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Abstract

When Tim Berners-Lee proposed his vision of the Semantic Web in 2001, he thought of
machines that automatically execute specific tasks based on available knowledge. The
knowledge should be captured within ontologies which provide an unambiguous and
semantically rich way to capture information. The information could further be used
to enhance tasks like information retrieval, i.e., the retrieval of documents which match
specific criteria.

Over a decade later, technologies which are required for the Semantic Web have been
established in several areas, e.g., the biological and medical domains. Both share a very
constant pool of knowledge, which does not change as rapidly as in other domains, i.e.,
neither a lot of new knowledge must be added continuously nor the existing knowl-
edge has to be updated very often. These circumstances make both domains suitable for
manually creating ontologies. However, in case of a domain with constantly incoming
new knowledge, it would be a great advantage if this knowledge could automatically be
added or matched to an ontology. However, there is nearly no concept available on how
ontological knowledge can be mapped to natural language precisely.

We therefore developed the SE-DSNL approach. It provides experts with the ability
to specify how ontological knowledge can be mapped to linguistic information of any
known language. The concept provides a flexible and generic meta model which cap-
tures all the relevant information. In order to use this for parsing natural language text
a prototypical implementation has been developed which takes the information of a SE-
DSNL model and applies it to a given input text. The result is a semantic interpretation
of the input text which maps its lexical and syntactic elements to the ontology. The direct
integration of semantic and linguistic information further allows using the semantic in-
formation at runtime. This yields certain advantages which are demonstrated by treating
elaborate linguistic phenomena like pronominal anaphora resolution, word sense disam-
biguation, vagueness and reference transfer. To show the validity of the approach it has
been evaluated using scenarios and two case studies.
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Zusammenfassung

Als Tim Berners-Lee seine Vision des ’Semantic Web’ 2001 vorstellte, dachte er an
Maschinen, die, basierend auf vorhandenem Wissen, automatisch verschiedene Auf-
gaben erledigen können. Das Wissen sollte in Form von Ontologien vorliegen, welche
einen eindeutigen und semantisch mächtigen Weg darstellen, Informationen zu erfassen.
Weiterhin könnten diese Informationen für Anwendungen wie die Informationsrück-
gewinnung verwendet werden, d.h. das Auffinden von Dokumenten, die gewissen Kri-
terien entsprechen.

Über ein Jahrzehnt später zeigen die Technologien des Semantic Web insbesondere in bi-
ologischen und medizinischen Bereichen ihre Vorteile. Beide Bereiche eint ein etabliertes
Kernwissen, welches nur selten angepasst werden muss. Dadurch sind diese Bereiche
geeignet, die für sie notwendigen Ontologien manuell zu erstellen. In anderen Bere-
ichen (d.h. Bereiche mit sich häufig veränderndem Wissen) wäre es jedoch von Vorteil,
wenn neue oder geänderte Informationen automatisch in die Ontologie übertragen wer-
den könnten. Das Problem jedoch ist, dass es kaum Ansätze dafür gibt, wie ontologisches
Wissen mit natürlicher Sprache zusammengebracht werden kann.

Zu diesen Zweck wurde der SE-DSNL Ansatz entwickelt. Er ermöglicht es Experten,
die Verbindungen zwischen ontologischem und linguistischem Wissen von beliebigen
Sprachen zu definieren. Im Zentrum des Ansatzes steht ein flexibles und generisches
Metamodell, welches alle notwendigen Informationen erfassen kann. Eine prototypische
Implementierung analysiert auf Basis eines SE-DSNL Modells einen natürlich sprach-
lichen Text. Das Ergebnis ist eine semantische Interpretation, welche die Verbindungen
zwischen dem Text und der Ontologie sowohl auf lexikalischer als auch syntaktischer
Ebene enthält. Zusätzlich ermöglicht diese direkte Integration der semantischen und
linguistischen Informationen die Verwendung des ontologischen Wissens zur Laufzeit.
Die dadurch entstehenden Vorteile werden durch die Behandlung von komplizierten lin-
guistischen Phänomenen wie pronominaler Anapher Auflösung, Wort-Sinn Disambigu-
ierung, Unbestimmtheit und Referenz Transfer demonstriert. Der Ansatz wird anhand
von Szenarien und zwei Fallstudien evaluiert.
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2 Introduction

1.1. Introduction and Motivation

For decades people have been dreaming of building machines which would help them in
their every day lives. Such machines should not only be capable of doing ’ordinary’ stuff
like bringing, e.g., a cup of coffee from A to B, but understand information which is given
to them. In 2001, Tim Berners-Lee et al. wrote an article, in which they coined the term
’Semantic Web’ [1]. The article outlines how information that are meaningful not only to
humans but also to machines could improve the life of humans on earth. The important
prerequisite, however, is that there must be a language which is capable of capturing all
the necessary information such that machines can understand what they have to do. The
concept of ontologies has been described as a way to achieve the goal. An ontology is
"a machine-processable specification with a formally defined meaning" [2] and allows to
capture the knowledge of a specific domain, e.g., a company. With this data a machine
can automatically infer new information. Such knowledge can, however, also be used
to enhance the precision of information retrieval, basically the task which search engines
perform (for details see section 2.3). This means that if websites or documents could be
linked to ontologies, it would be possible to not only search for words, but instead look
for specific meaning, which could greatly increase the overall performance of information
retrieval. Also, if such ontologies could capture enough knowledge, it might be used by
machines to automatically execute certain tasks.

Ontologies bring many new possibilities which can enhance the overall quality of life
by either accelerating certain tasks or enabling machines to do them. The reason is that
ontological knowledge is unambiguous and logical. These characteristics are a huge dif-
ference to what humans use for communication and what provides so many problems
for automatic processing: Natural language. It allows persons to transfer information to
other persons. The information can be anything, ranging from concrete situations they
experienced to abstract mathematical facts they learned about. Natural language is the
preferred way for people to communicate. However, when it comes to computers trying
to understand natural language, there is a wide variety of complex problems they have
to deal with. There are, e.g., things like ambiguity, i.e., words may have multiple mean-
ings, sentences can be interpreted in different ways (and therefore also have multiple
meanings), etc. There exist phenomena like metaphors, one of the most important ways
of languages to create new words by describing situations with expressions which so far
have only been used in other contexts [3]. All these different characteristics of natural
language make it extremely difficult for computers to decipher its meaning.

In order to go a first step in the direction of machine understandable information in
times of the internet, the World Wide Web Consortium (W3C) [4] created different stan-
dards [5], which can be seen in figure 1.1. The language which is meant to be understood
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Figure 1.1.: The Semantic Web Stack according to the W3C [5]

by machines, is the Web Ontology Language (OWL). OWL allows the representation of
ontological knowledge and can be used by computers to infer new knowledge or ver-
ify existing information. Different companies and researchers use OWL successfully in
a variety of scenarios [6] [7] [8]. Some situations are especially well suited for ontolo-
gies, whereas others are much more difficult to handle. The problem is that in order to
work with ontological knowledge it must be created first. Depending on the scenario at
hand it might also be necessary to constantly update existing or create new knowledge.
This is a challenge which quickly becomes very time consuming and complex. One ap-
proach to solve this problem has been to divide the knowledge acquisition problem into
smaller pieces. Different people could then work on just one small part, thereby acceler-
ating the process [9]. However, the past decade showed that the approach is difficult to
maintain. Therefore, researchers started to develop concepts which try to automatically
extract relevant information from natural language text. This discipline is called informa-
tion extraction. Much like information retrieval, information extraction analyzes natural
language text and tries to identify certain patterns which could represent relevant infor-
mation. This is extracted and stored separately. Ideally it can automatically be added to
an existing ontology and thereby enlarge the available ontological knowledge (for more
details see section 2.3). However, for both information retrieval and extraction, there is a
big piece of the puzzle missing:

How can any natural language be related to semantic knowledge?
How can computational processes use semantic information?
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These are important questions as they are among the problems which prevent ontologies
from reaching a broader coverage. This has also been pointed out by others: "Users who
already have ontologies with rich instance data will benefit if they can make this data
available to the IE components" [10]. It is easy to see that single words may relate to sin-
gle ontological elements, e.g., the word "vehicle" relates to an ontological concept ’Car’.
But what about compound words, e.g., "car tire" (which relates not to any tire, but to the
’Tire’ of a ’Car’) or proverbs (which mostly have metaphorical meaning)? How can mor-
phological information (i.e., words whose appearance has been altered to transport addi-
tional information, e.g., the plural ’s’) be identified and matched to corresponding onto-
logical elements? These are just some of the questions which remain largely unanswered
in state-of-the-art approaches. The thesis therefore introduces the Semantically Enhanced
Domain Specific Natural Language (SE-DSNL) approach, which offers solutions to those
questions. The overall idea behind SE-DSNL was to develop a framework which allows
domain experts to define how semantic knowledge and natural language can be com-
bined. Texts which are available within this domain can then automatically be mapped
to the semantic domain knowledge. The result of this process is a semantic interpretation
of the text based on this knowledge.

The SE-DSNL concept is based on a generic and adaptable meta model. It captures both
semantic as well as linguistic knowledge and provides detailed information about the
relation between both of them. We show how computational processes can make elabo-
rate use of the information at runtime by introducing concepts for pronominal anaphora
resolution, word-sense disambiguation, vagueness and reference transfer. Additionally,
a concept on how the extracted semantic knowledge can be used to retrieve specific texts
is described.

The remainder of the chapter is structured as follows: Section 1.2 explains the problems
which this thesis copes with in detail. Next, its objectives are specified in section 1.3.
Afterwards, section 1.4 gives the reader an idea of what the SE-DSNL big picture looks
like. Some parts of the thesis have already been published. All of these publications are
presented in section 1.5. Finally, section 1.6 shows the outline of this thesis by giving a
short description of every chapter.
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1.2. Problem De�nition

This section gives an overview of the problems which the SE-DSNL concept handles.
Basically there are five different challenges in this thesis. The first one is how ontological
and linguistic knowledge can be combined. The second deals with the standard pipeline
architecture which is mainly used in natural language processing. Following, the third
challenge describes how textual and ontological knowledge can be aligned. The fourth
problem is that several different linguistic phenomena require semantic knowledge in
order to be computed. The last challenge is about how a semantic interpretation can
be classified based on its information. All these problems are described in detail in the
following sections. For more insight into the different topics we refer the reader to section
2.

1.2.1. Ontologies and Natural Language

Ontologies are one way how the knowledge of a domain can be captured in a machine
understandable way. A lot of research has been put into the formal specification of on-
tologies in the last years. The most important and de-facto standard for ontologies is
OWL (the current version is OWL 2 [11]). Its focus lies on the semantic formalities and
reasoning capabilities. However, one thing that became clearer during the past couple
of years is that for a better and more widespread distribution of OWL a better way to
handle OWL ontologies and the knowledge within them is necessary. For one, creat-
ing ontologies is difficult because of understanding logical formalisms. Further, state-
of-the-art ontology design tools have unintuitive user interfaces which add additional
complexity to the development of ontologies. One possibility to solve the problem could
be an automated information retrieval and extraction process from natural language text.
However, a clear bridging between the unambiguous ontological knowledge and highly
ambiguous natural language is missing. The problem starts at the word level (a single
word can have multiple senses) and continues up to the syntactic level (sentences can
have more than one meaning). Further, different languages have different ways of repre-
senting meaning (see section 2.1). Some approaches are available on how this gap could
be closed, e.g., LexInfo [12]. These, however, neglect certain linguistic phenomena and
are therefore only applicable to specific languages.

Problem In order to use ontologies more efficiently they need to be associated with lin-
guistic information. Pure semantic information are not enough to allow a broad usage
of ontologies as the problems of knowledge acquisition and usability remain. Both prob-
lems often rely on natural language text which is difficult to map to semantic knowledge
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especially if there is no information available on what this mapping looks like. Therefore,
ontologies should contain information how natural language can be mapped to ontologi-
cal knowledge in order to enhance the precision of automated information extraction and
retrieval.

Challenge In order to better integrate ontological knowledge into Natural Language
Processing (NLP) related tasks it is necessary to specify how ontological structures can
be represented in a specific natural language. The approach must be flexible enough to
represent the morphological and syntactic details of any natural language as well as the
semantic knowledge of any possible domain. Still, this information should be created in
a way which makes it possible to use it in computational processes.

1.2.2. Pipelined processing

More and more applications require the analysis of natural language, often referred to as
Natural Language Processing. NLP covers everything that has to do with the computa-
tional analysis of either spoken or written natural language. Each of them can be divided
into many more subproblems. The thesis focuses on written text and especially the inter-
pretation of the semantic information that it ’transports’. Today most components which
care about the analysis of natural text are concerned with the analysis of the syntactic
part only. It poses different problems like

1. Sentence Splitting: The problem of dividing a single text into its single sentences.
It may first seem as a simple task because the end of a sentence is most commonly
marked by a period. However, a period can also be used to indicate an abbrevi-
ation ("i.e., ") or to mark the decimal point in a real number (at least in English
culture). This makes it somewhat more difficult to correctly retrieve the single sen-
tences. This poses therefore a first possibility to introduce ambiguity, i.e., different
possibilities to interpret a sequence of characters.

2. Tokenization: The problem is similar to sentence splitting. However, instead of
splitting a complete text into sentences, a single sentence is separated into its single
tokens (words, punctuation marks, etc.). Still, this also represents an opportunity
to introduce new ambiguities, e.g., "i.e., " could be divided into four single tokens
"i", ".", "e" and ".", although it should be treated as one single token.

3. Part-Of-Speech (POS) Tagging: POS tags describe the grammatical function of a
word within a text, i.e., if a word is a verb, a noun or something else. POS tagging
therefore refers to the process of assigning the correct POS tag to a corresponding
word. The problem is difficult as the POS tag of a word normally depends on the
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context of its surrounding words.

4. Syntax Tree Parsing: Based on the POS tags this task tries to create a tree like struc-
ture which is based on the grammar of the language. As there are often multiple
possibilities to assign POS tags to a sentence there are also multiple possible syn-
tax trees (often a standard sentence can yield thousands of possible parses, most of
which, however, have no rational meaning).

These are some of the standard tasks that NLP has to cope with. Other challenges involve
things like Named Entity Recognition (NER), pronominal anaphora resolution and Word
Sense Disambiguation (WSD), etc.

Problem The standard architecture for NLP today is a pipeline, i.e., all of these previ-
ously mentioned tasks are executed by clearly distinct components, one after another.
The reason is that each NLP component requires the information of a previous com-
ponent, e.g., the syntax tree parser requires each word to have its POS tags assigned.
Hence, these must first be created by a POS tagger. The approach is rational from a com-
putational point of view. Treating a single problem is easier and leads to less complex
analysis components than treating several problems at once. Still, the amount of ambi-
guities can not be limited as additional information might be necessary. The information,
however, might only be available in a later analysis step of the pipeline. Therefore, as one
component returns an erroneous result which is used as the input for another component
this new component can most likely not produce a good result either.

Challenge Many of the NLP related tasks have to handle difficult problems like ambi-
guity, which require different types of information. The core of the thesis is the inter-
action of semantic and linguistic knowledge. Especially semantic information are very
valuable within natural language processing. In order to provide NLP specific compo-
nents with an optimal pool of information they must have access to information of other
NLP components and vice versa. A pipelined approach can not support the required de-
gree of interaction between different components. Hence, another type of architecture is
required.

1.2.3. Alignment of Ontology and Natural Language Text

Some companies face the problem of having multiple sources with the same informa-
tion, however, there is no direct mapping available between them. This is especially the
case for ontological information sources on one side and natural language documents
on the other. The first type gives computers the power of automatic reasoning whereas
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the second source is much easier for humans to understand and update. Normal search
engines are primarily based on retrieving documents which match a specific keyword
based search query, i.e., documents are matched against the keywords. If the keywords
can be found within a document, this document is returned. Such a process works well
to a certain degree. Similar techniques have been used to match ontologies to documents,
i.e., by simply searching words within the documents which can be matched to ontolog-
ical elements. However, matching documents and ontologies this way does not yield
good results because contextual as well as structural information should also be consid-
ered during the process. This is, however, difficult because (as pointed out previously)
current ontology standards have no possibility to specify how semantic information can
be mapped to linguistic knowledge. Therefore, ontologies and documents must currently
be mapped manually, which can be a very time consuming task. Also, if the documents
or the ontologies will be updated, all links might have to be updated as well. This means
that every existing link has to be checked for its validity. Further, new ones have to be
inserted if new content is available within either the documents or ontologies.

Problem There are many different approaches available which use ontologies for the
semantic annotation of documents or information retrieval (both are tasks which present
mappings between a natural language document and an ontology), however, none of
those are based on a well specified mapping between semantic and linguistic informa-
tion. Today, mappings between natural language documents and ontologies are mostly
created either algorithmically or by using more shallow linguistic knowledge bases like
WordNet [13] [14]. This, however, leads to imprecise mappings, which further lack
deeper semantics. The reason is that algorithms are not suited to represent the linguistic
knowledge or how this knowledge can be mapped to an ontology. Additionally, linguis-
tic knowledge sources like WordNet have no well-specified mapping available domain
ontologies and also do not contain information about the grammar of a given language.

Challenge The challenge is to use well defined mapping information between ontolog-
ical and linguistic knowledge to align natural language texts to a given ontology. The
process should not only map natural language on a single word level, but also on its syn-
tactic level. Furthermore, the knowledge within the ontology should be used to enhance
the alignment result, e.g., by incorporating the semantic knowledge into the resolution of
linguistic phenomena like pronominal anaphora resolution.
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1.2.4. Ambiguity, Vagueness and Reference Transfer

Natural language contains many phenomena all of which are difficult to handle in com-
putational linguistics. Many of those require deeper meaning in order to fully under-
stand them. Some of those phenomena are ambiguity, vagueness and reference transfer.
Ambiguities in general describe situations in which a specific type of information can
have multiple interpretations. The most prominent type is probably word sense ambigu-
ity, i.e., one word with multiple meanings. Vagueness specifies words whose meaning is
not exactly specified (e.g., someone who talks about a "car" in general although actually
meaning his very own car). The third phenomenon, reference transfer, means situations
in which a word receives a completely new meaning. Humans tend to make use of those
phenomena without even noticing. Most of the time the listeners / readers do not have
problems in understanding what the author is referring to, because they have knowl-
edge as well as experiences of their own. All three phenomena are important for com-
putational linguistics. If they are not treated accordingly the correct concepts for specific
words or terms may not be identified.

Problem The problem with most concepts for treating ambiguity is that they can only
identify the best matching concept out of a set of existing concepts. Hence, as humans
tend to overgeneralize concepts (i.e., refer to an entity by using a very generic term, e.g.,
referencing one’s own car with the word ’Car’ instead of using the term which correctly
identifies the specific car type), more specific information may not be part of the initial
concept set. Further, vagueness and, especially, reference transfer are rarely being treated
in computational linguistics at all because the identification of the correct concept can not
be done based on a simple mapping approach, but requires a certain degree of reasoning
in order to identify the most probable concept. This means that based on a set of available
information new information must be identified which matches a specific situation.

Challenge The SE-DSNL concept is based around a domain specific ontology which
can be represented linguistically. The semantic information within the ontology should
be made available such that it helps to solve the aforementioned linguistic phenomena
by using some type of reasoning mechanism.

1.2.5. Retrieving Information from Semantic Interpretations

A semantic interpretation of natural language text provides a multitude of precise seman-
tic information, especially in comparison to a pure syntactic representation. For example,
the senses of the single words as well as the connections between the available concepts
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can be used for several different applications, e.g., search engines or the automatic clas-
sification of natural language texts. Both are of importance in different scenarios, e.g., in
end user support departments texts should automatically be forwarded to the responsible
person depending on the content of the text. Another scenario can be applications which
should be controlled by using natural language commands. Standard syntactic based
approaches can have problems with this task because of ambiguities as well as unknown
semantic relations. A semantic interpretation of text can greatly enhance the precision of
the process, because it should contain both the semantic and structural information.

Problem Classical approaches rely, as previously mentioned, on syntactic features, i.e.,
word stems, perhaps syntactic trees, word frequencies, etc. Semantic approaches can en-
rich the words within texts with additional semantic information based on, e.g., word
sense disambiguation. However, not only the meaning of single words is important, but
also the semantic relations between the concepts of the words. Therefore, both classifica-
tion as well as information retrieval processes, which rely on the semantic interpretation
of text, need to base their mechanisms on the semantic types as well as the relations
between those concepts. Such a process must be precise in order to use the available in-
formation accordingly. However, it also must exhibit a certain degree of tolerance. This
is due to the fact that two semantic interpretations can describe the same content but still
vary in their specificity of the mentioned semantic elements as well as the structural rela-
tions between them. Hence, the approach must be tolerant to both of these challenges.

Challenge The challenge is to develop a concept for the challenges of information re-
trieval and classification. The approach must allow the definition of tolerant and still
precise constraints about both the semantic elements and structure between them in the
semantic interpretation. Ideally, one set of constraints can be used to retrieve and classify
information from different natural language descriptions.
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1.3. Objectives

In the previous section, the problems which SE-DSNL has to cope with have been pre-
sented. In this section the objectives and approaches of the thesis are described in de-
tail.

1.3.1. Combining Ontologies with Natural Language

In the previous section it was mentioned that current ontology standards lack the capa-
bility of associating semantic knowledge with detailed linguistic information. In order
to use ontologies in NLP related scenarios this is a necessary prerequisite. Therefore, the
thesis describes a concept of how ontological information (i.e., its concepts as well as the
relations between the concepts) can be mapped to linguistic information.

Approach We develop a concept which overcomes the linguistic limitations of OWL.
The concept provides a generic way of mapping every possible linguistic form and struc-
ture to a corresponding concept or structure within the ontology. This is done by allowing
the integration of additional external functions which can be tailored to best fit language
specific phenomena. Such functions have access to both the semantic as well as linguistic
information of an SE-DSNL ontology.

Contribution A concept as well as a meta model which specifies how ontologies can be
enriched with linguistic information.

1.3.2. Concurrent Analysis of Natural Language Speci�c Problems

As it was mentioned before state of the art NLP mostly relies on sequential approaches,
i.e., components for different problems are lined up within a pipeline and use the out-
put of one component as the input for the next. In this thesis one objective is to create a
concept which allows the concurrent treatment of different NLP related problems. This
means that one analysis component A should have access on the results of a completely
different analysis component B and vice versa. In case that B creates new results, compo-
nent A should be capable of reevaluating the new information.

Approach We develop a concurrent and generic approach which parses a given input
(i.e., a written text) in multiple iterations until no more results can be deduced, i.e., a sta-
ble result set has been reached. The approach is easily extensible and allows components



12 Introduction

to communicate with each other, i.e., one component delivers new information which are
used by another component that can make new contributions etc. The parsing process is
based on the information available within the meta model of objective 1.3.1.

Contribution A generic concept as well as prototypical implementation for the concur-
rent analysis of natural language specific problems.

1.3.3. Semantic Interpretation of Natural Language Text

Previously the problem of synchronizing natural language documents with ontologies
has been mentioned. One objective of the thesis is therefore, to create a semantic interpre-
tation of a given natural language text. The interpretation must contain the ontological
concepts which the words of the text refer to. Also, the relations between the concepts
should be identified as they are stated within the text. The interpretation must adhere to
the mapping between ontological knowledge and linguistic information as described in
section 1.3.1.

Approach We integrate the contributions of objectives 1.3.2 and 1.3.1. This leads to a
consistent framework which concurrently analyzes text, using the ontology as both a
source of information as well as an anchor for the semantic interpretation. Because of the
external functions, which have been specified as part of the meta model, the knowledge
of the ontology can be used at runtime to further enhance the overall parsing precision
and result, e.g., by resolving pronominal anaphora.

Contribution A consistent framework, combining the contributions of objectives 1.3.2
and 1.3.1. The framework is further evaluated on the basis of two case studies.

1.3.4. Handling Ambiguities, Vagueness and Reference Transfer

As shown previously in section 1.2.4, coping with ambiguities, vagueness and reference
transfer is important in order to correctly identify the meaning of specific words. It is
therefore one objective of this thesis to cope with word sense disambiguation, vagueness
and, to a certain degree, reference transfer, i.e., based on the ontology, the correct meaning
of the words should be identified. Further, generic word to concept mappings should be
made as specific as possible, if very vague words have been identified. Also, if an object
is referred to by using just a property the correct concept should still be found.
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Approach In similar scenarios in the past, spreading activation based approaches have
been used if ontological knowledge was available. In order to solve the previously men-
tioned linguistic phenomena, a similar approach has been considered here, which incor-
porates a semantic distribution of the tokens as well as further heuristics to identify the
correct information.

Contribution The contribution is an ontology-based algorithm which helps in natural
language scenarios that include ambiguities, vagueness or reference transfer.

1.3.5. Semantic Information Retrieval

In section 1.2.5, the problem of retrieving information from semantic interpretations was
introduced. Hence, one objective of the thesis is the development of a concept which
allows us to retrieve specific information from a semantic interpretation of a natural lan-
guage text. Further, the approach should be usable to classify an interpretation according
to certain criteria, i.e., based on these criteria and the concepts of the words as well as the
relations between those concepts.

Approach Experts can define so called patterns, i.e., a pattern represents a category and
contains a definition of specific semantic information which must be contained within a
semantic interpretation. Next, a graph matching algorithm matches the pattern against
the given interpretation. If the pattern can be applied to the interpretation, the interpre-
tation is classified as an element of this specific pattern category. Moreover, the elements
of the pattern are assigned to corresponding elements of the interpretation, thereby al-
lowing the retrieval of specific information.

Contribution The contribution is a concept and a prototypical implementation which
retrieves information from semantic interpretations according to pattern-based specifica-
tions.
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Figure 1.2.: Architecture of the SE-DSNL approach

1.4. Architecture

In order to solve the previously specified objectives we developed the architecture pre-
sented in figure 1.2. It is based on a knowledge base which captures all the relevant
information and allows them to be interrelated. This means that semantic knowledge
is connected to linguistic knowledge both on an element as well as a structural level. It
allows the representation of phenomena like homonymy and synonymy, as well as cap-
turing arbitrary grammatical relationships. The information is used by an interpretation
algorithm for parsing a natural language text. The algorithm parses the text by apply-
ing user specified functions. These can be tailored to the exact needs of a given domain
and work on both the linguistic as well as the semantic level at the same time. They
thereby provide an optimal basis for analyzing natural language text. The result of the
parsing process is stored within an interpretation model, which captures the exact rela-
tions between the natural language text on one side and the ontological knowledge on
the other. Hence, it stores all information about which word or phrase corresponds to
which semantic element. In order to retrieve information from this interpretation model,
a pattern based approach has been developed which allows the definition of semantic
patterns by directly associating them to the semantic knowledge of the knowledge base.
The information is used by the pattern resolution component, which tries to match all
available patterns on a given interpretation model.
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1.5. Publications

Different parts of the thesis have been published in the past. The section gives an
overview of these papers and shortly describe how they are related to this thesis.

• [15] Wolf Fischer and Bernhard Bauer. Cognitive-Linguistics-based Request Answer
System. In: AMR 2009 - 7th International Workshop on Adaptive Multimedia Retrieval,
Madrid, Spain, September 2009: The paper introduces a first version of the meta
model, presented in section 3 and further gives an outlook on how the model might
be interpreted.

• [16] Wolf Fischer and Bernhard Bauer. Domain Dependent Semantic Requirement En-
gineering. In: DE@CAiSE’10 - Workshop on Domain Engineering, Hammamet, Tunisia,
June 2010: The paper gives an overview on how SE-DSNL might be used for the
task of requirements engineering.

• [17] Wolf Fischer and Bernhard Bauer. Combining Ontologies And Natural Language.
In: AOW 2010 @ AI 2010, Adelaide, Australia, December 2010: The paper presents the
final version of the meta model in section 3.

• [18] Wolf Fischer and Bernhard Bauer. Ontology based Spreading Activation for NLP
related Scenarios. In: SEMAPRO 2011, Lisbon, Portugal, November 2011: The publica-
tion describes the spreading activation based algorithm from section 5, which treats
WSD, vagueness, reference transfer and further identifies the semantic relatedness
of different semantic elements.
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1.6. Outline

The thesis is structured as follows: Chapter 2 gives an overview and introduction into all
the different topics which this thesis covers. It consists of three main sections: The first
section 2.1 introduces the basics of natural language, its challenges and how all of these
are related. The next section 2.2 describes ontologies, relevant standards and also one of
the most advanced concepts to linguistically ground OWL ontologies. The final section
2.3 covers the basics of information retrieval in general and ontology-based information
retrieval in specific.

The next chapter 3 introduces the SE-DSNL meta model which captures the information
of how ontological structures can be represented with linguistic information. It therefore
first presents a set of specific requirements in section 3.2. We developed a meta model
which fulfills all of them. Its elements and structure is shown in section 3.3. A formal
specification of the meta model is given in section 3.4. Further, section 3.5 describes how
knowledge for this model can be imported from existing OWL ontologies. It also specifies
the process of combining semantic with linguistic knowledge as well as specific modeling
guidelines.

Chapter 4 covers the concept of how the information within a SE-DSNL model can be
used to interpret natural language text. After a short introduction (section 4.1) the process
of analyzing text and creating an interpretation from it is introduced in section 4.2. Next,
section 4.3 describes a set of different functions for parsing textual information. The
chapter is concluded in section 4.4 which represents related work and delimits it from
SE-DSNL.

Chapter 5 introduces an algorithm which is used for retrieving information from the
semantic part of a SE-DSNL model. The chapter first contains an introduction to the
different tasks of this algorithm (section 5.1), before it presents its specific requirements
(section 5.2). After a set of required definitions (section 5.4) and the description of an
ongoing example (section 5.3), the three phases of the algorithm are explained in sections
5.5, 5.6 and 5.7. We show that the algorithm terminates and the results are valid in sec-
tions 5.8 and 5.9. The chapter is concluded by delimiting our approach from others in
section 5.10.

The following chapter 6 explains how information can be retrieved from a semantic in-
terpretation by using a pattern-based approach. Section 6.1 introduces and motivates the
chapter. It further gives a detailed definition of the problem and the requirements the
approach has to fulfill. Next, the required extension of the SE-DSNL meta model is pre-
sented in section 6.2. Also, the semantics of the model are explained. The mechanisms of
the algorithm which classifies an interpretation model is shown in section 6.4. Section 6.5
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concludes the chapter by delimiting the concept from other existing approaches.

Chapter 7 presents the results of the evaluation. It first defines the criteria and methods
used to evaluate the concept of this thesis in section 7.1. Next, the prototype which re-
alizes the different concepts is described in section 7.2. How well the SE-DSNL concept
can handle challenges like modifiability, reusability and performance is shown in section
7.3 by using different scenarios. The first case study, described in section 7.4, shows how
well linguistically complex domains can be handled with SE-DSNL. In contrast, the sec-
ond case study (section 7.5) focuses on high parsing precision and the retrieval of specific
information.

The final chapter 8 concludes the thesis. It gives an outlook on potential future work and
applications in section 8.2, before section 8.1 summarizes the experiences and results of
this thesis.

The thesis is best read following the approach which can be seen in figure 1.3. Starting
with the introduction (and the basics, optionally), the reader should continue with the
chapters about the combination of ontological and linguistic information, the semantic
interpretation of natural language and the semantic spreading activation. After these
chapters, one can decide, based on his / her interest in semantic information retrieval. If
the topic does not interest the reader, one can directly continue with the first case study
and, afterwards, go to the conclusion chapter. If one intends to read the chapter about
semantic information retrieval and classification, the reader will have acquired the neces-
sary knowledge which is required to fully understand the complete evaluation chapter.

One final note: From time to time some of the words within this thesis start with a capital
letter, e.g., Function, Construction etc. These words refer to elements from our meta
model and are capitalized to recognize their origin more easily.
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Figure 1.3.: Outline of the thesis
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2.1. Natural Language

An important area of this thesis is natural language, which contains a variety of phe-
nomena that make a mapping to semantic information challenging. The area of research
that tries to understand natural language, its history as well as evolution and the way it
is used for communication, is called linguistics [19]. Linguistics is an important field of
research, especially because it also tries to uncover the commonalities between different
languages, even between such seemingly different ones as, e.g., German and Chinese.
This is called the unified phenomena, i.e., "linguists assume that it is possible to study
human language in general and that the study of particular languages reveals features
of language that are universal" [19]. The assumption is important: Its absence could
mean that different languages can only be mapped to an ontology by using different ap-
proaches and concepts. In the following, we give an introduction to the field of natural
language and present its structure, problems, challenges and approaches which are rel-
evant to SE-DSNL. Those sections which cover linguistically related basics do not focus
on one language, but instead describe the commonalities of all known languages.

2.1.1. Morphology

Morphology is concerned with the study of words, i.e., how words are constructed, what
smaller subunits they are made of, etc. The smallest subunits, a word consists of, are so
called morphemes [20] [21]. A morpheme is the smallest unit which can contain mean-
ing. An example is the word "dog", which is only one morpheme. In contrast, "cats"
consists of two morphemes, one being the morpheme "cat" and the other one being the
plural "-s". Morphemes therefore can express very different types of meanings, either of
a concrete (e.g., "cat") or a more abstract kind (the plural "-s", past or future tenses, etc.).
Morphemes are mostly distinguished in two main classes: stems and affixes. Basically,
a stem morpheme holds the main meaning of a word, whereas affixes "manipulate" the
meaning of the stem. Affixes themselves can be divided in further subcategories [20]:

1. Prefixes, i.e., coming before the stem. Example: The German word "unschön" (En-
glish: not nice), which is composed of the prefix "un" and the stem "schön".

2. Suffixes, i.e., coming after the stem. Example: The German word "sagt" (English:
Says), which is composed of the stem "sag" and the suffix "t".

3. Circumfixes, i.e., both coming before and after the stem. Example: The German
past participle word "gesagt" (English: said), which is composed of the prefix "ge",
the stem "sag" and the suffix "t".

4. Infixes, i.e., inserted into the stem. Example: In the Philipine language Tagalo, the
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word "humingi" (English: borrow) is composed of the stem "hingi" and the infix
"um" (which marks the agent of the action).

There are four ways of how a word can be built:

1. Inflection: The stem of a word is combined with a grammatical morpheme. This
normally does not change the class (POS in section 2.1.6.1) of the word, but its
grammatical function (e.g., indicating the tense when something happened).

2. Derivation: Similar to inflection, the stem of a word is combined with a grammatical
morpheme. This time, however, its class changes, often also leading to a different
meaning. For example, the verb "computerize" can take the affix "ation", which
leads to "computerization".

3. Compounding: Here, multiple stems are combined to form a new word. For ex-
ample, the word "Mousecable" is the combination of the two words "Mouse" and
"Cable".

4. Cliticization: A stem is combined with a clitic, i.e., a morpheme which behaves as
a word but is reduced in size and attached to another word. An example is the
English expression "I’ve", in which "’ve" is the clitic of the word "have".

As can be seen, the meaning of a word depends on the stem and the affixes that are used
to build it. Depending on the language, different ways of creating words are preferred
over others [21] [22]:

1. Analytic languages: Words consist of only one morpheme, i.e., the stem of the word.
They do not make use of any type of inflection. Examples are Chinese, Vietnamese.

2. Synthetic languages: In contrast to analytic languages, synthetic languages make
use of inflection, derivation and compounding. Words in such languages there-
fore consist of more than one morpheme. Languages, which make extensive use of
morphemes, are called polysynthetic (e.g., American Indian languages, Eskimo).

3. Agglutinative languages: This is a subtype of synthetic languages. An agglutina-
tive language ideally expresses three properties: Each morpheme represents only
one meaning, morphemes are clearly separated and grammatical properties do not
affect the form of the individual morphemes. A good example is Turkish.

4. Flective languages: The category is also a subtype of the synthetic languages and
represents the opposite of the agglutinative languages, i.e., one morpheme repre-
sents more than one meaning, several morphemes can be merged into a single mor-
pheme and grammatical properties can affect the form of individual morphemes.
An exemplary language is Indo-European.
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It has to be noted that languages do not necessarily fit into one of these classifications
directly. Instead they may have soft borders and, therefore, overlap with several of the
categories. As can be seen, there are many different ways of creating words in different
languages such that they transport the meaning which was intended by the author. The
variety, however, is a problem if trying to represent semantic knowledge. This is why
a concept must be capable of handling all different kinds of expressing meaning. We
developed SE-DSNL in a way that it can be adapted to represent semantic knowledge in
any language.

2.1.2. Syntax

Syntax (coming from the Greek word sýntaxis which means "setting out together or ar-
rangement" [20]) "is the study of the principles and processes by which sentences are
constructed in particular languages" [23]. First work on syntax can be dated back to
Panini who wrote a book about the grammar of Sanskrit [24], which is still used in teach-
ing Sanskrit today [20]. From the 17th century on, most researchers believed that there
is a universal grammar that can express any possible thought, as thought processes were
believed to be the same for every human [25]. The idea was introduced by Arnault and
Lancelot in 1660 [26] [27]. However, the approach was based on the French language
only, therefore contradicting the "universal" idea. It took until the 19th century, in which
the raise of comparative methods started to diminish the "universal" thought [25]. The
most important recent advances in linguistics were made in the 20th century, most no-
tably because of Chomsky [23]: "Chomsky is currently among the ten most-cited writers
in all of the humanities [and social sciences] (behind only Marx, Lenin, Shakespeare, the
Bible, Aristotle, Plato, and Freud) and the only living member of the top ten" [25]. He
thought that as humans are capable of producing an infinite variety of sentences from a
more or less finite set of words, there must be some kind of innate competence to gener-
ate those sentences. This lead to the term "Generative Grammar" [25]. Chomsky believed
that this competence can be expressed in a formal way by using rules which allow the
construction and understanding of a nearly unlimited number of sentences. We refer to
such a set of rules also as grammar [28]. In the following, the most basic building blocks
of formal grammars and how they can be used to construct more complex sentences are
explained.

2.1.2.1. Syntactic Categories and Constituents

Before introducing the different building blocks of language we first introduce another
important concept of language, i.e., the so called Part-of-Speech classes (also called syn-



2.1 Natural Language 23

tactic categories). Each word within a sentence has its own POS class which specifies its
grammatical properties [28]. For example, the POS class VERB represents such words
which represent an action or event. A NOUN is a word which specifies names, people,
locations, etc..

A man draws a picture.

In the example, both "man" and "picture" are of the category NOUN, whereas "draws" is a
word from the category VERB. An important aspect is that the set of syntactic categories
is not the same for every language but instead can differ greatly. Nearly every language
contains verbs and nouns [29] and, therefore, also a corresponding POS class. But beyond
this, there can be huge differences between languages. For example, Japanese has four
different kinds of adjectives [30], whereas in the English language there is just one. As it
was already mentioned, grammars use rules to combine the single words into a sentence.
Basically, several words within a sentence can be grouped together to form a subgroup,
also called constituent. Constituents themselves are part of a hierarchical order. They can
be differentiated into phrases and clauses, where phrases are lower in the hierarchy than
clauses [28]. Most phrases have a so called HEAD, i.e., a word which contains the core
meaning of the specific phrase. As it is the case with single words, phrases also have a
syntactic category, therefore representing a specific grammatical function. Most often the
HEAD word will "be a lexical item of the same category" [28], i.e., the head of a noun
phrase is a noun, the head of a verb phrase is a verb etc. An example can be seen in the
following:

A man draws a red picture.

In the example, the words "A man" as well as "a red picture" form a phrase, more precisely
a NOUNPHRASE. In the second NOUNPHRASE, "picture" is the HEAD of the phrase
with the word "red" being a so called DEPENDENT of the word "picture" (as it modifies
/ specifies the meaning of the word "picture"). The corresponding hierarchical order can
be seen in figure 2.1. Note that the node ’S’ is the clause of the sentence, indicating the
grammatical function SENTENCE.

2.1.2.2. Semantic Roles and Grammatical Relations

Previously, we introduced the concepts of syntactic categories, constituents and its spe-
cializations phrases and clauses. We further showed how these different concepts belong
together. So far we only know what sentences are made of and that each of these part has
a grammatical function which is represented by a syntactic category. The most important
idea of syntax, however, is how these different parts and concepts together give a mean-
ing to a sentence - that is the question behind semantic roles and grammatical relations.
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Figure 2.1.: An example of a constituent tree, which has been generated with the Stanford
Parser 2.0.1 and the English PCFG caseless model

Let us have a look at an example:

He met his friend.

Each grammatically correct sentence has a so called predicate which contains the meaning
of the relationship of a sentence. In the previous example, that is the word "met" (in more
complex sentences, the predicate can also span multiple words). A predicate is either
true or false with regard to its so called arguments, i.e., "the individuals (or participants)
of whom the property or relationship is claimed to be true" [28]. Here, the word "met"
has two arguments "He" and "his friend". The predicate, together with its arguments, is
called a clause (see section 2.1.2.1). Depending on the verb which is used within a clause
and the context of the sentence, the number of arguments can vary. For example the verb
"run" can be used with a number of different arguments:

She opened the door.
The door was opened.

