pareto preference P, then Pareto preference queries coincide with the traditional
Skyline queries [2], corresponding to MIN/MAX. The BMO-set (Definition 2)
of a Pareto preference query P is generally referred to as the Skyline of P.

Definition 8 (Prioritization). The Prioritization preference allows the mod-
eling of combinations of preferences that have different importance. Assume
preferences Py = (A1,<p,) and P, = (A2,<p,), then prioritization denoted by
P := P, & P; is defined as:

(r1,22) <p (W1,42) <= z1<py1 V (T12p, Y1 A T2<p, Y2)

For base preferences regular SV semantics does not affect <p itself, but
expresses that it is admissible to substitute values for each other. A complex
constructor using ~p does affect <p, as we can see in the next example.

Example 5. Reconsider the preferences P; and P, from Example 4. In the
Pareto preference both preferences are equally important and we write

POS(make, {"Audi’,’ BMW’}) ® AROUNDs;(power, 170)

Using trivial SV-semantics for P; and P, (i.e. 2p, =idy4,) the tuples CBMW’,
180) and (Audi’, 170) would be the best-matches, although a horsepower of
170 is better than 180. Due to the trivial SV-semantics BMW and Audi are not
substitutable.



Having regular SV-semantics, BMW and Audi become substitutable. There-
fore ("Audi’, 170) is equally good as "BMW’, 180) concerning the make, but
170 hp is better than 180 concerning the AROUND preference. This means,
("Audi’, 170) is the only tuple in the result set.

Another form of preference combination is by associating numerical scores to
each individual preference and then applying a combining function to compute
a single score, which decides the “better-than” relationship. Such weighted
importance between preferences is realized by the numerical ranking preference,
cf. [7, 8, 9].

Definition 9 (Rank). Given regular preferences P; and P, with scoring func-
tions f1 and fo and a d-value d > 0. Then the Rank preference RANKp 4 with
a combining function F : R x R - Ny is defined as:

(z1,22) <p (Y1,32) <=
[1?(f1($1)7f2(12))] 17(f1(y1),f2(y2))]
d d

>

Note that all sub-constructors of SCORE, are defined by a scoring functions,
thus can be used in a Rank preference. Also note that the SV-semantics of
P; and P, are not relevant to the Rank preference of those. Furthermore, a
generalization of all complex preferences to more than two preferences is straight
forward, cp. [13].

2.2 Preference SQL

Preference SQL is a declarative extension of standard SQL by strict partial
order preferences, behaving like soft constraints under the BMO query model.
The BMO-set as result of a preference query contains all database tuples which
are not dominated by any other tuple concerning the users preferences, cp. [7].
Syntactically, Preference SQL extends the SELECT statement of SQL by an
optional PREFERRING clause leading to the (basic) schematic design of Figure 2.

SELECT ... <projection>

FROM ... <table_reference>

WHERE ... <hard_conditions>
PREFERRING ... <soft_conditions>
ToP ... <number>

ORDER BY ... <attribute_list>

Figure 2: Preference SQL query block.

The keywords SELECT, FROM, WHERE, and ORDER BY are treated as the
standard SQL query keywords. The PREFERRING clause specifies a preference
by means of the preference constructors given in Section 2.1 and [9].



A preference is evaluated on the result of the hard conditions stated in the
WHERE clause, returning the BMO-set. Empty results can only occur if the
WHERE clause returns an empty result. If TOP-k is specified, only the k best
tuples according to the preference order are returned.

Note that this does not represent the entire schema of Preference SQL. The
additional syntactical elements for grouping queries will be explained in Sec-
tion 4. Preference SQL currently supports most of the SQL-92 standard as well
as all base and complex preference constructors from the previous section. For
a full overview we refer to [7, 8, 9].

Example 6. The Pareto preference from Example 5 can be expressed in Pref-
erence SQL as follows:

SELECT id

FROM car

PREFERRING make IN ('BMW', 'Audi') REGULAR
AND power AROUND 170, 5 REGULAR;

AROUND expresses an AROUND-preference with d-value d =5 and IN is a POS
preference with preferred values BMW and Audi, cp. Definition 4. The AND in
the PREFERRING clause denotes a Pareto preference, whereas a Prioritization is
expressed using PRIOR TO. The keyword REGULAR defines a preference using
regular SV-semantics whereas TRIVIAL denotes trivial SV-semantics, cp. Defi-
nition 6.

3 Point-free Algebra for Preference Relations

The definitions of the Pareto-composition and the Prioritization in the Defi-
nitions 7 and 8 are point-wise in the manner that explicit tuples with their
components (i.e., “points”) appear on both sides of the equation. Additionally
all variables have to be allquantified.

In [11, 12] we introduced a semiring-based point-free algebraic calculus for
preferences. It turned out that many proofs can be shortened using this calculus
and these techniques pave the way for automatic theorem provers. As the theory
of grouped preferences also benefits from this formalism we will introduce it in
this report.

3.1 Point-free Compositions of Preferences

At first we introduce some basic definitions of our framework, starting with the
intersection of two preferences or SV relations. The intersection was already
introduced in [7] and will be generalized to SV relations.

10



Definition 10 (Intersection with SV). Let P;, Py be preferences and 21,29 be
SV relations. For tuples x,y we define the following intersection preferences:

o P:=P eP: T<py < T<p,YANT<p, Y

TZpyY <= T=Zp, Y ANT=Zp, Y

o P:=P e T<py © T<p YAT=Y
= ¢ P) TZpyY < TEp Y ATZY
o 3= ey TZ3Y <= T=1Y NT=Y

Remember that =p for a preference P is always the SV-relation of P, as
defined in Definition 6.

Preferences with “e” as “join operator” form a concrete relational instance
of the abstract join algebra, defined in [12]. This means that all theorems which
hold for join algebras also hold for the concrete instance. We give some further
definitions to express the Pareto-composition and the Prioritization point-free:

Definition 11 (Union of Preferences). Let Py, Py be preferences. The union of
two preferences P := P; + P, is defined for all tuples z,y as:

T<pYy<=x<p Yy Vv r<py

Furthermore we define = 2p y < = 2p, y A x Zp, y, i.e., we use the logical
conjunction, despite of P; + P, behaves like the disjunction. But note that
the disjunction of SV relations would not yield an equivalence relation. By
convention, ¢ binds tighter than +.

Definition 12 (Point-free Compositions). For preferences P; and P, we give
point-free definitions for the Prioritization and the Pareto Composition.

° Pl&PQZPl + SPI’PZ
e PL@P=(Pi+2p)ePs + (Py+z2p)eP

The well-definedness of these definitions, i.e., their compatibility with Defi-
nitions 7 and 8 is done by easy verification.

Expressions like “P; ® Py” or “(P, ® P») ¢ 2" are preference terms. We
aim to work with them in a point-free fashion, which is especially useful for the
proofs of our theorems. Therefore we need formal definitions of equivalence and
inclusion w.r.t. preference terms.