The first sentence simply indicates that a women opened a door. In the second sentence,
a door is being opened. Both are valid sentences (both syntactically as well as seman-
tically), in which the verb "open" receives a different number of arguments (in the first
sentence, there are two arguments and in the second sentence, there is only one). The
number of arguments of a verb is also being referred to as valency [20] [21].

We know now that there are predicates and each predicate has a certain number of argu-
ments. Interesting to see is that in a standard sentence there is almost always someone
doing something to somebody. Linguists therefore developed the concept of semantic roles
(sometimes also called thematic role) [31] [32]. A semantic role basically is a broader clas-
sification of the different arguments used by a predicate. In the previous example, "She"
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would be a so called agent (i.e., someone who is doing something) and door would be a
so called theme (i.e., "an entity which undergoes a change of location or possession" [28]).
There are multiple additional semantic roles, e.g., experiencer (a living entity which expe-
riences something), instrument (a non-living object which is used for doing something),
etc. [28]. As it is the case with syntactic categories, there are multiple semantic roles, some
of which are specific to certain languages.

Semantic roles help to identify the predicate-argument structures of a sentence, i.e., the
relation between a predicate and its arguments. The reason is that no matter if the sen-
tence is in an active or passive scheme (as long as it contains the same arguments), the
predicate-argument structure does not change [28]. This can be seen in the following two
examples:

He programmed an application.
An application was programmed by him.

Both sentences describe the same situation, i.e., a male person programs an application.
The difference between both sentences is that in the first sentence an active verb form is
being used, whereas in the second sentence a passive verb form describes the scenario.
Still, the meaning remains the same. When children learn grammar in school, they of-
ten start with the so called Subject (SUBJ) and Object (OBJ), two commonly used terms
in linguistics. Knowing the SUBJ and OBJ of a sentence is important as these two define
the main constituents of a clause and therefore help deciphering the complete syntactic
structure and meaning of a text. A SUBJ is often described to be the agent of something,
whereas the object denotes the receiver of an action. However, this definition is not accu-
rate, which can be seen in the second of the previous two example sentences: There, the
SUBJ is "application" which, however, is not the agent of the sentence. The definition of
what a SUBJ and OBJ is depends on the language. In English, properties like the word or-
der (e.g., the SUBJ normally comes before the verb and the OBJ after the verb), agreement
with the verb (i.e., both share a set of common syntactic features, e.g., if the verb presents
a plural form, the SUBJ most likely has to end with a plural "s") and others [28] [33] help
to identify what the SUBJ and OBJ of a sentence are. The terms SUBJ and OBJ represent
so called grammatical relations, which are defined based on "their syntactic and morpho-
logical properties" [28]. Note that there can be an additional object within a sentence, the
so called Secondary Object (OBJ2). Again, depending on the language, there are different
ways of determining which is the primary and which the secondary object. This can be
solved using agreement (if there is agreement between the verb and one of the objects,
the verb most likely agrees with the primary object), word order (the primary object often
occurs closer to the verb) and others [28].
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He gave [his friend]OBJ [a book]OBJ2 .

In this sentence, both objects have been marked accordingly. Here, "his friend" represents
the primary object, whereas "a book" represents the secondary object.

Besides the already mentioned ones, there exist other types of grammatical relations.
One of them is the so called Oblique Argument (OBL). In contrast to SUBJ and OBJ, an
OBL is marked by a preposition in English. Basically, oblique arguments are said to be
less important to the clause than a SUBJ and OBJ. In the following example, "for a small
company" is an oblique argument.

He developed an application for a small company.

The different types of grammatical relations so far represent arguments which are closely
related to the predicate. There, however, exists another element, which is not necessary
in order to understand a sentence. However, it still transports information which is nec-
essary for a listener or reader to understand a described situation. Such elements are
called adjuncts:

He formatted his hard drive last night.

Here, the words "last night" form an adjunct. In contrast to oblique arguments, an adjunct
can be deleted without losing any important information [28].

2.1.3. Meaning

Meaning is more than just the sense behind single words. Meaning not only exists at a
single word level, but can also be constructed from single morphemes, words and con-
stituents up to the sentence and even text level. All of this depends on the grammatical
structures chosen by the author or speaker of a text. Meaning can come in many different
shapes and forms, some of which can be seen in figure 2.2. We use many of these dif-
ferent varieties of meaning in our every day communication with other people. Some of
these forms are so called literally meanings, i.e., things that are meant exactly in the way
that they were said [19]. For example, someone might tell another person to leave the
room by saying "Please leave the room". Here, the words exactly specify the intention
of the author. However, the person of the statement could also have said: "The door is
behind you" [19]. In this case, the speaker used a nonliteral way of expressing himself.
If taken literally, the last example would contain an information about the location of a
door. However, given a context of two persons standing in a room, one of them with
his back to the door, the meaning of this statement is too obvious. Instead, the speaker
implied non-literally that the other person should leave the room. Both, literal and non-
literal, are varieties of meaning which are used by speakers to express information (i.e.,
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Figure 2.2.: Some varieties of meaning [19]

speaker meaning). Another form of meaning is the linguistic meaning. The form is con-
cerned with the sense behind words or syntactic structures, e.g., the word "dog" refers to
the (mostly) furry animal with four legs that sometimes barks. This form is very similar
to literal meaning.

Now that we established that there are different varieties of meaning the question is what
meaning actually is? Over the centuries, many different definitions have been proposed
as to how meaning could be defined. However, none of these theories fully grasp every
aspect that is known about meaning [19].

The denotational theory of meaning describes it as being the actual object that words
refer to [34]. If, e.g., someone reads the words "red rose", the person most likely thinks
of an actual red rose. There are, however, some shortcomings of this theory. For ex-
ample would the approach mean that "if an expression has a meaning, then it follows
that it must have a denotation" [19]. There are, however, many counter examples such
as the simple words "the", "and", "hello", "Pegasus" (the flying horse) etc. which do not
denote an object. The denotational approach is often taken by, e.g., truth conditional ap-
proaches [34], which try to identify the conditions under which the expressions of a given
statement are true [20] [35].

Other theories which try to handle those problems at least partially, are conceptualist the-
ories. In those the meaning of a word is not an actual object but an idea or concept within
the mind of a person, a mental representation (e.g., Frege [36]). Although such theories
can handle more abstract concepts like the one of "Pegasus", other abstract concepts are
still difficult to grasp. Ontologies are one approach which makes use of this concept.

Pragmatic theories present another type of approach. These define meaning as the use
that an expression has to the participants of an interaction [19] (therefore also called
"meaning-is-use" theories [37]). The theory allows to specify the meaning of words like
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"Hello". Its challenges, however, are that "the relevant conception of use must be made
precise" and how exactly "the meaning is connected to use" [19]. Relevant to the thesis
are mainly the conceptualist theories. The reason is that ontologies allow the definition
of concepts, classes and properties in a machine-understandable way. They are therefore
a kind of ’digital mind’ which can contain a representation of knowledge.

2.1.4. Ambiguity, Vagueness and Reference Transfer

Language has a tendency to be ambiguous, i.e., a word or a syntactic structure represents
several ways in which it could be understood [28] . Humans rarely have a problem with
ambiguities, in contrast they often use ambiguities as an element of style for commu-
nication [38]. For a computer this is, however, a more difficult task as the process of
disambiguation requires additional knowledge, as we show later.

The simplest form of ambiguity is the so called lexical ambiguity. Here, a single word
has more than one meaning (such a word is called a homonym). An example is the word
"bank", which can either refer to a financial institute or a river bank. Therefore, a sentence
like the following one can theoretically have two different meanings [28]:

A fishermen went to a bank.

So either the fisherman went to a financial institute or to a river bank. Another type of
ambiguity is the so called structural ambiguity. Here, the problem is that different gram-
matical structures can be assigned to a set of words. This is best explained in the follow-
ing example [28]:

the [tall bishop]’s hat
the tall [bishop’s hat]

In the first phrase, the adjective "tall" refers to the bishop being a tall man, whereas in the
second phrase the word "tall" describes the height of the hat. One area where humans
use ambiguity as a linguistic style can be seen in humor. An example is the classic joke
by Groucho Marx [38]:

Last night I shot an elephant in my pajamas. How he got in my pajamas, I’ll
never know.

Here, the oblique argument "in my pajamas", referring to the predicate "shot", is ambigu-
ous. The first interpretation refers to the author of the statement wearing pajamas, while
he shot the elephant. Another valid interpretation for the "pajamas"-phrase would be to
give further information about the location of the "elephant", which of course is highly
unlikely. Still, the second sentence disambiguates the first one by specifying that Marx
actually referred to the location of the elephant. Another type of ambiguity is pragmatic
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ambiguity [38]. This type means that a complete statement is ambiguous because it lacks
detailed information. The missing information has to be inferred by the recipient of the
statement, e.g., by using information within his surroundings. Given a situation where
one person wants to buy a new car at a car retailer, he / she might point to a specific car
and say to the shop owner:

I want this car.

Without the information to which car the buyer is pointing the statement is completely
ambiguous, as it is unclear which car he is referring to. The shop owner therefore has to
infer the remaining information from the situational context.

A phenomenon of language, which sometimes is mistaken for ambiguity, is vagueness [39]
(the term is used especially in cognitive linguistics, whereas ’traditional’ linguists refer to
generality). A definition of the problem is: "A single lexeme with a unified meaning that
is unspecified with respect to certain features" [38]. If for example someone talks to a car
manufacturer and just mentions his "car", he underspecified what type of car he actually is
referring to, although this might be of interest to the manufacturer.

One final phenomenon that we want to present here is reference transfer (sometimes also
called deferred reference, meaning transfer or sense transfer [40] [41]) [38]. Here, the initiator
of a statement assigns a new meaning to a word with an initially different sense. This can
be seen in the following example:

The ham sandwich is at Table 7. [41]

This is a quote from a server in a restaurant to one of his co-workers. He does not actually
refer to the "sandwich" but to the person which ordered the sandwich at "Table 7". It is a
very difficult problem as the mechanisms that lead to the phenomenon are "mysterious"
[38].

All three phenomena which have been described so far, are important to the analysis of
natural language. They are therefore also of importance for computational linguistics.
In this thesis an algorithm was developed (section 5) which at least partially treats all of
them.

2.1.5. Cognitive Linguistics and Construction Grammar

Cognitive linguistics present an approach which differs in many aspects from the tradi-
tional linguistic approaches, especially the one which Chomsky represented. Chomsky
and his followers believed that language follows specific rules for which a specific part
of the brain is responsible. This part of the brain was thought to be innate. In contrast,
cognitive linguistics separates itself from Chomsky in three major points [42]:
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1. There is no single part within the brain which is responsible for language alone.
Language is thought to apply to basically the same concepts and mechanisms as
any other cognitive process. Further, all linguistically relevant information (i.e.,
about meaning, morphology, syntax and phonology) is thought to be stored within
conceptual structures.

2. Grammar is not about truth-conditional semantics (see 2.1.3), but about conceptual-
ization. Humans experience situations and store them within their mind by concep-
tualizing them. The communication of an experience then depends on the gram-
matical properties that are chosen by the speaker. Persons receive and also commu-
nicate by using grammatical inflections and constructions which lead to different
ways of expressing and perceiving the previously conceptualized knowledge.

3. Knowledge about language emerges from the use of language itself. The idea is that
"categories and structures in semantics, syntax, morphology and phonology are
built up from our cognition of specific utterances on specific occasions of use" [42].

Cognitive linguistics therefore does not analyze the different linguistic levels separately,
but tries to look at them as a whole. Basically, language, communication and cogni-
tion "are mutually inextricable" [43]. This also means that meaning is inseparable from
language which is the opposite of what Chomsky originally proposed [44]. In order to
represent the inseparability for scientific analysis, the concept of Construction Grammar
(CxG) has been developed. The approach allows combining forms with meaning di-
rectly. Many different approaches to CxG have been developed, all of which focus on
different aspects. For example, Luc Steels developed the so called Fluid Construction
Grammar (FCG) [45] [46] [47], which is used for researching the language learning and
evolution. Another approach is the so called Construction Grammar by Ronald Lan-
gacker [48], which is concerned with the basic units of meaning and how they can be
put together. Embodied construction grammar by Bergen and Chang [49] is used for
the simulation of language understanding. Although all those approaches are different
in how they are being employed, they also share some commonalities. First of all, the
smallest entities in all of these approaches are Constructions. A construction is "the basic
unit of linguistic knowledge to consist of form-meaning pairings" [49]. This means that
there is no separation between syntax or semantics (also called the syntax-lexicon contin-
uum [50] [51]). Also, all these approaches are based upon so called unification, i.e., the
way how constructions are put together to form the meaning of sentences (see section
2.1.6.2 for more details). In the following, we present an example based on FCG [47] to
illustrate the mechanisms and ideas.

As mentioned previously, cognitive linguistics has a holistic view at language. This is
represented in FCG by having different rules for morphology, lexicography, semantic,
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def-lex-stem "slide"
?unit

referent: ?ev
meaning: slide(?ev), slide-1(?ev, ?obj1)

slide-2(?ev, obj2), slide-3(?ev, obj3)
<–>

?unit
form: stem(?unit, "slide")

Figure 2.3.: Example of a lexical stem rule [47]

def-sem slide-transfer-to-target
?unit

meaning: slide(?ev), slide-1(?ev, ?obj1)
slide-2(?ev, obj2), slide-3(?ev, obj3)

<–>
?unit

?sem-cat: transfer-to-target(?ev), agent(?event, ?obj1),
patient(?ev, ?obj2), target(?ev, ?obj3)

Figure 2.4.: Example of a semantic categorization rule [47]

syntax and construction. An example of a rule which assigns a lexical word stem to
a semantic structure, can be seen in figure 2.3. The rule defines that the stem "slide"
is mapped to the referent "?ev" (variables are denoted by the prefix "?"). For this stem
there is a predicate "slide(?ev)", which defines the semantics behind the referent. The
other predicates with the attached numbers define additional arguments for the original
predicate.

In a next step, the information from the lexical word stem rule have to be mapped into a
so called semantic categorization which can be seen in figure 2.4. The rule maps the dif-
ferent, in figure 2.3 defined, arguments to their corresponding semantic roles (see section
2.1.2.2), i.e., "obj1" is the agent, "obj2" is the patient and "obj3" is the target.

All these rules are combined during the parsing process. For example, the semantic re-
sult of applying the rules of figures 2.3 and 2.4 as well as some others to a sentence like
"Jill slides blocks to Jack" leads to the result in figure 2.5 (note that this is only a brief in-
troduction and covers only the main parts of the semantic process; More information like
the syntactic information can be seen in the corresponding paper by Steels [47]). There,
the word "Jill" is mapped to the variable "?obj-20" in "unit2", "slides" to "?ev-9" in "unit3",
"blocks" to "?obj-14" in "unit4" and "Jack" to "?obj-17" in "unit6". The structure is the result
of a unification process in which the information of the different rules are combined to-
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unit1
sem-subunits: {unit2, unit3, unit4, unit6}

unit2
referent: {?obj-20}
meaning: {jill(?obj-20), status(?obj-20, single-object),

discourse-role(?obj-20, external)}
unit3

referent: {?ev-9}
meaning: {slide(?ev-9), slide-1(?ev-9, ?obj-20),

slide-2(?ev-9, ?obj-14), slide-3(?ev-9, ?obj-17)}
sem-cat: {?transfer-to-target(?ev-9), agent(?ev-9, ?obj-20),

patient(?ev-9, ?obj-14), target(?ev-9, ?obj-17)}
unit4

meaning: {block(?obj-14), status(?obj-14, object-set),
discourse-role(?obj-14, external)}

unit6
referent: {?obj-17}
meaning: {jack(?obj-17), status(?obj-17, single-object),

discourse-role(?obj-17, external)}

Figure 2.5.: Semantic result for the sentence "Jill slides blocks to Jack" [47]

gether. This is, however, not yet the final result because the information about who is the
agent, patient, etc. is not yet available. The result is created by applying a Construction
which stores the information about how semantic and syntactic information have to be
combined.

Such a construction can be seen in figure 2.6. The upper part before the two-headed
arrow contains the semantic information, the lower part after the arrow the syntactic
information. The construction here defines, how a subject-verb-object-to-object syntactic
structure can be mapped on a transfer-to-target semantic structure. FCG is designed in a
way that allows both the extraction of semantic information from text or the production
of text from semantic information. If text is to be parsed, rules and constructions are being
applied by checking the syntactic constraints and, if they match, "execute" the semantic
part of the rules and constructions (the production of text works in exactly the other
way). Putting all the rules and constructions together itself is based on a unification
based approach, i.e., the features from two different rules are unified [46] [52].

We previously showed in a shortened example how construction grammars are used in
a specific context. What all construction grammar based approaches have in common is
the definition of constructions which themselves directly combine semantic and syntactic
information. They further can reference each other to form complex meaning structures.
The inseparability of syntax and semantics is important to the thesis and is one of the
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def-cons transfer-to-target-construction
?top-unit

sem-subsunits:
?event-unit, ?agent-unit, ?target-unit, ?patient-unit

?event-unit
referent: ?event
sem-cat: transfer-to-target(?event), agent(?event, ?agent),

patient(?event, ?patient), target(?event, ?recipient)
?agent-unit

referent: ?agent
?patient-unit

referent: ?patient
?target-unit

referent: ?recipient
<–>

?top-unit
syn-cat: SVOtoO-sentence
syn-subunits:

?event-unit, ?agent-unit, ?patient-unit, ?target-unit
?event-unit

syn-cat: predicate(?top-unit, ?event-unit)
?agent-unit

syn-cat: subject(?top-unit, ?agent-unit)
?patient-unit

syn-cat: direct-object(?top-unit, ?patient-unit)
?target-unit

syn-cat: prep-object(?top-unit, ?target-unit)

Figure 2.6.: Construction for mapping a sentence, containing a sentence-verb-object-to-
object syntactic structure, to a transfer-to-target semantic structure [47]

foundations for the concepts which is presented in the following chapters.

2.1.6. Computational Linguistics

This section introduces another important area of research, i.e., the area of computational
linguistics. The field is concerned with the processing of natural language by computers.
Its origins can be dated back to the midst of the past century. Some propose [21] that
the start of it all was in 1949, when Warren Weaver suggested [53] that machines could
be used to translate language. Since then, different directions in NLP have emerged [54]
[21]:

1. Based on the work of Chomsky and his generative grammars [23], researchers
started to elaborate how this can be applied to computational linguistics. This lead
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to Tree Adjoining Grammar (TAG) [55] and HeadDriven Phrase Structure Gram-
mars [56].

2. In contrast to generative grammars, statistical and datadriven concepts are based
on extracting certain probabilities from large text corpora (i.e., machine readable
text). The syntax of raw text can be analyzed based on these probabilities, lexical
ambiguities can be resolved, etc. [21]. A prominent approach of this type can be
seen in Artificial Neural Networks [57] [58] [54]. Due to their conceptual similarity
to the physical structure of the brain the approach is considered to be a good match
for Artificial Intelligence (AI) applications. Other advantages are tolerance towards
noise and function approximation.

In the following different challenges of NLP are introduced which are relevant to SE-
DSNL.

2.1.6.1. Part-of-Speech Tagging

POS tagging describes the task of assigning the corresponding POS tags (as described in
section 2.1.2.1) to the single words within a sentence. The process requires disambigua-
tion, because words within a sentence can sometimes belong to different categories. For
example, the word "book" can either be a noun (e.g., in the context of literacy) or a verb
(e.g., describing the process of booking a ticket). Hence, a POS tagger has to incorporate
the context of a word into its decision process [20]. Approaches to solving the task are
either based upon rules application or statistical approaches, e.g., Hidden Markov mod-
els [59] [60]. One of the first taggers has been created by Eric Brill [61] and uses rules for
solving the problem. One of the first Hidden Markov based taggers was CLAWS [62] [63].
Modern approaches use extensions of the Hidden Markov model like the Stanford NLP
group [64] [65]. Modern parsers are capable of achieving very high precisions of up to
97.4% (as shown by [65], [66], [67] and [68]), however, these numbers can not necessarily
be repeated in real life scenarios ( [69], [70]). The reason is that the parsing input must
contain the same characteristics as the original training data. Further, the precision value
calculations are based on counting every single token and punctuation marks. A more
accurate number could be the rate of correctly tagged complete sentences, which is about
55% to 57% ( [70]).

2.1.6.2. Syntactic Parsers

Based on the POS tags it is possible to infer the syntactic structure of the sentence, which
is referred to as either parsing or syntactic parsing. Different approaches have been pre-
sented in the past to this challenge. Earlier ones took a given grammar and tried to create



2.1 Natural Language 35

S → VP
VP → Verb NP
NP → Det Nominal
Nominal → Noun

Figure 2.7.: Simple english grammar [20]

Figure 2.8.: Syntax tree of the sentence "Book the flight" [20]

a parsing tree in either a bottom-up or top-down manner [20]. A simple example for
an English grammar and a syntax tree can be seen in figures 2.7 and 2.8. Applying the
grammar from the first figure to the sentence in the latter figure results in the shown tree.

Modern parsers rely on statistical approaches using Probabilistic context-free grammar
(PCFG). Here, each rule has a certain probability. The probability indicates how high the
likeliness of a given non-terminal A is to be expended to a sequence β.

P(A → β)

For all rules beginning with the non-terminal A the sum of the probability of all those
rules equals 1.

∑
β

P(A → β) = 1

The parsing process is therefore defined as finding the most likely syntax tree for a given
sentence, for which different methods like probabilistic CKY [71] parsing exist. In order
to assign probabilities to rules there are basically two different approaches [20]. The first
one is based on a treebank (i.e., a collection of parse trees, e.g., the Penn Treebank [72])
and counts how often a specific expansion occurred within such a treebank [20]. If there
is no treebank available, one can instead use an existing probabilistic parser which an-
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alyzes the sentences and creates trees for them. Because of ambiguities in these trees
and the problem that one needs a probabilistic parser in order to create probabilities for
a probabilistic parser (a classic chicken-and-egg problem), the inside-outside algorithm
was developed by Baker [73]. The algorithm works iteratively until the probabilities
converge [20]. Another type of parsing has already been mentioned shortly in section
2.1.5, i.e., unification based parsing. For this type of parsing, constraint-based formalisms
are required. The advantage of the approach is that it allows the representation of more
complex linguistic phenomena as well as a detailed representation of information about
number, gender, subcategorization, etc. [20]. In order to represent such constraint-based
formalisms, one of the simplest and most commonly used approaches are feature struc-
tures, which basically consist of an attribute-value matrix (also often used in CxG). The
examples in section 2.1.5 can also be seen as feature matrices, which are unified in a bot-
tom approach. As the idea behind SE-DSNL is based upon construction grammars which
often represent their information using feature matrices and unification, SE-DSNL also
contains several of these characteristics in its parsing process.

There are different types of parsers available, i.e., constituency and dependency parsers.
Constituency parsers (also called syntax or phrase structure parsers) create trees which
represent the single constituents and phrases of a sentence. One of its most prominent
candidates is the Stanford constituency parser. It can reach a precision of up to 89%
( [74], [75]) if it has been trained correctly. In case that the default parser is being used
on a completely unknown dataset the results can, however, drop significantly to about
50% [76]. In contrast, dependency parsers try to identify the dependency relations within
a sentence by using a dependency grammar. Their precision ranges from similar values
like constituency parsers to lower scores as shown by Cer [75].

2.1.6.3. Word Sense Disambiguation

Word Sense Disambiguation describes the process of identifying the correct sense for a
word with multiple senses (as described in section 2.1.4) [20]. First approaches to this
problem were made by Katz and Fodor in 1963 [77] as well as Wilks in 1972 [78], both
of which made use of "hierarchically organized selectional constraints with complex se-
mantic representations called formulas" [21]. The assumption was that the meaning of
each word was expressed by one such formula. For example, the formula for a verb
contained semantic information about the arguments it was associated to. The disam-
biguation was carried out by selecting the formulas which lead to as much "overlap" as
possible between the formula of the verb and the formulas of its arguments. One of the
first approaches using a conventional NLP pipeline and a knowledge base was developed
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by Hirst in 1987 [79]. His pipeline tokenized the input texts, translated the sentences to
a semantic representation and, afterwards, applied a spreading activation based approach
(i.e., tokens are send around within a knowledge graph, collecting information which
identify a structure revealing the sought information) to find the correct meaning of the
words. He called his approach "polaroid words", because the result is revealed gradually
over several iterations, similar to a polaroid photography [21]. In general, approaches to
solving the WSD task can be differentiated into three different categories:

1. Dictionary-based: This approach is based on the observation that the definition of
a word within a dictionary requires the use of other words. Those other words,
however, also occur in the context of a textual occurrence of the original word. An
example is the term "pine cone". Pine has (amongst others) the dictionary definition
"kind of evergreen tree with needle-shaped leaves", whereas cone (also amongst
others) is described as "fruit of certain evergreen trees". Both definitions share the
words "evergreen" and "tree", therefore allowing the identification of the most likely
definitions for the single words "pine" and "cone" by searching for the definitions
with the highest information overlap [21].

2. Connectionist: Often based upon interest in the way humans thought processes
work, connectionist researchers developed corresponding models which have sim-
ilarities with brain like structures. The approach by Ide and Véronis [80] creates
a neural network from a machine readable dictionary, which was constructed of
word- and sense nodes. Each word node could be connected to one or more sense
nodes. The disambiguation took place by activating selected word nodes which
results in tokens spreading the network and increasing the activation of all nodes
which they traveled on. In the end, the correct sense nodes for each activated word
can be identified as such with the highest activation values. This is similar to the
approach by Hirst [79].

3. Statistical and Machine learning: These approaches use large databases to find pat-
terns. An early approach by Brown et al. [81] tried to assign the correct French
word to an English word. The problem in machine translation is that an English
word may be translated to different French words depending on the context. The
system was trained on transcripts of the Canadian parliaments, which are available
both in English and French. The concept improved the machine translation results
from previously 37% to 45% [21].

The approach taken within the thesis mostly resembles the connectionist approach.
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2.1.6.4. Anaphora Resolution

Anaphors are relations between different syntactic entities in a text, which refer to the
same real world object. Consider the following example [82]:

The queen is not here yet but she is expected to arrive in the next half an hour.

Here the phrase "The queen" is the so called antecedent. The word "she" has the role
of an anaphor, i.e., it points back to the phrase "The queen". Both words also relate to
the same real world referent and are therefore called coreferential [21]. There are different
types of anaphora like lexical noun phrase anaphors (i.e., different noun phrases referring to
the same antecedent), verb anaphora (e.g., "Stephanie balked, as did Mike" [21]) and many
others. For the thesis the most important is the so called pronominal anaphora (which
is also the most widespread type [21]). In this specific case, a personal, possessive or
reflexive pronoun references a specific antecedent. For example, the word "He" could
refer to an antecedent noun "Wolf".

The identification of the corresponding antecedents and anaphors is called anaphora reso-
lution. The process requires a lot of knowledge. Some systems try to resolve anaphors by
using morphosyntactic features, i.e., identifying agreements (see section 2.1.2.2) between
the gender, person and numbers between the antecedent and a potential anaphor. Other
approaches incorporate knowledge about recency (i.e., words that are further apart are
less likely to be anaphoric), grammatical roles (i.e., a subject is more likely to become
the antecedent in an anaphoric relation than the object) and verb semantics (i.e., some
verbs have semantic implications on their subjects and objects, therefore introducing a
"bias" towards the correct antecedent) [20]. Three basic types of algorithms can be differ-
entiated in pronominal anaphora resolution [20]. The Hobbs algorithm [83] uses mainly
morphological information and a syntactic parse tree to evaluate which pronoun has an
anaphoric relation to which antecedent. Another type of algorithms is based on Centering
theory [84]. In contrast to Hobbs, this algorithm type makes use of an explicit representa-
tion of a discourse model (i.e., a model which tries to represent the hearers information of
the ongoing discourse [85]) and tries to identify different centers of sentences (i.e., what
a sentence is about). It therefore makes use of morphosyntactic information as well as
syntactic parses. The third type of algorithm is based on statistical concepts, which are
trained on a manually annotated corpus using some of the previously mentioned knowl-
edge types like gender, recency, etc [20].

2.1.6.5. Representation of textual meaning

Representing the meaning of text is always done by introducing models, which represent
the "state of affairs in the world that we’re trying to represent" [20]. Such a model contains
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a mapping between the non-logical vocabulary of the natural language text and a logical
vocabulary, i.e., a set of specific operators, symbols and concepts. Creating the mapping is
not always straightforward because of all the different types of ambiguities that language
can contain (see section 2.1.4 for more information). Hence, such a mapping is also called
interpretation [20]. In the following we give a short introduction into different approaches
to representing textual meaning. A flexible and well-understood approach is First-Order
Logic (FOL), which offers among others a good basis for inference and verifiability [20].
Using FOL, a sentence like

All vegetarian restaurants serve vegetarian food.

can be expressed in FOL as follows:

∀xVegetarianRestaurant(x)⇒ Serves(x, VegetarianFood)

FOL therefore allows the use of quantifiers, variables as well as functions and predicates
to express the statements of certain natural language sentences. The information can
be used for inference, i.e., extracting implicit knowledge from given formulas. Another
common way of representing the meaning of natural language is semantic networks. These
are constructed from nodes and links between those nodes which represent the objects
and relations between these objects within a sentence. To better understand the semantic
meaning of those networks they have often been translated into FOL [20]. This, however,
has the drawback that the meaning of such a network depends on the system which in-
terprets it. Therefore, Description Logic (DL), a subset of FOL, has been introduced which
eliminates many of those problems. A common way of capturing DL is by using ontolo-
gies (see section 2.2 for more information).
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2.2. Ontology

The origins of the term Ontology date back to the Greek philosopher Plato, who searched
for answers to fundamental questions like ’What is reality?’ and ’What things can be said
to exist?’ [2]. The answers to such questions are analyzed in ontology, "the study of what
there is" [86]. This field of research therefore cares about all kind of things and entities
and how they are related to each other. Although coming from philosophy, ontologies
in computer science received a different meaning. Generally speaking "an ontology is
a description of knowledge about a domain of interest, the core of which is a machine-
processable specification with a formally defined meaning" [2]. A famous definition in
this context comes from Gruber [87]:

An ontology is a (formal) explicit specification of a (shared) conceptualization.

"Conceptualization" refers to an abstract model of some phenomenon in the world for
which all the relevant concepts as well as their relations have been identified. "Explicit"
means that the type of concepts used and the constraints on those are explicitly defined.
"Formal" refers to the fact that an ontology should be machine-readable. "Shared" reflects
the notion that an ontology captures consensual knowledge, i.e., it is not the understand-
ing of just one individual but of a group of people. An ontology normally consists of
basically four different types of elements [88]. First of all, there are classes and objects. A
class is used within an ontology to create a category of some kind. The category later
groups objects. For example a class within an ontology could be a "Computer Manufac-
turer" (see figure 2.9). An object might be "Dell" or "HP", as both actually manufacture
computers. In order to specify structures between classes, relations can be used. Relations
specify properties which are valid for all objects of this class. In figure 2.9, the relation
"manufactures" between "Computer Manufacturer" and "Computer" describes such a re-
lation which is valid for all objects of the category "Computer Manufacturer". One very
specific and commonly used relation within ontologies is one which enables creating tax-
onomies (also called generalization hierarchy or inheritance hierarchy). Taxonomies are used
to specify sub- and superclass relations between classes. In our example, such relations
are specified by the name "Is A". Therefore, the class "Laptop" is more specific and a sub-
class of the class "Computer". In order to specify to which class an object belongs, there in
this case exists the "A Kind Of" relation. This can be seen between, e.g., "e3" (which is our
object representing the "HP Envy Ultrabook") and the class "Laptop". Further, there are
relations between objects only. In figure 2.9, both objects "e1" ("Dell") and "e2" ("HP") have
a relation "manufactures" on "e3" ("HP Envy Ultrabook") and "e4" ("Dell Vostro"). These
relations represent specific properties of the corresponding objects, i.e., "HP" manufac-
tures "HP Envy Ultrabooks", whereas "Dell" manufactures "Dell Vostro" PCs. Relations
can further be used to associate concrete values to objects. In our example, each of the ob-
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Figure 2.9.: Example of an ontology containing the basic elements

jects has a "name", associating an object like "e1" to a concrete value (here a string with the
value "Dell"). These are the basic building blocks of ontologies. Modern languages like
OWL (see section 2.2.2) offer more features than the ones which have only briefly been
described here. It should, however, be mentioned that within SE-DSNL a lightweight
concept of modeling ontologies was developed which offers basically the same features
as presented above. Another important aspect of ontologies is if it behaves according to
the so called open world or closed world assumption. The open world assumption specifies
that although some information is not contained within the ontology, it does not mean
that it does not exist. Hence, it is simply unknown if specific information is valid or not.
In contrast, the closed world assumption defines that the ontology contains all relevant
information. If information is not contained within the ontology, it simply does not exist
and is, therefore, not valid [88].

2.2.1. RDF and RDFS

The Resource Description Framework (RDF) is used for representing structured infor-
mation, e.g., metadata information about Web resources like the title and author of
a web page. This formally well defined structure is suited for applications which
want to exchange data [89]. RDF is built upon a graph like structure which is
comprised of nodes (called classes) and directed relations (called properties) between
those nodes. Both classes and properties are identified by Uniform Resource Iden-
tifiers (URIs). If an RDF graph should describe any type of structure, URIs act as
unique identifiers. In the context of the internet and web pages, Uniform Resource
Locators (URLs) are used which are a specialization of URIs. These allow to de-
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Figure 2.10.: An RDF graph describing a person with the name Eric Miller [89]

scribe web page specific structures and information by using RDF graphs. An ex-
ample of an RDF graph can be seen in figure 2.10. The central class here is iden-
tified with the URI "http://www.w3.org/People/EM/contact#me". The element is
refined by different properties and values. First of all, there is a property stating
that the class is of type "Person" (note that we from here on leave out the prefix
"http://www.w3.org/People/EM/contact#"). The property specifies that the element
"me" belongs to the category "Person", i.e., it is the RDF way of specifying that an in-
stance belongs to a specific category (compare this to the "A Kind Of" relation from the
previous section 2.2). Elements like "me" are also called individual, i.e., elements which
are a concrete instance of a certain class or category. Next, two literals have been associ-
ated with the element "me", i.e., its name "Eric Miller" and his title "Dr.". Further, there is
another property "mailbox", which links "me" to an element "mailto:em@w3.org".

In order to serialize RDF graphs, Notation 3 (N3) was developed by Tim Berners-Lee [90].
The standard allows representing RDF graphs as so called triples. A triple consists of a
subject, a predicate and an object, whereas the subject presents the source element, the
predicate a property and the object the target of a property. An example can be seen in
figure 2.11. The figure shows an N3 representation of the RDF graph in figure 2.10. It
starts by first specifying the different prefixes used in the graph ("pim", "w3" and "peo-
ple") and, next, stating the different triples of the graph. As can be seen, the "people:me"
element is the subject of every triple because it is the element at the center of figure 2.10.
The URIs of the different properties represent the predicates of the triples, e.g., "w3:type"
and "pim:fullname". The targets of the different properties finally describe the object of
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@prefix pim: <http://www.w3.org/2000/10/swap/pim/contact#>
@prefix w3: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix people: <http://www.w3.org/People/EM/contact#>

people:me w3:type pim:Person
people:me pim:fullName "Eric Miller"
people:me pim:mailbox "mailto:em@w3.org"
people:me pim:personalTitle "Dr."

Figure 2.11.: Representation of the Eric Miller RDF Graph in N3 form

each triple, e.g., "pim:Person" and "Eric Miller".

So far we gave a short introduction into RDF, which provides very basic capabilities to
describe the knowledge of a certain domain. The shortcoming of RDF is that it lacks
the possibilities of defining deeper semantic relations between elements. In the example
in figure 2.10, it is clear to a human that if the individual "me" is a "Person" it neces-
sarily has to have a name and certain characteristics like eyes, legs, etc., all of which
is yet missing. It is especially not available to a computer, for which all the informa-
tion is currently just a set of characters and strings. Therefore, an extension to RDF
was developed, called RDF Schema (RDFS). It enables the specification of so called ter-
minological knowledge (sometimes also referred to as schema knowledge, hence the name
RDFS). RDFS "allows for defining a new vocabulary and (at least partially) specifying its
’meaning’ in the document without necessitating a modification of the processing soft-
ware’s program logic" [2]. This makes RDFS an ontology language because knowledge,
encoded with RDFS, is machine readable which matches the initial definition of an on-
tology in section 2.2. As noted previously, RDFS is an extension of RDF and, therefore,
makes use of already existing elements of RDF. To define specific classes and categories
RDFS provides the element "rdfs:Class". If someone wants to specify a specific category
(e.g., the element "Person" in the previous example 2.10), it can be done as seen in figure
2.12. There, two classes "ex:Lifeform" and "ex:Human" were created which are both of
type "rdfs:Class". Further, an "rdfs:subClassOf" property has been introduced between
"ex:Human" and "ex:Lifeform", indicating that the class "ex:Human" is more specific than
"ex:Lifeform", thereby creating a small taxonomy. Next, an instance of "ex:Human" was
introduced, i.e., "ex:me". The individual belongs to the class "ex:Human" and (because of
the "rdfs:subClassOf" property) also to "ex:Lifeform".

RDFS provides even more elements which allow a better specification of domain specific
knowledge than RDF. An important addition is the better specification of properties,
e.g., taxonomies can be defined on properties by using the "rdfs:subPropertyOf" feature.
Further, the types of the beginning and end of a user specified property can be restricted
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ex:Lifeform rdf:type rdfs:Class
ex:Human rdf:type rdfs:Class
ex:Human rdfs:subClassOf ex:Lifeform
ex:me rdf:type ex:Human

Figure 2.12.: Representation of the Eric Miller RDF Graph in N3 form

by using "rdfs:domain" and "rdfs:range". A complete overview of all additional elements
can be found in the RDF Vocabulary Description [91].

2.2.2. OWL

Despite its many features, RDFS has certain problems when it comes to expressivity, e.g.,
cardinality is a problem ("A car has four wheels"). Expressing such complex informa-
tion is normally done in formal logic based languages. Formal logics further have the
advantage of enabling reasoning and thereby making implicit knowledge available [2].
For those reasons, the Web Ontology Language (OWL) was developed [92] [93] [94] [11].
The design principle behind OWL is to provide "a reasonable balance between expressiv-
ity of the language on the one hand, and efficient reasoning, i.e., scalability, on the other
hand" [2]. The first official W3C recommendation of OWL arrived in the year 2004. The
new version OWL 2 Web Ontology Language (OWL2) was introduced in 2009. In the
following we explain the basic mechanisms of OWL. OWL2 is not introduced in detail as
it is built upon OWL, and, therefore, only adds some additional features.

To support the balance between expressivity and efficient reasoning, OWL offers different
sublanguages, which can be seen in table 2.1. In OWL2 a different approach was taken,
i.e., instead of sublanguages profiles have been developed: OWL2 EL enables polynomial
time algorithms for reasoning tasks, OWL2 QL provides conjunctive queries and OWL2
RL provides polynomial time rule based reasoning [94]. All these profiles are based upon
description logics.

Additionally to the elements of RDFS several new classes and properties have been in-
troduced in OWL. One can create new classes in OWL by using "owl:Class" and assign a
name to them with "rdf:about" (note that, in the following, we represent OWL informa-
tion with the corresponding XML code):

<owl:Class rdf:about="Employee"/>
<owl:Class rdf:about="Address"/>
<owl:Class rdf:about="Project"/>

The example creates three classes, one with the name "Employee", a second one with the
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Sublanguage Features
OWL Lite decidable

less expressive
Worst-case computational complexity: ExpTime
Subset of DL and Full

OWL DL decidable
Worst-case computational complexity: NExpTime
Subset of Full

OWL Full Contains all of RDFS
Undecidable
Very expressive
Difficult to understand semantics
Hardly any software support

Table 2.1.: OWL Sublanguages [2]

name "Address" and a third one with the name "Project". New instances can be assigned
to these classes as follows:

<Employee rdf:about="Wolf"/>
<Address rdf:about="UniAugsburg"/>
<Project rdf:about="BRM"/>
<Project rdf:about="ITS"/>

Here, a new individual with the name "Wolf" has been created and assigned to the previ-
ously created class "Employee". Further, an instance "UniAugsburg" was assigned to the
class "Address". Also, two projects "BRM" and "ITS" where created. In order to assign
additional information to classes or individuals, properties can be used.

<owl:ObjectProperty rdf:about="worksAt">
<rdfs:domain rdf:resource="Employee">
<rdfs:range rdf:resource="Address">

</owl:ObjectProperty>
<owl:ObjectProperty rdf:about="worksOnProject">

<rdfs:domain rdf:resource="Employee">
<rdfs:range rdf:resource="Project">

</owl:ObjectProperty>

Here we specified two new properties. The first one states that an "Employee" lives at a
specific "Address". Hence, the domain of the property "worksAt" has been restricted to
the class "Employee" and the range is limited to the class "Address". The second property
"worksOnProject" states that an "Employee" works on a "Project". These new properties
can be used to relate the two instances "Wolf" and "UniAugsburg".
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<Employee rdf:about="Wolf">
<worksAt rdf:resource="UniAugsburg">

</Human>

As can be seen here, the information about the individual "Wolf" has been extended and
now contains the property "worksAt", which points to an individual of the class "Ad-
dress", i.e., "UniAugsburg". We now specify the more complex expression that an Em-
ployee has to work on at least two projects. Therefore, the specification of the class "Em-
ployee" has to be changed as follows:

<owl:Class rdf:about="Employee">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="worksOnProject">
<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

2
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

The example specifies that the new class "Employee" has a restriction when it comes to the
previously defined ObjectProperty "worksOnProject". If the property should be applied
to a class of type "Employee", there must be at least two of these properties such that the
minimum cardinality restriction won’t be violated. The following example shows how
the individual "Wolf" would satisfy this restriction:

<Employee rdf:about="Wolf">
<worksOnProject rdf:resource="BRM">
<worksOnProject rdf:resource="ITS">

</Human>

In the example, the employee "Wolf" is related to two projects "BRM" and "ITS". This is
why the previously defined restriction is not violated.
It is important to note that OWL is based upon the open world assumption (see sec-
tion 2.2). Hence, it is necessary to make the information within an ontology as precise
as possible such that the inference mechanisms later does not make any wrong assump-
tions. One example for this is the "owl:disjointWith" statement which allows to make two
classes A and B disjoint. This means that no individual could be assigned to both classes
A and B [2]. In contrast, "owl:equivalentClass" specifies that two classes A and B are ac-
tually the same, therefore individuals which would be assigned to class A would also be
assigned to B. Similar expressions are available to specify that several individuals are ei-
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ther different ("owl:AllDifferent") or the same ("owl:sameAs"). Properties can further be
detailed by specifying them as being transitive (e.g., if person A is a sibling of person B
and B is a sibling of C, then A is also a sibling of person C) or symmetric (e.g., if person A
lives near to person B, person B lives also near to person A). These features (among others
as shown in [92] [93] [94] [11]) provide ways of modeling semantically complex knowl-
edge which can automatically be validated by reasoners. Further, implicit knowledge
can be found and made available to the user or other applications. Despite its impressive
logical formalisms, OWL has certain deficits when it comes to linguistic grounding. In
the following, we introduce the problem and present an approach which tries to handle
the challenge.

2.2.3. Linguistic grounding

One of the biggest challenges with OWL is its linguistic grounding, i.e., how well the
semantic information of an ontology can be represented in an arbitrary natural language.
OWL itself only allows the definition of one single label for each concept, which more or
less acts as a single word representing one concept. Extensions like SKOS allow adding
additional labels to single classes [95] [96]. The most elaborate approach to representing
ontological information is LexInfo [12], which we introduce in the following. Figure 2.13
gives an abstract overview of the most important elements of LexInfo. At the center, there
is the element LexicalElement, which has been differentiated into two subclasses WordForm
and PredicativeLexicalElement. The first one represents single verbs, nouns and adjectives,
whereas the latter can represent complex predicate-argument structures as well as lexical
entries in case of adjectives. Therefore, the element has been further differentiated into
subclasses, representing, e.g., transitive and intransitive verbs or scalar and literal adjec-
tives (this can be seen in the original paper [12]). LexicalElements can represent a class
(indicated by the "anchor" relation). WordForms in contrast can be used to represent any
ontological element.

LexInfo is based on the Lexical Markup Framework (LMF) [97] [98] [99], which "is a meta-
model that provides a standardized framework for the creation and use of computational
lexicons, allowing interoperability and reusability across applications and tasks" [12].
Two packages of LMF are especially important to LexInfo. Both can be seen in figures
2.14 and 2.15. The first figure presents the structure which allows the definition of the
Syntactic Behaviour of a Lexical Entry. This is done by creating Subcategorization Frames as
well as their corresponding Syntactic Arguments (e.g., subject, object, predicate, etc.). The
type of syntactic information can be associated to its corresponding semantic informa-
tion by using the elements available within the package shown in figure 2.15. At the core
there is the element SynSemCorrespondence which defines the mapping between semantic
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Figure 2.13.: Abstract overview of LexInfo [12]

Figure 2.14.: Syntactic extension of Lexical Markup Framework [12]

and syntactic elements. It does so by referencing several SynSemArgMap elements which
directly associate Syntactic Arguments with Semantic Arguments of a Semantic Predicate.
LexInfo especially extends the elements Predicative Representation, Semantic Argument and
Semantic Predicate by creating specific subclasses of these elements.

Figure 2.16 shows how this model can be used. There, the lemma "river" is associated
with two of its morphological variations. The upper word form is described with the
syntactic property value "singular". The word form "rivers" in contrast is normally meant
to represent a plural form. A more complex example can be seen in figure 2.17. Here, the
term "Autobahnkreuz" (English: motorway intersection) is decomposed into its single
components, i.e., "Autobahn" and "Kreuz", which are mapped to their corresponding on-
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Figure 2.15.: Semantic extension of Lexical Markup Framework [12]

Figure 2.16.: Associating the lemma "river" with some of its morphological variations [12]

tological elements. Starting at the top in figure 2.17, "Autobahnkreuz" is defined as a
term which consists of a ListOfComponents. The list has two elements: The first compo-
nent is the one representing the word "Autobahn". An interesting attribute here is "order",
which specifies the intended order of the words. The component is associated to an ele-
ment, specifying that the word is a noun, which has "Autobahn" as its lemma. Further,
its sense is "Highway", a class within the ontology. The second component "Kreuz" is
specified similarly to the first component. The main difference is that its order value is
"2", meaning that "Kreuz" must come after the word "Autobahn".

Another example can be seen in figure 2.18, which shows an example of how the verb
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Figure 2.17.: Decomposition of the german word "Autobahnkreuz" into its single compo-
nents and mapping to ontological elements [12]

"flow" and its arguments are represented within LexInfo. At the core is the element
flow:Verb (in the lower left of the figure), which represents the verb itself. Again it
is represented by a corresponding lemma. For this verb, the syntactic behaviour has
been modeled using an intransitive subcategorization frame (flow_SF:IntransitivePP). The
frame expects two syntactic arguments: A subject and an object. The latter further re-
quires a "through" preposition. On the right side of figure 2.18, the semantic informa-
tion is represented. At the bottom the corresponding ObjectProperty, which represents
the "flow" information within the ontology, is shown. The property and its informa-
tion are linked to the syntactic information by using the PropertyPredicativeRepresentation,
which has two arguments: The domain and range of the flowThrough:ObjectProperty. The
flowThrough_domain:Domain element is mapped to the flow_subject:Subject element with
the map1:SynSemArgMap element. The same is done with the object and range element.

The LexInfo approach allows a very detailed mapping between linguistic information (on
a lexical and syntactic level) and semantic knowledge. However, it contains no features
to represent meaning at a morphological level. A more detailed delimitation between
SE-DSNL and LexInfo can be found in section 3.
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Figure 2.18.: Representation of the syntactic behaviour of "flow" and its mapping to the
ontology [12]
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Figure 2.19.: Functional overview of an IR system [101]

2.3. Ontology-based Information Retrieval & Extraction

Today, every person uses web search engines to find specific information. To do so the
user enters a set of keywords he / she is looking for (a so called search query). The
search engine processes these keywords and returns some elements which match the
search query. The process of finding specific information is also known as Information
Retrieval (IR) and has been described by Manning et al. [100] as follows:

Information retrieval (IR) is finding material (usually documents) of an un-
structured nature (usually text) that satisfies an information need from within
large collections (usually stored on computers).

Most IR systems contain a set of common functions which can be seen in figure 2.19. The
Ingest function receives new texts and starts processing them. First of all, the new texts
are stored in their original raw form and an index is created from them (i.e., a searchable
data structure based on the original input data). The Selective Dissemination of Information
"allows users to specify search statements of interest (called ’Profiles’)" [101] and retrieves
texts which match those search statements. If a new data item has been found, the user
can receive an alert. The final functionality Indexing and mapping into a taxonomy may as-
sign metadata to the items and store them in a taxonomy. The taxonomy can be navigated
by users to find other elements of interest.

The indexing and metadata assignment tasks incorporate the challenge of identifying in-
formation which are relevant. If every information would be added to the index, the cor-
responding database would contain unnecessary information and the overall precision
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would suffer. The task of identifying relevant information and extracting them is also
called Information Extraction (IE) [101]. Cowie and Wilks [102] defined IE as follows:

Information Extraction (IE) is the name given to any process which selectively
structures and combines data which is found, explicitly stated or implied in
one or more texts.

Depending on the level of detail and precision required, different information is extracted
from a text. Standard, syntactic based search engines rely on indexing nearly every word
which is not a stopword (i.e., words without any relevant semantic content, e.g., "the",
"a", punctuation marks, etc.). In contrast, some approaches try to only extract information
which are relevant to a specific task. For example the challenge of the Message Under-
standing Conference 4 was to extract information about terrorism from different newspa-
pers [103]. The extracted information consisted of information about which country had
been attacked, which weapons had been used etc.. Systems which deal with IE only, have
to face similar problems like those which deal with IR. The reason is that both types have
to deal with the challenges of analyzing and parsing unstructured natural language text
and the corresponding linguistic phenomena like homonymy, synonymy, anaphoras etc.
(see section 2.1). Therefore, we often mention both types of systems in the following be-
cause of similar problems they have to cope with. In order to overcome those problems
standard IR and IE approaches have been extended with ontologies in the last couple
of years, leading to so-called Ontology-based Information Retrieval (OBIR) and Ontology-
based Information Extraction (OBIE) systems. Here, ontologies provide a source of seman-
tic knowledge which can be used in different ways to enhance the overall precision of
those systems. Wimalasuriya and Dou [104] gave a definition of what best describes an
OBIE system:

An ontology-based information extraction system: a system that processes
unstructured or semi-structured natural language text through a mechanism
guided by ontologies to extract certain types of information and presents the
output using ontologies.

It is obvious that this definition and the one of regular IE are very similar. The important
part is that in contrast to regular IE systems an OBIE is guided by an ontology. Such an
ontology can help identifying the semantic types of specific words as well as possible re-
lations between words. Wimalasuriya and Dou presented different characteristics which
are specific to OBIE systems:

1. Processing (semi-)unstructured natural language text: An OBIE system must work
on standard natural language documents employing NLP techniques. Systems,
which use ontologies to extract information from images, diagrams or videos can
not be characterized as OBIE systems.
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2. Making use of ontologies to present the output: The most important feature of an
OBIE system is to represent the output using an ontology. Some systems also use
an ontology as an input, however, Wimalasuriya and Dou think that this is not a
necessary requirement.

3. Using the ontology during the IE process: Existing IE systems are often extended
by using an ontology which helps during the extraction of classes, instances and
properties. Some authors further argue that the information extractors should be
considered as a part of the ontology itself [105] [106] [107] [108], thereby enhancing
the combination of language and semantic knowledge.

Like OBIE, OBIR shares many of those characteristics. The main difference is that
OBIR systems require an additional component which retrieves documents matching the
search query of a user.

The SE-DSNL approach can be classified as an OBIR system. It parses unstructured natu-
ral language text, creates an ontology from it (called an InterpretationModel, see section
3.3.5) and also uses an existing ontology during the extraction process for validation as
well as identification of new knowledge. It further provides a component to retrieve
information from InterpretationModels which match certain criteria (see section 6). It
should be noted that the retrieval process in SE-DSNL is two folded: First it allows the
retrieval of texts which match certain semantic conditions. Further, it provides a possi-
bility to retrieve specific semantic information from texts.

A generic architecture of an OBIE system, according to Wimalasuriya and Dou [104], can
be seen in figure 2.20. The figure presents an overview of commonly used components.
First, an expert normally creates an ontology and provides a set of components which
are responsible for the extraction of required information. These components sometimes
make use of the ontology as well as other sources like a semantic lexicon (e.g., Word-
Net [13] [14]) to validate the information which they extract. Analyzing an input text
normally consists of several preprocessing steps (e.g., splitting the text into its single
sentences and words, removing stopwords, creating a syntactic parse tree, etc.). After
the preprocessing, the IE modules extract information and put the results into a knowl-
edge base. In some systems these results are not written into an additional knowledge
base, but directly into the ontology. SE-DSNL also matches this architecture: An expert
has to create the ontology as well as the IE modules (called Constructions, Statements
and Functions as described in section 3.3.4, 4.3 and others). Text is preprocessed and
the results are written in an additional knowledge base (the interpretation models). The
difference between SE-DSNL and other approaches is the much deeper integration of
linguistic knowledge and how the information of the ontology can be used during the
analysis process. All of this is presented in the following chapters.
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Figure 2.20.: General architecture of an OBIE system [104]
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3.1. Introduction

Natural language is the most common way for humans to communicate. The communi-
cation itself can happen in different ways, i.e., humans can speak to each other or write
their thoughts down, e.g., on a sheet of paper. In this thesis, we completely focus on writ-
ten natural language or, simply, text. On the surface, text consists of single words, each
of which is constructed from a set of letters, numbers, etc.. Each word normally has a
specific meaning. However, due to ambiguity, it is often difficult to identify the meaning
as it depends on the context of the words itself. Next, each language has its own way of
expressing meaning in a text, i.e., depending on the morphology of the words and the
syntax of the language the author can change the meaning of the text as a whole. Also,
different languages exhibit different ways of creating words and sentences. This is easy to
see in the words themselves, i.e., different languages often have very different words for
expressing the same meaning (e.g., the English word ’car’ and is represented in German
by the word ’Auto’) and also different syntactical rules. Whereas in German and English
the order of the words is very important to the meaning of the text, Czech in contrast
allows a more flexible approach to its word order (for more information have a look at
section 2.1). However, one thing that nearly all people, who speak different languages,
have in common, is that they are capable of learning other languages and therefore can
understand what others are saying. This basically means that every person which speaks
two or more languages, is capable of understanding and expressing his / her knowledge
in multiple ways. Another way to put this is that people have only this one knowledge,
they do not need to store each knowledge fact / experience / etc. separately for every
language they learn.

Handling and representing knowledge in computers is difficult. A prominent way of
storing knowledge is represented by ontologies. They provide mechanisms and stan-
dards to store facts about specific domains. One of the most important features about
ontologies is that they are formal, i.e., they have been designed such that computers can
use the information within the ontology to create new knowledge (also known as ’rea-
soning’). However, ontological concepts have rarely been developed such that they are
easy to integrate with human related tasks. Information retrieval can especially benefit
from the integration of semantic knowledge, as mentioned in the previous section 2.3.
This, however, requires a better mapping between ontologies and linguistic knowledge.
In this chapter we describe the SE-DSNL meta model which has especially been designed
to contain a mapping between ontological and linguistic knowledge.

The chapter is structured as follows. Section 3.2 first introduces a set of requirements
which have to be fulfilled in order to completely map linguistic to ontological knowledge.
Next, we present the SE-DSNL meta model in section 3.3 and its different scopes. In
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section 3.4 we specify a formal definition of the meta model which is used throughout
the rest of the thesis. Following, section 3.5 describes how knowledge from existing OWL
ontologies can be transformed to the SE-DSNL meta model. It also describes a set of
guidelines which a valid SE-DSNL model must conform to. Finally, section 3.6 delimits
our approach from others.
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3.2. Requirements

Humans capabilities of analyzing meaning while communicating is unmatched by any
available computer component. Although state-of-the-art NLP components are sophis-
ticated regarding their syntactic parsing features, semantic parsing capabilities are not
available on a broader scale. Especially domains which already posses semantic knowl-
edge face challenges when trying to use the knowledge in linguistically motivated sce-
narios. Still, semantic knowledge can provide many benefits to computational linguistics
(e.g., by resolving homonyms and ambiguities in general as well as resolving anaphoras
as described in section 2.1.4). The reason, why knowledge within domains is yet difficult
to use in NLP related tasks is that the concepts and standards are missing to provide a
bridge between linguistic and semantic knowledge. We first talk about multilingualism,
before we introduce a set of requirements which are necessary in order to fully annotate
semantic knowledge in a way that it can be used in linguistically motivated scenarios.

In our modern world, companies span the globe, operating on different continents in
different cultures. Companies have to use their knowledge in different countries. This
means, they have to express it in different languages. Inhabitants of countries, which
are geographically close, use languages which share many commonalities. An example
is French, German and English which contain similar syntactic structures and for some
concepts even share the same words (e.g., the German and English word "Kindergarten").
However, other languages have developed different ways of encoding information, both
on a morphological and syntactic level ( [3]):

1. Languages like Vietnamese and English which especially make use of the word
order to specify the participants within a sentence.

2. Languages like Hebrew which specify the participants of a sentence by putting a
preposition in front of it. In contrast, Japanese uses postpositions to mark the roles
of the relevant nouns.

3. Russian and Latin change the endings of the nouns themselves in order to mark
them as being a subject or an object.

4. A fourth language type (e.g., dialects of modern Aramaic) does not use additional
words or change the nouns ending, but instead changes the ending of the verb to
indicate the roles within a sentence.

Except for the first type of languages (English, Vietnamese, etc.) all other language types
are more or less independent of word order, as the roles of the nouns are encoded dif-
ferently. Further, languages like Latin or Semitic languages like Arabic, Aramaic and
Hebrew have developed complicated ways of encoding information about time, num-
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bers and places within the verbs they use. These differences have to be considered if a
standard for mapping semantic to linguistic knowledge should be capable of expressing
every available language.

In [108], Buitelaar et al. described five requirements which have to be fulfilled to linguis-
tically ground an ontology:

1. Capture morphological relations between terms, e.g., through inflection (cat, cats),
separately from the domain ontology,

2. Represent the morphological or syntactic decomposition of composite terms and
the linking of the components to the ontology,

3. Model complex linguistic patterns, such as subcategorization frames for specific
verbs together with their mapping to arbitrary ontological structures,

4. Specify the meaning of linguistic constructions with respect to an arbitrary (do-
main) ontology,

5. Clearly separate the linguistic and semantic (ontological) representation levels.

We definitely agree with the first four requirements. However, we want to point out that
there are some things that should be considered regarding the fifth requirement.

In the human mind, both semantic and linguistic knowledge are interconnected (which
has also been proven by different experiments [109], [110]). This means that humans are
incapable of clearly separating semantic from linguistic information because language is
required to describe (semantic) knowledge. The problem can already be seen when on-
tologies should be created. In order to identify an ontological element a group of people
assigns a name or id to each ontological element, most likely in a readable form. This
actually means that in order to represent semantic knowledge a certain linguistic layer
is needed to sufficiently and user-friendly manage and retrieve the knowledge at later
times. However, the word which is chosen for an element depends on the people within
the group and the way they are used to describe the knowledge to their surrounding
people. Another group of people which has no connection to the prior group, might
for example have very different terms to express the same ontological knowledge. This
means that ontologies from different groups, which describe the same knowledge, can
most probably not be matched directly because of different terms which have been used
to represent ontological elements. Therefore, requirement 5 is desirable from a technical
point of view (e.g., to more efficiently implement the data structures or to easily exchange
linguistic information between different ontologies or applications). However, from a
cognitive point of view, semantic and linguistic knowledge should be closely related and
treated with the same priority.
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Besides the five previous requirements, we add two additional requirements since the
prior ones do not allow to cover certain linguistic information which might be relevant
for certain scenarios like NLP. The first one is the grammatical representation, especially
in different languages, i.e., certain (sets of) concepts are represented by more complex
linguistic structures (e.g., proverbs). These can not be covered by a direct one to one
mapping of words to concepts or by subcategorization frames. Instead, the context of the
words and their syntactic relations have to be captured to resolve the correct meaning.
Hence, e.g., complete phrase- and sentence structures have to be captured and mapped
by the linguistic model.
The second requirement deals with the fact that different languages contain different
grammatical structures and also different syntactic categories (this has been described
in section 2.1). The information can be very helpful to match the linguistic information
to the result of existing NLP components. Therefore, the meta model must be easily
extensible to cover an arbitrary number of syntactic categories. These further have to be
combinable in arbitrary ways. This allows the definition of complex syntactic features,
e.g., adding the gender of a noun or the tense of a verb. The new requirements can be
summarized as follows:

6. Support for mapping complex grammatical structures allowing, e.g., the represen-
tation of proverbs. These more complex grammatical structures have to be related
to their corresponding concepts.

7. Support for an arbitrary number of syntactic categories which can be combined in
arbitrary ways.

In the following, we show how the meta model of SE-DSNL fulfills all these requirements.
Our approach is delimited from similar concepts in section 3.6.



3.3 SE-DSNL Meta Model 63

Figure 3.1.: Overall approach for the design of the meta model

3.3. SE-DSNL Meta Model

As stated in section 1.3.1, it is one objective of SE-DSNL to map ontological to linguistic
information. The approach we use is shown in figure 3.1. At the top is the lexical part,
i.e., it holds all the forms which can be used to represent ontological elements. Further,
it contains the syntactic categories, which represent certain grammatical functions. At
the bottom of the figure, there is the element "Ontology", which contains the semantic
information only. In order to bridge these two, the "Constructions" layer in the middle
contains the elements which for one map the single forms to their corresponding onto-
logical element, and are further capable of describing syntactic structures and how these
can be mapped to the ontological structures.

Creating a consistent metamodel which allows to fulfill all the requirements specified in
section 3.2 can be done in two different ways. One would be to create a very complex
and large meta model which can store all information necessary (the approach has been
followed by LexInfo). The other way (which was taken here) is a generic and smaller
approach which requires more work in the implementation phase, but is more flexibel
towards later changes. The following meta model fulfills the previous requirements. In
the following lines, the meta model, the considerations which led to it and why they
fulfill the requirements is presented.

Figure 3.2 shows an overview of the meta model structure. There, basically, are five dif-
ferent parts which are specializations of the element Scope, which defines the commonly
used elements. The main element and also the container element is the Domain class.
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Figure 3.2.: Overview of the meta model structure

It contains at least three different scopes: The SemanticScope, the SyntacticScope and the
ConstructionScope. The SemanticScope holds the semantic knowledge of the correspond-
ing domain. This can be compared to the information which are contained in an OWL
ontology. The SyntacticScope contains information about the forms as well as syntac-
tic categories. The last mandatory scope is the ConstructionScope. In this one the links
between the SemanticScope and the SyntacticScope are defined, i.e., how the syntactic in-
formation can be mapped to the SemanticScope. The final scope is the InterpretationScope.
It is not filled by any expert but instead holds the automatically generated mappings be-
tween a natural language text and the SemanticScope of this Domain.
A detailed introduction to the different scopes is given in the following sections.

3.3.1. Scope

One technical consideration for the following meta model was that it is consistent in its
approach, i.e., semantic and syntactic information are both contained within their specific
scopes, but can still be linked to the other scopes consistently. Hence, the meta model
needs a generic upper part, which provides all the functionality that is required by all the
other scopes and elements.
The model can be seen in figure 3.3. The containment element is the Domain class. As the
name implies the class contains everything that needs to be represented within a specific
domain. To keep the amount of elements which are directly contained within the Do-
main as small as possible, a single upper element was chosen, the ReferencableElement. A
ReferencableElement is an element, which can reference itself, but can also be referenced
by other ReferencableElements. Every other element which is introduced from hereon
inherits from ReferencableElement. This also implies that every other element can be ref-
erenced. The first two new elements for which this is true, are the elements Relationship
and Element. These two classes build the basis for generic graph like structures. Each
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Figure 3.3.: Content of the default Scope of the meta model

Element can have one or more Relationship onto any ReferencableElements and, there-
fore, also on other Elements or Relationships. The advantage of the approach can be
seen in contrast to existing standards for knowledge representation (e.g., RDF or RDFS),
which sometimes have difficulties representing statements like "The detective assumes
that the gardner killed the man". To represent the fact it would be necessary to reference
the verb "kill". Verbs are most likely expressed as properties within an ontology. How-
ever, properties can not be referenced directly within RDF or RDFS. In contrast to these
approaches, SE-DSNL allows referencing Relationships, which means that reification is
not necessary. The previous example can therefore be represented as shown in figure 3.4.
There, solid lines represent relations / properties and dashed lines point to the element
which indicates the type of a relation (this is explained in more detail in the following
section).

A final decision for the scope was that it contains the Generalization, which is a special-
ization of the Relationship. It basically indicates that one ReferencableElement is more
specific than another one, i.e., Gen(a, b) ∶= a ⊆ b, i.e., for two ReferencableElements a and
b, a is equal to or more specific than b. The default Scope builds the foundation for all
remaining scopes.

3.3.2. Semantic Scope

Until now only the part of the meta model which builds the common foundation has
been specified. Figure 3.5 depicts the part of the meta model which contains the semantic
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Figure 3.4.: Representation of the sentence "The detective assumes that the gardner killed
the man"

Figure 3.5.: Semantic Scope

information. There are basically two more elements: The SemanticElement (which inherits
from Element) is used to model each concept which is relevant to a domain. SemanticEle-
ments can be related to each other with an Association. An Association is a Relationship,
however, it has one additional feature: Its type is specified by referencing a SemanticEle-
ment. Basically, the type of an Association is not specified by the Association itself (in
contrast to other standards, e.g., ObjectProperties in OWL). Instead, a link to an external
element is used. The implication of the approach is that everything which should be mod-
eled must be created as a SemanticElement, be it an actual process or a static object. An
example is shown in figure 3.6. As can be seen, Person, House and liveIn have all been rep-
resented as SemanticElements. An Association connects Human and House and specifies
its type by referencing liveIn. The advantage of this idea is that every kind of semantic
information has to be mapped to linguistic information just once, as one SemanticEle-
ment could be referenced by an arbitrary number of Associations (this is shown later on).
There is also no separation between conceptual and instance level. Basically everything
can be a concept or an instance. The decision has been made because of two reasons:

1. A separation between instance and concept level would make more sense if there
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Figure 3.6.: Example of the structure for "Person lives in House"

would be an accurate way to identify which level a word in the text actually refers
to. However, it is often difficult to know if a word like, e.g., "Car" actually refers
to the concept "Car" or, based on its context within a text, to an actual instance. As
there is no known algorithm to identify whether a word should be mapped to a
concept or a specific instance, the problem was neglected.

2. SE-DSNL does not provide any type of logical reasoning. Further, it is not yet in-
tended for large amounts of data. Instead, SE-DSNL is intended to give a first
prototypical view at providing a powerful bridge between the world of semantics
and language.

3.3.3. Syntactic Scope

In this subsection we explain which type of syntactic information can be entered. An
overview of the scope is shown in figure 3.7. The central element is the SyntacticEle-
ment. There are basically three specializations: Form, FormRoot and SyntacticCategory.
The FormRoot is used to define the root of a word, i.e., the string representation of the
root of a word. The Form element specifies any inflections of a word, more precisely any
other strings which represent a specific word. FormRoots can be linked to a group of
Forms. These Forms should be different inflections of the specific FormRoot. The third
element of the Syntactic Scope is the SyntacticCagetory. It can be used to represent any
type of syntactic information like, e.g., the different phrasal as well as lexical categories
which can be inherent to a specific language.

3.3.4. Construction Scope

Until now we have shown how we intend to model semantic as well as syntactic in-
formation. In this subsection we specify how these two parts can be combined. As it
was mentioned earlier the basic idea to join semantic and syntactic information comes
from Construction Grammars, i.e., a set of Construction each of which consists of a se-
mantic and a syntactic part. This basically is what the element Construction represents
(see figure 3.8). Inheriting from ConstructionElement, the central element of the Construc-
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Figure 3.7.: Syntactic Scope

tion Scope, it consists of a set of Symbols as well as Statements. A Symbol can be used
to reference any type of information, be it SemanticElements (SemanticSymbol), Syntac-
ticElements (SyntacticSymbol) or other Constructions (ConstructionSymbol). Referencing
other Constructions means that information which has been built by other Constructions
can be reused. We make extensive use of the information later in section 4.2. In order to
analyze natural language text, knowledge about syntactic structures and their mapping
to semantic structures has to be encoded into a Construction. Each Construction there-
fore can specify a set of Statements. A Statement defines a Function which receives a list
of Symbols as its arguments. An example would be a Statement which checks a list of
forms for a specific order in which they should appear in a text. Detailed examples of
Constructions are shown and described, e.g., in figure 3.11 of section 3.5.3.

3.3.5. Interpretation Scope

The value of the previous scopes is to contain the information which can be used during
the actual analysis. In the process we create what we call a semantic interpretation of the
textual input. To save the interpretation a separate scope has been created which allows
the storage of different interpretation models and how their elements are connected to
the Semantic-, Syntactic- and ConstructionScope (see figure 3.9). As the analysis compo-
nent can receive an arbitrary amount of requests, there must be a way to store an inde-
pendent number of those requests. This is supported by the element InterpretationScope,
which may contain an arbitrary amount of InterpretationModels. This in turn references
an arbitrary number of InterpretationElements, which is the default element of the scope.
Similar to the default scope an InterpretationRelation is an InterpretationElement itself and
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Figure 3.8.: Construction Scope

references different InterpretationElements. The structural similarity had to be repeated
as the information of the parsing process could theoretically posses the same structures
as those of the SemanticScope. During the parsing process, information from all three
different prior Scopes can be identified. In order to clearly identify which information
the analysis process is actually referring to, there are three different specializations of the
InterpretationElement:

1. The SemanticElementInterpretation is, as the name implies, an element which acts as
an interpretation for a specific SemanticElement. The SemanticElement must be
part of the SemanticScope of the meta model.

2. The SyntacticElementInterpretation acts as an interpretation for a SyntacticElement.
The SyntacticElement must (of course) also be a part of the SyntacticScope of the
meta model.

3. The probably most important element is the ConstructionInterpretation. A Construc-
tionInterpretation represents the persistent version of a Construction instance (as
described later in section 4.2.2). It references the Construction which has been used
to create the specific instance of a ConstructionInterpretation. Further it references
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Figure 3.9.: Interpretation Scope

those elements, which have either been newly created (e.g., a new AssociationIn-
terpretation a between two other ConstructionInterpretations ci1, ci2) or are relevant
for the new ConstructionInterpretation (e.g., the two ConstructionInterpretations
ci1 and ci2). A ConstructionInterpretation is allowed to only reference one single
SemanticElementInterpretation (because the semantics of a ConstructionInterpre-
tation must be unambiguous).

In order to relate ConstructionInterpretations, there is one more specific relation avail-
able, the AssociationInterpretation. This is different from the SemanticScope, where an
Association can only be used to associate different SemanticElements. The reason for
associating ConstructionInterpretations is that the parsing process needs many differ-
ent information in order to create an InterpretationModel. The core elements of the
parsing process are always the Constructions, as they contain and link all the relevant
semantic and syntactic information. This also means that each ConstructionInterpreta-
tion (as it is an instance of a Construction) represents its own semantics by referencing
a SemanticElementInterpretation. Therefore, instead of directly relating the different Se-
manticElementInterpretations, the ConstructionInterpretations are associated by using
the AssociationInterpretation. Similar to a normal Association, an AssociationInterpreta-
tion must also specify the actual type of the relation, which is also a ConstructionInter-
pretation.
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3.4. Formal Speci�cation

During the thesis we often have to refer to different elements of the meta model. We
therefore introduce the meta model in a more formal representation. The formalization
is not intended to be applied in mathematical proofs, but for the clear specification of
algorithms and concepts.

The basis of this concept builds on an instance of a SE-DSNL meta model, which is some-
times called SE-DSNL model or just ontology. It is defined as follows:

Definition 1 (SE-DSNL Ontology)

A SE-DSNL Ontology O (also referred to as ontology only) is defined as the set

O ∶= {Ose, Osy, Oc, Oi, Op} (3.1)

where Ose represents the SemanticScope, Osy represents the SyntacticScope, Oc repre-
sents the ConstructionScope, Oi represents the InterpretationScope and Op represents
the PatternScope.

The definition of the SemanticScope of an ontology O is given in the following:

Definition 2 (SemanticScope)

Ose ∶= {Ose.E, Ose.R, Ose.G} (3.2)

where Ose.E is a set of SemanticElements, Ose.R defines a set of Associations between
the SemanticElements in Ose.E and Ose.G defines a set of Generalizations between the
SemanticElements in Ose.E. Each Association r ∈ Ose.R is defined by the set

r ∶= {r.src, r.trg, r.typ} (3.3)

where r.src ∈ Ose.E defines the source SemanticElement of a Relationship, r.trg ∈ Ose.E
specifies the target SemanticElement and r.trg ∈ Ose.E specifies the SemanticElement
which represents the type of the Association. All Generalizations in Ose.G are defined
accordingly with the exception that they do not contain a type attribute.

The definition of the SyntacticScope can be seen in the following:

Definition 3 (SyntacticScope)

The SyntacticScope Osy consists of

Osy ∶= {Osy.F, Osy.X} (3.4)
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where Osy.F is the set of all Forms and FormRoots and Osy.X contains the Syntactic-
Categories.

The ConstructionScope is formally defined as follows:

Definition 4 (ConstructionScope)

The ConstructionScope consists of the set

Oc ∶= {Oc.C, Oc.Y, Oc.S} (3.5)

where Oc.C is the set of Constructions, Oc.Y is a set of Symbols and Oc.S is a set of
Statements which can be used by the Constructions within Oc.C. Oc.Y is defined as

Oc.Y ∶= Oc.Yc ∪Oc.Yse ∪Oc.Ysy (3.6)

where Oc.Yc is the set of all ConstructionSymbols, Oc.Yse is the set of all Semantic-
Symbols and Oc.Yse is the set of all SyntacticSymbols. Oc.S consists of the following
sets

Oc.S ∶= Oc.Se ∪Oc.Sc (3.7)

where Oc.Se is the set of all ConditionStatements and Oc.Sc is the set of all EffectState-
ments.

In order to map the elements from Ose to Osy, Constructions are used. A Construction is
defined as follows:

Definition 5 (Construction Definition)

A Construction c ∈ Oc is defined as

c ∶= {c.Y, c.SC, c.SE} (3.8)

where

c.Y ⊆ Oc.Y (3.9a)

c.SC ⊆ Oc.Se (3.9b)

c.SE ⊆ Oc.Sc (3.9c)

We use different methods and predicates to return specific values or check certain values,
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which can be seen in definition 6.

Definition 6 (Methods and Predicates)

In order to return the set of all Symbols which are used by a specific set of Statements,
the following method is used:

t ⊆ Oc.S (3.10a)

symb(t) ⊆ Oc.Y (3.10b)

The set of Symbols Oc.Y can contain different types of Symbols like Construction-
Symbols, SyntacticSymbols and SemanticSymbols. In order to identify the type of a
Symbol, new predicates are introduced:

conSymb(y)⇔ y ⊆ Oc.Yc (3.11a)

synSymb(y)⇔ y ⊆ Oc.Ysy (3.11b)

semSymb(y)⇔ y ⊆ Oc.Yse (3.11c)

where conSymb(y) checks if y is a ConstructionSymbol, synSymb(y) validates if y
might be a SyntacticSymbol and semSymb(y) checks if y is a SemanticSymbol.

In order to apply a Construction it must be self-contained. Before we define what self-
containment means in this context, we have to introduce two definitions:

Definition 7 (Loose Symbol)

If for a Construction c ∈ Oc.C, there is a Symbol y ∈ c.Y such that

y ∈ symb(c.SE ∪ c.SC) ∶ ¬(y ∈ c.Y) (3.12)

This means that if y is part of a Statement of a Construction c but is not part of the
Symbols c.Y of the Construction, the Symbol is called a loose Symbol. We introduce a
new predicate

c ∈ Oc.C (3.13a)

lSymb(x, c) (3.13b)

which for a given Symbol x and a Construction c evaluates if x is a loose Symbol of
c.

With this definition we can now define what a self-contained Construction is.
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Definition 8 (Self-contained Construction)

A Construction c ∈ Oc.C is called self-contained, if

selfContained(c)⇔ ∀y ∈ c.Y ∶ ¬lSymb(y, c) (3.14)

This means that a Construction is called self-contained, if it does not contain any
loose symbols.

Self-containment is required for Constructions. It specifies that a Construction c ∈ Oc can
not reference any information outside its own scope, i.e., only Symbols which belong to
c.Y can be referenced by the Statements within c.SC ∪ c.SE. If c would, however, contain
a loose Symbol, the evaluation would become more complex and indeterministic. The
reason is that it would be impossible to predict which value the loose Symbol should
be instantiated with (this is explained later in section 4.2). Hence, only self-contained
Constructions are considered for the evaluation process.
The last scope, which is of relevance to the thesis, is the InterpretationScope. We specify
it as follows:

Definition 9 (InterpretationScope)

Let

Oi (3.15)

be the InterpretationScope, which contains all InterpretationModels.

The specification of an InterpretationModel can be seen in definition 10.

Definition 10 (InterpretationModel)

Let

m ∶= {m.E, m.R} (3.16)

be an InterpretationModel, where m.E contains all InterpretationElements and m.R is
the set of all InterpretationRelations within m. m.E consists of the subsets

m.E ∶= {m.Esem, m.Esyn, m.Econ} (3.17)

where m.Esem contains all SemanticElementInterpretations, m.Esyn contains all Syn-
tacticElementInterpretations and m.Econ contains all ConstructionInterpretation. Fur-
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ther let

m.R ∶= {m.Rass, m.Rint} (3.18)

where m.Rass is the set of all AssociationInterpretations and m.Rint contains the Inter-
pretationRelations without AssociationInterpretations (m.Rint ∶= m.R∖m.Rass).

The specification of an InterpretationRelation is described in definition 11.

Definition 11 (InterpretationRelation)

Let m ∈ Oi be an InterpretationModel. A relation r ∈ m.R is defined as the set

r ∶= {r.src, r.trg} (3.19)

where r.src, r.trg ∈ m.E and r.src represents the source InterpretationElement of the
InterpretationRelation r and r.trg represents the target InterpretationElement of r. If
r ∈ m.Rass, it contains an additional attribute:

r ∶= {r.src, r.trg, r.typ} (3.20)

where r.typ ∈ m.Econ and specifies the type of the AssociationInterpretation.

The last definition 12 specifies the different InterpretationElements.

Definition 12 (InterpretationElement)

Let m ∈ Oi be an arbitrary InterpretationModel. Each SemanticElementInterpretation
e ∈ m.Esem is defined as

e ∶= {e.sem} (3.21)

where e.sem ∈ Ose is a reference to the SemanticElement which the SemanticEle-
mentInterpretation represents. Each SyntacticElementInterpretation e ∈ m.Esyn is de-
fined as

e ∶= {e.syn} (3.22)

where e.syn ∈ Osy is a reference to the SyntacticElement which the SyntacticEle-
mentInterpretation represents. Each ConstructionInterpretation e ∈ m.Econ is defined
as

e ∶= {e.sem, e.con, e.Esyn, e.Rass} (3.23)
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where e.sem is a single InterpretationRelation r ∈ m.Rint, whose target element
r.trg ∈ m.Esem. (note that if the corresponding SemanticElement within Ose should
be referred to which e.sem references, the expression e.sem.sem will be used). Next,
e.con references a Construction c ∈ Oc.C which the ContructionInterpretation repre-
sents. e.Esyn is a subset of InterpretationRelations in m.Rint which reference Syntac-
ticElementInterpretations within m.Esyn. The attribute e.Rass is a subset of m.Rass and
contains all those AssociationInterpretations r ∈ m.Rass which have the Construction-
Interpretation e as its source, i.e., r.src = e.

These definitions specify how an InterpretationModel m ∈ Oi can store the links between
the natural language text (represented by SyntacticElementInterpretations in m.Esyn) and
the ontology O on the other side.
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3.5. Creating Knowledge

For every knowledge intensive system like SE-DSNL it is necessary to create the knowl-
edge itself. This section describes how knowledge in case of SE-DSNL can be created and
to which guidelines it must conform. For our evaluation we developed a modeling tool
which automatically enforces these guidelines.

To create the semantic knowledge of an ontology there exist several different methodolo-
gies which describe how the information can be modeled manually, e.g., the "Ontology
Development 101" guide [111]. We therefore do not describe the process in detail. In-
stead, this section gives a short overview of how information can be gathered from exist-
ing sources and how the information can be enriched with linguistic knowledge to create
a valid SE-DSNL model.