Definition 13 (Preference Term (In)Equations). For preferences Py = (A,<p, ),
P, = (A,<p,) we define:

e P =P, if for all z,y € dom(A) we have that

T<p Y = T<p, Y

11



e P c P, if for all 2,y € dom(A) we have that
T<p Y = r<p, Yy

e PoPRif PBLc P

Note that the inclusion order ¢ corresponds to the subsumption order in [12].

3.2 Properties of Preference Operations

In the following we present some properties based on the previous definitions.

Lemma 1 (Fundamental Properties). We have the following properties for in-
tersection and union, where Py is a preference, and X,Y are preferences or SV
relations.

a) + and # are associative and commutative
b) e distributes over +

¢) +,¢ are isotone w.r.t. C, i.e. we have:

XcX = X+YcX'+Y A XeYCcX oY

d) For +, and € we have: X € X +Y and X ¢Y ¢ X
e) For P:= P, 2 we have: %p =2p, &=

Proof. a~d) directly follow from the definitions and the well-known properties
of the logical A, v and = operators. e) follows directly from the definitions of
Py e and 2 ¢ . O

4 Grouping Queries

For preferences queries there exists a grouping-construct, which allows to split
the dataset into several groups according to the grouping attributes. Afterwards
the preference is evaluated on each group separately. If no aggregate function is
given, the BMO-sets of all groups are put together and returned. If an aggregate
function (e.g., SUM(...), COUNT(...)) is specified in the projection of the query,
then each BMO-set collapses to the aggregation result. In this case, due to the
grouping-modifier HAVING groups can also be excluded from the result with a
having-condition, e.g., COUNT(x) > 1.

12



4.1 Specification of Grouped Preferences
4.1.1 Grouped Preference Selection

The simplest grouping queries split the dataset according to distinct values of
one ore more attributes. For a preference P and an attribute set G ¢ attrib(R),
where attrib(R) are all attributes of a database relation R, we define:

o[P grouping Gl(R) :={te R|-3t' e R:t<pt' A t[G]=t[G]}
According to [7] this can be expressed as a preference itself:
t <pgrouping G t' < t<pt’ A t[G]=t'[G]

We also allow grouping w.r.t. to equivalence relations on attributes. Let 2x
be an equivalence relation on an attribute X € G = {A, B,...}. We define the
direct product of the SV relations in the attribute set G = {4, B, ...}:

Zag=Zpe=pe ...
The grouped preference selection according to 2 is defined as:
o[P grouping 2¢](R) ={te R|-3t' e R:t<pt' A t=gt'} (1)

As the identity relation id4 on dom(A) is an equivalence relation, this is
a generalization of the grouping on distinct values of attributes. To see this,
consider that P grouping G can be expressed as P grouping g with 2o =
idg ¢idp o .... where G = {A, B, ...}.

4.1.2 Point-free Characterization of Grouped Preferences

We can characterize a grouped preference by the direct product of the grouping
relation and the preference relation. This yields our point-free definition of the
grouping construct:

Definition 14 (Grouping). For a preference P and an attribute A we define
the following grouped preferences:

a) Grouping w.r.t. A, where id4 is the identity on dom(A):

P grouping A:=idy ¢ P

b) Grouping w.r.t. an arbitrary SV relation (24, A), which operates on dom(A):

P grouping 2y =2, e P

By convention, grouping binds tighter than + and .

13



Note that this is well-defined, i.e., we have
o[z4 ¢ P](R) = o[ P grouping 24](R)

where grouping in the right hand side is interpreted according to Equation (1).
To see this, one has simply to apply the definitions of “e” and o[...] to the left
hand side.

Now we will present some results. At first we show that some grouping
constructs serve as lower estimates for complex preferences. This will be helpful
later on for proving optimization theorems.

Lemma 2 (Grouping as Lower Bound for Complex Compositions). For pref-
erences Py, Py with SV relations 2p, and =p, we have:

a) P, & P, 2 P grouping 2p,
b) Py ® P, 2 P grouping ~p, + P; grouping Zp,
¢) Py ® P, 2 P, grouping ~p,

Proof. Using the definitions of ®, &, grouping and additionally some basic prop-
erties (Lemma 1) we infer:

a) Pl&P2:P1 + EPIOPQ
Q§P10P2

= P; grouping =p,

b) P1®P2:(P1+EPI)OP2 + (P2+§p2)0P1
QEPIOPQ + EPQO.Pl

= P, grouping 2p, + P grouping =p,
¢) Follows immediately from b) O
For compositions of grouping and preferences we yield the following results:

Lemma 3 (Simplify Grouping Constructs). Let P = (A,<p), P1 = (A1,<p,),
Py = (Ag,<p,) be preferences with A, Ay, As € attrib(R) and 21,2 be equiva-
lence relations. Then the following holds:

a) (P grouping ;) grouping %, = P grouping (2 ¢ 25)
b) (P grouping 1) & P> = (P & P) grouping
¢) Py ® (P, grouping 1) = (P, ® P,) grouping

d) (Py grouping %) ® (P grouping 23) = (Py ® P3) grouping (21 ¢ ¥3)

14



Proof. The following derivations are justified by applying the definitions and by
using Lemma 1.

a) (P grouping 1) grouping
=2 e(zeP)
=(z1e%)eP
= P grouping (21 ¢ %)

b) (P grouping 21) & Py
=(z1eP) &P
=2 eP +zp ez e P
=2 ¢ (P +2p &)
=2 ¢ (P &P)
= (P, & P») grouping ¥

¢) P ® (P, grouping 1)
=P ®(z¢P)
=(Pr+2p)e(z1eP) + (z1ePo+2ezp)e P
=2 e ((PL+zp)e Py + (Po+2p,) e Pp)
=z ¢ (PL®P)
= (P, ® P,) grouping =

d) (P grouping 2;) ® (P, grouping %)
=(z1eP)Q (2 ¢ P)
=(z eP + 2 e2p )e (e P)+
(Zoo Py + 2yezp)e(zeP)
=(z1e2)e((PL+2p)e Py + (Py+2p,)eP)
=(z1e2)e(PL®F)
= (P1 ® P,) grouping (21 ¢ 22)

4.2 Grouping and Preference SQL
4.2.1 Specifying the Grouping Attributes

Grouping on distinct values of attributes A, B, ... is specified with GROUPING &,
B, ... completely analogous to the GROUP BY clause in SQL. Grouping on
equivalence classes is described with the construct sv short for “Substitutable
Values”. This is because the Grouping-SV functionality behaves similar to the
SV relations on preferences, introduced in [8]. The equivalence classes forming
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the groups are from now on called (grouping) SV classes. The syntactic schema

of a SV classes specification is as follows (where the [...] braces indicate optional
elements):
GROUPING A SV ((A_1, A 2, ...) [as 'classl_a'],
(A_3, A_4, ...) [as 'class2_a']l, .
[OTHERS [as 'oth_class_a'l] ) [as sv_al,
B SV ((B_1, B_2, ...) [as 'classl_b']l, ....,
[OTHERS [as 'oth_class_b']] ) las sv_Db],

Thereby 24 and B_i are domain values according to the attributes A and B.
The domain values (A_1, A2, ...) are considered equal w.r.t. the SV rela-
tion 24 for attribute A (and analogous for B and =g). The names class. ..
are aliases for the SV classes which occur in the projection. If not speci-
fied, A_1, A2, ...) is the default name for an SV class with values A_1,
A2, .... The keyword OTHERS puts all elements which were not be men-
tioned before, in one “default” SV class. If OTHERS is not given, all tuples
tedom(A)N\{A-1,4.2,.... A3, A4, ...} form a SV class (¢) of its own.