The ideal case is that an OWL ontology exists within the current domain (if such an on-
tology is not available the expert can still model it manually). An OWL ontology can
automatically be transformed into the SemanticScope of a SE-DSNL model. The process
is specified in section 3.5.1. Next we describe in section 3.5.2 how the different elements
within an SE-DSNL model can be represented using Forms, FormRoots and Construc-
tions. Following, mapping complex syntactic structures to corresponding semantic in-
formation is explained in section 3.5.3, before in section 3.5.4 guidelines are presented to
which a valid SE-DSNL model has to conform. It should be noted that several of the steps
require a lot of elements at once, which means an enormous effort to the user. However,
the process can be greatly facilitated with corresponding tool support.

3.5.1. OWL to SemanticScope Transformation

As mentioned before, the ideal starting point for the SE-DSNL approach is an existing
OWL ontology. In this section we describe how the information is transformed into the
SemanticScope.
OWL provides a multitude of different possibilities to create and reason with semantic
information. In contrast, SE-DSNL tries to tackle the combination of natural language
on one side and semantic knowledge on the other side. Therefore, it is not the goal of
the transformation to preserve all the reasoning semantics of OWL in the transformation
process. Its goal is that the classes of OWL, their properties as well as the correspond-
ing individuals are transformed such that they can be expressed with linguistic informa-
tion.

We previously mentioned that SE-DSNL does not yet differentiate between individuals
and classes, therefore every element in the SemanticScope is a SemanticElement. This
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means that there is a unique SemanticElement for every class, property and individual.
In the following, we describe in detail how the transformation from OWL to SE-DSNL
works by introducing a set of different methods which are required to describe the trans-
formations.

The method

addForm(x, a)

specifies that a new Form based on the URI of an OWL class x is created and associated
to the SemanticElement a. URIs normally are of the form ’Namespace:Name’, however,
only the Name part of the URI is used because it often represents a natural language
word. The method involves the creation of a new Construction, a SemanticSymbol and a
SyntacticSymbol. The SemanticSymbol references a, the SyntacticSymbol references the
previously created Form and the Construction references both Symbols. A special variant
of addForm(x, a) is

addLiteralForm(x, a)

which instead of using the URI uses the concrete value of the literal x for adding a Form
to a. The process also involves the creation of different Constructions like addForm. The
method

SemanticElement(x, a)

creates a new SemanticElement (if it does not exist yet). For this the URI of an OWL
class x is required. The reference to the either newly created or perhaps already existing
SemanticElement is stored in the variable a. Further, the method calls addForm(x, a) if a
has been newly created.

Association(x, y, z)

adds a new association of type x from a ReferencableElement y to a ReferencableElement
z. Another relationship type is created by the method

Generalization(x, y)
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which adds a new Generalization between x and y such that x ⊆ y. The method

InstanceOf (x, y)

means that one SemanticElement x is an instance of y. The result of the method is a
call to Generalization(x, y), because SE-DSNL does not yet support a clear differentiation
between instance and concept level. In order to represent equality, the method

EquivalentTo(x, y)

creates the elements which are required to represent an equality between the elements
x and y. Its type points to a SemanticElement s representing the equality concept. The
concept is further mapped to different linguistic expressions for equality. Finally, the
methods Association(s, x, y) and Association(s, y, x) are executed, which insert an Associa-
tion of type s between x and y and back. The last method is

InverseOf (x, y)

which indicates that a concept x is the inverse of y. Similar to the EquivalentTo method
a new SemanticElement s representing the inverse concept is created and mapped
to corresponding linguistic expressions. Finally, the methods Association(s, x, y) and
Association(s, y, x) are executed, which insert an Association of type s between x and y
and back.

We use these methods to formally specify the transformations to SE-DSNL. OWL pro-
vides a huge set of different elements and features which can be used to model ontolo-
gies. However, many experts only require a small subset of the OWL features to build an
ontology. We therefore decided, to only transform the mostly used elements to SE-DSNL
in a first step. To select these elements we analyzed different publicly available ontolo-
gies [11] [112] and selected only such elements which were used in those ontologies. This
lead to the selection of elements which can be seen in table 3.1. We explain these different
transformations in the following.

1. Class is the central element of an OWL TBox. If a class x is found in the transforma-
tion process (as described in the table 3.1), a SemanticElement, based on the URI of
the class will be created. The reference on the SE-DSNL element representing x it
stored in the variable a. Further, a form based on the URI of x represents a.

2. A Datatype in OWL is an element which references a set of data values. The element
is represented with the same mechanisms as an OWL class.
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3. OWL defines properties between classes by using the range and domain of the cor-
responding ObjectProperty, which are called ObjectPropertyRange and ObjectProper-
tyDomain. In order to transform the information both domain and range are needed
at the same time. This type of information is represented within SE-DSNL in the
form of an Association between two SemanticElements. In case that there are mul-
tiple entries in either the domain or range specification (in the table 3.1 represented
by z and y in row three), there is an Association from every SemanticElement, rep-
resenting the items in y, to every SemanticElement, which represents the items in
z.

4. The ObjectPropertyAssertion associates pairs of individuals within OWL. The ele-
ment can be translated to SE-DSNL directly by associating the corresponding Se-
manticElements, which represent the source and target individuals.

5. The DataPropertyDomain specifies in which class a DataProperty is used in. In order
to specify the structure in SE-DSNL an Association of the SemanticElement ’At-
tribute’ is added between the SemanticElement, which represents the class, and the
SemanticElement which represents the data element.

6. The DataPropertyRange defines the type a specific DataProperty represents. The
information is transformed to the SE-DSNL meta model by associating the Seman-
ticElement of the DataProperty to a SemanticElement which represents the data
type of the ObjectProperty.

7. The DataPropertyAssertion adds a literal z to an individual y by using a previously
defined data element (x). To recreate the structure in the meta model the following
is done: A SemanticElement c is created which receives the value of the literal z as
its name. Next c is marked as an instance of the SemanticElement a, the representa-
tion of data element. Finally the SemanticElement b, which represents the domain
class y of the data property, is being associated to c by the SemanticElement type d.

8. The ClassAssertion marks an individual as belonging to a specific class. Here the
individual y is represented by the SemanticElement b. In order to specify that b
is an instance of a (the SemanticElement representing the class x) the InstanceOf
method relates both elements.

9. A SubClassOf axiom specifies that one class x is more specific than another class y.
The same information is represented in the meta model by using a Generalization
between the corresponding SemanticElements.

10. The EquivalentClass axiom specifies that x and y are semantically equivalent. This
can be translated to SE-DSNL by retrieving the SemanticElements which represent
them and relate them accordingly, using the EquivalentTo method.
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11. The OWL element SubDataPropertyOf specifies that for two DataProperties x, y
x ⊆ y, i.e., the DataProperty x is more specific than or equal to y. In SE-DSNL,
everything is expressed using SemanticElements. This means that in order to trans-
form the information to this meta model, a Generalization is inserted between the
corresponding SemanticElements.

12. EquivalentDataProperty specifies that two DataProperties x and y share the same se-
mantic meaning. Similar to the EquivalentClass axiom, the corresponding Seman-
ticElements a and b are related by using the EquivalentTo method, which inserts two
Associations, representing equality, between a and b.

13. The SubObjectPropertyOf element specifies that one ObjectProperty x is more spe-
cific than or equal to another one y, i.e., x ⊆ y. The transformation to SE-DSNL is
the same as for the SubClassOf element.

14. EquivalentObjectProperties defines that two ObjectProperties x and y are the same.
The transformation to SE-DSNL is the same as for EquivalentDataProperty.

15. The element InverseObjectProperties specifies that one ObjectProperty x represents
the inverse of another ObjectProperty y, i.e., x ≡ ¬y. The structure can be trans-
formed by executing the method InverseOf with the corresponding SemanticEle-
ments a and b. This leads to two new Associations of a type which represents in-
version, between a and b.

OWL provides more elements for which no transformation to SE-DSNL has been pro-
vided yet. If another element needs to be transformed, this can in general be done as
follows:

1. For every information in the structure that one wants to transform, a SemanticEle-
ment has to be created.

2. A SemanticElement t needs to be retrieved which represents the type of the re-
lation (e.g., as in the DataProperty transformation in table 3.1 an ’Attribute’ Se-
manticElement is used to represent the type). In some cases, however, (e.g., in the
’SubClassOf’ transformation) a specific relation is required which also exists within
SE-DSNL (here the Generalization). In this case, no SemanticElement needs to be
created.

3. The Association of type t has to be inserted between the SemanticElements, as long
as no specific relation exists. If a specific relation exists, insert this one between the
SemanticElements.

4. If some of the information in OWL contains a natural language label, which should
also exist in the SE-DSNL model, a corresponding Form has to be added to the
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Table 3.1.: OWL to SE-DSNL Transformation
ID OWL Element Transformation

1 Class(x) SemanticElement(x, a)
addForm(x, a)

2 Datatype(x) SemanticElement(x, a)
addForm(x, a)

3 ObjectPropertyRange(x, z) SemanticElement(x, a)
ObjectPropertyDomain(x, y) SemanticElement(y, b)

SemanticElement(z, c)
Association(a, b, c)

4 ObjectPropertyAssertion(x, y, z) SemanticElement(x, a)
SemanticElement(y, b)
SemanticElement(z, c)
Association(a, b, c)

5 DataPropertyDomain(x,y) SemanticElement(x, a)
SemanticElement(y, b)
SemanticElement(’Attribute’, c)
Association(c, b, a)

6 DataPropertyRange(x,y) SemanticElement(x, a)
SemanticElement(y, b)
SemanticElement(’Type’, c)
Association(c, b, a)

7 DataPropertyAssertion(x,y,z) SemanticElement(x, a)
SemanticElement(y, b)
SemanticElement(z, c)
addLiteralForm(z, c)
InstanceOf(c, a)
SemanticElement(’Attribute’, d)
Association(d, b, c)

8 ClassAssertion(x,y) SemanticElement(x, a)
SemanticElement(y, b)
InstanceOf(b,a)

9 SubClassOf(x,y) SemanticElement(x, a)
SemanticElement(y, b)
Generalization(a, b)

10 EquivalentClasses (x,y) SemanticElement(x, a)
SemanticElement(y, b)
EquivalentTo(a, b)

11 SubDataPropertyOf (x,y) SemanticElement(x, a)
SemanticElement(y, b)
Generalization(a, b)

12 EquivalentDataProperty (x,y) SemanticElement(x, a)
SemanticElement(y, b)
EquivalentTo(a, b)

13 SubObjectPropertyOf (x,y) SemanticElement(x, a)
SemanticElement(y, b)
Generalization(a, b)

14 EquivalentObjectProperties (x,y) SemanticElement(x, a)
SemanticElement(y, b)
EquivalentTo(a, b)

15 InverseObjectProperties (x,y) SemanticElement(x, a)
SemanticElement(y, b)
InverseOf(a, b)

specific SemanticElement.

It should be mentioned again that SE-DSNL tries to capture the mapping of ontological to
linguistic knowledge only. Certain axioms, which mainly represent information required
for reasoning processes, therefore do not have to be transformed.
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Figure 3.10.: ’University’ Construction Example

3.5.2. Linguistic Representation of SemanticElements

One of the most common tasks is the linguistic representation of single ontological ele-
ments. To do this within SE-DSNL, the user can not simply add a Form to a SemanticEle-
ment, but has to create an additional Construction as well as some Symbols. An example
can be seen in figure 3.10. Here, a new Construction c1 was created which references
two Symbols sy1 and ss1. The first Symbol is a SyntacticSymbol and actually references
the Form which represents the SemanticElement ’University’. The other Symbol ss1 is
a SemanticSymbol and references the aforementioned SemanticElement. This type of
Construction (i.e., one which simply maps one SemanticElement to one Form) is called
Atomic Construction or Mapping Construction. Such Constructions always only reference
two Symbols, one syntactic and one semantic Symbol.

Linguistically representing one SemanticElement already seems like a lot of effort, be-
cause five elements are required in total (one Construction, one SemanticElement, one
SyntacticElement and two Symbols). However, the process can be greatly facilitated with
corresponding tool support, i.e., CodeCompletion or Intellisense. In the following we
mostly represent Constructions in textual forms like the one which can be seen in table
3.2. The table represents the Construction in figure 3.10. The first row "Symbols" contains
all the Symbols which the Construction references. The syntax of a Symbol first rep-
resents the specific Symbol type (e.g., SemanticSymbol or SyntacticSymbol). Next, the
element it references is mentioned (in the example this is "University"; It should be men-
tioned that both Symbols reference different elements although the name is the same).
The final term represents the name with which the corresponding element is used within
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the Construction (here sy1 and ss1).

Table 3.2.: Textual Representation of Construction c1 ’University’
Name Content
Symbols SemanticSymbol University ss1

SyntacticSymbol University sy1
ConditionStatements
EffectStatements

The purpose of the Construction is to simply map one SemanticElement to one Form.
There are, however, more difficult expressions, e.g., "University of Augsburg". The ex-
ample contains three words two of which have a definite concept associated with them
(’University’ and ’Augsburg’). If those two, however, are mentioned in a specific order
with the little word "of" between them, the complete noun phrase represents a different
concept, i.e., the one of the specific university which is located within Augsburg. To map
the phrase to the corresponding SemanticElement more information is needed. The re-
quired Construction can be seen in figure 3.11, its textual representation is specified in
table 3.3. We explain all the different steps that are required to build the structure in the
following.

The Construction c4 is at the center and represents the mapping between the noun phrase
and the corresonding SemanticElement. It references three other Constructions which
map the words ’University’ (c1), ’of’ (c2) and ’Augsburg’ (c3). Next, the user specified a
ConditionStatement inOrder which enforces the correct order of the words. The expert
also defined an EffectStatement which inserts the correct SemanticElement (ss4) if the
previously mentioned Constructions were found in the correct order. It is, of course, pos-
sible to add additional ConditionStatements or EffectStatements, depending on what the
domain requires. Constructions which contain ConditionStatements or EffectStatements,
are called non-atomic Constructions or complex Constructions.

Non-atomic Constructions can also be represented in textual and more simplistic form,
which can be seen in table 3.3. In contrast to the textually represented Construction in
table 3.2, the table also contains textually specified Statements. The textual representa-
tion of Constructions much more resembles the work which actually has to be done to
create a Construction. There is still a lot of work involved, however, the SE-DSNL frame-
works contains an Integrated Developer Environment (IDE) which supports the user in
the process.

The development of a SE-DSNL model is a time consuming process during which the
knowledge grows continuously. It might therefore happen that the user tries to enter a
name for a SemanticElement or a Form which already exists. It is up to the expert to
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Figure 3.11.: ’University of Augsburg’ Construction Example

Table 3.3.: Textual Representation of Construction c4 ’UNA’
Name Content
Symbols ConstructionSymbol c1 cs1

ConstructionSymbol c2 cs2
ConstructionSymbol c3 cs3
SemanticSymbol UNA ss4

ConditionStatements inOrder(cs1, cs2, cs3)
EffectStatements representsSem(ss4)

decide if he / she is just trying to add a SemanticElement which already exists (which
should be avoided) or the user is just adding an additional Form for a SemanticElement.
It depends on the situation and the experience of the knowledge designer how the situa-
tion should be handled.

3.5.3. Mapping Syntactic and Semantic Structures

Previously we described how single SemanticElements can be represented linguistically.
However, this is just one step towards fully mapping semantic and linguistic informa-
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tion. SE-DSNL was especially developed to map syntactic to semantic structures. In the
following, we describe how corresponding Constructions can be developed. The step is
actually very similar to creating non-atomic Constructions. The main difference is that
even more information has to be checked, e.g., information about the word order as well
as the semantic relatedness of information within the SemanticScope.

For the example we chose to map a simple subject → predicate → object structure to
the SE-DSNL knowledge. The result can be seen in figure 3.12 and table 3.4. First of
all, three different Constructions are needed (c1,c2 and c3), all of them referenced by a
corresponding ConstructionSymbol (cs1, cs1 and cs3). Next SyntacticCategories for iden-
tifying nouns (SyntacticCategory f1 ’N’ which is referenced by the SyntacticSymbol sy1)
and verbs (SyntacticCategory f2 ’V’, referenced by SyntacticSymbol sy2) are needed. Two
more SemanticElements have been created which represent the semantic knowledge, i.e.,
an ’Object’ (referenced by the SemanticSymbol ss1) as well as an ’Action’ (SemanticSym-
bol ss2). The SemanticElements are required because the ConditionStatements of Con-
struction c4 should validate that the meaning of the words exists within the Semantic-
Scope. This can be done by using ConditionStatements. Basically the Constructions c1
and c3 both have to be of POS type noun. The corresponding validation is done by ex-
ecuting the ConditionStatements isOfType(cs1, sy1) and isOfType(cs3, sy1). These Condi-
tionStatements check if the referenced knowledge of the second argument is contained
within the first argument. In the example, the elements which are later assigned to either
cs1 or cs3, should therefore contain the SyntacticCategory ’N’, which sy1 references.

Table 3.4.: Textual Representation Construction NP VP NP
Name Content

Symbols ConstructionSymbol c1 cs1
ConstructionSymbol c2 cs2
ConstructionSymbol c3 cs3
SemanticSymbol Object ss1
SemanticSymbol Action ss2
SyntacticSymbol N sy1
SyntacticSymbol V sy2

Statements inOrder(cs1, cs2, cs3)
checkTriple(cs1, cs2, cs3)
isOfType(cs1, sy1)
isOfType(cs2, sy2)
isOfType(cs3, sy1)
isOfType(cs1, ss1)
isOfType(cs2, ss2)
isOfType(cs3, ss1)
createTriple(cs1, cs2, cs3)

Other information constraints are checked similarly. For example, both cs1 and cs3
should contain information of the SemanticElement ’Object’, i.e., isOfType(cs1, ss1) and
isOfType(cs3, ss1). Construction c2, however, should be of the POS type ’V’ (as referenced
by the SyntacticSymbol sy2) and also reference a SemanticElement of type ’Action’. Next
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Figure 3.12.: NP → VP → NP Construction Example

the Constructions c1, c2 and c3 must appear in the order, i.e., inOrder(cs1, cs2, cs3). Fi-
nally the ConditionStatement checkTriple(cs1, cs2, cs3) checks if, based on the given se-
mantics of the Constructions behind cs1, cs2 and cs3, knowledge is available within the
SemanticScope.

If all ConditionStatements can be evaluated successfully, a triple is created, consisting
of the semantic information which the instances of c1, c2 and c3 transport (a deeper in-
troduction in the mechanisms and algorithms of the different Statements as well as the
application of the Constructions in general is given in section 4.2 and following).

3.5.4. Modeling Guidelines

The development of a SE-DSNL model requires a lot of time to create all the knowledge.
During the process there are many pitfalls which may lead to errors in the model. To
circumvent some of these problems we developed several guidelines which can auto-
matically be checked using a model validation, e.g., the data-flow based model analysis
by Saad [113]. In the following, we describe the different guidelines which have to be
considered in order to create a a technically sound SE-DSNL model. Hence, a definition



88 Combining Ontological and Linguistic Information

of different predicates is required (as seen in definition 13).

Definition 13 (Guideline Predicates)

Let

m, n ∈ Ose

x, y, z ∈ Ose.E

a ∈ Ose.R

be elements of the SemanticScope.
The first predicate validates if a Generalization between two SemanticElements ex-
ists:

gen(x, y)⇔ x ⊆ y (3.24)

This means that for two elements x and y gen(x, y) specifies that x is equal to or more
specific than y. It must be noted that the Generalization relationship in SE-DSNL is
transitive, i.e.,

gen(z, y)∧ gen(y, x)⇒ gen(z, x) (3.25)

Therefore, if z is a specialization of y and y is a specialization of x then z is also a
specialization of x.
The predicate

equal(m, n)⇔ a = b (3.26)

validates if two elements m and n are equal.
The predicate

hasType(a)⇔ a.typ ≠ ∅ (3.27)

checks if the Association a has a type, i.e., an element from Ose.E. A variation of the
method is defined in the following.
The predicate

isType(a, x)⇔ a.typ = x (3.28)

validates if x is the type of the association a.
The predicate

isSource(a, x)⇔ a.src = x (3.29)
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checks if an element x is the source of Association a.
Finally

isTarget(a, x)⇔ a.trg = x (3.30)

validates if x is the target of Association a.

With these predicates we created a set of guidelines which are used to validate an ontol-
ogy O:

1. ∃e ∈ Ose.E∀m ∈ Ose.E gen(m, e), i.e., all semantic elements must be part of a single
hierarchy (note that gen is transitive as specified in definition 13). This means that
there must be a path from every SemanticElement within the SemanticScope to a
single root element by using Generalizations only. The root SemanticElement may
not have any further outgoing Generalization links. This is due to some of the
algorithms which measure and identify relations between all available concept.

2. SemanticElements are allowed to use multiple inheritance, i.e., one element can
inherit from multiple other elements (e.g., the element ’Mr. Schmid’ can be both a
’Man’ and a ’Driver’).

3. ∀e, f ∈ Ose.E ¬(gen(e, f ) ∧ gen( f , e)) ∨ equal(e, f ): Generalization relations are not
allowed to form circles, i.e., there must not be a single element f within the Seman-
ticScope from which one can return to the element if it uses the outgoing General-
ization relations from the element e.

4. ∀a ∈ Ose.R hasType(a): Each Association must have a type. As the type of a relation
between two elements is one of the most important features which differentiates
simple graphs from ontologies this is required for the approach.

5. The type of an Association must be part of a different Generalization branch than
the source and target elements of the Association:

∀a ∈ Ose.R ∃es, et, ey ∈ Ose.E isSource(a, es) ∧ isTarget(a, et) ∧ isType(a, ey) ∧
¬(gen(es, ey)∨ gen(ey, es)∨ gen(et, ey)∨ gen(ey, et))

The constraint defines that the source and target SemanticElements of an Associa-
tion are not allowed to be either a child or a parent of the SemanticElement which
represents the type of the Association. The restriction is necessary for the semantic
spreading activation (see section 5), which otherwise would have problems with
spreading the tokens correctly and identifying the best matching Associations.

6. It must be noted that no matter what type of syntactic representation is used in a
natural language sentence (i.e., either active or passive verb forms) the information
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within the SemanticScope must always be modeled either in an active or passive
representation (here everything is modeled in an active representation). Only this
way a consistent mapping between the syntactic structure on one side and a seman-
tic structure on the other side can be guaranteed.

The SyntacticScope is all about creating the information which is necessary to represent
both the lexical and syntactic information. There are also different guidelines which the
Scope must adhere to.

1. Every Form or FormRoot may only contain one single word, i.e., strings like ’Uni-
versity of Augsburg’ are not valid values for either a Form or FormRoot. Instead
three different Forms ’University’, ’of’ and ’Augsburg’ must be created. Represent-
ing compound words is the task of the ConstructionScope and has been shown in
section 3.5.2

2. The SyntacticCategory elements build a bridge to the parsing results of the syntactic
parsers. Therefore, each SyntacticCagetory should represent either a POS tag or a
syntactic category which is returned by the syntactic parser. For example, if the
parser outputs ’VMFIN’ there should be a SyntacticCategory in the SyntacticScope
with the value ’VMFIN’.

3. In contrast to SemanticElements, SyntacticCategory elements do not have to be part
of the same Generalization hierarchy.

4. It can be helpful to cluster the elements, depending on how fine grained the model-
ing of the Constructions should be. Hence, as an example, all POS tags representing
the different kinds of verbs (e.g., modal and auxiliary verbs) can be clustered under
one more general element.

Similar to the SemanticScope and SyntacticScope, the elements within the Construction-
Scope should follow specific constraints.

1. Constructions have to be part of exactly one Generalization hierarchy with exactly
one root element (the same as in guideline 1). Multiple inheritance is not allowed.

2. To map a single word to a specific element a Construction c1 has to reference a
SyntacticSymbol (sy1 in figure 3.10), which references the Form f1. Further, the
SemanticElement se1 is used by referencing the SemanticSymbol ss1. Atomic Con-
structions therefore always only reference two Symbols, i.e., one SyntacticSymbol
and one SemanticSymbol.

3. The development of a consistent ConstructionScope (i.e., a ConstructionScope
which covers all the linguistic requirements of a specific domain) can be difficult
and time consuming. Therefore, the user must be clear about the required gran-
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ularity and detail. If he / she wants a very fine grained detail he must of course
model his Constructions as detailed as possible (therefore the example from figure
3.12 would most probably be insufficient). However, this leads to a decreased recall
which in turn means that more Constructions must be created for every possible
syntactic structure. On a more abstract level, however, one can focus on modeling
Constructions which have a high recall but might lack a certain degree of precision.
Finding a right trade off between both sides is difficult and mostly depends on the
task at hand.

4. A problem which is difficult to track is modeling Constructions in such a way that
the analysis process wont be caught in an infinite loop. Figure 3.13 shows the most
simple Construction structure which could lead to an infinite loop during the anal-
ysis process. The Construction simply references a ConstructionSymbol cs1 which
again references the same Construction (if modeled as a production rule it would
look like A → A. This type of Construction without any further restrictions could
be repeated endlessly. It is, therefore, necessary to model the ConstructionScope in
a way that infinite loops won’t happen. However, this is a difficult task, especially
in more complicated situations, as an infinite loop could also be the result of an
EffectStatement. Hence, experts have to be very careful during the process.

5. Constructions have to be self-contained as specified in definition 8, therefore

∀c ∈ Oc selfContained(c) (3.31)

Figure 3.13.: Construction leading to an infinite loop

In order for the algorithms and mechanisms of the thesis to function properly, a valid
SE-DSNL Ontology is required.

Definition 14 (Valid Ontology)

An ontology O is called valid if it complies to all guidelines of section 3.5.4.
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3.5.5. Multilingual Representation

In section 3.2 several differences between languages were mentioned. We describe in
this section that SE-DSNL is capable of representing any type of language. Basically,
there are two types of information that are relevant for mapping the lexical and syntactic
information of a language to semantic knowledge:

1. The first type is the order of the words. This is obviously true for English, French,
German etc. as the order of the words, e.g., determines the roles of the nouns.
Although the order of words is not as important in languages like Hebrew or
Japanese, they still require a preposition or postposition to mark nouns as being the
subject or object of a verb. A preposition comes in front of a word and a postposition
comes after a word, therefore also requiring a local order.

2. The second way of marking the roles of words within a sentence is by changing
their morphology, i.e., altering either the endings (Latin, Russian) or even the com-
plete word (as it is the case in Hebrew, where verbs are constructed of three con-
sonants, which are put into a ’template’ [3], e.g., the Arabic slm which means ’be
at peace’; In order to express ’he was at peace’ in the pattern ’XaXiXa’ the ’X’s are
exchanged with the corresponding consonants, which leads to the word "salima").

Both information types are very important for classical statistical parsing ( [114], [115],
[116]). The same is true for mapping semantic knowledge to language, because lexical
as well as syntactic information has to be identified correctly before it can be mapped to
its corresponding semantic counterpart. In SE-DSNL both types of information are best
identified by using Statements. First of all, the order of words can only be identified by
using a corresponding Function (we describe the one we developed in section 4.3.1). Us-
ing a specific Function makes it easier to adapt to a specific syntax tree parser, because
different parsers also yield different parsing trees. Regarding the morphology there are
two different ways how this could be handled. The direct way would be to model each
morphological form of a verb as a single Form and associate it to its corresponding Se-
manticElement. This, however, would be a very time consuming task, especially in lan-
guages with hundreds of different variations (such as Arabic [3] [117]). A more efficient
way could be to directly incorporate external knowledge by using a Function. Next, the
Function could parse a given word, identify its grammatical function and map it to a
corresponding SemanticElement or semantic structure. This is more flexible and time ef-
ficient than the approach presented in, e.g., LexInfo [108] [12], where each morphological
form would have to be modeled manually. Further, the Function-based approach could
keep the SE-DSNL model smaller, as less information would be directly encoded within
it.
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3.5.6. Conclusion

The methodology presented in this section has been used for all case studies, examples
and evaluations in the thesis. However, as the concept represents a generic approach it
can also be used in a varying number of scenarios, both semantically as well as linguis-
tically. The current focus lays on creating triples all of which represent different facts
about the domain. The Constructions which map the syntactic to semantic structures
are therefore obviously focused on using the structures in the way they were intended.
Still, it is possible to use different modeling guidelines. Those could for example try to
center not on modeling the facts directly within the ontology, but instead focus on the
concepts which represent the actions and processes that are available within a domain.
The focus could be compared to method-argument structures, i.e., Constructions would
center around the verbs and their arguments (see section 2.1.2.2). Therefore, instead of
creating the facts as direct triples, the user should center on the actions and relate them to
the different arguments which are required by those actions and processes (e.g., instead of
modeling ’Person’→ ’Drive’→ ’Car’ the user could model it like ’Drive’→ ’Actor’→ ’Per-
son’ and ’Drive’→ ’ActingOn’→ ’Car’). Depending on the context, this way of modeling
might provide advantages in different situations or contain more precise information for
syntactic structures. Also, combinations of different approaches are possible. However,
different approaches might require new Constructions as well as new Statements which
is one of the more complex phases in creating a knowledge base for SE-DSNL.
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3.6. Related Work

Pohorec et al. [118] stress the importance of needing knowledge resources for NLP. They
argue that even simplistic lexical knowledge bases improve the accuracy of NLP parsers.
The improvement can even be enhanced if using semantic knowledge. Specifically on-
tologies can bring advantages to this field as they provide features like modularity or
the description of terms with other ontologies. Several concepts exist which focus on
how to create lexical representations of ontologies. Some of these provide multilingual
representation capabilities.

SKOS [95] [96] is the Simple Knowledge Organization System. Its main goal is to enhance
the possibilities of labeling elements within RDFS and OWL. It therefore introduces ad-
ditional label variations like prefLabel. The additional information can be marked with a
language related tag, thereby enabling a simplistic multilingual representation of RDFS
and OWL related knowledge. However, it lacks the capabilities to describe more com-
plex linguistic information in detail. Especially, requirements 1 to 4 from section 3.2 can
not be fulfilled. This means that SKOS is only suited in very narrow scenarios for natural
language processing related tasks.

The Lexical Markup Framework [98] defines a meta model which is suited "for the con-
struction of NLP lexicons" [97]. Its structure supports the creation of deeper linguistic
structures, thereby fulfilling requirements 1,2,3 and 5. However, it fails on delivering a
connection to deeper semantic meaning, e.g., from an ontology. It therefore fails in ful-
filling requirement 4.

Montiel-Ponsoda et al. [119] [120] developed the LIR concept which allows ontologies to
be expressed in different languages. It focuses on the lexical representation only and al-
lows expressing the semantic information of one ontology in multiple languages. There-
fore, it provides a meta model which enables a user to create a lexical database source,
which can be linked to conceptual information. However, it is missing the capabilities
of modeling complex linguistic patterns or representing morphological and syntactic de-
composition. It can therefore not fulfill requirements 1 and 3.

A very expressive model has been developed already in the late 80ies by Bateman et
al. The model was called the generalized upper model [121] [122]. Its design is built
around introducing a linguistic knowledge organization layer which maps linguistic to
semantic information. The abstraction layer is based on the Penman Upper model [123]
and Merged Upper Model [124]. It provides many of the features of newer concepts in
the domain, however, there is no information about how morphological variations can
be captured.

LexInfo [108] [12] is one of the most expressive standards with regard to linguistically
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representing ontological knowledge (a deeper introduction is available in section 2.2.3).
It is built upon LexOnto [125], LingInfo [126] and further, in its latest version, also inte-
grated the information from Lemon [127]. Also, it incorporates information of the Lexical
Markup Framework [98] for a better mapping from syntactic to semantic structures. It’s
model has been realized as an OWL ontology1. It allows an exact and detailed representa-
tion of lexical information and its mapping to the corresponding ontological knowledge.
Further, syntactic variations and features as well as subcategorization frames and a sim-
plified structural mapping to an arbitrary ontology can be defined. The main differences
between SE-DSNL and LexInfo are that SE-DSNL provides a more open and flexible way
of modeling and mapping linguistic as well as structural mapping information. Also,
morphological variations can be captured in SE-DSNL using Statements and Functions.
Further, LexInfo has more restrictions on the way that it can specify structural mappings,
i.e., the mapping of a verb to a specific ObjectProperty. Basically, if a verb requires more
than two arguments, it can not be mapped to a single ObjectProperty, because the Domain
and Range of a property are not enough. Instead a verb with three or more arguments
must be mapped to more complex ontological structures. Such situations can be handled
with the SE-DSNL approach. An advantage of LexInfo over SE-DSNL is its direct integra-
tion within OWL, which allows the definition of axioms as well as the direct verification
of an ontology by using a reasoner.

1http://lexinfo.net/
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4.1. Introduction

In the previous chapters, the problems, objectives and basics of the thesis have been for-
mulated, i.e., how natural language text can be mapped to ontological knowledge. We
further introduced the SE-DSNL meta model on which the rest of this thesis is based on.
The chapter presents the algorithms which interpret natural language text based on a SE-
DSNL model. The core of the approach is a generic concept of how Constructions and
the information within them can be applied to a given text. It allows the incorporation of
semantic knowledge during the application process itself due to a flexible and extensible
structure. In order to specify their behavior we further introduce a set of Functions for
either analyzing syntactic structures or querying information from the SemanticScope.

The advantages of our approach are as follows:

1. The algorithm for applying Constructions is concurrent (as defined by Ben-Ari
[128]). The approach has the advantage that it can easily be optimized for multi-
core systems (note that the prototypical implementation of SE-DSNL does not sup-
port multithreading). The way the application algorithm has been designed, also
allows Constructions to access the results of other Constructions. This means that
our approach does not employ a one-way-pipeline. Instead information which has
been added at runtime by one Construction can lead to new information from other
Constructions. The process finishes if either no more Constructions can be applied
or one of the heuristics terminates the process. The approach ensures that an opti-
mal result can be found.

2. The different Functions have been specified such that they are optimal for Ger-
man and English. New Functions for other languages or other types of semantic
knowledge can just as easily be developed and integrated into the overall process.
SE-DSNL therefore provides an optimal adaptability to different circumstances.

3. Functions can introduce new information from the SemanticScope in the parsing
result at runtime, i.e., immediately during the application of Constructions (many
OBIR systems only use the semantic information for validating their results). This
allows the SE-DSNL concept to optimize the initial input by integrating ontological
knowledge into the final result. The approach can be compared to the process how
humans ’enrich’ vague or imprecise information with implicit knowledge.

The chapter is structured as follows: Section 4.2 describes how information from a SE-
DSNL model are used to parse natural language text. The approach is based upon a
syntax tree to which the Construction application process itself is aligned. In section 4.3,
a set of different Functions is specified which can be used to define Constructions. We
finally delimit SE-DSNL from other approaches in section 4.4.
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4.2. Semantic Interpretation

One requirement for this thesis was a generic applicability to different languages, i.e., dif-
ferent lexical, syntactic as well as semantic structures. On a static level, the requirement
has been fulfilled with the meta model which was presented in section 3. The mapping
between the different information types can be created with Constructions. These cap-
ture the definition of how existing information can be combined, i.e., how existing lin-
guistic as well as semantic information should be put together to form new knowledge.
The problem with such a generic approach is that it can require a lot of computational
power: If there is no easily identifiable structure available within the initial input natural
language text, the structure must somehow be extracted. To facilitate the process we de-
cided to introduce informations and structures which can be created for many different
languages by currently available NLP components, i.e., POS tags and syntax trees. The
information guides the overall process. The mechanism how syntax trees are used within
SE-DSNL are described in the following sections. Next, the process of how Constructions
are instantiated is specified.

4.2.1. Syntax Tree Alignment

Parsing text itself is a difficult task. There are multiple NLP components available to
syntactically parse text, i.e., they assign POS tags to each word and from that try to infer
a potential tree like structure which combines a set of POS tags (the leafs of the tree) by
grouping them in syntactic categories. The tree structure can be very helpful as it marks
the different constituents and phrases of a sentence and how they are related to each
other.

Figure 4.1 contains two example syntax trees. On the left side the syntax tree for the first
sentence is presented, whereas on the right side the syntax tree for the second sentence
can be seen. The leafs of the tree consist of the POS tags whereas the inner nodes repre-
sent the different syntactic categories (the abbreviations are based on those in the Penn
Treebank; An overview can be found in the appendix section A.1).

The parsing results contain a problem, as the ’I’ within the first sentence was not capi-
talized, therefore the parser marked the word as being a foreign word (FW). Depending
on the domain it might, however, be necessary to have a certain robustness towards text
with spelling errors as well as not 100% correct grammatical structures. Another prob-
lem is that depending on the language, which SE-DSNL should be used with, different
parsers might be required which deliver results of different quality. An example of how
slight variations in a sentence can have huge effects on the parsing result can be seen in
figure 4.2. In contrast to the first sentence from figure 4.1, the word ’just’ was removed.
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Figure 4.1.: Syntax trees for the two sentences "When I go of the cludge of my Polo, the
engine just stops. Yet it stutters.", created with Stanford Parser V1.6.8 and
English PCFG grammar

As a result the parser changed the complete structure of the syntax tree. In this new
structure the words from ’i’ to ’stops’ form a subsentence. Additionally ’when’ and the
subsentence supposedly build a direct question as indicated by SBARQ.

It is obvious that the syntax tree as a whole is wrong. Yet major parts of it are correct, e.g.,
the noun phrases. This still allows us to use a syntax tree as a guidance for our process
in order to enhance computational performance and overall precision. The approach
is based on the idea that Constructions are built by experts. The main motivation of
an expert introducing SE-DSNL in his domain is that he can identify all the information
which is necessary for his / her task. Therefore, he / she only creates valid Constructions,
i.e., Constructions which identify relevant structures. On the other side syntax parsers
try to create valid syntactic parse trees from natural language text. Although some of
the results may contain errors there are most probably several aspects of a tree which
are still correct (as described in the previous example). We therefore make the following
assumption:

Assumption 1 (Syntax Tree Alignment Assumption)

If a Construction can be applied perfectly to a node of the syntax tree we assume
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Figure 4.2.: Syntax tree of the modified first sentence (’just’ has been removed), created
with Stanford Parser V1.6.8 and English factored grammar

that this tree structure is itself an optimal solution for the specific natural language
text. Hence, the result of the Construction is optimal. A Construction matches a node
perfectly if the Construction can make use of all the information available within this
node and its children. This means that a Construction is allowed to not only reference
the information of a single node but also all of the information of its children. This
way correct information gets rated higher than the remaining possibilities.

What the assumption means can be seen in the following example. Figure 4.3 shows a
small syntax tree and three different Constructions which could match the structure: Two
one-argument Constructions (one which needs the noun before the verb and the other
one the verb before the noun) as well as one two-argument Construction (noun→ verb→
noun) all of which could be applied to the node ’S’. However, we would prefer the two
argument Construction in this situation because it could make use of all the information
available within the tree, i.e., it would reference both nouns (as it needs a subject and an
object) as well as the verb. Therefore, as one Construction is available which matches
the node perfectly, the Construction is preferred over the other ones. Without the syntax
tree it would be more difficult to determine which Construction would be best suited
in this specific situation because the constituent groups would not be available (it could
be encoded within the Construction which, however, would require a lot of additional
effort).
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Figure 4.3.: Example of different possible Constructions matching a node in a syntax tree

Figure 4.4 shows a slightly different structure for the same text as in the previous example
(it could be the result of a different parser). The POS nodes are the same, yet not all three
of them are connected directly to the S node. Instead, there first is an ’NP’ node at level
one which connects the first two nodes ’N’ and ’V’. All three are aggregated by the ’S’
node at the top level. This time there is only one Construction which can be applied to
the ’NP’ node. The other one-argument Construction can only be applied to the ’S’ node.
However, there again is the better suited two-argument Construction which is capable
of using all the information supplied within the syntax tree. Thus, despite the different
syntactic structures, the Constructions can still be applied correctly to the syntax tree.

Figure 4.4.: Example of different possible Constructions matching a wrong syntax tree

As shown in the previous examples, the mechanism is based upon the assumption that
the better a Construction fits a node in the tree the higher it is rated. The alignment pro-
cess therefore starts at the leafs of the tree (the POS nodes) and works its way up the root
node. For an example we take a look at figure 4.5. The deepest POS nodes here are N3, V2

and N4. For each node the process tries to apply the available Constructions. However,
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as there are no Constructions available for either of the single POS nodes, the process
terminates and moves up one level to S2. There, the two-argument Construction can be
applied, which is a perfect and direct match. The result of the Construction application
receives a high rating value.

Figure 4.5.: Possibilities to match a two argument Construction to a syntax tree

Still this is not the root node, therefore the overall process can not terminate. Yet the
nodes N1, V1 and N2 have to be checked first (because they are below S1). Again, there
are no Constructions available therefore the process analyzes S1. One condition of the
two-argument Construction is that there should be as less space as possible between the
noun → verb → noun. This means that only one of the following possibilities can re-
ceive the highest possible rating: {N1, V1, N2},{N1, V1, N3},{N1, V1, N4},{N1, V2, N4} and
{N2, V2, N4} ({N3, V2, N4} cannot be created as it already exists as part of the Construc-
tion of S2). From these possibilities {N1, V1, N2} is picked because it best matches the
conditions of the two-argument Construction (i.e., there is no space between the single
words).