The name of an SV-attribute (e.g. sv_a) is also optional, but should be
given to reference the SV grouping attributes in the projection. Note that the
original attributes A, B, ... stay unchanged; they can still be referenced in
the projection. Finally the entire term generates an SV relation 25 =2, e2pe...
where G = {A, B, ...} are the grouping attributes.

4.2.2 The Entire Grouped Preference Query

The schema of an entire Preference SQL query containing the grouping construct
is depicted in Fig. 3, where aggregation symbolizes an aggregation function,
which is optional in the projection.

SELECT ... <projection, aggregation>
FROM ... <table_reference>
WHERE ... <hard_conditions>
PREFERRING ... <soft_conditions>
GROUPING ... <attribute_list>
TOP ...  <number>
BUT ONLY ... <but_only_condition>
HAVING ... <aggregating hard.conditions>
ORDER BY ... <attribute_list>

Figure 3: Preference SQL query block with grouping .

Such a query is evaluated as follows:

e If no aggregation function (such as SUM(...), COUNT(...), etc.) is given, this
query is evaluated as a grouped preference query, i.e., for every group the
BMO-Set w.r.t. the preference is calculated. The additional specifier TOP
k selects the k best tuples according to the preference order per group,
i.e., k- g tuples are maximally returned if g groups exist. With the BUT
ONLY construct it is possible to specify a hard post-selection.
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e If an aggregation function occurs (either in the projection or in the having-
clause) the following process is done: At first, the groups are calculated
as above. Afterwards the having condition is evaluated, i.e., some groups
might be excluded. Finally the aggregation function of the projection is
applied; hence only one line is returned per group in the result set.

Note that TOP, BUT ONLY, HAVING, and the use of aggregation is op-
tional. Even the PREFERRING keyword is optional, which allows us to use
the Grouping-SV syntax for conventional aggregations. Thus we are able to
simplify GROUP BY queries with the lengthy CASE ... THEN ... END
statements. These can be mostly be replaced by our Grouping-SV-syntax which
we will illustrate in Example 7.

Example 7. Assume the sample dataset given in Table 2.

Table 2: Sample dataset

cars | id make power | price
1 Smart 60 15000
2 | Mercedes 200 38000
3 Audi 180 29000
4 VW 110 25000
5 Bugatti 1000 | 500000

We give an example to calculate the average price of the two cheapest cars
of every car manufacturer. We assume that only an attribute “make” is given
for every tuple in the relation, hence we have to retrieve the manufacturer by
an appropriate SV grouping on “make”.

SELECT manufacturer, AVG(price) FROM car
PREFERRING price LOWEST TOP 2
GROUPING make SV (('Mercedes', 'Smart') as 'Daimler',
('vw', 'Audi', 'Bugatti') as 'Volkswagen'
) AS manufacturer

The result of this query on the given sample dataset is: {(Daimler, 26500),
(Volkswagen, 27000)}. Note that the Bugatti is not in the Top-2 set of the
manufacturer “Volkswagen”, hence not included in the average price calculation.

If we omit the preference, i.e., just consider the aggregating query

SELECT manufacturer, AVG(price) FROM car GROUPING make SV ...
we could express this in standard SQL in a more lengthy way:

SELECT manufacturer, AVG(price) FROM
SELECT (CASE

WHEN make IN ('Mercedes', 'Smart') THEN 'Daimler'
WHEN make IN ('VW', 'Audi', 'Bugatti') THEN 'Volkswagen'
ELSE make

END) AS manufacturer, fuel FROM car) tmp_car
GROUP BY manufacturer

17



Hence the Grouping-construct allows us to denote group-by-case statements
in a more concise way and without subqueries.

The order of execution of a preference query is as follows, wherein all those
steps are skipped which are not specified in the query:

1. the hard conditions in the WHERE-clause are evaluated
2. the remaining tuples are split into groups
3. the preference is evaluated on any group; thereby TOP k is considered

4. the hard post-selection via BUT ONLY is processed (which may lead to
less than k tuples for TOP k queries)

5. the aggregation functions in the HAVING clause are evaluated and groups
are excluded which do not fulfil the condition

6. the aggregation functions in the projection are processed and the results
are returned

5 Optimization Theorems

Some results in the following have been also presented in [10], but in a simpler
form without SV-semantics. In the following theorems we cover full support
of SV semantics. The proofs in this report become more readable due to the
use of — where appropriate — our point-free formalism introduced in Section 3.
Note that the parts concerning joins are shown point-wise, as to the best of our
knowledge, we cannot handle them in a point-free manner.

5.1 Decompositions of Preferences

We show some Lemmas which are helpful for the proofs of the optimization
theorems:

Lemma 4 (Decomposition of the Union Preference). For preferences Py, Py
and a relation R we have:

O'[P1 +P2](R) = O'[Pl](R) ﬂO’[PQ](R)
Proof. We show this using the definition of o and (P + P):

o[Pi+P)(R)={weR|Hv:w<p v vV w<p, v}
={weR|Bv:t<p v A Bu:w<p, u}
=o[P1](R) no[P2](R) O

Note that a more general result, denoted as Lemma 4.2.7 in [12], could be
shown there in a completely point-free fashion.

18



Lemma 5 (Subset Preferences). For preferences Py, Py with P € Py and a
relation R we have:

a) o[P](R) € o[ P2](R)
b) o[PL](R) = o[P1](c[P2](R))

Proof. a) Note that P, ¢ P, implies for tuples z,y: = <p, y = x <p, ¥.
This yields =(z <p, y) = —(z <p, y) and hence the definition of o leads
immediately to the claim.

b) We deduce:

olP](R)
{{ From a) we have: o[P1](R) € o[P:](R) [}
o[P](R) no[P](R)
= {fweR|MeR:w<p v}no[P](R)
= {weo[P](R)|#veR:w<p, v}

= { all candidates for 3... can be substituted by v € o[ P;](R)
due to transitivity of <p, |}

{weo[P](R)|Fvea[P](R):w<p, v}
= Al onl(R) colR](R) |}
{weo[P](R)|Bvec[P](R):w<p, v}
= o[P](c[P](R)) 0

Note that for part a) a more general result, denoted as Lemma 4.2.8 in [12],
could be shown there in a point-free way.

Lemma 6 (Push Preference over Union). Let P = (A,<,) and A € attrib(R) =
attrib(S). Then we have:

o[P](RuS) = a[P](a[P](R) ua[P](5))

Proof. Let R? :=og[P](R), S :=c[P](S) and T := R u S°
o[P)(e[PI(R) ua[P](S)) = o [PUT)
{weT|IweT:w<puv}
{weT |-((veR7:w<pv) v (JveS7:w<pw))}
{ all candidates for 3... can be substituted by v € R”
(or v €S9, resp.) due to transitivity of <p [}
{weT|-((veR:w<pv) v (veS:w<pwv))}
{we RuS|-((veR:w<pv) vV (veS:w<pv)) A we R7uUS7}
{ #veR:..implieswe R° and v e S:... implies we S7 |}
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{weRUS|-((BveR:w<pv) v (IveS:w<pwv))}
{we RuS|IweRUS :w<puv}
a[P](RuS)

O

Note that this is also an important lemma for a distributed computation of
the BMO-Set: A large dataset R can be split into (disjoint) sets RiU...UR, = R
where the BMO-sets can be calculated independently. Afterwards merging the
partial results and finally applying o[ P](...) leads to the result, cp. [3, 6].

5.2 Preferences and Joins

In this section we study the interplay of preferences and (semi-)joins. At first
we present the definition of an extension which specializes the database join:

Definition 15 (Extension). Let f(r,s) be a left-total Boolean-valued function,

i.e., for every r there exists at least one s satisfying f(r,s) = true. The extension
of R by S through f is defined as:

RextyS={(r,s) e Rx S| f(r,s) = true}
One immediate result is:

Corollary 1 (Preference over Extension). Let P = (A,<p) and A ¢ attrib(R),
then we have:
o[P](Rexts S) =o[P](R)exty S

Proof. o[P](RextyS)
{weRextyS|AveRexty S:w<p v}

{ P operates only on R [}
{weRextyS|HveR:w<puv}

{ f is left-total J}
{fweR|MeR:w<puv}extyS
o[P](R)ext; S O

To simplify an evaluation of a preference over a join we can use the following
Lemma. Thereby we declare e(X) < R.X = S.X for the join condition on X of
two relations R and S.

Lemma 7 (Push Preference over Join). Let P = (A,<p), A ¢ attrib(R), X ¢
attrib(R) nattrib(S). Then we have:

a) o[Pl(Rwe(x) S) =o[P](R) % (x) S
if each tuple in R has at least one join partner in S, e.g., if X is a foreign

key from R to S.
b) o[P](Rwex)S) = o[ P](R®e(x)S) ®ex) S
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Proof. Let
. true if r[X]=s[X
j(rs) = LX) =]
false otherwise

a) Note that since each tuple in R has a join partner in S, the join can be
rewritten in terms of an extension function.

o[P](Rxc(x) S)

= o[P](Rext; S)

= { Corollary 1 Tt
o[P](R)ext; S

= U[P](R) Me(X) S

b) o[PI(Rxe(x) )
= o[PJ((Rxe(x)S) me(x) S)
= {{ j is left-total on the semi join (R x.(x)S) |}
a[P]((R Xe(x) S)ext; S)
= {{ Corollary 1 [}
o[P](Rxex) S)ext; S
= o[P](Rx.(x)S) ®e(x) S O

To rewrite a preference evaluation on a semi-join in connection with a normal
join we have the following lemma:

Lemma 8. Let P = (A,<p), A c attrib(R) n attrib(S). Then we have:
o[ P grouping X (R x.(x) S) xe(x) S = o[ P grouping X ](R) me(x) S
Proof. Let T := Rx.(x)S. At first we show
o[ P grouping X1(T') = o[ P grouping X|(R)nT (h1)
by
o[ P grouping X |(T)
= {weT|MweT:w<pv A w[X]=v[X]}
= {[ P operates only on R [}
{fweR|BveR:w<pv A w[X]=v[X] AvweT}
= {w[X]=v[X] A weT implies veT |
{weR|MweR:w<pv A w[X]=v[X] A weT}

= {weR|MweR:w<pv A w[X]=v[X]}nT
= o[ P grouping X|(R)nT
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Now we show the claim by:
o[ P grouping X J(R xc(x) S) ®e(x) S
{ Equation (h1) }
(o[ P grouping X](R) n (R xc(x) S)) ¥e(x) S
{ ~ distributes over n J}
(0[P grouping X](R) wc(x) ) N ((Rxe(x)S) me(x) S)
(0[P grouping X](R) ®e(x) S) N (R we(x) S)
o[ P grouping X ](R) w.(x) S

5.3 Optimization Theorems for Grouping

Remember that we write e(X') instead of R.X = S.X. First we present a lemma
which is necessary for further proofs: a preference which is grouped w.r.t. to
the join attribute can be directly pushed over a join.

Lemma 9 (Push Grouped Preference over Join). Let P = (<p,A) and A ¢
attrib(R), X c attrib(R) nattrib(S). Then we have:

o[ P grouping X ](R w.(x) S) = o[ P grouping X [(R) »c(x) S

Proof. Let T := Rw (x) S

o[ P grouping X (R »¢(x) S)

{weT |weT:w<pv A w[X]=v[X]}

{fweR|IveR:w<pv A w[X]=v[X] A v,weRx.(x)S}m(x)S
{TveRwx x)S A w[X]=v[X] implies veRx.x)S [}

{fweR|MweR:w<pv A w[X]=v[X] A weRx,x)S}re(x)S
{wé¢Rwx,x)S implies wé¢ {w}mx)S [

{fweR|MweR:w<pv A w[X]=v[X]}n(x)S

o[ P grouping X (R) wc(x) S m

Theorem 1 (Push Preference Over Join). For a preference P = (A,<p) with
A c attrib(R) und X ¢ attrib(R) nattrib(S) the following holds:

a) o[ P](Rwe(x) S) = o[ P](a[ P grouping X](R) e(x) )
b) For an SV relation (2p, B) with B c attrib(S) we have:

o[ P grouping =g ](Rx.(x)S) = o[ P grouping =g ](o[ P grouping X [(R)»(x)S)
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Proof. a) o[P](Rw.(x)S)
= { Lemma 5 b) using P grouping R.X = idgxeP c P |
o[ P](a[P grouping R.X (R w.(x)S))
= { Lemma 9 [}
o[P)(o[P grouping X1(R) mx) )
b) Let S'={s1,....,8n}

o[ P grouping 2p](R wc(x) S)
= [P grouping 2] ( () (R (51)))
= {Lemma6 ]}
o[ P grouping 25] (ngU[P grouping 2] (R w.(x) {Si}))
= {{ Since B e attrib(S): ve Rw.(x){s;} implies vzps; [
o[ P grouping =g] (iga[P](R Me(X) {Si}))
= {lveRw,x){si} implies v[X]=s;[X]]
[P grouping =5 (U o[P grouping X](Rwcx) {s:)))
- [ Lemma9]
o{P grouping =] (U (o1P grouping X](R) wx) {51)))
= o[ P grouping =g](c[P grouping X](R) xc(x) 5)
O