The remaining process steps consist of applying Constructions to a natural language text
in accordance with its syntax tree structure. The process continues until the solution set is
filled completely, i.e., no more Constructions can be applied. The internal structure then
contains all relevant information for the final result. In a final step it is extracted which
leads to a set of InterpretationModels.

The section presented the overall idea and assumption behind the syntax tree alignment.
It explained that despite erroneous syntax tree parts the Construction application process
can still yield correct results. It therefore provides a certain robustness towards failures
within either the natural language input or not optimal syntax trees. In the following we
explain how Constructions can be applied to a syntax tree node and how this leads to
Construction instances.
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4.2.2. Construction Application

The Construction Application process consists of applying Constructions to a given set of
information. The ConditionStatements of a Construction are evaluated on the input set
and, if successful, lead to a so called ConstructionInstance. In this element, each Symbol
of the original Construction receives a concrete value. Further, the ConstructionInstance
also contains the results of the EffectStatements which have been executed after the suc-
cessful evaluation of the ConditionStatements. In the following, the process is specified
in detail.

The process itself starts on a natural language input text.

Definition 15 (Natural Language Text)

Let natural language text be defined as a tuple

W ∶= (w1, .., wn) (4.1)

where W consists of a list of words w1..wn in a specific order.

W is the input of the Construction application process. A word w ∈ W can be mapped
to one or more Forms f ∈ Osy.F using a string similarity algorithm. W is the input from
which the syntax tree is created. The tree is defined as follows:

Definition 16 (Syntax Tree)

A syntax tree is defined as follows:

S ∶= {nr, Sn, Sl} (4.2a)

Sn ∶= (n1, .., nn) (4.2b)

Sl ⊆ Sn (4.2c)

where nr ∈ Sn is the root node of the tree, Sn is an ordered tuple of all nodes which
are part of S and Sl is the set of leafs of S. Each node n ∈ Sn may have only one parent
node but can have an arbitrary number of children, which are connected to n with
edges. Such nodes, which do not have any children, are contained within the leaf set
Sl .

Note that if we talk about a node n ∈ Sl in the following, n also contains the information
of the word w ∈ W that n has been mapped to.

In section 4.2.1 we described how the process is aligned to a syntax tree S. In order to
realize the behavior it is best to parse the syntax tree bottom-up, i.e., the process starts at
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the deepest node (which must be a member of Sl) of the syntax tree and works its way
up. For each node the process tries to match all of its Constructions c ∈ Oc to the node.
For each matching Construction it creates one or more instances of this Construction.
The process is described in algorithm 1. It receives the set Oc of all available Construc-
tions as well as the syntax tree S as input parameters. It starts with creating a list SO,
which contains all the nodes of S in post order. SO therefore contains all nodes in an
order which ideally suits the intended bottom-up parsing process. Next the list is being
iterated node by node. For each node s all available Constructions c ∈ Oc are evaluated
within createInstances(c, s). The method evaluates the ConditionStatements in c.SC and,
if possible, instantiates the Construction. The newly created instances are added to the
final solution set.

Algorithm 1 Mapping Phase Algorithm

Input: Oc: Set of all available Constructions
S: Syntax tree

Effect: Creates the initial Mapping Construction instances
1: procedure ALIGNCONSTRUCTIONTOTREE(Oc, S)
2: SO := createPostOrder(S)
3: for all s in SO do
4: for all c in Oc do
5: createInstances(c, s)
6: end for
7: end for
8: end procedure

The Construction application process is solely based on the available Constructions
within Oc, which define what information should be identified and what results should
be created from a specific input. We already mentioned that in order to store the infor-
mation a Construction has to be instantiated. The corresponding data structure is called
Construction Instance:

Definition 17 (Construction Instance)

Let cI be a Construction instance which is defined as

cI ∶= {cI .c, cI .Y I , cI .e, cI .ref , cI .rel, cI .v, cI .lvl, cI .sen, cI .sem,

cI .syn, cI .s, cI .int, cI .id}
(4.3)

The different elements of the set are specified as follows:

1. cI .c is the Construction which has been instantiated.

2. The set of symbols of c.Y is instantiated and its concrete values stored in the set:
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cI .Y I ∶= {yI
1, .., yI

n} (4.4)

i.e., for a Symbol ym ∈ c.Y its concrete value is stored in cI .yI
m ∈ cI .Y I .

3. cI .e contains the results of the EffectStatements c.SE (e.g., new instances or links
between existing instances which have been created as part of the Construction
instance).

4. cI .ref is a set which contains references to all Construction instances which are
being referenced by the instance.

5. cI .rel ⊆ RI (which is defined later in definition 4.9) stores typed relations from
this to other Construction instances, i.e.,

∀rI ∈ cI .rel rI .cI
s = cI (4.5)

where rI .cI
s denotes the source of the relation rI .

6. cI .v represents the likeliness of the Construction instance, i.e., a value between
[0,1] which specifies how well the Statements of c.SC ∪ c.SE could be applied to
the concrete values of the Symbol instances in cI .Y I .

7. cI .lvl is the level of the instance in correspondence with the syntax tree node
where the instance was created (as seen in figure 4.7).

8. cI .sen contains a value which associates the Construction instance with the sen-
tence it belongs to. The value is used for the identification of the Construction
instance to avoid that multiple instances which have been applied to different
sentences have the same identification.

9. cI .sem ∈ Ose specifies the SemanticElement which represents the semantic type
of the Construction instance.

10. cI .syn ⊆ Osy is a set containing all syntactic information about the node (e.g., a
leaf instance can contain the word itself as well as its POS tag).

11. cI .s ∈ Sn is the node of the syntax tree S where the Construction instance has
been created.

12. cI .int describes the interval which the Construction instance covers with re-
gards to the text W that it has been applied to. This is indicated by the index of
the leftmost and rightmost words wi, wj ∈ W where i <= j.
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13. A Construction instance cI is further uniquely identified by its id:

cI .id ∶= (cI .c, cI .Y I , cI .e, cI .sem, cI .sen) (4.6)

The Construction alignment process needs to store the different Construction instances,
for which we defined two different sets (definition 18).

Definition 18 (Construction Instance Sets)

Let

CI ∶= {cI
1, .., cI

n} (4.7)

be a set which stores all valid Construction instances, i.e., Construction instances
which have been instantiated successfully after all ConditionStatements have yielded
a positive result. Further, let

CI
t ∶= {cI

1, .., cI
n, .., cI

m} (4.8)

where n ≤ m and CI ⊆ CI
t . The set contains all Construction instances that have been

created during the analysis of a natural language text, even those which were not ap-
plicable. The set is used for validating if a Construction has already been computed
in a specific context or not.

In the Construction instance definition a set cI .rel was introduced which represents in-
stantiated Relationships. Its exact specification is shown in definition 19.

Definition 19 (Construction Instance Relation)

Let

RI ∶= {rI
1, .., rI

n} (4.9)

be the set which contains all instantiated Relationships, either Associations or Gen-
eralizations from Ose.R∪Ose.G. Each relation rI ∈ RI is defined as

rI ∶= {rI .cI
s , rI .cI

t , rI .cI
y} (4.10)

where rI .cI
s ∈ CI is the source Construction instance of the relation, rI .cI

t ∈ CI is the
target Construction instance of the relation and rI .cI

y ∈ CI specifies the concrete type
of the instantiated relation.

Figure 4.6 shows how parts of the previous definitions are related. There, three different
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Construction instances i1, i2, i3 ∈ CI can be seen. The Construction instance relation rI ∈ RI

between i2 and i3 has been inserted as a result of Construction instance i1. Hence, rI is
part of i1.e because it is the result of one of the EffectStatements in i1.c. However, rI is also
part of i2.rel. The reason is that it relates i2 to i3. Further both i2 and i3 are part of i1.ref
because i1 requires both to create the relation rI .

Figure 4.6.: Construction instances and Construction instance relation

The actual instantiation of a Construction is defined as follows:

Definition 20 (Construction Instantiation)

Let

children ∶ Sn → P(Sn) (4.11a)

instances ∶ St → P(CI) (4.11b)

be two functions where children returns all the child nodes of a syntax tree node of
Sn. The result of instances is a set of valid Construction instances, which have been
created on one of the nodes in St (a Construction instance cI belongs to a node sn ∈ S
if cI .s = sn) Let

f ∶ Oc, S → P(CI
t ) (4.12)

be a function which, given a Construction from Oc and a single node from S, creates a
set of Construction instances. Each Construction instance cI ∈ f (c, s) is derived from
a Construction c ∈ Oc and a syntax tree node s ∈ S by first substituting the symbols in
c.Y, i.e.,

φ ∶c.Y, X → cI .Y I

X ∶= s ∪ children(s)∪ instances(children(s)∪ s
(4.13)

where φ substitutes a symbol from c.Y with an element from X. This leads to an
instantiated Construction symbol in cI .Y I . In order to finish the instantiation, the
instantiated symbols cI .Y I have to be evaluated according to the Statements of the
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Construction c:

eval ∶ c.S,P(cI .Y I)→ [0, 1]

∀cI ∈ f (c, s)∀s ∈ c.SC eval(s, cI .Y I)
(4.14)

where eval(s, cI .Y I) evaluates a set of instantiated Symbols according to the semantics
of a specific ConditionStatement s and returns a value between 0 and 1. The results
of the different Statement evaluations are combined using a fuzzy AND operator:

∧(x, y) ∶= 1−MIN(1; ((1− x)p + (1− y)p)
1
p ) (4.15)

where p is an arbitrary number. Depending on the outcome of the ConditionState-
ment evaluation, the Construction instance is added to CI if the following holds:

⋀
s∈c.SC

eval(s, cI .Y I) ≥ T (4.16)

where ⋀ computes the fuzzy-logic AND result of all eval values and T is a threshold.
Therefore, if the evaluation of all ConditionStatements for an instance cI is greater or
equal than the threshold, cI can potentially be added to CI . If the evaluation value,
however, is below T, the Construction instance will be added to CI

t .
To finally decide, if an instance can be added to CI , all EffectStatements s ∈ c.SE must
be evaluated. This can lead to new information in c.e as well as an element in cI .sem.
After the execution of all Statements c.id is available which is used to check for a
duplicate of cI in CI

t :

cI ∉ CI
t ⇒ CI ∶= CI ∪ cI ∧CI

t ∶= CI
t ∪ cI (4.17)

If cI is not part of CI
t , it will finally be added to CI as well as CI

t .

The definition states that a Construction instance is basically a Construction whose Sym-
bols have been substituted with concrete values. Those concrete values can be either
references to syntactic information (in case of SyntacticSymbols) or other Construction
instances (in case of ConstructionSymbols, which contain semantic information).

So far we explained what a Construction instance is. However, it was not yet described
how a Construction instance is actually created. The algorithm can be seen in algorithm
2. It receives the Construction c (which should be instantiated) as well as the current
syntax node s as arguments. Further, the constants X1 and X2 represent threshold values
which are explained later. The algorithm starts by initializing the set of elements which
is used to instantiate the single Symbols within a Construction instance. Hence, it first
recursively collects all children of s (line 2) and stores them in the variable syntaxNodes.
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Next, it collects all Construction instances of these syntax nodes and stores them in the
variable elems (line 3). After that, a list containing the Cartesian product of elems is cre-
ated (line 4), where #(conSymb(c.Y)) returns the number of ConstructionSymbols within
c.Y (the Cartesian product is created by cloning the elems list as often as there are Con-
structionSymbols; Next, all possible set combinations will be created which contain one
element from each elems list).

Algorithm 2 Construction Instantiation

Input: c: A single Construction
s: Syntax tree node
X1: Constant threshold value
X2: Constant threshold value

Effect: A set of all Construction instances based on c and s
1: procedure CREATEINSTANCES(c, s, X1, X2)
2: syntaxNodes := {s} + getChildren(s)
3: elems := instances(syntaxNodes)
4: cartProd := createCartesianProduct(elems, #(conSym(c.Y)))
5: newInst ∶= False
6: for all p in cartProd do
7: cI := new ConstructionInstance(c, p)
8: res := 1
9: for all s in c.SC do

10: res := res ∧ s.evaluate(cI)
11: end for
12: if res ≥ X1 then
13: for all s in c.Se do
14: s.evaluate(cI)
15: end for
16: cI .calculateLikeliness()
17: if cI ∉ CI

t && cI .v >= X2 then
18: CI ∶= CI + {cI}
19: newInst ∶= True
20: end if
21: end if
22: CI

t ∶= CI
t + {cI}

23: end for
24: return newInst
25: end procedure

The approach of checking every possible combination is necessary because it is not the
instantiation algorithm which should introduce a bias towards the way a language is
parsed, especially as the SE-DSNL concept should be applicable to as many different
languages as possible. Therefore, only Constructions and their Statements are allowed to
introduce restrictions on the way a language must be parsed. We will come back to this
in section 7.3.3.
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So far, the algorithm created the Cartesian product of all possible Construction instances.
In line 5, the variable newInst is initially set to false. It will be set to true if new Con-
struction instances have been created (line 19). Following, for every list of elements p in
cartProd a new Construction instance cI is being created (line 7). Then a temporary vari-
able res is initialized which stores the value of the ConditionStatement evaluation (line
8 til 11). The results of the different ConditionStatements evaluations are added to res
using a fuzzy-and operation (indicated by the ∧ operator in line 10). After all Condition-
Statements have been evaluated, the res value is checked against the threshold X1 (line
12). If the value is greater or equal to the threshold, all EffectStatements will be executed
(lines 13 to 15).

At this point, all information has been gathered which is relevant to the identification of
the instance. Hence, the likeliness value cI .v is calculated in line 16. If the instance is
new, i.e., it is not existing in CI

t (line 17) and further its likeliness is greater or equal to
the threshold X, it will be added to CI (line 18). Further, the variable newInst is set to 1
because at least one new Construction instance has been created. Each Construction in-
stance is also added to CI

t (line 22), even if it is not a valid instance. Finally, the algorithm
returns the value newInst which indicates if new instances have been created.

One method which has not been explained properly so far, is cI .calculateLikeliness() in
line 16. The method sets the value of the attribute cI .v, i.e., the likeliness of the instance.
The value is used to rate different instances against each other and to validate if an in-
stance is suited to be added to CI . The computation of the likeliness can be seen in defi-
nition 21.

Definition 21 (Construction Instance Likeliness)

cI .v is defined as the likeliness of a Construction instance and specifies how well the
instance is suited for the context in which it appears. The calculation of the value is
based on several different parameters and is defined as follows:

cI .v ∶= wst ∗ vst +wch ∗ vch +wint ∗ cint

wst +wch +wint

where the w-values represent specific weights to adjust their corresponding v values.
vst is defined as follows:

vst ∶= ∏
s∈c.SC∪c.SE

v(s)

where c.SC ∪ c.SE is the set of all Statements belonging to cI .c and v(s) returns the
value of a Statement s. Each Statement is part of the current Construction instance
cI . The value therefore represents the product of all Statement results which were
created for the instance cI . The value states how good the Construction cI .c could be
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applied to the specific context.
Next, vch is defined as

vch ∶=
1

∣con(cI .Y I)∣ ∑
yI∈con(cI .Y I)

yI .v ∗
yI .lvl

cI .lvl− 1

where con(cI .Y I) returns all instantiated ConstructionSymbols of cI .Y I , yI .v repre-
sents the likeliness value of the Construction instance referenced by the Symbol yI

and yI .lvl specifies the level of the Construction instance referenced by the Symbol
yI . The purpose of vch is to evaluate how good the referenced Construction instances
fit. The assumption is that the better the ’foundation’ of an instance is the higher
its likeliness should be. The level of a Construction instance cI .lvl is computed as
follows:

cI .lvl ∶=
⎧⎪⎪⎨⎪⎪⎩

0 if #(cI .ref ) = 0
MH(cI .ref )+ 1 if #(cI .ref ) > 0

where MH(cI .ref ) returns the maximum level of all referenced Construction in-
stances. The level of an instance is always the maximum of all referenced Construc-
tion instance levels plus one. An illustration can be seen in figure 4.7. The instances
i1, i2 and i3 have the level 0, i4 has the level 1 and i3 the level 2.
The last value vint is defined as follows:

vint ∶=
∣leafs(cI)∣

width(cI .int)

where leafs(cI) returns a set containing all child Construction instances of cI which do
not have any children themselves, i.e., they are leafs; further width(cI .int) calculates
the interval width which the Construction instance covers. vint therefore gives an
estimate of how well the Construction covers the area that it has been applied to.
Ideally the value should be 1, i.e., each word within the interval of the Construction
instance has also been referenced by the Construction. The lower vint gets, the more
unlikely the instance is suited to its specific sentence position because it is not capable
of using all the information available within the interval.

All three values vint, vch and vst together specify the likelihood of cI . Several experiments
with varying values were performed for the different weightings, however, the best re-
sults were obtained when all three weighting variables had the same value.

During the process of evaluating EffectStatements it might happen that one Statement
creates information which apply to a node of the syntax tree which has already been
computed. This can be problematic as new information could lead to completely new
information somewhere else. Therefore, the algorithm in 1 contains an additional mech-
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Figure 4.7.: Levels of different instances

anism which rechecks each node for changes. If it detects new information in a node, the
process will restart at this node and again reapply all Constructions.
The process continues until no more Construction instances can be created. The state is
reached if the Construction instance set CI is complete:

Definition 22 (Complete Construction Instance Set)

CI is called complete iff

∀c ∈ Oc ∀s ∈ Sn ¬canCreateNewInstances(c, s)

where canCreateNewInstances is a predicate which returns true if for a given Construc-
tion c and a syntax tree node s new Construction instances can be created.

If the Construction instance is complete, the interpretation process for the current sen-
tence is finished. Next, those Construction instances in CI have to be selected which
represent the root of a solution to the currently analyzed sentence:

Definition 23 (Solution Construction Instance Set)

Let

CI
s ⊆ CI (4.18)

be a set of Construction instances which represent a potential solution to a sentence.
In order for a Construction instance to be part of CI

s it is not allowed to be referenced
by other Construction instances from the same sentence, i.e., :

∀x ∈ CI
s ∀y ∈ CI sameSen(y, x)∧¬ref (y, x) (4.19)
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where sameSen(y, x)⇔ y.sen = x.sen and ref (y, x) returns true if a directed reference
from y to x exists. A Construction instance cI ∈ CI

s is also called a solution.

4.2.3. Solution Extraction

So far, the Construction application created an internal data structure which is similar
to a hypergraph [129]. The challenge with a hypergraph like structure is that it is ’com-
pressed’, i.e., a Construction instance which represents a specific semantic information
exists only once even if the instance is part of multiple different solutions. Additionally,
all solutions for every sentence in an analyzed text are also part of the same hypergraph
structure. This basically means that the solutions have to be extracted from the hyper-
graph in two different dimensions.

The first dimension can be seen in figure 4.8. The figure shows an abstract representation
of a sentence with 5 different words. Because there are 5 words there are also 5 different
Construction instances (numbers 8 to 12). Each of these instances is referenced by one or
multiple other instances (1 to 7). Some of those instances in figure 4.8 are being referenced
by multiple other instances, i.e., instances 6, 8 and 10. If an instance is referenced by sev-
eral other instances it is part of multiple solutions. The number of available solutions is
specified by the number of elements within CI

s (see definition 23), which contains the root
elements of the different solutions (in figure 4.8 this is the upper ’Solutions’ layer). In or-
der to create the semantic interpretations for a single sentence the Construction instance
trees for every cI

s ∈ CI
s have to be extracted. For the example in figure 4.8 this leads to the

solutions {1, 5, 8, 9, 10}, {2, 8, 6, 10, 11}, {3, 6, 10, 11} and {4, 7, 12}. Each of these four sets
contains all the information necessary for an interpretation to be created.

Figure 4.8.: Example of a hypergraph structure for a single sentence

The second dimension contains the connections between the different solutions of the
single sentences which can be seen in figure 4.9. The figure shows three sentences and for
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each sentence multiple solutions. Some of these solutions are connected to the solutions
of other sentences. Others, however, do not have connections to either the previous (5, 7)
or the following sentence (3).

Figure 4.9.: Example of the hypergraph structure for multiple sentences

The goal is to create a set of so called solution paths:

Definition 24 (Solution Path)

Let

p ∶= [cI
0, .., cI

n] (4.20)

be a solution path consisting of an ordered list of solutions cI
0, .., cI

n ∈ CI
s with n being

the number of parsed sentences n. Further, cI
i is a solution for the (i+1)th sentence,

e.g., cI
0 is a solution for the first sentence of a text. Further let

P ∶= {p1, .., pn} (4.21)

be the set containing all possible solution paths for a given text.

The term ’path’ originates from connections between solutions in the hypergraph (as seen
in figure 4.9). Hence, for every possible path, starting with a solution for the first sentence
every possible path has to be created. In the example in figure 4.9, starting from node 1,
one path is {1, 5, 9}, another one is {1, 5, 10} and so on. A solution for a text consisting
of one or more sentences ideally has a solution for every single sentence. If there is
no solution for each sentence we call such a path fragmented. A solution fragment is
specified as follows:
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Definition 25 (Solution Fragment)

A solution fragment is defined as

F ⊆ CI
s (4.22)

where F only contains elements from CI
s which are connected to each other:

isFragment(F)⇔ ∃cI
1, cI

2, cI
3, .., cI

m ∈ F connected(cI
1, cI

2)∧ connected(cI
2, cI

3)

∧ ..∧ connected(cI
m−1, cI

m)
(4.23)

where connected(cI
x, cI

y) indicates that the solution instances cI
x and cI

y are connected,
i.e., there is not necessarily a direct relation between them but one of the instances
within the solution tree of cI

x must be connected to one instance of the solution tree of
cI

y or vice versa (e.g., this can be the case due to the pronominal anaphora resolution).
The definition states that a fragment is a set of solution instances which are connected
to each other. A path is called fragmented if there is no solution instance available
for one or more sentences in the path or a solution instance cI

l (with 1 ≤ l < n) is not
connected to the solution of the following sentence cI

l+1.

With the definition of a solution fragment we can specify an ideal path:

Definition 26 (Ideal Solution Path)

A path p ∈ P is called ideal if

idealPath(p)⇔ oneFragment(p)∧ allSentencesSolved(p) (4.24)

where oneFragment(p) validates if the path contains only one fragment and
allSentencesSolved(p) checks if the number of solutions equals the number of sen-
tences in the initial input text.

Therefore, if a path is fragmented (as it would be the case in the example {1, 4,}), it
represents an incomplete or not ideal solution. However, our aim is to always provide
paths with n elements if the text contains n sentences. The algorithm therefore has to fill
the gaps in fragmented paths if possible. For example, the path {1, 4,} could be filled
with the instance 8, resulting in the path {1, 4, 8}. Another fragmented path would be
{3, ,}. Enriched versions of the path would be {3, 7, 8} as well as {3, 6, 12}. In figure
4.9 no other paths are possible which would start with solution 3. The reason is that
each fragment itself must be either complete or may not exist at all (fragments can not
themselves be fragmented). This means that a path could not consist of {3, 5, 9} because
5 has a dependency on 1 or 2. The restriction also implies that there can be cases in which
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a path can not be fully enriched. In this case the path can not be considered any further
and will be deleted.

As mentioned previously, all Construction instances are part of one hypergraph struc-
ture. In order to create solution paths, all fragments have to be identified first. The
process starts with the elements within CI

s . To create the different fragments the extrac-
tion process needs to find connections to the solutions of other sentences. This is done
as shown in algorithm 3. The main method is identifyFragments and is called with an
input parameter set of all solution instances. It first creates a hashtable f ragments (line
2) which stores all relations between all Construction instance solutions. Next, all ele-
ments in CI

s are traversed. For each element cI ∈ CI
s a list f rags is being generated. The

list stores all solution instances of other sentences that cI is connected with. The identifi-

Algorithm 3 Fragment Identification Algorithm

Input: CI
s : Set of Construction instance solutions

Effect: Returns all identified fragments
1: procedure IDENTIFYFRAGMENTS(CI

s )
2: f ragments ∶= []
3: for all ci in CI

s do
4: f rags ∶= {}
5: collectConnections(ci, f rags)
6: f ragments[ci] ∶= f rags
7: end for
8: return f ragments
9: end procedure

cation of those solutions is done within the recursive method collectConnections(cI , conn)
(see algorithm 4). The first parameter is the Construction instance for which the con-
nections are collected. The second parameter is the list in which all related solution
instances are stored. collectConnections goes through the set of relations cI .rel that the
current Construction instance possesses. For each relation rI ∈ cI .rel (line 2) it checks the
target Construction instance rI .cI

t . If rI .cI
t belongs to a different sentence (line 3), it calls

the getIsPartOfSolutions(rI .cI
t) procedure. This returns a subset of CI

s of all Construction
instances which themselves use the Construction instance rI .cI

t as part of their solution
(as we are still in a hypergraph structure, different solutions can still reference the same
Construction instance). All Construction instances in the result of getIsPartOfSolution
must be part of the same sentence as rI .cI

t . The result is added to the conn list. Next,
the collectConnection procedure recursively checks all other Construction instances which
are part of the solution and tries to identify all remaining relations to different sentences.
As soon as collectConnection is finished, all the collected elements within frags are added
to the fragments hash table (line 6 in algorithm 3). The process is repeated for each re-
maining element in CI

s . At the end, fragments contains all fragments for every cI ∈ CI
s .
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Algorithm 4 Connections Collection Algorithm

Input: cI : A single Construction instance
conn: An initially empty set

Effect: Fills the conn list with all available connections to
Construction instances of other sentences than cI

1: procedure COLLECTCONNECTIONS(cI , conn)
2: for all rI in cI .rel do
3: if rI .cI

t .sen ≠ cI .sen then
4: conn ∶= conn+ getIsPartOfSolutions(rI .cI

t )
5: else
6: collectConnections(rI .cI

t , conn)
7: end if
8: end for
9: for all ( dor in cI .ref )

10: collectConnections(r, conn)
11: end for
12: end procedure

The result is used to create the solution paths. The process is explained in figure 4.9,
which shows the different fragments. To create the solution paths we start with the first
sentence. If the Construction instance cI

1 in sentence 1 has a connection to the following
sentence 2, represented by instance cI

4, the connection will be followed and both will be
added to a path p1. However, there is no connection from cI

4 to an instance solution of
sentence 3. Hence, the algorithm analyzes all Construction instance solution of sentence
3 having no connection to sentence 2. As can be seen, there is cI

8 which fulfills these con-
dition and can therefore be added to p1. The path p1 is now complete and the algorithm
continues with the next potential path p2. It starts with cI

1 and cI
5. cI

5 has multiple connec-
tions to the third sentence (cI

9, cI
10, cI11). Therefore, we have to clone p2 for each of these

connections. Since three connections to the third sentence exist, the paths p21, p22 and p23

are created. Next cI
9 is added to p21, cI

10 to p22 and cI
11 to p22. The algorithm continues

until all potential paths have been generated.

The pseudo-code representation can be seen in algorithm 5. The main procedure is
CreateSolutionPaths with input parameter frags (the fragments set of algorithm 3). The
algorithm initializes the set P which stores all generated paths. Next, the procedure cre-
ates a set of all fragments starting with a solution for the first sentence (line 3) and storing
it in variable fragst. An iteration over each element of the set (line 4) creates a new path p
for every fragment within fragst. Next it calls the procedure fillPath (line 6) which tries to
fill the remaining gaps of the path. It receives three different input parameters (algorithm
6): First, the path p which should be filled, the set of available fragments and the set P
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Algorithm 5 Solution Path Creation Algorithm

Input: frags: A set of all available solution fragments
Effect: Creates and returns all possible solution paths P

1: procedure CREATESOLUTIONPATHS(frags)
2: P ∶= {}
3: fragst ∶= getFirstSentenceFrags(frags)
4: for all F in fragst do
5: p ∶= new Path(F)
6: fillPath(p, frags, P)
7: end for
8: return P
9: end procedure

which stores the newly created paths. It begins with validating if the path p is complete
(line 2), i.e., if it contains a solution for every sentence or not. If p is complete, it is added
to P (line 3). If it is not complete, the procedure tries to fill the gaps. Hence, it calls the
method findMatchingFragments which searches the first gap within p and tries to identify
fragments within frags which fit the gap (line 5). It traverses the result of the procedure
(line 6), creates a clone of the path for each fragment (line 7) and adds the fragment f
to the cloned path pt (line 8). The path pt may, however, still contain gaps, therefore the
procedure calls itself (line 9) such that the remaining gaps can also be eliminated. The
complete algorithm returns the set P (line 8 in algorithm 5).

Algorithm 6 Fill Solution Paths Algorithm

Input: p: A not necessarily complete solution path
frags: A set of all available solution fragments
P: The set of all final solution paths

Effect: Fills a path p with fragments from frags and adds it to P
1: procedure FILLPATH(p, frags, P)
2: if complete(p) then
3: P ∶= P + p
4: else
5: fragsm ∶= findMatchingFragments(p, frags)
6: for all F in fragsm do
7: pt ∶= clone(p)
8: pt ∶= pt + F
9: fillPath(pt, frags, P)

10: end for
11: end if
12: end procedure
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4.2.4. Creating the Interpretation Model

Based on the solution paths the InterpretationModels are created. These are contained
within the InterpretationScope (see definitions 9 and 10). The code for creating the In-
terpretationModels is outlined in algorithm 7. It creates a separate InterpretationModel
m for every single path p ∈ P. m is filled with the instances and all the information they
reference (as seen in line 6; Note that all Construction instances are added to the set CI

x).
This is done by first adding all Construction instances which a solution instance cI ∈ p ref-
erences (the attribute which contains the information is cI .ref ). A Construction instance
cI is represented as a ConstructionInterpretation e ∈ m.Econ. e.con references the Construc-
tion c which is specified in cI .c. Further, e.sem points to the SemanticElement cI .sem, i.e.,
a SemanticElementInterpretation ese is inserted in m.Esem, which references cI .sem ∈ Ose.
e.sem is connected to ese via an InterpretationRelation r ∈ m.Rint. This represents that e
references the same SemanticElement as cI does. Similarly the SyntacticElements within
cI .syn are represented in e.Esyn.

Next, all Construction instance relations are inserted. Construction instance relations are
transformed into AssociationInterpretations in the InterpretationModel. Therefore, for
each Construction instance cI ∈ p, each of its Construction instance relations rI within ei-
ther cI .rel or cI .e is added as an AssociationInterpretation to e.Rass. Each reference within
cI .ref is transformed to an InterpretationRelation which connects the corresponding Con-
structionInterpretations.

Algorithm 7 Interpretation Models Creation Algorithm

Input: P: The set of all solution paths
Effect: Creates an InterpretationModel for each p ∈ P

1: procedure CREATEINTERPRETATIONMODELS(P)
2: for all p in P do
3: m ∶= createInterpretationModel(p)
4: CI

x ∶= {}
5: for all cI in p do
6: addConstructionInstances(m, cI , CI

x)
7: end for
8: for all cI in CI

x do
9: addConstructionInstanceRelations(m, cI)

10: end for
11: end for
12: end procedure
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4.2.5. Detecting Termination Cases

Every algorithm has to terminate. This is simple for several cases but can become difficult
in other ones. In the following we describe the termination conditions for the overall
process.

Complete Construction Instance Set Basically the goal of the algorithm is to create
every possible interpretation of a sentence. If no new information can be created, the
Construction application phase will terminate. This is the case if CI is complete (see
definition 22).

Maximum Tree Height Constructions can be designed and modeled in a way such
that they lead to an infinite loop in the application phase. The most trivial example can
be seen in the previous section 3.5.4 in figure 3.13. Such simple cases can be detected.
However, it must not necessarily be a single Construction which forms the loop but a set
of Constructions or even Statements which introduce cycle. For example, a Construction
c1 ∈ Oc is applied to a specific context. Now c2 ∈ Oc can apply to a context, which contains
an instance of c1. The information which c2 creates can now again lead to instances which
would match the Statements in c1 and so on. A formal representation of this is given in
definition 27.

Definition 27 (Construction Loop)

Let

Ct ∈ Oc (4.25)

be a set of Constructions which can be applied to CI . Let

application ∶ Oc,P(CI)→ {True, False} (4.26)

be a predicate where application instantiates a Construction from Oc on a set of Con-
struction instances (see section 4.2.2) and returns True if the instantiation was suc-
cessful. Ct contains a loop, if the following holds:

loop(Ct)⇔∃c1, c2, .., cj ∈ Ct application(c1, CI)⇒ application(c2, CI)⇒

..⇒ application(cj, CI)⇒ ..⇒ application(c1, CI)
(4.27)

This means that if a set contains different Constructions c1 to cj such that the appli-
cation of c1 allows the application of another Construction c2, which again leads to
the application of Construction c1 the set is said to contain a Construction loop. Note
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that c1, c2 etc. can actually be the same Construction.

The fact that an arbitrary number of Constructions could lead to such a situation makes
a structural detection difficult and performance intensive. A better solution is based on
threshold heuristics. As described previously, the overall process has been aligned to a
syntax tree. The Construction instances belonging to a sentence form a tree like structure
as one Construction instance references other Construction instances. Hence, the first
threshold is based on comparing the syntax tree height to the tree size of the Construction
instances. However, the syntax tree which was generated by the syntax tree parser might
be either much higher or smaller than the Construction instance tree. This means that we
need a heuristic which calculates the potential maximum height of a valid Construction
instance tree. The value is oriented towards the size of the natural language text input W.
Experiments showed the average number of children Tchildren a node in the Construction
instance tree has. Based on Tchildren and the number of words in the current sentence an
average size for a Construction tree is calculated:

maxCITreeSize(w) ∶=
log(w) ∗ T

log(Tchildren)
(4.28)

with w ∶= #(W), i.e., the number of words in the current sentence, Tchildren the constant
which represents the average number of children per node and T ≥ 1 a constant weight
which adds an additional safety buffer (the value of the parameter must be sufficiently
large as a too small value could terminate the Construction application process before the
correct result has been created). Then

∀cI ∈ CImaxLevelReached(cI)→ notUsable(ci) (4.29)

where

maxLevelReached(cI) =
⎧⎪⎪⎨⎪⎪⎩

true if cI .lvl >= maxCITreeSize(w)
false if cI .lvl < maxCITreeSize(w)

(4.30)

and notUsable(cI) marks a Construction instance as not usable, i.e., it can not be refer-
enced by other Construction instances and does therefore not lead to new information.
As soon as all cI ∈ CI are marked with notUsable, no new Constructions can be applied,
therefore CI is complete and the Construction application process terminates, according
to section 4.2.5.

Termination The tree height termination heuristic combined with the complete Con-
struction instance set termination is sufficient to show that the Construction application
process always terminates. We assume the following:
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1. The height of a Construction instance cI .lvl ∈ CI is specified according to definition
21. Therefore, the height of a Construction instance is always bigger than the one
of its referenced instances (except for the case where a Construction instance does
not reference any other instances).

2. The second assumption is that it is always known which Construction instances
have been created. The information is stored within CI

t (definition 18).

Based on these two assumptions we can show that the algorithm terminates. In the fol-
lowing, we look at different cases and show that all of them terminate.

1. The first case consists of a sentence in which no Constructions can be applied in
the mapping phase. Hence, no Constructions exist in CI . As no new Constructions
can be instantiated (as they require some information to begin with), CI does not
change and is therefore complete. In this case, the heuristic from 4.2.5 leads to the
termination of the Construction application process.

2. The second case consists of a (partially or fully) mapped sentence and therefore
at least some information in CI . Further we have a perfect set of Constructions
Oc, i.e., ¬loop(Oc) (the Constructions can not form a loop). In this case the system
comes to a point where it can not deduce any new information with the given set of
Constructions in Oc because, based on the assumption in 2, duplicate information
can not be created (a duplicate Construction can be detected because of CI

t ). The
process therefore terminates because no loop exists.

3. The third case consists of a (partially or fully) mapped sentence and therefore at
least some information in CI . We further have an imperfect set of Constructions
Oc, i.e., loop(Oc) (the Constructions can form a loop). Based on assumption 1, a
Construction automatically increases its height as soon as it references other Con-
structions. Moreover, a new Construction instance always has a higher level than
the instances it references. Therefore, if Constructions can form a loop, the corre-
sponding Construction instances increase their level until the tree height termina-
tion heuristic marks the highest nodes as unusable (see section 4.2.5). Hence, no
Constructions above this height can be created. The Construction application pro-
cess can therefore only continue until

∀cI ∈ CI maxLevelReached(cI) (4.31)

As soon as the state is reached, CI is complete and the process again terminates.

The previous section described in detail the process of applying Constructions to a given
sentence and the creation of an InterpretationModel. In the following, we describe how
the complexity of the system can be handled.
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4.2.6. Handling runtime complexity

As it was shown previously in section 4.2.2 a big challenge is handling the runtime com-
plexity. The amount of potential new Construction instances equals

#(elems)#(conSymb(c.Y)) (4.32)

where #(elems) is the size of the set which contains all available Construction instances
for a given syntax tree node. Further, #(conSymb(c.Y)) is the number of Construction-
Symbols of the to be applied Construction c. Complexity can be handled as follows:

1. Pruning Construction instances from elem: Prior to actually instantiating the Con-
structions, algorithm 2 creates a Cartesian product in line 4. The function internally
creates #(conSymb(c.Y)) copies of the elems list. Each of these lists can be filtered
according to the Functions which have been specified in the current Construction c.
The most important Functions are described in section 4.3. Most interesting in this
context are the Functions ’InOrder’ in section 4.3.1 and ’IsOfType’ in section 4.3.4.

2. Limiting the amount of newly created Construction instances: We designed an al-
gorithm which takes all newly created Construction instances of a syntax tree node
and filters them. Therefore, the new instances are first grouped according to the
Construction they are based on. Only those which have a good interval ratio (see
the definition of vint in definition 21) and a high likeliness value remain within CI .

3. Construction design: Finding a good trade-off between Construction tolerance, pre-
cision and parsing performance is a difficult task. We focus on this part later in the
evaluation chapter 7, especially in both case studies.

Those mechanisms greatly reduce the overall amount of instances and allow the parsing
of a natural language text within reasonable time.



4.3 Functions 125

4.3. Functions

In this section we describe a set of Functions which are currently being used for defining
Constructions and therefore identifying syntactic structures. The Functions have been
designed to be usable in the German as well as English language. Every Function has
two ways of providing functionality for the parsing process. The first method is called
during initialization as it was explained in section 4.2.6, and can eliminate elements from
the different copies of the elems lists. The second method is called during the instanti-
ation process of a Construction. Each Function returns a value in the range [0..1]. The
following sections explain the concepts behind these Functions and show how the return
value is being computed.

4.3.1. Correct Word Order

In many languages the word ordering is important for the meaning of a sentence. It
is therefore necessary to identify a specific order of words by using the ConditionState-
ments within Constructions. We define the correct order of words as follows:

Definition 28 (Correct Word Order)

Let

Wt ∶= (wa, .., wn, .., wm) (4.33)

be a list whose elements have randomly been chosen from the words of the natural
language input text, i.e., wa, wn, wm ∈ W. The words within Wt are in the wrong order,
if

wrongOrder(Wt, W) ∶=∃w, wn ∈ Wt notEqual(w, wn)

∧ isWrongOrder(wn, w, W, Wt)
(4.34)

where notEqual(w, wn) ⇔ w = wn checks if two words are identical within Wt.
isWrongOrder(wn, w, W, Wt) validates if two words wn and w of the list Wt are in the
wrong order. The order is specified with respect to the original text W, i.e., if w comes
before wn in W, it must also come before wn in Wt. The predicate is true if the two
given words are in the wrong order within Wt. The correct word order is the negation
of the predicate wrongOrder.

correctOrder(Wt, W)⇔ ¬wrongOrder(Wt, W) (4.35)
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An example can be seen in the following lists Wt ∶= {w3, w1} and W ∶= {w1, w2, w3, w4}. W
contains the words in their correct order. Wt contains two words from W, which are not
in the correct order. Wt does not satisfy the correctOrder predicate since, with respect to
W, w3 comes after w1.