Theorem 2 (Split Pareto and Push Over Join). Let Py = (A1,<p,) and Py =
(As,<p,) with Ay € attrib(R), Az < attrib(S) and X ¢ attrib(R) u attrib(S).
Then:
a) o[Pr® Py](Rwexy S) = 0[P ® P](c[ Py grouping X](R) x.(x) S)
b) O'[P1 ®P2](R Me(X) S)

= 0[Py ® P,](o[ P grouping X](R) m(x) o[ P> grouping X](S))

c) o[P1® P2](Rw.(x)S)=0[P1®P](c[P1 grouping X (R xc(x) S) ®e(x) S)

Proof. a) o[P1® P](Rmexy S)
= {{ Lemma 5 b) together with Lemma 2 ¢) J}
o[P1 ® Py](c[ Py grouping 2p,](R %c(x) S))
{{ Theorem 1 b) J}
o[P1 ® Py](o[P1 grouping =p, |(o[ P1 grouping X J(R) wc(x) S))
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= { Again Lemma 5 b) together with Lemma 2 c) [t
o[P1 ® Py](o[ P grouping X](R) xc(x) S)
b) Follows from a) and an symmetric argument of Theorem 1 b)
c) o[P1® PJ(Rw.(x) S)
{{ Part a) |}
o[P1 ® Py](o[ P grouping X ](R) c(x) S)
{ Lemma 8 J}
[P, ® Py](c[ Py grouping X](R Me(x) S) Me(x) S)

O

Subsequent we present a simplification of a Prioritization into a grouping
expression.

Theorem 3 (Split Prioritization Into Grouping). Let Py = (A1,<p,) and Ps =
(As,<p,) two preferences with Ay, Ay < attrib(R) and SV-semantics %p, and
2p,. Then:

a) o[ Py & P3](R) = o[ P2 grouping 2p, [(c[P1](R))
b) o[P1 & P2](R) = o[ P1](c[ P, grouping %p, |(R))
Proof. o[ P, grouping %p, |(c[P1](R))
= {weo[P](R)|dveo[P](R):w=p, v A w<p, v}
= {weR|weo[P](R) A BveR:veoa[P](R) A wXp, v A w<p, v}
= {weo[P](R) A wzp, vimplies veo[P](R) |
{weR|weo[PI][(R) A Zve R:w=p, v A w<p, v}
= o[P](R)n{weR|IweR:w=p, v A w<p, v}
= o[P1](R) no[P; grouping =p, ](R?)
= { Lemma 4 ]
o[ Py + (Ps grouping 2p, ) ](R)
{ P + (P grouping2p,) =P, +2p, ¢ Po=P &P, |}
o[ P & P,](R)

This shows part a) and an analogous argument holds for part b). O

The next theorem splits Prioritization and pushes the preferences over the
join. Note that the following rules depend on the used SV-semantics.
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Theorem 4 (Split Prioritization and Push Over Join). Let P; = (A1,<p,) and
P, = (Ay,<p,) preferences with Ay < attrib(R), As € attrib(R) U attrib(S),
X cattrib(R) nattrib(S). Then

a) o[ P & P](Rwe(x) S) = o[ P grouping 2p, [(o[ P1](R) xc(x) S)
if each tuple in R has at least one join partner in S, e.g., if X is a foreign

key from R to S.
b) o[P1 & P2](Rme(x) S) =[P, grouping =p, |(o[P1](R x¢(x) S) Me(x) S)
c) o[PL& P](Rwe(x) S) = 0[Py & Py](o[ Py grouping X](R) x.(x) S)

Proof. a) o[P1 & P2](Rw.(x)S)
= {{ Theorem 3 [}
o[ P, grouping 2p, J(c[PL](R xc(x) 5))
= {{ Lemma 7 b) (since tuples in R have join partners in S) J}
o[ P, grouping =p, J(o[P1](R) xc(x) S)
b) 0[Py & P](Rxe(x) S)
= {{ Theorem 3 [}
o[ P> grouping =p, (o[ PL](R . (x) S))
= { Lemma 7 a) [}
o[ P> grouping =p, [(o[PL](R %¢(x) S) Me(x) S)
c) o[PL & Py](Rwex) S)
= { Lemma 5 b) using Py & P, c P, < P, ¢idx |}
o[P1 & P2](o[ Py grouping X (R (x) S))
= { Lemma 9 [}
o[ Py grouping =p, [(o[PL](R %o(x) S) Me(x) S)

Example 8. Consider the Prioritization P := P & P» as
P =POS(make, {"Audi’, BMW’},=p, ) & AROUNDj;(power, 170,~p,)

where P; has trivial and P has regular SV-semantics.

The preference selection o[P; & P2](car) on our sample dataset (Table 1)
results in the tuple {"BMW’, 180), ("Audi’, 170)}, since BMW and Audi are
not substitutable concerning P; having trivial SV-semantics.

Now, if we apply Theorem 3a), we first evaluate o[P;](cars) to tmp :=
{"BMW”,180), '(BMW’,230), ("Audi’, 170)} and afterwards we compute

o[ Py grouping ~p, |(tmp),
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that means we group the results in tmp using trivial SV-semantics from P; (we
get groups on BMW and Audi) and evaluate P, on these groups. This leads
to the same result as above: {('BMW’ 180), ("Audi’,170)}. Here, P; acts as
pre-filter preference, cp. [4].

Theorem 5 (Simplify Grouped Preference Selection). Let P = (A,<p), Py =
(A1,<p,), Py = (As,<p,) be preferences with A, Ay, Ay C attrib(R) and 21,25 be
equivalence relations. Then the following holds:
a) o[ (P grouping %) grouping 22 |(R) = o[ P grouping (21 ¢ %3)]|(R)
b) o[(P1 grouping 21) & P2](R) = o[(P1 & P») grouping 21 [(R)
[
[

Py ® (P, grouping =1)](R) = o[ (P1 ® ) grouping =1 ](R)

(
(
¢) o

d) o[(Py grouping =1) ® (P grouping 23)](R) =
o[(P1 ® P,) grouping (21 ¢ 22)](R)

e) o[ P grouping B](R) = R where B € attrib(R) is unique for all tuples in R

Proof. Parts a~d) follow immediately from Lemma 3. For part e) we infer:
o[ P grouping B](R)
{weR|IveR:w[X]=v[X] A w<pv}

{ w[X] =v[X] implies w = v since X is unique [}
{weR|-(w<pw)}

{ w<p w is always false since P is irreflexive [}

R

6 Performance Benchmarks

In this section we discuss the application of our algebraic optimization laws by
giving a implementation sketch and a comprehensive benchmark.