The corresponding Function within SE-DSNL is called ’InOrder’. It takes an arbitrary
number n ≥ 2 of Symbols. The order of the symbols has to be checked against the ini-
tial input W (as defined in section 4.2.2) similar to the definition 28. The task, however,
becomes more difficult if a Construction instance not only covers a single word, but a
complete phrase. Phrases can be detected through the interval attribute cI .int. An exam-
ple can be seen in figure 4.5. Construction instances which have been created at syntax
tree node N3 contain the interval value [3..3] (or just short [3]), whereas Construction in-
stances at node S2 could have an interval value [3..5] because those might cover the whole
range of tokens from N3 to N4. Note that an interval [3..5] does not mean that necessarily
all words in the interval are being referenced by the instance. Only words at position [3]
and [5] are definitely part of the interval, the word [4] may be part of it but does not have
to be. This depends on the Construction and the information it requires. In the example
in figure 4.5, one Construction would interpret the verb V2 as a one-argument structure
and hence only require the noun N3. Another Construction, however, would identify the
complete subject-predicate-object structure and therefore make use of N3, V2 and N4.

In the following, we consider int1 and int2 to be two intervals. As shown before, intervals
can either point to a single position in W (as it is the case with single words) or reference
a whole subsection of W. Four different cases have to be considered:

1. The intervals overlap, i.e., int1 ∩ int2 ≠ []. This happens in a case where the nodes
of the syntax tree are overlapping. An example for this can be seen in figure 4.10.
One Construction instance has an interval int1 ∶= [0..3] and the other Construction
instance int2 ∶= [2..5]. Let intersection ∶= int1.end − int2.start and covereddistance ∶=
int2.end− int1.start. The result is defined as result ∶= 1− intersection

covereddistance . The idea is that
certain parts of the intervals are not exactly in order, therefore those overlapping
parts have to be weighted against the rest. In our example the result is result ∶= 1− 1

3 .

2. The second case is an interval which lies completely within another interval. An
example is int1 ∶= [1..6] and int2 ∶= [2..4] or int2 ∶= [5]. Both times, int2 ⊆ int1. The
problem with a total overlap is that there can be no order identified. Hence, the
result is result ∶= 0.

3. The third case is defined as both intervals being in the correct order, i.e., int1.end <
int2.start. This means that the end of int1 lies before the beginning of int2. To
calculate if the order is correct the gap between both intervals is measured, i.e.,
gap ∶= MIN(int2.start− int1.end; DISTmax), where MIN(..) returns the smallest value
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and DISTmax is a constant which specifies the maximum gap which should exist
between two intervals. The result is defined as result ∶= DISTmax−(gap−1)

DISTmax
. As can be

seen, we integrated the distance between both words in the calculation of the result
value. It means that the smaller the gap between two intervals is, the better.

4. The fourth case is specified by both intervals being in a completely different order.
As humans make mistakes in writing we introduced a small tolerance. Therefore,
gap ∶= MIN(int1.start− int2.end; WRONGDISTmax), where WRONGDISTmax is a con-
stant which indicates the maximum allowed distance in case that the intervals are
in the wrong order. Ideally WRONGDISTmax < DISTmax as the value for wrong or-
der should drop faster than for the correct order of words. The result is defined
as follows: result ∶= WRONGDISTmax−gap

WRONGDISTmax
. In contrast to the correct order each wrong

order automatically has a result smaller than 1. If, e.g., int2 ∶= [3], int1 ∶= [4] and
WRONGDISTmax ∶= 2, then result ∶= 2−(4−3)

WRONGDISTmax
which leads to result ∶= 1

2 .

Based on these four cases the order of two intervals is calculated and a value in the range
from [0..1] is returned.

Figure 4.10.: Syntax tree with two overlapping Constructions instances; The blue colored
instance additionally references node N2, whereas the other instance would
reference N3

We previously described which constraints the ’InOrder’ Function checks during Con-
struction instantiation. However, the Function also provides mechanisms for eliminating
Construction instances during the initiation phase. During the initiation phase, a list
elems is collected (see line 3 in algorithm 2). The list is cloned according to the number
of ConstructionSymbols of the current Construction c.Y, such that the Cartesian prod-
uct can be built (this is required to check every possible linguistic combination such that
SE-DSNL can be used with every possible language). If the ’InOrder’ Function is called
with the ConstructionSymbols cs1, cs2 and cs3, three clones of the elems list are created,
i.e., elems1, elems2 and elems3. cs1 are later instantiated with an element from elems1, cs2

with an element from elems2 and cs3 with one from elems3. However, ’InOrder’ implies
that the textual representation of the element, used to instantiate cs1, must appear before
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Figure 4.11.: ’InOrder’ Function optimizing the elems list copies based on the position of
the different entries

the textual represention of the element, which has been selected to instantiate cs2. The
assumption can be used to delete elements from these three lists prior to creating the
Cartesian product. Hence, ’InOrder’ was extended with an algorithm which allows to
filter the initial lists of the Cartesian product.

The filter-algorithm is based on the following assumption: Let e1..em..en be n equal lists
containing Construction instances. Given a list of ConstructionSymbols cs1..csn, each
ConstructionSymbol must be instantiated with an element from its according list, i.e.,
cs1 with an element from e1 and csn with an element from en accordingly. Therefore,
the element lists have to be in the same order as the ConstructionSymbols. This means
that the elements in e1 must contain the elements representing the leftmost textual ele-
ments, whereas e3 must contain elements representing the rightmost textual elements.
We define the following condition: For the element i ∈ em (where 1 < m <= n), which
represents the leftmost textual word within em, there must be an element j ∈ em−1 which
represents a textual element to the left of i. Additionally, if i ∈ em (where 1 <= m < n) is
the element, which represents the rightmost textual element within em, there must be an
element j ∈ em+1 which succeeds the rightmost element i within the text.

Let us demonstrate this fact by an example. Figure 4.11 shows four steps (A, B, C and
D) of three elems list e1, e2 and e3, which have to be optimized. Each row represents one
Construction instance and the number indicates the position of the textual element of the
instance in the original input sentence. In step A the initial unfiltered state of the three
lists is shown. The process starts by selecting the element which is leftmost in the sen-
tence. In this case these are obviously the elements at position 1. Now the following lists
are checked. As we know that each element in e2 and e3 must have an element before
them in e1, list e2 and e3 are not allowed to contain elements at position 1. The reason
is that the leftmost position in the text is position 1. If elements at position 1 would be
allowed in list e2, no elements from e1 could be used to instantiate cs1 and the instantia-
tion would fail as soon as the normal ’InOrder’ constraints would be checked. This case
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is eliminated by deleting all elements at position 1 from lists e2 and e3. The result can
be seen in step B. Next, the same is done starting from the last list, i.e., beginning with
e3 the algorithm searches the elements at the rightmost position in e3, which are the ele-
ments at position 5. Following, the algorithm checks if elements at the same position are
contained within e2 and e1. As can be seen, there are elements at that position, therefore
these elements at position 5 are deleted from e2 and e1. The result is shown in step C. The
algorithm now restarts with the first list e1 and again selects the leftmost element which
is compared to the other lists. However, no elements from e2 or e3 violate the conditions.
Hence, the algorithm selects the second leftmost position 2 from e1 and again compares
the other elements to it. As can be seen, in list e2 the condition is not violated: For the
elements at position 2 in e2 there are elements at position 1 available in e1. The same is
true for elements at position 3. However, the elements at position 2 in list e3 violate the
condition because the leftmost elements in list e2 are the ones position 2. Therefore, all
elements with position 2 are deleted from e3. Next, the algorithm restarts with list e3 and
works its way to the beginning. The only elements which violate the condition are the
elements at position 3 in list e1. These are therefore deleted. Step D presents the final
result of the algorithm, in which the remaining elements of all lists fulfill the conditions.
The amount of elements in this case was reduced by 50%. This leads to a reduction of
complexity from 83 = 512 to 43 = 64, which is 1

8 of the original Cartesian product combi-
nations. It is obvious that this greatly increases the overall performance.

4.3.2. Pronominal Anaphora Resolution

The detection of pronominal anaphoras is a more difficult problem than the calculation
if two words are in the right order. Anaphora detection today is often based on machine
learning approaches and the usage of several different linguistic features (as has been
described in section 2.1.6.4). However, ontologies and conceptual knowledge is rarely
incorporated into the process. The advantage of our approach is that there is a profound
semantic knowledge base available. The semantic information should therefore also be
usable for anaphora resolution. The overall assumption is that a verb references the pro-
noun which should be resolved. The semantic meaning of the verb is most likely in
relation with the meaning of the antecedent, i.e., the noun which the pronoun refers to.
An example can be seen in figure 4.12. There, the pronoun ’who’ refers to the antecedent
’driver’ which can sleep. We therefore base our pronominal anaphora resolution concept
on the following assumptions:

Assumption 2 (Pronominal Anaphora Resolution)

If

1. A sentence contains a pronoun,
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Figure 4.12.: Pronominal Anaphor Resolution Concept Overview

2. A noun which represents the antecedent of the pronoun is available within the
sentence,

3. A verb directly refers to the pronoun and uses it as a substantive,

4. The semantic meaning of the words are known and related within the ontology,

it should be possible to identify the antecedent of the pronoun based on the semantic
knowledge within a SE-DSNL model.

Theoretically there are many different forms of anaphora resolution, however, we simpli-
fied the challenge to resolving pronouns. A main motivation behind this idea was to only
use the knowledge within a SE-DSNL model and not rely on additional databases and
linguistic features like agreemenet (which is the case with standard anaphora resolution
algorithms). The reason is that additional information sources would require additional
well defined mappings to the SE-DSNL model.
Aside from the standard models for anaphora resolution like first order probabilistic
models, (un-)supervised machine learning approaches (e.g., with Bayesian Models) as
well as linear integer programming there are still more simplified approaches which,
based on pair wise comparison and simplified distance measurement also yield good re-
sults in certain cases. Our approach is based on the idea of Bengtson and Roth [130].
They selected a simplified set of features together with a syntax tree based distance mea-
surement. These features together yielded results that are comparable to that of more
advanced machine learning based approaches.

In our approach we make use of only two features. The first one is a syntax tree based
distance measurement. The second feature makes use of the semantic meaning of words
with regard to the SemanticScope.
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The syntax tree based distance measurement is explained first. An example of an abstract
syntax tree can be seen in figure 4.13. The figure actually shows the syntax trees for two
different sentences S1 and S2 as indicated by the corresponding root nodes. Simplistic
approaches to measuring the distance between two words would use the information
about the position of the words in the sentence. The syntactic distance dsyn between the
nodes A and E would therefore be 4 (E is at position 4, A is at position 0, the result of E−A
is therefore 4). The definition of the syntactic distance is, however, not elaborated enough.
One challenge is for example represented by the nodes C and D which form a constituent
(indicated by node G). It would therefore be helpful if C and D would not count as
two but only as one node. Constituents can build parts within a sentence that introduce
additional information but are not necessary for the core meaning of the sentence. An
example for such a syntactic structure would be a dependent clause. The first word after
a dependent clause can directly be related to the words before the dependent clause. A
naive distance measurement like the previous one would count all the words within the
dependent clause even if the clause is not part of the main sentence.

Figure 4.13.: Two Syntax Trees as an Example for Distance Measurement in Anaphor Res-
olution

The distance measurement must handle such obstacles. This means for the nodes A and
E in figure 4.13 that their syntactic distance dsyn is only 3 instead of 4. Our algorithm is
based on counting the number of direct sisters of each node in the direction to the other
node. Let us consider an example. Starting from node A, its direct parent is H. H is not
the Lowest Common Ancestor (LCA) of A and E (i.e., the first node within a tree that
subsumes both A and E). Hence, the algorithm needs to move further upwards the tree
in order to find the LCA node. However, before moving up the tree, it first counts the
siblings to the right of A at node H, which increases the result by 2 (i.e., B and G). The
algorithm analyzes the parent of H which is S1. S1 is the LCA of A and E and has two
direct children, to the left H and to the right E. This increases the value of dsyn by one (the
minimum distance between two nodes is always 1, e.g., C and D). The algorithm finishes
at S1 because it found the node E.
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A specific challenge is that the antecedents are not always contained within the same but
in a previous sentence. In order to parse several sentences we extended the algorithm:
To calculate the distance between the nodes of multiple syntactic trees we connected
the root nodes of both trees (as shown in figure 4.13 where a dotted line connects the
nodes S1 and S2). As an example the algorithm measures the distance between the nodes
J and E. It starts from J and moves up to the parent node S2. S2 is not related to E,
the algorithm therefore continues its search by checking the root node of the previous
sentence S1. There it finds the node E, which is a direct child of S1. Experiments showed
that connections between the root nodes of different sentences should be rated slightly
higher, i.e., in case that the searched node (here E) is part of a different sentence, we add
a value higher than 1 to the distance result dsyn (a value of 2 has proven to be sufficient).
Finally, the algorithm analyzes the siblings to the right of node E where it finds the node
F. The node is located exactly between E and J. Therefore, the result is incremented by
one. This leads to a distance value dsyn = 3 between the nodes E and J.

The simplified code is shown in algorithm 8 (the algorithm does not incorporate the func-
tionality to calculate the distance over different syntax trees which was left out for clar-
ity). The algorithm consists of basically three different procedures. The main procedure

Algorithm 8 Syntax Tree based Distance Measurement Algorithm

Input: n f rom: The syntax tree node from which the algorithm starts searching for nto
nto: The syntax tree node which the algorithm is searching for, starting from nto

Effect: Returns the distance between n f rom and nto
1: procedure COMPUTENODEDISTANCE(n f rom, nto)
2: dsyn ∶= 0
3: lca ∶= getLCA(n f rom, nto)
4: d f rom ∶=countNodesToLCA(n f rom, nto, n f rom.parent, lca)
5: dto ∶=countNodesToLCA(nto, n f rom, nto.parent, lca)
6: dsyn ∶= d f rom + dto+ countDist(n f rom, nto, lca)
7: return dsyn
8: end procedure

ComputeNodeDistance gets two input parameters n f rom, nto ∈ Sn. It begins with initial-
izing a variable dsyn which stores the final distance value. Next, the method getLCA
is called which computes the LCA node of n f rom and nto (the procedure is not shown
specifically but its functionality is to recursively walk up the syntax tree S and check each
node if it is the LCA of two given nodes). Afterwards, the algorithm calls the procedure
countNodesToLCA (line 4) with the parameters n f rom, nto, the parent of n f rom and the lca
node. The procedure (algorithm 9) counts the number of nodes which are in the tree from
n f rom up to the lca with respect to nto, i.e., if nto comes to the left or to the right of n f rom

within the syntax tree. The same is done for the other node nto (line 5 in algorithm 8).
Finally, the different distance values are summed up. Additionally, the distance between



4.3 Functions 133

n f rom and nto in the children list of the node lca is added to dsyn. The value is calculated in
the method countDist (see algorithm 10). The procedure finally returns dsyn in line 7.

Algorithm 9 Count Nodes to LCA Algorithm

Input: n1: The first node the algorithm searches for
n2: The second node the algorithm searches for
n: The node the algorithm currently analyzes
lca: The LCA syntax tree node of n1 and n2

Effect: Counts the number of nodes from n1 to n2 and returns it in variable d
1: procedure COUNTNODESTOLCA(n1, n2, n, lca)
2: d ∶= 0
3: if n ≠ null && n ≠ lca then
4: d ∶= countDist(n1, n2, n)
5: d = d+ countNodesToLCA(n1, n2, n.parent, lca)
6: end if
7: return d
8: end procedure

Algorithm 10 Syntax Tree based Distance Measurement Algorithm

Input: n1: The first syntax tree node the algorithm searches for
n2: The second syntax tree node the algorithm searches for
n: The LCA syntax tree node of n1 and n2

Effect: Returns the distance d of the two child nodes n1 and n2
1: procedure COUNTDIST(n1, n2, n)
2: d ∶= 0
3: ind1 ∶= getIndex(n1, n.children)
4: ind2 ∶= getIndex(n2, n.children)
5: if ind1 < 0 && ind2 ≥ 0 && n1.pos < n2.pos then
6: d ∶= ind2
7: end if
8: if ind1 < 0 && ind2 ≥ 0 && n1.pos > n2.pos then
9: d ∶= n.children.size− ind2 − 1

10: end if
11: if ind2 < 0 && ind1 ≥ 0 && n1.pos < n2.pos then
12: d ∶= ind1
13: end if
14: if ind2 < 0 && ind1 ≥ 0 && n1.pos > n2.pos then
15: d ∶= n.children.size− ind1 − 1
16: end if
17: if ind1 ≥ 0 && ind2 ≥ 0 then
18: d ∶= MAX(ind1, ind2)−MIN(ind1, ind2)
19: end if
20: return d
21: end procedure
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The procedure is countNodesToLCA recursively counts the number of nodes between two
nodes n1 and n2 up to the node lca. This is done by first calling the procedure countDist
(line 12). Next, it recursively calls itself by going up one level in the syntax tree towards
the lca. The procedure terminates as soon as the parameter n is either null or n = lca.

The procedure countDist calculates the actual distance between two nodes n1 and n2 on
a given node n. It requires the index of the nodes within the list of children of node n
(lines 19 and 20). In an ideal case the node n is the LCA of both n1 and n2. In this case
the distance between both nodes can be calculated as shown in line 34, i.e., the difference
between the index of n1 and n2 is the value which is returned. For example, in figure
4.13 the position of node B with respect to node H would be 1 and for node G it would
be 2, therefore the distance between both of them is 1 (note that this is just a simplified
representation of the actual algorithm because the procedure getIndex might receive the
node C at node H and would still return the index 2). However, there are cases where n
is not the LCA of both n1 and n2. Those cases are handled in lines 21 to 32. If for example
node n1 could not be found in the children list of n, its index ind1 is set to −1. The return
value depends on if the position of n1 in the syntax tree is to the left or to the right of n2.
If n1 comes to the left of n2 (line 21), the procedure returns the index of n2 (line 22). This
is exemplified in figure 4.13. The procedure countDist is called with the parameters B, D
and G thus it calculates the distance between nodes B and D on node G. However, B is
not part of the children list of G. Hence, the return value is the index of D in the children
list of node G,i.e., 1. Alternatively n1 is placed to the right of n2 (line 24). Then the return
value depends on the size of the children list, from which the index of n2 is subtracted.
The cases for handling a missing node n2 are similar to the previous ones and can be seen
in lines 27 to 32.

The concept of calculating the distance is one of two features which helps to find the
antecedent of an anaphoric pronoun. The other feature is based upon the semantic in-
formation within Ose, i.e., how close the SemanticElement, which represents the verb,
is actually related to the SemanticElement of its potential antecedent. To calculate the
semantic relatedness two different approaches are used:

1. The first one is based on the spreading activation algorithm, which is explained in
section 5. Its input parameters are the SemanticElement of the potential antecedent
as well as the SemanticElement of the verb which is related to the pronoun. The
reason for selecting those two is that the meaning of the verb should be related to
the meaning of the antecedent. This can be seen in figure 4.12. The spreading ac-
tivation is initialized with the SemanticElements ’Driver’ and ’Sleep’. It returns a
value between 0 and 1 which indicates how close the SemanticElements are con-
nected semantically (the higher the value the more likely a strong semantic relation
exists between both elements). The value is stored in the variable dspr
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2. The second approach is based on a simple semantic distance measurement between
the SemanticElement of the verb and the SemanticElement of the potential an-
tecedent in Ose. The ontology is therefore treated as a normal graph on which a
Dijkstra-based algorithm calculates the distance between both nodes by using As-
sociation and Generalization relations only. To subsequently use the value it has to
be normalized to a value between 0 and 1 which is done as follows:

dsimple ∶= 1−
MIN(ddijk, dMAX)

dMAX
(4.36)

where ddijk is the result of the Dijkstra distance measurement algorithm,
MIN(ddijk, dMAX) selects the smaller value out of ddijk and dMAX and dMAX is a con-
stant which represents the maximum valid distance value.

The values of both algorithms are combined using a simple arithmetic average:

dsem ∶=
dsimple + dspr

2
(4.37)

The advantage of using two different algorithms is that both perform well in different
situations. The spreading activation based algorithm produces better results regarding
the exact semantic relation between two concepts, whereas the Dijkstra based algorithm
offers more tolerance to arbitrary semantic structures without caring about the actual se-
mantic validity of the structure. The latter helps especially when certain information are
not directly available within Ose.
For every antecedent, both the semantic relatedness dsem as well as the syntactic distance
dsyn to the verb is calculated. However, only those candidates whose syntactic distance
dsyn is below a certain threshold and whose dsem value is above a specific threshold lead
to a new Construction instance in the set CI . This can also mean that multiple new Con-
struction instances are created as part of the process. The reason for adding multiple
new instances is that although a preselection, regarding the antecedents, has been made
it is not certain which of those instances is the best candidate with respect to the final
solution.

The actual representation of a resolved anaphora within SE-DSNL is explained in the
following. In order to reference the Construction instance ir which represents the an-
tecedent, the Construction instance ip (which represents the pronoun) is cloned, resulting
in i′p. Next i′p.sem ∶= ir.sem, i.e., the SemanticElement of i′p is set to the SemanticElement
of ir. Further, an Association a between both i′p and ir is created. The Association rep-
resents that i′p equals ir, i.e., both actually refer to the same entity. Therefore, the type
of the Association a has to be set to a SemanticElement which in the current SE-DSNL
model represents the meaning of equality (e.g., in our test scenarios we simply created a
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SemanticElement ’Equal’ which was used for this case).

4.3.3. Check and Create Triple

Using background knowledge within the parsing process can be relevant in order to dis-
ambiguate word senses or to connect the correct concepts. To reach the aim a Function
had to be defined which allows the access on the SemanticScope during the parsing pro-
cess itself. It should return zero if no information about a relation between a given list of
SemanticElements (containing three different SemanticElements) is available. The idea
is that these three SemanticElements ideally form a triple. Now the Function should
check if a triple of this kind exists within Ose. This is done by using the spreading activa-
tion algorithm which is described in section 5. The algorithm returns 0 if it cannot find
such a triple within the ontology. It returns 1 if it can find the triple. In certain cases,
however, the spreading activation algorithm identifies information (e.g., if some words
were underspecified as specified in section 2.1.4) which are worthwhile to be added to CI ,
e.g., for a word "Human" which is associated with the SemanticElement ’Person’ only, the
spreading activation algorithm might detect that instead of ’Person’ the SemanticElement
’Driver’ might be better suited. This is new information which represents an alternative
to the initial and already existing Construction instance. Such alternatives can be added
by the Function ’CreateTriple’ which can be used by EffectStatements. The reason is that
EffectStatements are only executed if all ConditionStatements of the same Construction
have been evaluated successfully. Otherwise, too many irrelevant or even false Construc-
tion instances might be added, thereby decreasing precision and performance.

It could be argued that the Function may influence the outcome of the process for the
worse, i.e., by checking the ’static’ knowledge within the ontology it could introduce
a bias into the analysis process. Bias means that the InterpretationModel should ref-
erence only what the author of the text originally meant. The analysis process tries to
achieve this by using Constructions which should identify the correct syntactic and se-
mantic structures. These structures can be checked with ConditionStatements. One Con-
ditionStatement can, e.g., be used to validate if the SemanticScope contains information
about the relations between a set of SemanticElements. The ConditionStatement returns
a value which indicates if a relation between those SemanticElements could be found, i.e.,
it returns 0 if no relation could be found or 1 if a strong semantic connection is available.
In the first case the problem is that the knowledge which would relate the set of Seman-
ticElements in Ose may not yet have been created within the SE-DSNL model. Hence, the
analysis process assigns the ConstructionInstance a lower value than it actually should
be. In the other case (i.e., if the algorithm returns 1) it might be the case that the au-
thor of the text intended something else but the analysis process found a combination of
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ConstructionInstances which accidentally matches the knowledge within Ose. Both cases
could lead to results which are not intended by the author of the text.

However the problem might not be too relevant. The reason is that there are more things
to be checked regarding the text than just the semantic meaning and its relations within
Ose. A single Construction almost always consists of more than just one ConditionState-
ment. Therefore, the ’CheckTriple’ ConditionStatement has only a small effect on the
overall outcome of the ConditionStatements. Further, it is mainly used to rate different
alternatives for one and the same situation, e.g., a word which has multiple meanings.
The reason is that the Statements which check the syntactic content of the sentence have
already ruled out many different possibilities. What remains is a set of potentially correct
solutions for the same words. In such situations all syntactic Statements yield nearly the
same result values, therefore it is the semantic Statements which can make the difference.
This means that although a small bias might be introduced it most probably does not
influence the complete meaning of the interpretation. It can therefore be neglected.

4.3.4. Semantic Type Check

The Function ’IsOfType’ only provides functionality for the initiation phase, i.e., it elim-
inates not matching Construction instances from the elems list. Its task is to verify that a
Construction instance contains a specific type. This is helpful to identify if a Construc-
tion instance either contains a specific POS type or a SemanticElement. ’IsOfType’ has
therefore been designed to receive a reference on a Construction instance cI ∈ CI as well
as a SyntacticSymbol or SemanticSymbol s. With these arguments it checks if cI .sem ⊆ s
or s ∈ cI .syn. If this is the case, the Function returns 1, else 0.
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4.4. Related Work

Many concepts have been proposed in the past which require a combination of linguistic
and semantic information. In the following sections, we especially present approaches
from two domains, which elicit similarities to SE-DSNL: OBIR and OBIE. Both have to
cope with identifying semantic information in text. Various approaches are presented
and delimited from SE-DSNL, before some concepts which mainly focus on semantic an-
notation, are described. It should be pointed out that most of those systems are intended
for annotating large sets of documents, whereas SE-DSNL focuses on how the precision
in handling language in an OBIR system can be tackled. We will therefore focus on such
systems and delimit them based on how well they make use of available ontological in-
formation for linguistic processing.

We also want to point out that there are many other systems which apply ontological
information to NLP related tasks like WSD (e.g., [131] [132] [79] [133] [134]). However,
those systems focus on the analysis of a specific linguistic challenge only. In contrast, the
focus of SE-DSNL is to provide an OBIR system which can be adapted to an arbitrary do-
main and its (linguistic) challenges, thereby enabling a better mapping between language
and semantic knowledge. This goal is supported by the analysis of the SemanticScope
with Functions (section 4.3). In contrast, many of the available OBIR and OBIE systems
do not seem to make much use of the available semantic information, at least not during
analysis runtime (many systems only use ontological information to validate the results
in the end). Therefore, we delimit SE-DSNL from those by showing whether they ana-
lyze challenges like underspecification / WSD with the help of ontological knowledge or
not.

The section is concluded in subsection 4.4.4.

4.4.1. Ontology-based Information Retrieval

OBIR systems are known under many different names, the most prominent ones being
semantic information retrieval or concept based information retrieval. Their task is to
retrieve information from a specific type of sources (e.g., natural language text). These
systems try to identify semantic information from documents and retrieve documents
based on the semantic knowledge. The section only copes with the process of identifying
the semantics within text. Most OBIR systems create an index which contains semantic
information of all searchable documents. The InterpretationModel of SE-DSNL can be
seen as a semantic index of an input text and the SemanticScope is comparable to what
other approaches consider being their ontology. In the following different systems from
this research area are presented.
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Vallet et al. [135] developed a system which allows the "semi-automatic annotation of
documents" as well as a retrieval model. Similar to the SE-DSNL concept, their approach
requires the ontology to conform to certain guidelines, e.g., specific different base classes,
which built the center of different taxonomies. Their annotation and extraction system
is built upon the system by Kiryakov et al. [136] and makes use of GATE [137]. GATE
provides different modules for many different linguistic challenges, e.g., named entity
recognition, pronominal anaphora resolution etc.. It is, however, unclear if Vallet et al.
make use of components for anaphora resolution. At the center of their pipeline lies a
Named Entity Recognition (NER) component. After the NER process has finished, they
try to map the identified named entities to the ontology. The process is done by match-
ing the identified entities to the labels of the concepts and instances within the ontology.
Their concept allows using multiple labels for one ontological element. The problem of
ambiguity is reduced by using a specific keyword property, i.e., labels which are marked
as a keyword are not used for automatic annotation, but for counting instances only. La-
bels are only used for "instance-specific text forms". More elaborate structural mappings
are not available.

Two of the domains which especially embrace ontological knowledge are the biological
and medical domains since there are many large ontologies available. Many approaches
exist for semantic information retrieval, e.g., [138], [139]. One of the most recent ones
was developed by Koopman et al. [140]. They propose a system which uses SNOMED-
CT (Systematized Nomenclature of Medicine Clinical Terms [141]) for OBIR from medi-
cal records. They argue that ontological knowledge allows a more detailed information
retrieval because associational, deductive as well as abductive reasoning can be used.
The concept extraction is based on MetaMap [142], which maps words from text to the
corresponding elements within the unified medical language system (UMLS) metathe-
saurus. Next, the identified elements are mapped to their SNOMED-CT equivalents. The
MetaMap process is based on a pipelined approach, in which potential candidates are
identified, mapped to UMLS and disambiguated. The mapping process itself is based on
a simple lexical model which is provided by UMLS. MetaMap has the ability to partially
identify compound mappings (i.e., a single concept is not enough to characterize textual
phrases). Representing compound mappings or more complex textual descriptions in
addition to elaborate grammatical structures can be done in SE-DSNL. Further, the anal-
ysis algorithm of SE-DSNL offers the inclusion of more elaborate features like anaphora
resolution.

Khelif [143] proposed a system which should help "biologists to annotate their docu-
ments". Their annotation tool "MeatAnnot" parses biological documents and tries to
extract potential instances of UMLS relation. It identifies instances of such UMLS con-
cepts which have been linked by the previously identified relationship. Again, a concrete
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structural or grammatical mapping is not available. Instead, the most direct and simplis-
tic way of associating text to semantic knowledge has been taken. The process itself is
based on a standard pipeline, comprised of GATE [137], TreeTagger [144] and RASP (sta-
tistical annotation of text [145]). No information is available about which complex NLP
related challenges are handled by the approach. WSD seems to be supported as part of a
simplified algorithm which considers a four word window and, based on the information
within this windows, tries to identify a relation within UMLS.

Another biological OBIR system is Textpresso which was developed by Müller et al. [146]
[147]. Textpresso is a "textmining system for scientific literature". It consists of an ontol-
ogy with a custom set of categories and subcategories, each of which has been annotated
with a set of terms. Terms are allowed to be part of one category only, thereby eliminat-
ing ambiguities. The tradeoff is a very limited way of representing ontological elements.
Text documents are indexed by matching the words to corresponding terms. The text
database can be searched by using a combination of keywords and semantic categories.
The approach is simplistic as it does not consider things like homonyms, syntactical and
semantical structures etc.

Toma [148] developed a system in which documents are matched to ontologies, which
are queried based on a so called "query ontology". The query ontology is created from a
natural language query. The determination of the similarity between a document and an
ontology is based upon the term-frequency-inverse document frequency [149]. Therefore,
the number of terms, which match concepts within an ontology, have to be counted. A
term matches a concept if the label of the concept matches the term. This again is a
very simple approach in contrast to SE-DSNL as it can not represent synonyms and has
problems with compound words or specifying syntactic structures in general. Further,
the approach does not consider things like anaphora resolution or WSD.

Köhler et al. [150] also designed a system for OBIR. Their vision is to close "the gap be-
tween the HTML based internet and the RDF based vision of the semantic web". The
concept relies on RDF labels for creating a bridge between text and ontological know-
eldge. However, they consider a certain context of both the mapped concepts (i.e., sub-
and superconcepts) and the words of a document. From this information the ontologi-
cal index of a document is created. Still, it is not as precise as considering the concrete
semantic structure of a text.

There are more approaches, which are similar to the previously mentioned ones and are,
therefore, not explained further. These are OBIR systems like AeroDAML [151] [152],
Armadillo [153] [154] [155], the Knowledge and Information Management Platform KIM
[156], SemTag [157] and OntoMat [158].
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4.4.2. Ontology-based Information Extraction

As mentioned previously in section 2.3, Ontology based information extraction systems
have similarities to SE-DSNL. In the following, we delimit several OBIE systems from
SE-DSNL.

An interesting approach to OBIE has recently been proposed by Wimalasuriya [159],
which is called OBCIE (Ontology-Based Components for Information Extraction). To
provide an easier adaptation to different domains and ontologies, he proposes that in-
formation extraction systems should be based on independent components which only
extract information belonging to specific concepts within the ontology. Depending on
the circumstances, different components can be integrated in the overall framework and
extract their corresponding information. This can be compared to the Construction- and
Statement approach of SE-DSNL which allows the application of a specific Function in an
exactly defined context, e.g., to check for new information or validate existing ones. His
approach lacks a more specific definition of the mapping between semantic and linguistic
information. The famous DeepQA project from IBM [160] also uses different information
specific components to identify the lexical type of an answer.

Cimiano and Völker [161] presented the Text2Onto system, which is a "framework for
ontology learning from textual resources". Its NLP pipeline is based upon GATE [137]
and works similar to the one proposed in [136], i.e., sentence splitting and tokenization,
POS tagging, lemmatizing or stemming. Next, JAPE [162] extracts the information which
is necessary for the ontology learning process. This is done by applying a set of patterns,
which consist of regular expressions, to identify specific information from the previous
annotation process. If the expressions match, new information is created. This is simi-
lar to the Constructions of SE-DSNL, however, there are some differences: Constructions
in contrast to JAPE patterns are not yet built to contain regular expressions. However,
Constructions can match both semantic and syntactic information. Further, Construc-
tions define which algorithms should be applied in which context, thereby controlling
the overall parsing process. Further, Text2Onto is based on a pipeline approach, in which
first different NLP components have to be applied, before information can be retrieved
with JAPE. In contrast, SE-DSNL only requires the construction of a syntax tree, before in
a concurrent approach different algorithms for the semantic analysis are applied, there-
fore making use of ontological knowledge during the analysis process and not just in the
end for final validation. This partially allows to solve challenges like anaphora resolu-
tion, word sense disambiguation and information vagueness, each of which can access
the results of the other algorithms at runtime.

Todirascu et al. [163] developed a system called Vulcain. The system is used for message
filtering in specific domains. In contrast to many other approaches, which only apply
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very simple mappings between terms and semantics, Vulcain uses a mapping system,
which especially can define the relations between specific lemma and the correspond-
ing semantic information. Hence, Vulcain uses Lexicalized Tree Adjoining Grammar
(LTAG) [55]. Each elementary tree can be modified by derivation trees. This leads to
strongly formalized results which can be validated against a domain specific ontology.
Their approach focuses heavily on a very strong semantic representation. However, lin-
guistic problems seem to be neglected, i.e., aspects like word sense disambiguation or
anaphora detection are not being mentioned. Also, the concept does not seem to make
use of ontological information during the parsing process itself. The ontological knowl-
edge is only used to validate the final result.

Buitelaar et al. [164] developed the SOBA system (SmartWeb Ontology-based Annota-
tion) which itself is based on the information extraction system SProUT [165]. The system
is used for the "ontology-based information extraction from soccer web pages", which in
turn should be used for question answering. In contrast to other OBIE systems, SOBA
is capable of annotating structures besides natural language text, e.g., tabulars and im-
age captions. For mapping text to ontological knowledge, it builds upon the LingInfo
model [126], which is a predecessor of the previously introduced LexInfo model (section
3.6).

Adrian et al. [166] presented the iDocument OBIE system (which has, e.g., been used
for personal knowledge acquisition [167]). iDocument provides a pipelined approach to
OBIE, which is comprised of normalization, segmentation, symbol recognition (identify-
ing which word belongs to which ontological class), instance recognition (which of the
symbols is an instance of the ontology), fact recognition (facts of the text which are also
part of the ontology) and finally template population (templates are used for the informa-
tion extraction task, thereby trying to populate a template with the previously gathered
information leads to potentially new information). As with many other OBIE systems,
iDocument does not provide an exact mapping between ontological and linguistic infor-
mation like LexInfo or SE-DSNL. Further, their pipeline approach does not seem to cover
more elaborate linguistic problems as the ones SE-DSNL covers.

Unger and Cimiano [168] developed Pythia, a system for ontology-based question an-
swering. They based their system on LexInfo for capturing information about "word
forms, morphology, subcategorization frames and how syntactic and semantic argu-
ments correspond to each other". Based on this information, they generate so called
"grammar entries, i.e., pairs of syntactic and semantic representations". The data is trans-
formed to a LTAG. With the information at hand they can later parse natural language
questions and construct a formal representation, which is based on DUDES [169]. The
parsing is done by an earley-type parsing algorithm [170] for TAG grammars. It is very
much focused on natural language questions in contrast to SE-DSNL, and therefore does
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not care about complex linguistic challenges like anaphora resolution or word sense dis-
ambiguation.

Li and Bontcheva [171] developed a system which in contrast to other OBIE uses ma-
chine learning concepts "by taking into account the relations between concepts" of the
target ontology during the extraction process. This is used for hierarchical classification,
based on Dekel [172]. Incorporating ontological knowledge in the analysis (or IE pro-
cess) can be compared to the mechanisms within SE-DSNL. There are other approaches
to information retrieval, which focus either on specific sources (like wikipedia [173] [174])
or use different methods for annotation (e.g., web-search [175] [176]). Other approaches
have been done by Embley [105], Saggion et al. [177], Ontea by Laclavík et al. [178],
Hwang [179], Yildiz and Miksch [107] and Vargas et al. [180]. All of these systems have
similar approaches to OBIE as the ones presented before. We do therefore not delimit
them further from SE-DSNL.

4.4.3. Semantic Annotation

Körner and Landhäußer [181] developed a system which tries to "automatically denote
the implicit semantics of textual requirements". Their work is inspired by trying to create
UML models from natural language text. Therefore, they annotate their texts with a stan-
dard called SALE [182], which defines semantic roles (see section 2.1.2.2) like AG (agents
of a sentence), ACT (actions within a sentence), etc.. The automatic annotation is based on
a custom NLP pipeline, which is comprised of a sentence and word splitter, POS tagger,
the statistical parser for semantic annotation and NER (all componentes were taken from
the Stanford NLP group [183]). In the end, the result is checked against WordNet [13] and
Cyc [184] for missing information. Their approach differs from ours in such a way that it
uses a standard NLP pipeline approach and does not consider more elaborate structural
relations between semantics and language.

Magpie by Dzbor, Domingue and Motta [185] [186] is a concept of how web pages can
be annotated semantically while browsing. It provides some simple linguistic rules for,
e.g., the identification of abbreviation. The process itself relies on NER and simple string
matching, no further preprocessing is done. Its successor PowerMagpie [187] improves
on the problem of dynamically selecting the correct ontological source for a specific
topic.

4.4.4. Conclusion

As we have shown in this section, there are no known OBIE or OBIR systems which
support the same features as SE-DSNL. The distinction between existing frameworks
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and SE-DSNL can be summarized as existing frameworks focusing on the retrieval and
extraction of information from larger text bases without considering detailed linguistic
mappings, elaborate structural analysis or the usage of ontological knowledge at run-
time to validate certain information or gather new ones. Moreover, most systems do not
rely on a more detailed mapping between language and semantics. Only a few systems
seem to use more expressive mappings, i.e., Pythia [168] with LexInfo and SOBA [164]
with LingInfo. Aside from these two no other system except for SE-DSNL yet made use
of such features in a more complex domain. Regarding LexInfo, there are, however, some
discussions about which scenarios the LexInfo model could be used for (e.g., McCrae et
al. [188] think about linking WordNet and Wiktionary, whereas Davis et al. [189] discuss
generating a lexicon from an ontology). An overview of all previously described results
is available in table 4.1 and how they compare to SE-DSNL. The first row "Lexical map-
ping" describes whether or not an approach makes use of providing a more elaborate
lexical representation of semantic information. This means that elements from the on-
tology should at least be representable by two or more word forms. In addition, if an
approach incorporates information from a lexical database like WordNet [14], it leads to
a check mark. The second row "Structural mapping" specifies if syntactic structures can
be mapped to their semantic counterparts. It is, however, not sufficient if this is done
by an algorithm without background knowledge. Hence, knowledge about the syntactic
to semantic mapping is required. The third row "Component oriented" describes if an
approach actually makes use of a component oriented concept while analyzing the avail-
able information, i.e., not one monolithic component should analyze the input sources
but several components, each of which is best suited for doing a specific task in a specific
context. The fourth row "WSD" specifies if an approach supports an algorithmic word
sense disambiguation. The last row "Accessing sem. information" represents if an ap-
proach can also access the semantic information within an available ontology during the
analysis process.
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Table 4.1.: Comparison of concepts related to SE-DSNL

Approach Lexical
mapping

Structural
mapping

Component
oriented WSD Accessing sem.

information

Vallet et al. [135] ✓
Koopman et al. [140] ✓ ✓
Khelif et al. [143] ✓ ✓
Müller et al. [146] [147] ✓
Toma [148]
Köhler et al. [150] ✓ ✓
Kogut and Holmes [151] [152] ✓ ✓
Dingli et al. [153] [154] [155] ✓ ✓
Popov et al. [156] ✓ ✓
Dill et al. [157] ✓ ✓
Handschuh et al. [158]
Wimalasuriya [159] ✓
Cimiano and Völker [161]
Todirascu et al. [163] ✓
Buitelaar et al. [164] ✓
Adrian et al. [166] ✓
Unger and Cimiano [168] ✓ ✓ ✓
Li and Bontcheva [171] ✓ ✓ ✓
Wu et al. [173] [174] ✓
McDowell and Cafarella [175] ✓
Cimiano et al. [176] ✓
Embley [105] ✓
Saggion et al. [177] ✓
Laclavík [178] ✓
Hwang [179] ✓
Yildiz and Miksch [107] ✓ ✓
Vargas et al. [180] ✓ ✓ ✓
Körner and Landhäußer [181] ✓
Dzbor and Domingue [185] [186] ✓
SE-DSNL ✓ ✓ ✓ ✓ ✓
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5.1. Introduction

Analyzing the semantic content of natural language requires solutions to different prob-
lems. A very important challenge in this context is the identification of those Seman-
ticElements which are actually meant by the speaker or author of a written text. One of
the tasks related to the challenge is known as word sense disambiguation. A more de-
tailed introduction into the basics of Word Sense Disambiguation (WSD) and different ap-
proaches to the challenge are described in section 2.1.6.3. An example of how synonymy
and homonymy can be represented with semantic knowledge, is shown in figure 5.1.
The words "Car" and "Auto" represent the same SemanticElement ’Car’ and are therefore
synonyms. The words "Auto" as well as "X1" are homonyms because they have multiple
meanings ("Auto" represents the SemanticElements ’X1’ and ’Car’, whereas the meaning
of "X1" can be either the SemanticElement ’X1’ or ’X1 TDI’). All known approaches to

Figure 5.1.: Homonym and Synonym Relation

WSD like machine learning or graph-based methods have in common that they select
the most probable sense for a word from a set of existing SemanticElements. For the ex-
ample in figure 5.1 this would mean that a user trying to disambiguate the word "Auto"
would receive a set containing both SemanticElements ’Car’ and ’X1’ and is only allowed
to choose from these two SemanticElements. However, there are cases where this is not
enough. Humans tend to be ambiguous regarding not only the use of synonyms and
homonyms, but also of hyponymy and hypernymy (this was more broadly introduced
as ’Vagueness’ in section 2.1.4). Hyponymy means that the semantic content of a word
is a specialization of the semantic content of another word (hypernymy means the op-
posite). In figure 5.1 a hyponymy relation exists between the words "X1" and "Auto",
because "X1" represents the SemanticElement ’X1 TDI’ and "Auto" represents the Seman-
ticElement ’Car’, which is a parent of ’X1 TDI’.