6.1 Integration into Preference SQL

Because preference relational algebra extends relational algebra, it is possible to
construct a preference query optimizer as an extension of a classical relational
query optimizer [6, 3]. Importantly, one can inherit all familiar laws from re-
lational algebra given by [14]. Thus, well-established heuristics can be applied
aiming to reduce the sizes of intermediate relations, e.g. Push Hard Selection
and Push Projection.

Preference SQL implements a rule based query optimizer based on the Hill
Climbing approach from [14] and the preference transformation laws from [6].
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Expanding this repertoire of optimization techniques by our new grouped pref-
erences theorems raises the issue how to integrate them into a query optimizer.
Finding a good ordering of transformation is as usual a difficult, heuristic task,
since the application of a rule can depend on the previous application of other
rules. Most of our optimization laws on grouped preferences can only be applied
if the join operator have already been generated. Due to this knowledge it seems
to be adequate for the optimization of preference relational algebra statements
if our grouped transformation laws are applied after Push Hard Selections as
well as Combine Hard Selections and Cartesian Products into Joins. Afterwards
the operator tree can be transformed using our novel grouped preference opti-
mization laws. For more details on the integration and ordering of preference
transformation laws we refer to [6].

6.2 Benchmark Framework

For the benchmarks we used our Preference SQL system [9], a Java SE 6 frame-
work for preference queries on conventional database systems. Preference SQL
is a middleware which parses the query and performs query optimization as
described in [3, 6, 4] and in Section 5. Furthermore, we implemented several
preference evaluation algorithms, e.g. BNL [2], Hexagon [13]|, and LESS [5].
Note that until now Preference SQL does not support index based preference
algorithms. The implementation of the GROUPING evaluation is based on hash
buckets. For further details we refer to [9].

For the benchmarks we used the TPC-H dataset designed for decision sup-
port system queries [1]. We generated several preference queries to present the
advantage of our optimization laws from Section 5. All experiments are per-
formed on a 2.53GHz Intel Xeon machine running Linux with 8 GB RAM for
the JVM. We used a PostgreSQL 8.4 database to store all generated data tuples.

In our framework a query is mapped onto its initial operator tree Tipit -
This initial tree will be transformed in a standard optimized tree Tstq us-
ing the laws from [6, 3], this means for example Push Preference or Push Selec-
tion. Additionally, we use our optimization laws from Section 5 concerning the
GROUPING laws to transform Tstq into the final operator tree Tgrouping -

In our performance evaluation we carried out the following performance mea-
surements for a query @ (in seconds):

e Runtime tin;¢ for evaluating Tinit
e Runtime tgigq for evaluating Tsiq
e Runtime tgrouping for evaluating Tgrouping

We used 7 iterations for each query and skipped the best and the worst
value. From the remaining runtimes we computed the average value.

As an indicator for the optimization impact of our new laws we choose the
speedup factor

Speedup factor := tstq / tgrouping
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In the TPC-H benchmark dataset we used different scaling factors: 0.001,
0.01, 0.1, 0.5, 1, i.e., 1 MB, 10 MB, 100 MB, 500 MB and 1 GB of data.
Additionally, we present the BMO-size of each query.

6.3 Benchmark Queries

We now present our benchmarks to demonstrate the advantage of our algebraic
optimization techniques.

Benchmark Theorem 1a) (Push Preference Over Join)

In our first benchmark we apply Theorem 1la) to the following Preference SQL
query.

—— Query for Theorem la)

SELECT p_partkey, p_size, ps_supplycost

FROM partsupp, part

WHERE ps_partkey = p_partkey

PREFERRING ps_supplycost BETWEEN 300, 400, 50 REGULAR;

This is a typical query with a preference on a join. The query retrieves all
parts (p_partkey) with its size (p := p_size) and the supplier costs (ps :=
ps_supplycost) from the relations partsupp and part. The preference

P := BETWEENS((ps_supplycost, 300,400, ~p)
has regular SV-semantics. The algebraic form is given as:

U[P](ps Mps_partkey = p_partkey p) (2)

where ps is an alias for ps_supplycost and p corresponds to part. Note that
we omit the projection 7 to simplify the algebraic laws. Applying Theorem 1la)
to Equation (2) the operator tree in Figure 4 will be produced.
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Figure 4: Operator tree Tgouping for query la).
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Table 3 shows the performance results for the 1 MB, 10 MB, 100MB, 500 MB
and 1 GB dataset. In the 1 MB dataset we have no advantage of our grouping
optimization Tgrouping in comparison to the standard optimization Tgq due to
the costly grouping operation. However, if the dataset grows, the additional
grouping operation o[ P grouping ps_partkey| acts as a strong pre-filter ([4]) and
reduces the intermediate result sizes. For exmaple, in the 1 GB dataset the
evaluation of the initial operator tree T, takes about 10 hours, whereas the
standard optimization techniques like Push Projection and Push Selection in
Tstq leads to a runtime of just one minute. The Tgrouping Operator tree can be
evaluated 15 times faster and clearly outperforms Tgq .

Table 3: Results for query 1la).

TPC-H 1MB | 10 MB | 100 MB | 500 MB 1 GB
BMO-size 92 782 7980 40151 80170
tinit 1D sec 0.10 2.56 374.65 8524.67 | 36188.75
tsta in sec 0.09 0.25 9.43 24.79 69.47
terouping in sec 0.09 0.06 1.94 1.77 4.51
Speedup factor 1.0 4.12 4.86 14.01 15.40

Benchmark for Theorem 1b) (Push Preference Over Join)

In this benchmark we apply Theorem 1b), Push Preference Over Join, to the
following Preference SQL query.

—— Query Theorem 1Db):

SELECT p_partkey, p_size, ps_supplycost

FROM partsupp, part

WHERE ps_partkey = p_partkey

PREFERRING ps_supplycost BETWEEN 200, 400, 100 REGULAR
GROUPING p_brand;

The query retrieves all parts (p_partkey, p_size, ps_supplycost) where
the supplier costs (ps_supplycost) should be between 200 and 400 (d=100) ,
i.e. using a preference constructor we write

P := BETWEEN oo (ps_supplycost, 200,400, ~p)

with regular SV-semantics. Note that in contrast to last benchmark this pref-
erence is evaluated on the groups of p_brand. The algebraic form is given by

o[ P grouping ps_brand](ps ®ps partkey = p_partkey D) (3)
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Applying Theorem 1b) we get the optimized operator tree (without Push
Projection) in Figure 5. Table 4 shows the performance results of our optimiza-
tion.