A challenge is that an author might use the word "Car", but actually mean the Seman-
ticElement ’X1 TDI’. It can be seen that there is no direct relation between the word "Car"
and the SemanticElement ’X1 TDI’ in figure 5.1. A reader, however, can most probably
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infer the correct SemanticElements based on the context. Classical word sense disam-
biguation algorithms are not capable of solving the problem, as they either do not have
the necessary knowledge (i.e., a clear description of both lexical / syntactic information
on one side and semantic information on the other side) or are not capable of using the
knowledge accordingly. Another problem in which a word has a different meaning than
the ones which it is normally being used for, is the phenomenon of reference transfer (as
described in section 2.1.4). The problem is even harder to solve than vagueness.

The algorithm that we developed and describe in the following sections does not directly
disambiguate a complete sentence. Instead its primary task is to evaluate the semantic
relatedness of a given input, consisting of either a tuple or a triple of SemanticElements
(those input sets can be enriched with additional context SemanticElements). As part
of the semantic relation evaluation, additional SemanticElements might be found which
could be more appropriate than the initial input (because of either reference transfer or
vagueness). Those SemanticElements represent alternatives to the original input of the
algorithm. In the following section we describe an algorithm which is capable of solving
those problems and more. Therefore, first our requirements are stated before the algo-
rithm itself is introduced.
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5.2. Requirements

The section describes in detail the requirements which the spreading activation algorithm
needs to fulfill.

1. Analyzing text requires disambiguating the senses of the single words. Hence, it
is necessary to have a metric which indicates if different SemanticElements are se-
mantically related to each other. We assume that the information helps us in solv-
ing the WSD problem. The algorithm should return a value between 0 and 1 which
represents whether a specific information is available within the ontology and how
closely it is related. 1 indicates that there definitely is such a relation available. 0
means that no information could be found.

2. As humans tend to overgeneralize, the approach should be capable of making a set
of SemanticElements as specific as possible, i.e., if a person talks about the Seman-
ticElement ’Car’ in figure 5.2, but further mentions specific attributes (e.g., the color
’Red’), it is clear to his communication partner, which type of car is meant (i.e., the
’E3’). The process should be mimicked by the algorithm.

3. Humans sometimes only mention specific attributes of what they actually refer to,
i.e., in contrast to the previous requirement they don’t mention a word which di-
rectly represents the SemanticElement ’Car’ but may refer to the SemanticElement
by one of its attributes. An example could be ’I drive a red one’. The reader infers
that the author most probably meant a car (or in this case the more specific element
’E3’). Our approach should try to identify and solve the problem as well.



5.3 Example 151

5.3. Example

In order to better understand the algorithm it is illustrated by a small example using
figure 5.2. The ontology describes a small excerpt from a car domain. It consists of Se-
manticElements like ’Person’, ’Car’, ’Color’ and different specializations of those Seman-
ticElements. For the example we define At ∶= {’Driver’, ’Drive’, ’Red’} and Ac ∶= {}, i.e.,
a full triple and no context elements. The initial state of Ose can be seen in figure 5.3 in
the upper left part. The green dots represent all elements which correspond to the input
A.

Figure 5.2.: Ontology example
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5.4. De�nitions

The definition is based upon the definitions 1 (Ontology) and 2 (SemanticScope Ose). The
algorithm requires a specific as specified in the following:

Definition 29 (Input)

Let

A ∶= (At, Ac) (5.1a)

At ∶= (es, ey, et) (5.1b)

be the input to the spreading activation process. At represents a triple, where
es, ey, et ∈ Ose and Ac ⊆ Ose. es is the source SemanticElement, ey is the type of an
Association which has es as its source and et specifies the target of the Association.
Ac is a set of SemanticElements which act as additional information (context) to the
spreading process.

An example for At is an element ’Driver’ as es, ’Drive’ as ey and ’Vehicle’ as et. It should
be noted that At can also consist of a tuple {es, ey} or {es, et} only. Ac is always optional.

The algorithm does not create a new spreading activation network (SAN) but instead
relies on using the available graph structure within Ose. However, in order to save all
the information which are being created by the spreading process a container element is
needed.

Definition 30 (Token Container)

Let

k ∶= {k.e, k.T, k.act, k.pt, k.d} (5.2)

be a token container. The entities of the set are specified as follows:

1. k.e ∈ Ose is a SemanticElement which represents the ID of the token container
(the ID is unique because one concept may only be represented by one Seman-
ticElement within Ose).

2. k.T is defined as a set k.T ∶= {t1..tn}. k represents a container for all the tokens
which have reached the SemanticElement k.e

3. k.act indicates if the SemanticElement k.e ∈ At

4. k.pt is an attribute which counts the number of times that the container has been
part of a backpropagation process.
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5. k.d represents the depth of the SemanticElement k.e within the Generalization
hierarchy of Ose. The depth value is calculated as the position of k.e relative to
the length of the longest branch it is located in.

In further references if k is mentioned as being part of At or another set of SemanticEle-
ments, this actually means k.e, which should be contained in the corresponding Seman-
ticElement set. In the following, we refer to ks as the container of es, kt as the container of
et and ky as the container of ey.

The tokens being passed around in Ose are defined as follows:

Definition 31 (Token)

Let

t ∶= {t.orig, t.start, t.pos, t.en, t.s, t.dir, t.pred} (5.3)

be a token. The different entities of the set contain the following information:

1. t.orig holds a reference to its original container which must be a container of
one of the SemanticElements in A.

2. t.start is a reference to the container where the token originally started from
(this can, but does not have to be the original container; it may be a container
whose SemanticElement is related to the SemanticElement of t.orig via Gener-
alization)

3. t.pos is the container representing the current position of the token.

4. t.en indicates the remaining energy of the token if the energy drops below a
certain threshold the token can not spread any further.

5. t.s describes the steps the token has already moved within Ose. The value in-
creases on every new element except for Generalizations.

6. t.dir defines the direction in which a token moves. Values can be up or down
(within the generalization hierarchy), sidewards (i.e., on an association) as well
as unknown (in case of the token being placed on the very first container).

7. t.pred is the predecessor token of the token or null in case of this being an initial
token.

A token moves over the structure in Ose and creates a so called path.
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Definition 32 (Token Path)

Let tm be a token. Then

path(tm) ∶= [tm, tm−1, .., t1] (5.4)

returns a list of tokens where tm−1 = tm.pred, tm−2 = tm.pred.pred etc. and t1.pred = null.
A path contains a SemanticElement e ∈ Ose, if for a path p ∶= path(tm) the following
predicate holds:

containsElem(p, e)⇔ ∃t ∈ p equal(t.pos.e, e) (5.5)

where equal checks if two elements are identical. This means that one token within a
path p is located on a token container whose SemanticElement t.pos.e = e.

Finally the algorithm returns an output. The structure is defined as follows:

Definition 33 (Algorithm Result Structure)

Let

R ∶= {R.v, R.ps, R.pt} (5.6)

be the set representing the output of the spreading activation process.
R.v is a value within [0, 1] representing the semantic relatedness of SemanticElements
within At with respect to Ose.
R.ps ∈ Ose is a SemanticElement which represents a proposal of the algorithm as to
what the user could have actually meant by referencing es based on the information
in Ose. Note that R.ps can either be specification of es (i.e., R.ps ⊂ es) or a completely
new element, i.e., R.ps ⊄ es.
R.pt ∈ Ose is analogue to R.ps except for that it is a proposal for et.

The structure of the result already supports the previous three requirements. First, R.v
contains the value for requirement 1, whereas R.ps and R.pt can contain proposals as
required by requirements 2 and 3.
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5.5. Initialize tokens

The algorithm is initialized based on input A. It first creates a token container for each
e ∈ A as seen in algorithm 11 (e.g., INIT(es, 1.5)). The initialization is based on the Gener-
alization hierarchy of the SemanticElement e. All elements within A are basically treated
the same (i.e., their initial energy value is the same). The only exception is es which re-
ceives a higher initial energy value than the remaining elements, since we want to know
whether there is a path from the source to the target SemanticElement. Therefore, the
higher energy value allows them to move farther.

Figure 5.3.: The four phases of the first spreading activation iteration

As can be seen in algorithm 11 the initialization is done in both Generalization directions
(INITGENUP means that the initialization is done to the top of the Generalization hier-
archy, i.e., more general SemanticElements are initialized; In contrast INITGENDOWN
initializes more specific SemanticElements). The reason is that humans tend to be am-
biguous while communicating and often use more generalized terms than they actually
mean (see requirement 2 in section 5.2). Only the context of a word helps in deciding
which SemanticElement they actually refer to. Hence, the initialization down the hierar-
chy helps to initiate all elements, which eventually are meant by a human, whereas the
call upwards initializes all those elements which may contain the corresponding seman-
tic information that a SemanticElement e inherited. The information is necessary in order
to correctly analyze the current input.
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INITGENUP initializes a single SemanticElement by creating a token container for every
SemanticElement in the upwards Generalization hierarchy. It further creates the initial
tokens for each of these SemanticElements (INITGENDOWN works analogously). It must
be noted that every SemanticElement which is initialized by INITGENUP is treated as
being part of the original input. Therefore, the k.act attribute of their containers is set
to true since each of these SemanticElements could be the carrier of the information we
search for.
Figure 5.3 shows in the upper right what Ose looks like after the initialization. Each
SemanticElement of input A has been initialized which also activates all elements of the
corresponding hierarchy branches (indicated by the green colored circle).

Algorithm 11 Initialization

Input: e: A SemanticElement of the input A
ENERGY: The initial energy value for all tokens

Effect: Creates tokens and token containers for all children and parents
of the SemanticElement e

1: procedure INIT(e, ENERGY)
2: INITGENUP(e, e, ENERGY, null)
3: INITGENDOWN(e, e, ENERGY, null)
4: end procedure
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5.6. Create the Token �ow

The set of initial token containers and tokens has been created. Now the token flow
itself has to be calculated. The process which is discretized in single phases is shown in
algorithm 12. Each current token generation Tcurrent leads to a new token generation Tnext

which is processed after every token from the current generation has been analyzed. This
process is required as the POSTPROCESS call initializes a back propagation mechanism.
A non discretized process would yield indeterministic results.

Algorithm 12 Process Tokens
Input:
Effect: Iterates over the current token set Tcurrent and creates new tokens

until no more tokens are available in Tnext
1: procedure PROCESSTOKENS

2: while Tnext.size /= 0 do
3: Tcurrent ∶= Tcurrent ∪ Tnext
4: Tnext ∶= {}
5: PREPROCESS

6: CREATETOKENFLOW(Tcurrent, Tnext)
7: POSTPROCESS

8: Tcurrent ∶= {}
9: end while

10: end procedure

CREATETOKENFLOW is called with the set of current as well as next tokens. For every
token t ∈ Tcurrent it first checks the following three conditions:

1. If t.dir is unknown, the token is allowed to move both on Associations (sidewards)
as well as on Generalizations (up / down) in Ose. A token is, however, not al-
lowed to move upwards, if its previous direction was down or sidewards before.
The cause for these restrictions is that the tokens otherwise could reach irrelevant
or false SemanticElements. All those direction changes of course depend on the
Associations and Generalizations available on t.pos.

2. t.s is not allowed to exceed a certain threshold. If it does it can not move any farther.
We assume that SemanticElements which represent not-related real world objects,
may also have a long or no path at all between them within Ose. The length of the
current token path is measured by the number of SemanticElements which a token
has already visited.

3. Finally t.en indicates the remaining energy of a token. If t.en drops below a certain
threshold the token can not continue. However, t.en can be increased during the
back propagation mechanism (which is described later).
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Only if all three conditions are evaluated successfully new tokens are generated (i.e.,
tokens for the next relation which t moves on, as well as the target SemanticElement
of the relation) and added to the Tnext set. The energy of a new token tnew is based on
the current tokens t.en attribute and is decreased by a constant value. However, if the
container of a relation has been activated (i.e., k.act = true), no energy is subtracted from
the energy of the new token. The process allows us to enhance the energy of paths which
are likely to be more relevant to the spreading activation input. Finally, the predecessor
attribute tnew.pred is set to the token t.
Next the POSTPROCESS method is called. It starts the back propagation mechanism on
all containers whose k.act attribute is set to true and which have received new tokens in
the last token flow phase. Each token on such a container gains an increase of its energy
value:

t.en ∶= t.en+ (ENMAX − t.en) ∗ Te (5.7)

where ENMAX denotes the maximum energy a token can have and Te is a constant fac-
tor between 0 and 1 which is used to weight the value. The mechanism is recursively
executed on the predecessors of the token. By activating the propagation mechanism
on such containers which have been part of A, only those token paths are strengthened
which have a relation to the input A. We therefore assume that these paths are also more
likely related to the final result. Further, even if some of the elements within At may not
be ideal (e.g., they might be underspecified), we assume that the intended SemanticEle-
ments may still be connected to the SemanticElements within the activated paths.

Figure 5.3 shows the result of the token flow process in the bottom left. The colors indi-
cate the weight of the corresponding concept container (dark red means a heavy weight
whereas light red represents a lite weight). It can be seen that the SemanticElement ’CEO’
(i.e., a more specific element of the es element ’Person’) has received a heavy weight. This
is due to tokens from ’CEO’ which arrived at the concept ’Red’. Their energy has been
increased during the backpropagation mechanism. In general, the elements ’CEO’ →
’drives’ → ’E3’ → ’is’ → ’Red’ received a high activation value.
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5.7. Analyze the token �ow

The final step involves gathering the results from the token flow process. The algorithm
starts by identifying more specific SemanticElements of the actual input. This step is
required to reduce vagueness (see requirement 2). The analysis process creates a list Ks

in which all token containers are collected whose SemanticElement k.e is more specific
than a SemanticElement e ∈ At, i.e., k.e ⊂ e. Next the most relevant tokens of each token
container k ∈ Ks are identified. Relevant tokens are those which were sent from another
SemanticElement e ∈ At, where e ≠ k.e. The algorithm sorts Ks based on

1. the number of relevant tokens which reached this container (i.e., tokens from Se-
manticElements of At/e),

2. the energy value of the relevant tokens (higher values imply a bigger relevance to
the input A),

3. activation times (i.e., how often the container was activated in the POSTPROCESS
method; the more often a container was activated the more relevant it is to the input
A)

4. and the depth of the SemanticElements within its Generalization branch (more
specificity is better).

The process picks the best token container k ∈ Ks for each e ∈ At (or none, if there is no
token container available for an element e ∈ At). The SemanticElement k.e represents a
proposal for a more specific SemanticElement of the input element e. Thus, if there is a
token container ks which is more specific than es, the value ks.e is assigned to R.ps (the
same happens for R.pt if there is a more specific token container kt available). However, if
there are multiple token containers within Ks for an element e ∈ At all of which received
the same highest rating value, no container is picked. The reason is that this would
contradict the idea of reducing vagueness and ambiguity.

All information necessary for the final result has been calculated. However, it might
be the case that the result is not perfect, i.e., the initial input represents a case of refer-
ence transfer (i.e., requirement 3). For such a situation a heuristic is used which iden-
tifies those cases and tries to find a better solution. Still, some restrictions have to be
made: An ’imperfect’ situation can only be identified if es, ey and et are available in At. If
there would only be two SemanticElements available in At, there are too few information,
which would lead the heuristic to imprecise decisions. Further only situations in which
either es or et are wrong can be detected. For the following we refer to the example from
section 5.2 in which case et is ’wrong’ (as it references ’Red’ instead of ’Car’).
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First, the algorithm collects all available Associations rinOse which are of type ey and ref-
erence either et or es. Those are stored in the list Lp. Lp is sorted based on the number of
times that the token containers, which represent the source and target SemanticElements
of the Associations, have been activated (i.e., the value of the k.pt attribute). The assump-
tion is that the more often an Association has been activated, the more relevant it is to the
input At. Next the algorithm tries to find an Association r ∈ Lp which has a source and a
target SemanticElement that matches es and et:

(r.s ⊆ es ∨ r.s ⊇ es)∧ (r.t ⊆ et ∨ r.t ⊇ et) (5.8)

where r.s is the source SemanticElement and r.t is the target SemanticElement of the
Association, i.e., the SemanticElements are verified for either being a child or a parent
element. The reason is that humans are ambiguous with how they express themselves,
i.e., they are sometimes very specific and, in other cases, very vague. Hence, the heuristic
needs to be tolerant towards both these types of human expressions. If there is an Associ-
ation that matches condition 5.8 we assume that the algorithm seemingly has been used
on a correct input and the spreading activation terminates. If, however, no Association
in Ap matches the condition, the algorithm reinitializes. The behavior is based on the
assumption that if no Association can be found in Ose which represents the complete in-
put triple es, ey and et this might be a case of reference transfer which must be validated.
Therefore, the best Association of Lp (i.e., the one with the highest rated source and target
SemanticElements) is used because based on the current token flow the Association rep-
resents the closest match to the input At. Next, the spreading activation is reinitialized
with a new A′:

1. The ’wrong’ SemanticElement within At (either es or et) is replaced with a Seman-
ticElement (r.s or r.t) of the best Association r ∈ Lp (in our example the element et

’Red’ is replaced with r.t ’E3’).

2. The old element which has been replaced (either es or et) is added to the list of con-
text elements in A′

c. It might provide helpful information for the next spreading
activation iteration. The assumption is that the user had a reason to mention the
specific SemanticElement in the natural language input text. Hence, the informa-
tion should not be thrown away as tokens from this SemanticElement are probably
closely related to the actually intended SemanticElement and may therefore pro-
vide the final clue as to which SemanticElement the user was referring to.

In our example, the process restarts with the new input A′
t ∶= {’CEO’, ’Drives’, ’E3’} and

A′
c ∶= {’Red’}. Note that A′

t seemingly contains two new SemanticElements: ’CEO’ as a
proposal for ’Person’ and ’E3’ for ’Red’. However, ’CEO’ is a specialization of ’Person’
and therefore not a completely new concept (as specified in definition 33). In the second
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iteration the same steps are executed. If a seemingly correct result can be found (for more
details, see section 5.9), the algorithm returns the new result. If, however, the conditions
for starting the heuristic would match again, the process stops. The reasons for only
allowing two iterations is that we could not detect any improvements if the heuristic
would be allowed to trigger a third or fourth iteration. On the contrary, sometimes this
lead to completely irrelevant false positives. Therefore, the algorithm returns the best
result from the first two iterations only.

The results of the second iteration for the previous example can be seen in figure 5.4.
Again, first the corresponding SemanticElements and Associations are marked as input
elements. Next the initialization takes place. The token flow this time leads to the Seman-
ticElements ’Driver’, ’Car’, ’CEO’ and ’E3’. The analysis process finally can not identify
any more specific SemanticElements than those which have been part of A′. Further as
A′ has been found within Ose (meaning that there is a triple ’CEO’ → ’drives’ → ’E3’) the
algorithm terminates. The variable R.ps is set to the SemanticElement ’CEO’. Also, the
SemanticElement ’E3’ is assigned to R.pt

Figure 5.4.: The four phases of the second spreading activation iteration

The last algorithm step calculates the value R.v which represents if and how well the
information of At exists within Ose. Two different cases have to be distinguished:

1. The first case occurs, if the heuristic did not step in, i.e., the initial source and target
elements are still the same. In this case, the process searches for a token t from the
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target container kt which equals t.start = es, i.e., it has the source container as its
starting position. If such a token can be found the computation of R.v depends on
the average energy of the token compared to t.s (the number of steps a token has
moved).

2. If the original source or target SemanticElements have been replaced by a new Se-
manticElement (due to the heuristic and a second iteration), a different calculation
is required. In this case, the value depends on the semantic similarity (based on the
minimum distance) between the initial elements es or et from At and the replace-
ment SemanticElements in A′

t.
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5.8. Termination

We are going to have a look at the most sensitive parts of the algorithm concerning its
termination. The explanation is separated into three sections according to the different
parts of the algorithm. We assume that the spreading activation algorithm is always only
executed on a valid SE-DSNL model (definition 14).

Initialization The initialization phase consists of creating token containers as well as the
initial tokens for each SemanticElement e ∈ A. The process does not terminate if there is
a circle within the Generalization hierarchy of Ose. However, guideline 3 in section 3.5.4
defined that Generalization hierarchies are not allowed to form circles within a valid SE-
DSNL model. Thus, the initialization phase terminates.

Token Flow The next step is the token flow process. Tnext must be empty in order for
the loop in algorithm 12 to terminate. This is the case if createTokenFlow can not create any
new tokens based on those which are available in Tcurrent. There are two different cases
that have to be analyzed:

1. If Tcurrent ≡ ∅, then Tnext ≡ ∅. This case is trivial as tokens are only being created
based on existing tokens. Hence, if Tcurrent is empty, Tnext also remains empty.

2. The token flow stops at a given time, therefore Tnext is not filled with any new
tokens. Three conditions have been stated in section 5.6, which can restrict tokens
from moving. Hence, if a token can not continue then Tnext will not be filled with
new tokens.

If either of both cases is met at runtime, the algorithm will terminate. In the following,
we will elaborate the second case, which is built upon the three conditions from section
5.6. The condition which matches every token, is the restriction of the maximum number
of steps t.s a token is allowed to move. We will in the following show that every token
must in a worst case scenario reach the maximum number of allowed steps. The attribute
is based on the t.s value of the tokens predecessor and is always larger in a new token
than its predecessor, i.e., t.s > t.pred.s, because t.steps ∶= t.pred.s + 1. Therefore, if the
threshold for not creating new tokens is set to a value n, the algorithm will not create
any new tokens after a maximum of n+ 1 algorithm iterations. Hence, the algorithm will
terminate because Tnext will remain empty.

Result Analysis The final phase of the algorithm is the analysis step. It consists of three
different parts. The first one is the identification of more specific elements. The consid-
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erations are similar to the initialization phase. As the identification phase is based on
analyzing the downwards faced generalization hierarchy of a Semanticelement it has to
terminate because the Generalization hierarchy does not contain circles and is therefore
finite.

The next part is the heuristic itself. The core part of it is the collection of specific Associa-
tions from Ose and their evaluation. This is a simple process which analyzes a finite set of
elements and must, therefore, also terminate. Further, the heuristic is only applied once,
therefore the overall algorithm has a maximum of two iterations.

The final part is the computation of a value indicating if At could be found in O. Two
different cases have to be distinguished. The first one steps in if the heuristic was not
applied. There, only the tokens of token container kt are analyzed (which again is a
finite set). In the second case, the heuristic is used. The minimum distance between two
element e1 ∈ Ose and e2 ∈ Ose is computed. It is based on Dijkstra which has been proven to
terminate. Further the graph is based on Ose which represents a finite set of elements.
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5.9. Result Computation

In this section we refine how and why the spreading activation algorithm calculates valid
results, i.e., results which comply to specific conditions. Therefore, we define conditions
and analyze how the results match these conditions.
The structure of the algorithms result R was specified in definition 33. R.ps and R.pt are
treated equally in the following, therefore we just write about R.p if we refer to R.ps or
R.pt. We show for R.p and R.v what a correct result is.

Computation of R.v The value R.v must lie within [0, 1] (i.e., 0 ≤ R.v ≤ 1) as we defined
in the requirements. It represents if and how well the information in At is available Ose.
0 indicates that the information could not be found (note that we don’t say that it does
not exist, we simply state that it does not exist in Ose). 1 indicates the definite existence
of At in Ose. Values which lie within ]0, 1[ (i.e., 0 < R.v < 1) are fuzzy values and state
that a certain similarity between the elements in At and Ose could be found (the higher
the value the higher the similarity). We show in the following that R.v always is within
[0, 1] and that a smaller value represents a lower similarity between A and O.

The computation of the value is based on two different cases:

1. In the first case the heuristic has not been applied. therefore the value R.v depends
on a token t and its path p ∶= path(t). Ideally the number of steps t.s is 2 and the
following holds for t:

containsElem(p, es)∧ containsElem(p, et)∧ containsElem(p, ey)

i.e., the token t moved over all triple elements within At. Further, 2 represents a
smallest possible path, i.e., the token moved over all elements within At with the
smallest number of steps. This case leads to an R.v value of 1.

2. In the second case t.s > 2 and t still moved over all elements in At on its path,
hence the computation depends on the path energy t.en. The value is normalized
and multiplied with a constant factor between (0, 1). This immediately leads to R.v
also being between (0, 1) because both the normalized value and the constant factor
have a value in (0, 1). The reason for the approach is that tokens which may have
a high average path energy may result in a value of 1. However, if we know that
the path of a token to the target element et was longer than the optimal minimum
value 2, At is not directly represented within O. Hence, R.v is further lowered with
a constant factor. The last case is that ey could not be found on the path of t (i.e.,
¬containsElem(p, ey)) or that no token moved from ks to kt at all. In this case R.v is
set to 0, as no semantic connection could be found between At and Ose.
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In case that the heuristic is applied R.v depends on the similarity between es and
e′s or et and e′t respectively. We only describe the correctness for the case es to e′s
(the other one is analogue). In a heuristic induced iteration the input A of the first
iteration consists of elements At of which two are known to be related directly (i.e.,
either es and ey or ey and et). In the input A′ for the second iteration all three ele-
ments in A′

t are connected directly. The value for R.v is now computed based on
the semantic distance between R.p′s and es, i.e., the source element which has been
proposed in the second iteration and the original input source SemanticElement es

of the very first iteration. The distance is normalized based on a maximum path
length which indicates a minimum of semantic relatedness between two Seman-
ticElements (the longer the distance between two SemanticElements is the lower
the semantic relation value R.v between both of them becomes):

R.v ∶= 1−
dist(es, R.p′s)

dMAX
(5.9)

where dist measures the distance between two SemanticElements in Ose, and dMAX

is a constant representing the maximum allowed distance within which two Se-
manticElements are considered to be semantically related. As the distance between
es and R.p′s is always greater or equal than 1 (if the distance would be 0 the heuristic
would not have been applied in the first case and it would not have come to this
situation), R.v can never be 1. Instead R.v is in [0, 1). This result is correct because
the heuristic only ’guesses’ a probably better suited result, therefore a value of 1 is
not allowed in case that the heuristic has been applied. R.v can only be 1 if At was
found in Ose.

Computation of R.p The algorithm sometimes identifies SemanticElements which
seem to be more likely than either es or et (as described previously in section 5.7). If
such elements exist, they are returned as R.ps and R.pt. R.ps and R.pt are only ’guesses’
and therefore showing their validity is difficult. We first introduce an assumption which
we base the validity on: The token container of a proposed SemanticElement R.p has a
larger k.pt value than the token containers of one of its Generalization hierarchy siblings
or parents. We explain the reason for this assumption in the following.

Let R.ps be a SemanticElement which is more specific than es, i.e., R.ps ⊂ es. It therefore
contains at least the same information as es. Each of the elements within A as well as
their children (and therefore also R.ps) has been initialized and used for the spreading
process. During the process the back propagation may have been initiated several times,
which increased the k.pt attribute of different token containers (as explained in section
5.6). Tokens can only move a certain distance (because of a limited number of steps and
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energy) as well as in a certain direction. Therefore, the effects of the backpropagation
mechanism are restricted to a certain area. We assume that SemanticElements within
Ose are closely related to each other for a reason, i.e., their real world counterparts are
related in the same way. Hence, km.pt > 0 indicates a semantic relation between the token
container em ∈ At and other concepts e ∈ A ∖ em. The same is true for an element R.p,
i.e., if it is closely connected to the elements in A, the value kp.pt will be larger than
0. Figure 5.5 shows a small example. There, At consists of the elements ’Engine’ and
’Car’ only. In the initialization phase the SemanticElements ’E1’ and ’E2’ are activated.
However, kE1.pt > kE2.pt because kE1 is activated once (a token from ’E1’ reaches the
SemanticElement ’Engine’ which was part of A). Tokens from ’E3’ can not reach either
’Engine’ or ’Car’, therefore kE2.pt = 0 and ’E1’ is the proposed element R.p for the input
element ’Car’.

Figure 5.5.: Example for the computation of R.p

In the following, we define several conditions which have to be fulfilled by the concepts
R.ps and R.pt. The conditions for R.pt work analogously.

1. R.ps ⊂ es ∨R.ps ⊆ e′s, i.e., R.ps must be a specialization of either es (the source Seman-
ticElement of A, i.e., the input of the first iteration) or more specific or equal than
e′s (the source SemanticElement of A′, i.e., the input of the second iteration). The
reason why R.ps can be equal to e′s is that e′s itself must be more specific than es, i.e.,
it is a proposal of the heuristic.

2. In order for an element R.ps to be chosen as a proposal for es it has to correspond to
the following condition:

kps.pt > 0∧ kps.pt > kes.pt∧∀km ∈ children(kes.e) km ≠ kps ∧ kps.pt > km.pt (5.10)

where kps is the container of R.ps, kes is the container of es and children returns the
token containers of all children of the SemanticElement kes.e. The condition basi-
cally specifies that an element R.ps is a valid proposal for es if it has been activated
more often than any other child of es.

R.ps is valid if it satisfies all of the those conditions. The first condition requires R.ps to
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be more specific than es or e′s. As the algorithm for identifying R.ps only analyzes the
children of es, the condition is easily met.
The second condition requires the token container of R.ps to have been part of more
propagations than the container of es or any child of es. This is easily proven by the
mechanism of the algorithm. It collects all children of the container kes in a list and sorts
it based on the containers pt attributes. If several children have the same highest value,
R.ps is not set. If there is exactly one child ki whose ki.pt attribute is also higher than that
of kes.pt, ki.e is assigned to R.ps.

Application of the Heuristic In the previous section we only looked at the case in which
R.ps ⊆ es. In this section we want to show that the results of the heuristic are valid. We
assume that if for an input A the result value R.v is in (0, 1) (i.e., all elements of A could
be found in Ose but its not a direct triple), there might be a better suited element e′s for
es (or e′t for et). This could lead to R.v = 1 if the element would, e.g., be part of an input
A ∶= {e′s, ey, et} for a first iteration of the algorithm. This means that by replacing either es

or et in A a full triple should be found within Ose which might better represent what the
user actually meant. The algorithm has to fulfill the following conditions (note that the
case in which et is being replaced works analogously):

1. rel(ey, et) ∨ rel(es, ey), where rel checks if two or more elements are directly related
to each other, i.e., the distance between all of them must be 1.

2. rel(e′s, ey, et), i.e., the replacement element e′s must be directly related to an Associa-
tion type element ey which is directly related to the SemanticElement et.

3. An element which is proposed as part of a second iteration must fulfill the following
condition:

∀e ∈ Ose e ≠ e′s ∧ rel(e, ey, et)∧weight(e′s, ey, et) > weight(e, ey, et) (5.11)

where

weight(e′s, ey, et) ∶= ks.pt+ ky.pt+ kt.pt (5.12)

where ks is the token container which represents e′s, ky represents ey and kt repre-
sents et. Condition 5.11 specifies that there may not be any other Association of
type ey from an arbitrary SemanticElement e to the SemanticElement et which has a
higher weight than the Association starting from element e′s.

In the following, we show that the results of a second algorithm iteration always fulfill the
previously specified conditions. We therefore look at the specification of the algorithm,
especially the specification of the heuristic in section 5.7. As it has been stated previously,
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the heuristic identifies only such cases in which either es or et are incorrect. This is done
by identifying a list of Associations Lp of type ey which are connected to either the Se-
manticElement es or et (thereby fulfilling condition 1). The algorithm sorts Lp based on
the pt attributes of the token containers which represent the source and target elements
of r ∈ Lp. The element e′s which replaces es must be part of one of the Associations r ∈ Lp,
therefore condition 2 is fulfilled. Further e′s is the source element of Association rbest ∈ Lp

with the highest rank. This fulfills condition 3 because Lp is sorted based on the pt value
of its token containers. Therefore, rbest is the best ranked Association if the pt value of its
elements is larger than those of the remaining relations in Lp. rbest further represents a
triple which is obviously a part of Ose (because it has been taken from Ose). If the algo-
rithm is therefore initiated with the triple which represents rbest, it returns 1 (according to
section 5.9). Hence, the result of the heuristic iteration is correct.
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5.10. Related Work

The origins of spreading activation based approaches date back to 1962, when Quil-
lian [190] developed a theory for semantic memory search. In 1968, Quillian introduced
the term "Semantic Network" [191]. It became the most used structure for associative
information retrieval processes. In 1975, Collins and Loftus [192] extended the work by
Quillian such that it could be used for experiments about semantic memory. Their work
is the basis for all of todays spreading activation approaches. Schiel [193] introduced
the concept of abstraction into semantic networks. Ontologies posses similar features,
making them alike to semantic networks. Therefore, we present approaches which use
spreading activation both on semantic networks or (more recently) on ontologies. The fo-
cus is laid upon spreading activation within word sense disambiguation scenarios, which
is a common use for spreading activation within natural language related tasks [194].

The most closely related concept to our approach seems to be that of Kleb and Abecker
( [195]), which disambiguate word senses based on RDF graphs. They state homonymy
and synonymy as their main problems (whereas we differentiate some more problems as
stated previously). Their approach does, however, not consider the problems of vague-
ness or reference transfer.

Tsatsaronis et al. ( [196], [197]) describe a spreading activation based approach, which
uses the information from a thesauri to create a spreading activation network (SAN) for
WSD. Their concept is used to disambiguate complete sentences at once. The background
knowledge used is from WordNet 2. In ( [198]) Tstsaronis et al. further evaluate the state
of the art of using spreading activation for WSD. They state that concepts, which use
semantic networks show the best results. Their approach is not capable of ’guessing’
better suited concepts than those, which have already been found.

Other approaches to WSD are seen by Agirre et al. ( [199]), which use a PageRank based
algorithm [200] to disambiguate word senses in the biomedical domain. Kang et al. [201]
created a semi-automatic, domain independent approach to WSD (whereas we focus on
specific domains). An ontology is created semi-automatically and used for disambiguat-
ing the words of a given sentence by finding a least weighted path through the concepts
within the ontology. In contrast to our approach they can not resolve reference transfer.

Spreading Activation has been used in other domains as well. Two of these approaches
are described in the following. Hussein et al. ( [202]) used it for context adaptation.
Hence, they model application domains within an ontology. After each user action, an
activation flow through the network filters those nodes, which are seemingly most rele-
vant to the current circumstances.

Katifori et al. [203] propose to use spreading activation for personal information manage-
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ment in order to provide "context inference to tools that support task information man-
agement". They activate concepts which are of importance to the user based on different
time scales. These correspond to three different timescales of the human memory [204].
Based on this, their spreading activation infers context elements from an ontology which
are most likely to be relevant to the user based on his / her latest set of actions.
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6.1. Introduction and Motivation

The analysis process of SE-DSNL delivers precise semantic information, stored within an
InterpretationModel. As part of a project scenario the question was asked how SE-DSNL
can be used to deliver textual support requests automatically to responsible employees.
In order to do so the system must be capable of deciding which InterpretationModel is
relevant to which employee. The task can be seen as a problem of classification, i.e., the
content of the InterpretationModel must be analyzed according to a set of criteria, all of
which are associated to different categories. Depending on the evaluation of those crite-
ria the request is assigned to a corresponding category. For example, a set of criteria can
contain a single criterion, which is about engine problems. The criterion is associated to
a category ’Engine Development’. If a corresponding textual request would be analyzed,
which mentions engine problems, the previous criterion can be evaluated successfully on
the request. Accordingly, the request would be sent to the ’Engine Development’ depart-
ment. However, it is sometimes not enough to only classify an InterpretationModel but
it is also necessary to extract the information a criterion matches to. This can be seen as
an IR task (see section 2.3), i.e., information which conforms to specific conditions must
be identified and returned to the user.

In order to solve this challenge we developed a concept which can be used for both classi-
fication and information retrieval (it can be best compared to a combination of a SPARQL
’Select’ and ’Ask’). The approach is based on so called Patterns. A Pattern specifies a
structure between a given set of SemanticElements, which must be part of the Interpre-
tationModel a Pattern is applied to. If a Pattern matches an InterpretationModel we say
that the interpretation has been classified according to the specific Pattern. The result
of the Pattern application process is that each Pattern element has been assigned to a
corresponding InterpretationElement. The approach allows us, e.g., to filter texts which
describe a specific scenario in the automobile sector and extract the information which
conform to the Pattern. In this chapter we describe the concept and the problems which
it has to solve.

The chapter is structured as follows: In section 6.1 we introduce both the problems as well
as requirements which we have to consider for the tasks of both classification as well as
IR. Next, the structure of the Pattern as well as their inherent semantics are specified in
sections 6.2 and 6.3. Section 6.4 presents the algorithm which resolves a Pattern on a
given InterpretationModel. Finally, we conclude the chapter by delimiting the approach
from existing ones in section 6.5.
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6.1.1. Problem De�nition

Classical approaches to IR and classification are built upon keyword based concepts, i.e.,
the requests are parsed for a set of keywords. If, e.g., a specific number of keywords can
be found within the request and there is a category which is represented by the same
set keywords, the request are classified accordingly. A similar approach for semantic
information can, e.g., count the different SemanticElements of a specific type in an Inter-
pretationModel. This already yields some advantages over purely lexical classification
or IR approaches, because the SemanticElements in an InterpretationModel are unam-
biguous in contrast to the words in the text. The approach is straight-forward and simple
to realize, however, there are additional advantages if the semantic structure within the
interpretation is also taken into consideration. Classifying a semantic interpretation or
retrieving information from it therefore bears a set of different problems:

1. InterpretationModels are the result of analyzing natural language text. As humans
tend to use multiple ways of describing scenarios, actions, etc., different interpreta-
tions for the same scenario may represent different structures. Still, there is a large
possibility that some concepts, which are specific to the situation, are almost always
identical or at least very similar (note that we are talking about the semantic, not
the lexical or syntactic level). They most probably are also related to each other in
similar ways, i.e., different InterpretationModels about the same topic contain rela-
tions of similar types between the concepts. An example is that one interpretation
contains the SemanticElement ’Run’ which might be used to relate a person and a
location, whereas in another interpretation, instead of ’Run’ ’Walk’ is the type. Both
SemanticElements ’Walk’ and ’Run’, however, share a very close LCA ’Move’ (see
section 4.3.2), which indicates a strong similarity between both. The challenge is
that in order to analyze and identify such similarities the user should not have to
create different criteria for all those interpretations. Instead one criterion for similar
interpretations should suffice, i.e., while designing the Patterns the user must be
capable of introducing a certain degree of tolerance.