T
80170 |

o[ P grouping p_brand]
241231 ‘

X ps_partkey = p_partkey

200000

o[ P grouping ps_partkey] P
‘800000
ps

Figure 5: Operator tree Tgrouping for query 1b).

Table 4: Results for query 1b).

TPC-H 1MB | 10 MB | 100 MB | 500 MB | 1 GB
BMO-size 94 782 7980 40151 | 80170
tinit 1N sec 0.09 2.54 403.62 8631.05 | > 10h
tsta in sec 0.09 0.09 8.31 77.02 | 188.38
terouping in sec 0.08 0.02 2.33 12.90 47.34
Speedup factor 1.13 4.5 3.57 5.97 3.98

Again, in the 1 MB dataset we only have a small speedup due to the costly
grouping operation in comparison to the data size. However, in the 100 MB
dataset the evaluation of the standard optimized tree Tgq takes about 8.31 sec-
onds, whereas our grouped optimization Tgrouping leads to a runtime of 2.33
seconds, this is a speedup more than 3.5. The runtime for the unoptimized
operator tree Ty, in the 1 GB dataset is more than 10 hours. Furthermore, the
grouped operator tree Ty ouping i the 1 GB dataset is about 4 times faster than
the standard optimization Tgyq . This is a strong evidence that the heuristics
of Push Grouped Preference reduce intermediate results. This is also verified by
considering the intermediate number of tuples in the operator tree. In the orig-
inal preference query (3) the join produces 800 000 tuples (on the 1 GB dataset)
which must be compared by the grouped preference selection. On the other
hand, the reduction advantage based on our optimization is shown in Figure
5, where the tree is annotated with the number of intermediate results. After
evaluating the left branch of the tree which contains the grouped preference on
partsupp there are only 241231 tuples left. This leads to 241231 tuples after
the join !. Therefore the grouped preference selection o[ P grouping p_brand]
at the top must be applied only on a fraction of the original join tuples leading

INote that p_partkey is a primary key, whereas ps_partkey is a foreign key to
p_partkey.
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to a BMO-set of 80170 tuples in about 4 seconds. Furthermore, one may note
that the speedup factor is not constant but depends on the data size. This is
due to the different group sizes for the grouped preference selections.

Benchmark for Theorem 2b) (Split Pareto and Push Over Join)

Since Theorem 2a) is a special case of Theorem 2b), we only sum up the perfor-
mance results for the latter one. We used the following query to demonstrate
the advantage of Split Pareto and Push QOver Join.

—— Query Theorem 2b) :

SELECT p_partkey, p_size, ps_supplycost

FROM partsupp, part

WHERE ps_partkey = p_partkey

PREFERRING ps_supplycost LOWEST 0, 100 REGULAR
AND p_size HIGHEST 50, 5 REGULAR;

The query consists of a Pareto preference based on two preferences
Py := LOWEST g0 (ps_supplycost, inf = 0,~p, )

and
P, := HIGHEST5(p_size, sup = 50, ~p, )

both having regular SV-semantics. The query joins the relations part and
partsupp on the attribute partkey and evaluates the Pareto preference. Note,
this is similar to a traditional Skyline query. Figure 6 shows the standard
operator tree for the preference query above.

T
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M ps_partkey = p_partkey
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ps p
Figure 6: Operator tree Tgq for query 2b).

Optimizing the operator tree in Figure 6 using Theorem 2b) leads to the
optimized operator tree Tgrouping in Figure 7.

The performance results can be found in Table 5. The evaluation of the
grouping optimized tree Tgrouping in the 1 MB dataset is slower than Tipj; or
Tstq because of the costly grouping operations in both branches of the join,
cp. Figure 7. The speedup for the 10 MB dataset is not noteworthy. However,
for larger datasets we have a speedup up to 11 because the induced grouping
preferences act as pre-filters and reduce intermediate result sizes.
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Figure 7: Operator tree Tgrouping for query 2b).

Table 5: Results for query 2b).

TPC-H 1MB | 10 MB | 100 MB | 500 MB 1 GB
BMO-size 9 16 161 1900 1491
tinit 1N sec 0.08 2.65 400.82 8392.19 > 10h
tsta in sec 0.06 0.27 25.71 668.9 | 1072.82
tgrouping 1N S€C 0.16 0.22 3.6 60.57 176.4
Speedup factor 0.38 1.23 7.14 11.04 6.08

Benchmark for Theorem 2c) (Split Pareto and Push Over Join)

In this benchmark we used the following query.

—— Query Theorem 2cC):

SELECT p_partkey, p_size, ps_supplycost

FROM partsupp, part

WHERE ps_partkey = p_partkey AND
p_size <= 20

PREFERRING ps_supplycost LOWEST 0, 100 REGULAR
AND p_size HIGHEST 50, 5 REGULAR;

The query is the same as in the last benchmark, however the additional filter
p-size < 20 reduces the size of the relation part. Figure 8 shows the standard
optimization of the preference query using Push Hard Selection.

In Figure 9 the Pareto preference is split by Theorem 2c), Split Pareto and
Push Over Join and pushed over the join using a grouped preference and a
semi-join on the attribute partkey. In both operator trees the edges show the
number of intermediate results for the 1 GB dataset.
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Figure 8: Operator tree Tgq for query 2c).
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Figure 9: Operator tree Tgrouping for query 2c).

The net effect is a sizeable performance gain as indicated by the speedup
factor, cp. Table 6. The grouped preference selection after the semi-join reduces
the intermediate result such that the equi-join and the Pareto preference can be
computed efficiently. Again, Ti,;; takes several hours for the 1 GB dataset.

Table 6: Results for query 2c).

TPC-H 1MB | 10 MB | 100 MB | 500 MB 1 GB
BMO-size 5 33 182 1961 1566
tinit 1N sec 0.69 3.81 507.62 11739.65 > 10h
tsta in sec 0.23 1.12 27.50 137.86 | 1007.79
tgrouping 1N SeC 0.11 0.23 9.31 35.22 287.36
Speedup factor 2.09 4.87 2.95 3.91 3.51
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Benchmark Theorem 3a) (Split Prioritization Into Grouping)

This benchmark demonstrates the advantage of Theorem 3a) on the subsequent
query. In this case the preference on 1_linestatus acts as a pre-filter prefer-
ence and afterwards the HIGHEST preference is evaluated on the intermediate
result.

—— Query Theorem 3a):
SELECT * FROM lineitem
PREFERRING 1_linestatus IN ('0O"')
PRIOR TO 1_discount HIGHEST 0.1, 0.02 REGULAR;

We omit the operator tree, but show the performance results in Table 7. Up to
the 100 MB dataset we have only a small speedup. However, on the 500 MB
and 1 GB dataset we have a speedup factor of 4 and therefore the query can be
evaluated in less than 2 minutes.

Table 7: Results for query 3a).

TPC-H 1MB | 10 MB | 100 MB | 500 MB | 1 GB
BMO-size 256 2733 9200 10000 9200
tinit iD sec 0.15 0.91 36.06 >5h | > 10h
tsta in sec 0.13 0.84 9.41 222.95 | 480.31
tgrouping 1N S€cC 0.09 0.71 6.81 54.28 | 121.28
Speedup factor 1.44 1.18 1.38 4.11 3.96

Benchmark Theorem 4a) (Split Prioritization and Push Over Join)

This query demonstrates Theorem 4a), Split Prioritization and Push Over Join,
where a foreign key from ps_partkey to p_partkey in the relation part is
available, cp. [1]. This typically occurs in real world databases.

—— Query Theorem 4a):
SELECT p_partkey, p_size, ps_supplycost
FROM partsupp, part
WHERE ps_partkey = p_partkey AND
p_size <= 20
PREFERRING ps_supplycost LOWEST 0, 100 REGULAR
PRIOR TO p_size HIGHEST 50, 5 REGULAR;

The standard optimized tree Tyq is similar to the one given in Figure 8. Only
the Pareto preference is substituted by the Prioritization P; & P,. Therefore,
the annotation of the tree with the intermediate results for the 1 GB TPC-H
dataset is nearly the same. Figure 10 shows the optimized tree Tgrouping after
applying Theorem 4a) as well as the intermediate result sizes.
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Figure 10: Operator tree Tgrouping fOr query 4a).

Here P acts as a pre-filter preference [4] to eliminate tuples before the costly
join. This causes a faster preference selection and thus, leads to the runtimes
in Table 8. Note that in the 100 MB, 500 MB and 1 GB dataset we have a
speedup factor of over 17. This is because of the strong preference selection
Py, e.g. from 800000 tuples to 78993 tuples in the 1 GB dataset, cp. Figure
10. In the 1 MB dataset we have no speedup. Here the additional costs for
splitting the preference and the grouped preference evaluation are higher than
the benefits of this optimization rule.

Table 8: Results for query 4a).

TPC-H 1MB | 10 MB | 100 MB | 500 MB | 1 GB
BMO-size 9 16 161 1 1491
tinit in sec 0.09 2.56 505.23 >5h | > 10h
tsta in sec 0.05 0.18 7.09 47.45 | 115.45
lrenping 0 SEQ 0.07 0.06 0.31 2.64 4.67
Speedup factor 0.71 3.00 22.87 17.97 | 24.72

Benchmark 5 (A Complex Preference Query)

Our last benchmark shows a Pareto preference in combination with a Rank
preference. The Rank preference weights AROUND with a weight of 2 and the
HIGHEST preference with a weight of 0.5. Afterwards, the average function
with a d-value of 25 is applied on the result of these weighted preferences.

—-— Query 5:

SELECT COUNT ()

FROM partsupp, part

WHERE ©ps_partkey = p_partkey

PREFERRING p_size LOWEST 0, 20 REGULAR

AND (ps_supplycost AROUND 200, 50 REGULAR |

ps_availgty HIGHEST 10000, 100 REGULAR)
RANK 'avgRankF' '2,0.5', 25
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We omit the operator tree, but show the performance results in Table 9.
Again, the evaluation of Ty, for the 500 MB and 1 GB dataset takes several
hours. Note that Theorem 2a) is applied: Push Preference Over Join.

Table 9: Results for query 5.

TPC-H 10 MB | 100 MB | 500 MB | 1 GB
BMO-size 1 1 1 1
tinit In sec 2.36 346.6 > 5h > 10h
tsta in sec 0.71 67.06 336.60 | 675.32
tgrouping iN SeC 0.27 12.32 39.87 | 89.92
Speedup factor 2.63 5.44 8.44 7.51

6.4 Observations and Discussion

To summarize our benchmarks experiences gained so far we can state that the
application of the grouped preference optimization laws from Section 5 shows
excellent performance advantages. The rules reduce intermediate result sizes
in the evaluation and therefore speed up the computation of joins, Cartesian
products, and last but not least the preference selection. One may note that
a speedup factor up 4 is not good at all. However, we compared the grouped
optimization rules with the standard preference optimization technique which
already results in a high performance gain. Moreover, our grouping rules reduce
intermediate results and therefore all test queries can be computed also in low
memory environments.

In some cases the grouped preference optimization has no advantage in com-
parison to the standard optimization. For example, if the dataset is small (say 1
MB) the grouping operation is more costly than the evaluation without group-
ing. However, on large datasets the preference grouping optimization results in
a high performance gain. Furthermore, if the preference grouping is based on a
primary key, each tuple will form its own group. Then, the grouped preference
computation does not eliminate any tuples from the dataset, thus does not re-
duce intermediate results. In this case Theorem 5e) can be applied to remove
the unnecessary grouped preference selection from the operator tree.
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7 Conclusion and Outlook

This work can be seen as an approach to merge the benefits of two different re-
search lines. On the one hand we address the further development of preference
evaluation algorithms by means of optimization theorems. Thereby we continue
the work building up on [4, 7, 8, 10] and specially focus on grouping queries in
this report.

On the other hand we developed a novel point-free algebraic calculus which
allows for a more concise specification of preference constructs and shorter proofs
(in [11, 12]). Applied to the theory of (SV-)grouping queries, we redefined
the grouping-construct as the intersection of an SV-relation and a preference.
Outgoing from this small formal improvement many simplifications arose in the
specification and in several steps of the proofs.

Additionally we introduced the support of SV relations — originally intro-
duced to be used in complex preferences in [8] — for grouping constructs. On
the one hand there was a technical demand for this, as optimization theo-
rems like “Split Prioritization into Grouping” shall be applicable to prioriti-
zations with SV-semantics. With this we contribute to the field of algorithmic
performance of preference evaluation. On the other hand we recognized the
user-side benefits of an enriched specification of preferences queries. Thus we
also allowed user-defined SV-relations for grouping queries, which primarily act
as “syntactic sugar” for database queries in general by replacing the lengthy
CASE WHEN ... THEN ... END statements of SQL. Beyond this they go hand
in hand with the theory of SV semantics for preferences.

At the moment we do not have an adequate algebraic calculus which is able
to handle theorems with database joins in a point-free fashion. This is a very
sophisticated task as e.g., equijoins are point-to-point correspondences between
data tables, hence they are somehow “inherently point-wise”. Nevertheless we
are working on a concise algebraic axiomatisation of general join operations. In
the algebraic aspects of the preference theory this is a major research challenge
for us. It would also have an important practical impact because database
queries containing joins offer a high potential for optimization by a plenty of
“Push ... over join” operations.

This work is part of our approach to bring algebraic preference theory, query
specification and preference algorithms more closely together; to make it eas-
ier to prove correctness of the evaluation algorithms, their used optimization
theorems and to handle specification and implementation in a quite uniform
way.
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