2. In several scenarios it is necessary to know the amount of things, i.e., it must be
possible to filter the interpretations based on the number of elements of a specific
type. For example, if an author mentions two persons sitting in a car, the Pattern
should be capable of identifying only such interpretations which mention at least
two persons. This can be difficult in case that more elements of a specific type are
contained within the interpretation. The reason is that if more elements exist than
what has been specified, the algorithm must be capable of selecting only those Se-
manticElements which also match the other criteria within a Pattern. As an exam-
ple imagine an interpretation containing three references to the SemanticElement
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’Person’, two of which are related to the element ’Car’. The third ’Person’, how-
ever, has no relation to the ’Car’ element. A potential Pattern specifies that the two
’Person’ elements must be related to the ’Car’. The algorithm has to identify those
two ’Person’ elements which also have the relation to the ’Car’. Therefore, it might
have to try different combinations of the ’Person’ elements in order to find a way
how it can solve the Pattern correctly. Aside from this type of cardinality problem
there is another challenge which, however, is out of scope of the thesis and is only
mentioned for completeness. Humans tend to mention some things and leave out
others because they are implicitly known to people who experienced similar situa-
tions. Identifying missing information is a very difficult task to handle in a compu-
tational domain despite semantic knowledge, as the problem would require very
complex knowledge and reasoning about the scenario the user described. Thus it
is not in the scope of this thesis.

These two challenges represent the main issues that arise in creating a Pattern based IR
and classification concept for InterpretationModels. In the next section we specify the
requirements which our approach has to fulfill.

6.1.2. Requirements

In the previous section 6.1.1 two challenges were mentioned which are difficult to handle.
Based on these, a set of requirements has been created which our approach has to fulfill
in order to sufficiently retrieve information from and classify InterpretationModels.

1. The type of the SemanticElements in an interpretation must be identifiable, i.e., the
user must have the possibility of specifying SemanticElements which have to exist
within an InterpretationModel. Further the algorithm must be capable of correctly
identifying the type as well as take the inheritance hierarchy into consideration
while checking the type of an element.

2. The reference for type checking must be the SemanticScope Ose (see section 3.3.2
and further) which is also used as an anchor by the InterpretationModels (mean-
ing that the interpretations also reference Ose in order to specify the types of their
elements). That means that in order to check if an element of the Pattern and an
element of the interpretation reference the same type the algorithm must validate if
the SemanticElements are related within the SemanticScope.

3. The semantic content of a text is defined by the relations between the SemanticEle-
ments of the words. Hence, the algorithm must be capable of classifying inter-
pretations and retrieving information from them which correspond to the type of
the relations between the Pattern elements. For example, there are two interpreta-
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tions m1, m2 ∈ Oi. Both reference the SemanticElements e1, e2 ∈ Ose (i.e., there are
InterpretationElements which reference the corresponding SemanticElement, but
for simplification we only refer to the SemanticElements and leave the Interpreta-
tionElements out). m1 additionally contains an Association a1 of type e3 ∈ Ose from
e1 to e2, whereas m2 has a different Association a2 of type e3 from e2 to e1. Classifica-
tion or IR which is solely based on identifying the correct SemanticElement types,
might classify both interpretations as belonging to the same category (because both
reference e1 and e2). However, if the Associations are also taken into consideration,
m1 and m2 can be differentiated.

4. Sometimes multiple instances of the same type can be mentioned by a human.
Therefore, the number of instances of a single type should be countable, e.g., texts
which reference two or more persons which sit in a car. However, it should not be
necessary to specify every single instance within a Pattern specification. Instead, it
must be possible to define a cardinality for an element, which specifies how many
occurrences of the type should be available within an InterpretationModel.

5. Besides validating the existence of specific type occurrences, it is also useful to
check for the absence of specific elements. This can refer to both single SemanticEle-
ments which should not be contained within an interpretation as well as complete
relations which may not exist between elements of a specific type.

6. Humans tendency towards ambiguities also allows for interpretations to consist of
different structures despite still containing the same semantic content (as already
mentioned in section 6.1.1). This makes classification of as well as IR from interpre-
tations more difficult, because multiple different structures need to be recognized.
Hence, the concept must provide a certain tolerance towards specific types of struc-
tural as well as semantic variations. One potential concept here is transitivity, i.e., if
one element a is related to b and b is related to c, then a is also related to c. Therefore,
it might be sufficient to define that a semantically abstract and transitive relation
between two elements exists instead of defining its precise type.

7. The algorithm does not have to find the best way a Pattern can match an interpre-
tation. Instead it is sufficient if the Pattern matches the interpretation. That means
that as soon as the algorithm can verify that a Pattern completely matches an inter-
pretation the algorithm can terminate. In contrast, however, it has to check every
possible combination of elements until there are either no more combinations left
or the Pattern can be resolved correctly.
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6.2. Pattern Metamodel

Based on the previous requirements, we developed a concept which fulfills the previ-
ously specified requirements. The concept is based on the meta model shown in figure
6.1 (the specific semantics of the different attributes are explained in more detail in sec-
tion 6.3). The elements Scope, ReferencableElement, Element and SemanticElement are
known from previous scopes (see chapter 3). Again, there is a specific Scope element: The
PatternScope element. It contains all AbstractPatternElement. There are two specializations
of the element: Pattern and SemanticPatternElement. The first one is the main element of
the Scope. It defines what belongs to a Pattern. It therefore references all the seman-
tic information and structures which should be identified within an InterpretationModel.
Next, the SemanticPatternElement is used to define the semantic content of a Pattern. The
element contains four different attributes: First, minCardinality and maxCardinality define
the minimum and maximum number of elements of a specific type (the type is given via
the relation semanticType) which have to exist within an interpretation. Next, the attribute
necessity defines if an element must be found in an interpretation or if it is a ’nice-to-have’.
The final attribute extendedMatching can be set if the Pattern resolution algorithm should
use knowledge from Ose to identify an InterpretationElement. The SemanticPatternEle-
ment is differentiated in two other elements. The PatternElement represents the ’nodes’ of
a Pattern (a Pattern itself basically represents a graph like structure). The other element
PatternRelationship is used to model the relations between the different PatternElements.
It further contains multiple additional attributes. The first attributes minTargetCardinality
and maxTargetCardinality define a specific type of cardinality, which is explained in sec-
tion 6.3. The attribute transitivity allows the definition of different types of transitivity for
a relation.

We can now specify the PatternScope:

Definition 34 (PatternScope)

Let

Op ∶= {p1, .., pn} (6.1)

be the PatternScope where p1, .., pn are different Patterns within the PatternScope.

The structure of a Pattern is specified as follows:

Definition 35 (Pattern)

Let a Pattern p ∈ Op be defined as the set

p ∶= {p.E, p.R} (6.2)
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Figure 6.1.: Pattern Metamodel

where p.E is the set containing all PatternElements and p.R is a set containing all
PatternRelationships of the Pattern. Further let p.E ∩ p.R = ∅. Each element e ∈
p.E ∪ p.R is defined as

e ∶= {e.sem, e.Rout, e.Rin, e.minC, e.maxC, e.nec, e.ext} (6.3)

where e.sem ∈ Ose is a link to a SemanticElement in the SemanticScope, e.Rout is a set of
outgoing PatternRelationships, e.Rin is a set of incoming PatternRelationships, e.minC
is the same as the previously specified minCardinality attribute, e.maxC equals the
maxCardinality attribute, e.nec is the same as the necessity attribute and e.ext equals
the extendedMatching attribute. Further all elements r ∈ p.R contain the attributes

r ∶= {r.sem, r.minC, r.maxC, r.nec, r.ext, r.minTarC,

r.maxTarC, r.trans, r.src, r.trg}
(6.4)

where the first four attributes are the same as specified for the former element e,
r.minTarC equals the minTargetCardinality attribute, r.maxTarC equals the maxTar-
getCardinality and r.trans is the same as the transitivity attribute of the PatternRela-
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tionship. r.src ∈ p.E specifies the source of the relationship, whereas r.trg defines the
target of a PatternRelationship.



6.3 Pattern Semantics 181

6.3. Pattern Semantics

The basic semantics are encoded within the structure of the Pattern. The structure is
formed by using PatternElements which are connected using PatternRelationships. An
example is a Pattern p ∈ Op and two PatternElements e1, e2 ∈ p.E, which are connected by
a PatternRelationship r ∈ p.R. In order to identify the structure within an Interpretation-
Model m ∈ Oi, the interpretation has to contain two ConstructionInterpretationElements
i1, i2 ∈ m.Econ as well as an AssociationInterpretation a ∈ m.Rass from i1 to i2. Then if

i1.sem.sem ⊆ e1.sem∧ i2.sem.sem ⊆ e2.sem∧ a.typ.sem ⊆ r.sem (6.5)

holds, i.e., if e1 references the same or a supertype of the SemanticElement of i1 and e2 has
the same or a supertype of i2 and the same is true for r and a, p matches m. This means
that if a Pattern is applied to an interpretation, the algorithm tries to identify a structure
within the interpretation which is similar to the structure defined in the Pattern. The
problem of this approach is that interpretations come in many different shapes because of
the different ways humans express themselves. Hence, one might need several different
and complex Patterns to identify the same scenario in slightly different interpretations.
Another possibility is to configure the Pattern such that it contains a certain tolerance.
This can be done by using the attributes which have been introduced in section 6.2. Their
semantics is explained in the following.

6.3.0.1. Cardinality

In texts often several words may reference the same semantic type, i.e., those words may
actually refer to the same real world entity or, at least, they refer to entities of the same
type. If, e.g., two ConstructionInterpretations refer to the same entity, there is (in case of
a pronominal anaphora) an Association of type ’Equal’ between both. As the ’Equal’
Association is both symmetric (i.e., for two ConstructionInterpretations i1, i2 ∈ m.Econ

i1.sem = i2.sem⇒ i2.sem = i1.sem) as well as transitive (i.e., for three ConstructionInterpre-
tations i1, i2, i3 ∈ m.Econ i1.sem = i2.sem ∧ i2.sem = i3.sem⇒ i1.sem = i3.sem), ConstructionIn-
terpretations which are connected through an ’Equal’ association, all reference the same
entity. Such a set is called an equivalence set. However, if there are two Construction-
Interpretations i1, i2 ∈ m.Econ, which are not connected through an ’Equal’ Association,
we assume that they reference different real world entities, although both i1 and i2 can
still reference the same SemanticElement. Therefore, there are two different equivalence
sets.

The cardinality attribute defines how many equivalence sets of a specific semantic type
(indicated by the i1.sem attribute of i1 ∈ m.Econ) must be available. The attribute e.minC for
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Figure 6.2.: A Pattern, which requires 2..5 persons which sit in a car

Figure 6.3.: One interpretation matching the Pattern ’Persons Sit In Car’

a PatternElement e ∈ p.E ∪ p.R therefore represents the minimum number of equivalence
sets which should be available in an InterpretationModel m ∈ Oi. It represents a hard
constraint, i.e., if there are not enough equivalence sets, the minCardinality constraint is
violated.

In contrast, the attribute e.maxC for a PatternElement e ∈ p.E∪ p.R is handled as a soft con-
straint, i.e., if there are more equivalence sets than there are supposed to be, the matching
value of the overall Pattern is lowered for an InterpretationModel m ∈ Oi. This does,
however, not completely rule out a Pattern for m. The reason for handling the maxCardi-
nality this way is that in longer texts it is not known if different elements of the same type
are later used in a different context, i.e., a context which applies to a completely different
Pattern.

A special case occurs if for an element e ∈ p.E ∪ p.R e.minC = 0 ∧ e.maxC = 0. There must
not be any element of a specific semantic type within the InterpretationModel.

Figure 6.2 shows a Pattern which requires two to five persons to sit in a car (the car has the
cardinality 1..1, i.e., there should be exactly one car in the interpretation). A correspond-
ing interpretation can be seen in figure 6.3 (note that these InterpretationModels are sim-
plifications, i.e., normally not the SemanticElements are connected directly; Instead the
ConstructionInterpretations are connected with AssociationInterpretations; Further, each
ConstructionInterpretation references one single SemanticElementInterpretation, which
specifies the semantic type). Here, a ’CEO’ and his wife sit in a specific car. The Pattern
in figure 6.2 matches the Interpretation perfectly, because there are two elements of type
’Person’ which are both related to the single element of type ’Car, using relations of type
’Sit’.
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Figure 6.4.: A Pattern, which requires one specific car to have two colors; The cardinal-
ity values are values for the minimum and maximum target cardinality at-
tributes

Figure 6.5.: One interpretation matching the Pattern ’Two Colored Car’

6.3.1. Target Cardinality

The target cardinality attributes r.minTarC and r.maxTarC for a PatternRelationship r ∈ p.R
are special cases of the normal cardinality attributes. They define, how many Associa-
tionInterpretations of a specific type must exist per source ConstructionInterpretation. In
contrast, the normal cardinality attributes define how many AssociationInterpretations
of a specific type must exist in the complete semantic interpretation.

An example can be seen in figure 6.4. The PatternRelationship ’CarBodyColor’ has a
target cardinality of 2..2 as well as the extended matching attribute set to true (this is de-
scribed in section 6.3.3), i.e., exactly two colors must be associated to one car. A matching
interpretation can be seen in figure 6.5. The car is associated to two colors (the ’State’ asso-
ciation matches the ’CarBodyColor’ PatternRelationship because of the extended match-
ing attribute). Therefore, the target cardinality of 2..2 can be resolved correctly on the
interpretation. If either one of those two relationships are missing, the ’Two Colored Car
Pattern’ would not match the interpretation.

6.3.2. Necessity

The attribute e.nec of an element e ∈ p.E∪ p.R specifies if e is a ’must-have’ element or not.
It can have two values:

1. Always: If the necessity of an element is set to ’Always’, the element must always
be found within an InterpretationModel in order for a Pattern to match the inter-
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Figure 6.6.: An example for a Pattern, where one relations necessity is set to ’Eventually’

Figure 6.7.: Two interpretations matching the ’Drive and Listening Pattern’

pretation. If the corresponding element is not found, the Pattern does not match
the interpretation.

2. Eventually: If the necessity of an element is set to ’Eventually’, the element does
not need to be found within an InterpretationModel. However, finding the element
helps in resolving the corresponding Pattern on a specific semantic interpretation.

The default case is the value ’Always’. An example for the attribute can be seen in fig-
ure 6.6. The Pattern simply specifies that a matching interpretation should contain a
SemanticElement ’Person’, which must be connected to another SemanticElement ’Car’.
Additionally, if possible, ’Person’ should also be connected to the element ’Music’ with
a relation of type ’ListenTo’. In figure 6.7 two different interpretations can be seen. The
interpretation on the left side matches the Pattern from figure 6.6 completely, i.e., all three
elements as well as both PatternRelations can be resolved. The interpretation on the right
side, however, misses the ’Listen To’ relation. Still, the Pattern ’Driving and Listening’
can be resolved on the right interpretation, because the ’Listen To’ PatternRelationship
has been marked as ’Eventually’.

6.3.3. Extended Matching

The attribute e.ext for an element e ∈ p.E ∪ p.R allows a more tolerant approach to match-
ing the specified semantic type of a ConstructionInterpretation to the semantic type of
PatternElement. Figure 6.9 represents four slightly different interpretations. We are go-
ing to define a Pattern which only retrieves interpretations in which a car with a red body
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Figure 6.8.: Ontology excerpt for the extended matching example

color is mentioned. Interpretation one contains the correct information. Interpretation
two might also be valid, its problem is that the relation between the two ConstructionIn-
terpretations is very generic. As can be seen in the ontology excerpt in figure 6.8, ’State’
is a parent class of ’CarBodyColor’. Hence, we don’t know, what the author of the text
of interpretation two might have meant exactly. We, however, still want to be able to re-
solve the case (some form of benefit of the doubt). Interpretation three in contrast is about
something completely different, as the interior color of the car has been specified (and not
the body color). In interpretation four, the body color of the car is mentioned, however,
the color is black and not red. Therefore, interpretation four is also not correct.

Potential Patterns which can identify the correct interpretations one and two can be seen
in figure 6.10. The Pattern ’CarBodyColorRedPattern’ on the left side defines that a ’Car’
should be related to ’Red’ using a relation of type ’CarBodyColor’. If this is applied to the
previous interpretations, it would match only to the first one. The Pattern ’CarStateRed-
Pattern’ in contrast matches the interpretations one, two and three. As can be seen, nei-
ther of both Patterns can find the correct interpretations only. In this case, the extended
matching can be applied. If the attribute is set to true on the relation between the ’Car’
and the color ’Red’ in the ’CarBodyColorRedPattern’, the resolution algorithm does not
only search for children of the type of the PatternRelationship element, but also for its
parents. Regarding interpretation two of figure 6.9, ’State’ is a parent of ’CarBodyColor’
(as can be seen in figure 6.8), therefore the Pattern can correctly be applied to it. How-
ever, it still does not match to interpretation three (as ’CarInteriorColor’ is a sibling of
’CarBodyColor’ and not a parent) and four (as ’Black’ is a sibling of ’Red’).

6.3.4. Transitivity

The concept of transitivity defines that if there are three elements A, B and C and A is
connected to B and B is connected to C, A is also connected to C. Transitivity can be
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Figure 6.9.: Four similar interpretations for the ’ExtendedMatching’ attribute

Figure 6.10.: Two Patterns for the ’ExtendedMatching’ attribute

helpful for PatternRelationships as it allows a relaxation of a normally strongly fixed
structure, i.e., SemanticElements must not be closely related but there could be some ad-
ditional SemanticElements and relations between them. It can be helpful to identify such
types of relations between different elements since humans tend to not only describe
the facts and information which they want to communicate, but also accompany the in-
formation with additional (sometimes irrelevant) facts and knowledge (e.g., gossip). In
order to still identify the correct structures within an interpretation, relations between
different concepts must be identified which might contain parts that are not relevant. For
a PatternRelationship r ∈ p.R, the attribute r.trans can be set to two different types of
transitivity:

1. Directed Transitivity: It is based on the directed AssociationInterpretations between
the ConstructionInterpretations. Let us consider the following example: If the Con-
structionInterpretations i1, i2, i3 ∈ m for an InterpretationModel m ∈ Oi are connected
and there is an association from i1 to i2 as well as one from i2 to i3, then i1 is also
connected to i3.

2. Undirected Transitivity: In this case, the normally directed AssociationInterpreta-
tions in an InterpretationModel are treated as undirected relations. Hence, regard-
ing the previous example with the ConstructionInterpretations i1, i2 and i3, i3 is also
connected to i2 and i2 to i1, therefore i3 is also connected to i1. This is in addition to
the information which have been generated from the directed transitivity.

It must be mentioned that transitivity always also checks the type of the relations as
described previously.

If the maximum cardinality of a transitive PatternRelationship is set to 0, no relation may
exist between the source and the target ConstructionInterpretations which should rep-
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Figure 6.11.: A generic Pattern with an undirected transitivity PatternRelationship

Figure 6.12.: Two interpretations for the ’No Association’ Pattern

resent the PatternElements. An example can be seen in figure 6.11, which describes a
generic Pattern, where two elements are connected to each other via a generic Pattern-
Relationship. The relationship has its transitivity attribute set to ’Undirected’, its cardi-
nality is 0..0 and its type is ’Object’ (the most generic element in the ontology). Hence,
there should be two InterpretationElements within an InterpretationModel which are in
no way connected. Figure 6.12 shows two different interpretations. The interpretation
’PersonWithMusicInCarModel’ is fully connected: ’Music’ and ’Car’ are both associated
to the element ’Person’. ’Listen To’ is the type of the relation between ’Person’ and ’Mu-
sic’ and ’Sit In’ is the type of the relation between ’Person’ and ’Car’. Therefore, the
previous Pattern can not match the model. The other interpretation ’PersonWithMusic-
CeoInCarModel’, however, is not completely coherent, i.e., there are at least two elements
which have no relation between them. As can be seen, there is, e.g., no AssociationInter-
pretation between ’Person’ and ’Ceo’ or ’Car’. Hence, the Pattern can be applied to the
situation: No undirected path of generic SemanticElements can be found between those
two elements.
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6.4. Pattern Evaluation

The previous section explained how Patterns can be specified. In the following section
we describe the algorithm which resolves a Pattern on a given InterpretationModel. The
algorithm is separated in two phases. The first phase tries to identify a subset Pt ⊆ Op of
Patterns which seem to be suited for an InterpretationModel. The second phase evaluates
each of these Pattern p ∈ Pt on the interpretation. The reason for the Pattern preselection
phase is that the detailed resolution of a Pattern can be a time consuming task, depending
on the utilized attributes (e.g., a transitive, but absent PatternRelationship).

In order to explain the algorithm one additional definition is required. It is based on the
information which has been presented in the previous sections and is used throughout
the remainder of the chapter.

Definition 36 (Pattern Instance)

Let

pI ∶= {pI .m, pI .EI , pI .RI , pI .p} (6.6)

be a Pattern instance of a Pattern p ∈ Op, which is stored within pI .p. pI .m specifies
the InterpretationModel m ∈ Oi on which p has been instantiated. pI .EI is a table in
which every element e ∈ p.E is linked to a list of possible elements i ∈ m.E. Depending
on the cardinality as well as the necessity attributes of each PatternElement e ∈ p.E,
there can be zero or more associated InterpretationElements in pI .EI . Correspond-
ingly, pI .RI holds the equivalent information for all PatternRelationships in p.R w.r.t.
m.

6.4.1. Phase 1 - Selection

The task of the selection phase is to identify a set Pt ⊆ Op of Patterns which can match
an interpretation m ∈ Oi. A Pattern p ∈ Op is a possible candidate for m, if the semantic
types of the ConstructionInterpretations in m.Econ match the semantic types of the Patter-
nElements in p.E. While computing the matches between p and m, a rating is calculated.
Based on this value the algorithm decides if p should be evaluated further or not. In the
following these mechanisms are described in detail.

Selection of Patterns The selection of Patterns is based on the idea that each Patter-
nElement needs to be instantiated, i.e., only such Patterns can be instantiated whose
PatternElements have been assigned to elements from an InterpretationModel. The cor-
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responding code can be seen in algorithm 13. The algorithm starts by validating if for
every PatternElement e ∈ p.E there exists an element i ∈ m.Econ, whose SemanticElement
i.sem.sem ⊆ e.sem, i.e., the same as or a child of the PatternElement e (lines 3 to 11). Addi-
tionally, it might be the case that the e.nec attribute has been set to true. In this case, also
the other way around has to be checked, i.e., if e.sem ⊆ i.sem.sem (line 7). If in either the
first or the second case an element is the child of another one, this fact is stored in the
list patCand (lines 6 and 8). Next the algorithm validates if for every element, whose e.nec
attribute has been set to Always, there is at least one entry in the patCand list (lines 14 to
25). If not, the Pattern can not be applied to the interpretation. Thus, if one element of
the Pattern can not be applied to an interpretation m, the Pattern p is not considered for
further evaluation.

Algorithm 13 Pattern Selection Algorithm

Input: p: A Pattern
m: An InterpretationModel

Effect: Validates if p matches m; Returns TRUE if this is the case
1: procedure MATCHESINTERPRETATION(p, m)
2: patCand ∶= []
3: for all e in p.E do
4: for all i in m.Econ do
5: if isChild(i.sem.sem, e.sem) then
6: patCand ∶= patCand+ (e, i)
7: else if e.ext && isChild(e.sem, i.sem.sem) then
8: patCand ∶= patCand+ (e, i)
9: end if

10: end for
11: end for
12: alwaysElements ∶= 0
13: fulfilledElements ∶= 0
14: for all e in p.E do
15: if e.nec = Necessity.Always then
16: found ∶= false
17: alwaysElements ∶= alwaysElements+ 1
18: for all t in patCand do
19: if t[0] = e then found ∶= true
20: end if
21: end for
22: if found then fulfilledElements ∶= fulfilledElements+ 1
23: end if
24: end if
25: end for
26: return fulfilledElements = alwaysElements
27: end procedure
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Rating Patterns, which can be matched to an InterpretationModel in algorithm 13, have
to be rated, i.e., for each PatternElement to InterpretationElement mapping (which has
been stored within the patCand variable) a value is generated. The value represents how
semantically similar two mapped elements are. The similarity rating is based on the in-
tersection of semantic information of both elements, i.e., how big the information overlap
between the two elements is with respect to Ose. The larger the information overlap be-
tween two SemanticElements is, the larger their similarity value is, i.e., sim(s1, s1) ∶= 1
for s1 ∈ Ose. In contrast, the value is almost zero for two totally different SemanticEle-
ments (almost, because, as we specified previously in section 3.5.4, there must always be
a common root element in Ose, therefore two SemanticElements always have an LCA).
The algorithm works by counting all parent elements of e.sem and i.sem.sem. Then the
smaller value is divided by the larger value:

sim(s1, s2) ∶=
MIN(parents(s1), parents(s2))
MAX(parents(s1), parents(s2))

(6.7)

where parents(s1) returns the number of parents of s1 ∈ Ose. Note that the function counts
each element only once (in case that there is a diamond like generalization hierarchy).

Based on this formula, every set within patCand is rated, i.e., the similarity of all sets in
patCand is summed up and averaged leading to the similarity rating between a Pattern
and an InterpretationModel:

rating(p, m) ∶=

∑
t∈patCandp,m

sim(t.e.sem, t.i.sem.sem)

#(patCand)
(6.8)

where patCandp,m is the patCand table of a Pattern p and the InterpretationModel m, t.e
references the PatternElement and t.i specifies the InterpretationElement of a mapping
set t. The final step is to select the Patterns for the set Pt. The corresponding code is
shown in algorithm 14. It first calculates the average rating for all Patterns matching a
given InterpretationModel m (lines 4 to 6). Next, every Pattern which has either an equal
or higher rating than the value of avgRating or MINPattern (a constant threshold), is added
to Pt (lines 10 to 12). Pt represents a reasonable subset of Patterns from Op which are
suitable for further evaluation. Next the structure of all Pattern p ∈ Pt is matched against
m.
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Algorithm 14 Pattern Rating

Input: Op: The set containing all Pattern of an SE-DSNL model
m: An InterpretationModel
MINPattern: Constant threshold

Effect: Returns a set Pt which contains all Patterns that seem to match m
1: procedure PATTERNRATING(Op, m, MINPattern)
2: avgRating ∶= 0
3: Pt ∶= {}
4: for all p in Op do
5: avgRating ∶= avgRating+ rating(p, m)
6: end for
7: avgRating ∶= avgRating/#(Op)
8: for all p in Op do
9: r ∶= rating(p, m)

10: if r >= avgRating ∣∣ r >= MINPattern then
11: Pt ∶= Pt + p
12: end if
13: end for
14: return Pt
15: end procedure

6.4.2. Phase 2 - Evaluation

So far, a set of Patterns Pt has been selected. All of its elements are candidates for match-
ing a given interpretation m ∈ Oi. The algorithm continues by checking which of the Pat-
terns p ∈ Pt definitely matches m. This is done by validating the structural information
of p on m. The problem with this approach is that the analysis can have a high complex-
ity, i.e., there may be several ways how p can be matched to m. The problem is further
increased due to several attributes which can be specified on the different elements of a
Pattern.

Overall, the structural matching is handled as a search problem, i.e., the algorithm tries to
find exactly one way how it can correctly resolve p on m. A Pattern is correctly resolved
if, based on its structure and its attributes, the Pattern can be matched on an interpreta-
tion, i.e., for all information of the Pattern a corresponding and matching element in the
interpretation can be found.

An overview of the algorithm is shown in figure 6.13. Basically, the algorithm starts
with an initial state (i.e., S1 in figure 6.14) and, from there, creates a new state (e.g., S2).
A ’state’ corresponds to one step in searching the ’goal’, i.e., finding a way to correctly
solve a Pattern p ∈ Pt on an InterpretationModel m ∈ Oi. In each state the algorithm tries
to instantiate a single PatternElement from p.E, thereby resolving the Pattern iteratively.
Next, it inserts new information in the state about how a specific PatternElement can be
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Figure 6.13.: Overview of Phase 2

instantiated with an element from m. The new information is validated, i.e., based on the
constraints in the Pattern, the instantiation is checked for its validity. If the validation is
not successful, the algorithm returns to the previous state (in the example, this is S1) and
from there on creates a new state (e.g., S3). The process is being repeated until there are
either no more PatternElements available and the last state was validated correctly (in
this case the Pattern was resolved successfully) or there are no possibilities left to instan-
tiate a required PatternElement (i.e., one whose necessity attribute was set to ’Always’).
In the latter case, p does not match m. However, as soon as one state has been discovered
in which all PatternElements have been instantiated correctly, the algorithm terminates.
Of course there still can be further and ’better’ instantiations of the Pattern, however, it is
not the goal to find the best instantiation, but exactly one. In the following, the algorithm
is described in detail.

Parsing the Pattern structure In order to start the process, an arbitrary PatternElement
e is taken from p.E. The element is the initial element for the Pattern parsing process. An
example can be seen in figure 6.15. For the example element e1 has been chosen as the
initial element. The algorithm instantiates the PatternElement in the first state S1. Instan-
tiation means that for e1 corresponding elements i ∈ m.Econ are searched and ’attached’ to
e1. After that, validation takes place. We assume in our example that the elements which
have been assigned to e1, are correct, i.e., the validation of the state is successful. Next,
the algorithm analyzes each outgoing relation r ∈ e1.Rout as well as the corresponding
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Figure 6.14.: Example of states

Figure 6.15.: Example of a Pattern structure with the corresponding states

target elements r.trg. In the example, there is only one relation outgoing from e1 to the
Pattern element e3, both of which (the relation and the element e3) are instantiated in a
new state S2. However, the instantiation can not be validated correctly (indicated by the
little red cross), therefore we have to return to the previous state S1 and search for an-
other state in which e3 and the relation from e1 to e3 can be instantiated correctly. In the
example this is S3. However, another problem occurs. Yet not all elements of the Pattern
have been instantiated: The relation between e3 and e2 as well as e2 itself are missing. The
problem is that there is no relation outgoing from e3 which could lead to e2. Therefore,
the algorithm starts backtracking, i.e., every time a new element is reached also all of
its incoming relations e.Rin as well as the elements on the other side of the relation are
checked. Hence, in figure 6.15 there is a new state S4 which holds an instantiation for the
Pattern element e2 as well as the relation from e2 to e3. We assume that the instantiation
in S4 is valid, therefore the Pattern has been resolved correctly on a given interpretation.
Next we show how exactly the instantiation as well as the validation of a state works.

Instantiation and Validation of a Pattern Element In order to instantiate a Pattern p
on an InterpretationModel m, we first define the PatternElement instantiation itself:
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Definition 37 (PatternElement Instantiation)

Let p ∈ P be a pattern and m ∈ Oi be an InterpretationModel. The instantiation func-
tion is defined as

θ ∶ p.E → P(m.Econ) (6.9)

where θ returns a set of ConstructionInterpretations for a given PatternElement.

In order for an instantiation to be successful, two conditions have to be met:

1. For a given PatternElement e ∈ p.E and its semantic type e.sem there must be a set
E′con ⊆ m.Econ, such that

∀i ∈ E′con i.sem.sem ⊆ e.sem (6.10)

i.e., every potential instance i of a PatternElement e must be of a semantic type
which is either the same as or a child of e.sem (in case that e.ext is true, e.sem can also
be either a child of or equal to i.sem).

2. Every ConstructionInterpretation can only be used in one instantiation, i.e., there
must not be two or more PatternElements which contain the same ConstructionIn-
terpretation in their set of instances:

∀e1 ∈ p.E ¬∃e2 ∈ p.E ¬equal(e1, e2)∧ overlap(θ(e1), θ(e2)) (6.11)

where equal(e1, e2)⇔ e1 = e2, i.e., it checks if two PatternElements are identical and
overlap(θ(e1), θ(e2))⇔ θ(e1)∩ θ(e2) ≠ ∅, i.e., it returns true if the intersection of two
sets is not empty.

The process of instantiation itself is simple. The algorithm searches for elements within
m which match the two prior conditions given a PatternElement e ∈ p.E. The algorithm
tries to instantiate it with at least as many elements as the cardinality attributes e.minC
and e.maxC specify (and, in case of PatternRelationships, also the target cardinality at-
tributes). If there are not enough matching elements in m available, the instantiation
fails. However, if there is a set Imat ⊆ m.Econ, which matches a PatternElement e ∈ p.E, and
the number of elements in Imat is larger than the value in e.maxC, a subset I′mat ⊆ Imat must
be chosen. Selecting the elements for I′mat is based on the ratings which have been gen-
erated as described in section 6.4.1. Additionally, elements i ∈ Imat which have relations
of the same type as the PatternRelationships of the current PatternElement e are being
preferred over those which do not. Hence, an element i ∈ Imat, which is an instance of a
PatterElement e ∈ p.E, is preferred in the process of creating the subset I′mat, if at least one
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of its relation r ∈ i.Rass can be used to instantiate one of the relations in e.Rout:

∃re ∈ e.Rout ∃ri ∈ i.Rass ri.typ.sem.sem ⊆ re.sem (6.12)

Hence, if #(Imat) > e.maxC, the number of possible states regarding the instantiation of
the PatternElement e is

#(Imat)!
(#(Imat)− e.maxC)! e.maxC!

(6.13)

However as the algorithm terminates as soon as it found one solution for the complete
Pattern it is rarely the case that all those combinations have to be tried by the algorithm.

The validation of an instantiation depends on the PatternRelationships. Until now the
only thing which was validated has been the cardinality attribute. In case that there are
not as many elements in the interpretation available as the e.minC attribute specifies, the
validation of the current state fails. If, however, the validation was done successfully, the
instantiated PatternRelationships have to be validated. There are basically four different
semantics of how a PatternRelationship r ∈ p.R can be specified. In the following their
semantics are explained and when validation fails.

1. Standard Matching: The standard matching process means r.trans ∶= None and
e.maxC > 0, i.e., no transitivity is set and the maximum cardinality is greater than
zero. The first thing, which has to be verified in this case, is that there are enough
AssociationInterpretations available in m which are of the same type as the corre-
sponding PatternRelationship r. Next, the semantic type of the source and target
PatternElement of r must correspond to the source and target elements of the Asso-
ciationInterpretations. If this is not the case, the instantiation fails.

2. Empty Matching: The empty matching occurs if e.maxC = 0, i.e., the maximum car-
dinality of a PatternElement or PatternRelationship is set to zero. This represents
that the information must not exist within an interpretation m. Hence, the algo-
rithm has to verify the absence of the element, i.e., if there are two PatternElements
e1, e2 ∈ p.E as well as a relation r ∈ p.R with r.src ∶= e1, r.trg ∶= e2 and r.maxC = 0, there
must not exist a structure within m such that any instances is ∈ θ(e1) and it ∈ θ(e2)
are connected by a relation ir ∈ θ(r). In other words: There must not be a relation
of the same type as r from is to it. If this is the case, the instantiation fails. Note
that this is a special case of instantiation, because the algorithm tries to identify a
missing element, therefore the PatternElement whose absence is validated can not
be instantiated. In the previous example the result of θ(r) is therefore an empty set
in a successfully validated state.

3. Transitive Matching: Transitivity specifies that if one element e1 is connected to an-
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other element e2 and e2 is further connected to another element e3, then e1 is also
connected to e3. During the structural matching, the type of the relations between
elements is relevant, even for transitive PatternRelationships. Therefore, if e1 is
connected to e2 via a relation of type t1 and e2 is also connected to e3 via the same
relation type t1, then e1 is also connected to e3 via a relation of t1. However, if e2 is
connected to e3 with a relation of type t2, it would become difficult to specify if e1

and e3 are still connected through transitivity. In this case the type of a transitive
PatternRelationship r is used to validate this situation. If both t1 ⊆ r.sem∧ t2 ⊆ r.sem
(i.e., both t1 and t2 are children of the element r.sem), e1 is connected to e3 via the
type of pr. If, however, no chain of AssociationInterpretations between e1 and e3

can be found which matches r.sem, there is no transitive relation.
The transitivity attribute can further be either ’directed’ or ’undirected’, e.g., the
previous example was a directed transitivity. Undirected transitivity means that
if t1 and t2 are children of r.sem, then e2 is connected to e1 and, further, e3 to e2.
This leads to e3 transitively being connected to e1. Also, the ’Empty Matching’ se-
mantics, as explained previously, can be applied to the transitivity check, i.e., if the
maximum cardinality is set to zero the algorithm tries to show the absence of any
relation chain which matches the type of the corresponding PatternRelationship
between two elements.

4. Domain Knowledge Matching: In case that neither of the previous cases can be
applied, the algorithm returns to a default, i.e., it searches for information within
Osewhich can match the PatternRelationship. For example, in a Pattern p there are
the PatternElements e1, e2 ∈ p.E as well as a PatternRelationship r from e1 to e2.
Further, the interpretation m contains an element is ∈ θ(e1). However, there is no
relation available from is which matches the type r.sem. In this case, the algorithm
analyzes if the SemanticElement is.sem.sem has an Association of the same type as
r.sem within Ose and the target of the Association is of the same type as e2. If this is
the case, the relation can again be instantiated successfully.

Every PatternRelationship, which is instantiated in a new state, has to fulfill its corre-
sponding criteria. If it can not, the current state is not valid and the algorithm returns to
the parent of the current state. However, if the instantiation is valid, the state can itself
act as a parent for new states. The process of instantiation is repeated until one state is
found which successfully fulfills the complete Pattern. In contrast, if no single state can
be found which successfully fulfills the complete Pattern, the Pattern can not be resolved
successfully.
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6.5. Related Work

Our approach is similar to such which try to retrieve information in OBIR based systems.
Therefore, the focus is on the relation of OBIR system and our approach. Some of them
were already discussed in section 4.4.

A common way for information retrieval from ontologies is RDQL [205] and SPARQL
[206], which allow querying RDF graphs. In the following, we only describe SPARQL,
since RDQL is a subset of SPARQL. It supports different types of queries:

1. SELECT queries variables which have been specified in a WHERE clause.

2. CONSTRUCT returns an RDF graph as the result of a specified graph template.

3. ASK returns just true or false given a specific query pattern.

4. DESCRIBE extracts an RDF graph, however, the resulting RDF graph is determined
by the SPARL endpoint, i.e., the system which ’answers’ the query request.

A Pattern can be seen as a mixture of a SELECT and an ASK SPARQL query. If the Pattern
can be resolved correctly, this corresponds to an ASK query which returns true. Every
PatternElement is bound to specific elements within an InterpretationModel, thereby re-
trieving information similar to a SELECT query. If, however, a Pattern is not resolved
correctly, this equals an ASK query which returns false. Regarding the expressiveness of
the query, the available variables of a SPARQL query correspond to SemanticPatternEle-
ments, the WHERE clause of a SPARQL query is best compared to the PatternRelation-
ships as well as the different attributes of a SemanticPatternElement. The main difference
between both approaches is the domain in which they are being applied. SPARQL is used
directly on RDF graphs which contain facts only, whereas Patterns can be used to iden-
tify specific structures within an InterpretationModel of natural language text. Depend-
ing on the domain and therefore how the InterpretationModels are constructed (i.e., how
the Constructions have been designed), Patterns and their structure must also be adapt-
able to the domain as well. The official SPARQL standard does not support things like
transitive properties, however, there are modified implementations of SPARQL available
which provide such functionality (e.g., ARQ [207] or Virtuoso [208]). Other features like
specifying the cardinality of an PatternElement are also not available within SPARQL,
but are supported to a certain degree in ARQ [209]. A difference between the SE-DSNL
Pattern approach and ARQ is that ARQ works on a complete RDF graph. In contrast, an
InterpretationModel is not itself part of the SemanticScope, but a separate scope which
references elements within the SemanticScope. Therefore, a Pattern can either query the
information within the InterpretationModel only or can be specified such that it further
accesses information within the SemanticScope.



198 Semantic Information Retrieval and Classification

There are other approaches for information retrieval from ontologies. One interesting
approach was taken by Toma [148]. He constructs a so called query ontology os from
either a query interface or an agent. The query ontology is matched against a set of on-
tologies o1..on which have previously been matched against a set of documents (however
these have not been extracted from the documents). The ontologies o1..on contain fac-
tual information in contrast to the InterpretationModel. The matching between os and
o1..on is based on a similarity measure by Niwattanakul et al. [210] and the Jaccard coeffi-
cient [211]. However, it is unclear, to which degree this approach considers structures or
attributes like transitivity in matching the query ontology to other ontologies.

Ruotsalo [212] developed an information retrieval system based on the vector space
model [213], which uses RDF triples instead of simple concept detection as it was of-
ten done in other approaches [214] [215] [216] [136] [217] [135] [146] [218]. Because of
RDF, however, it does not support more advanced features like transitivity or cardinality
attributes.
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7.1. Introduction and Motivation

In order to evaluate the theoretical ideas of this thesis, we developed a prototypical im-
plementation1 which should demonstrate the feasibility of our theoretical concept. In the
following, we describe the prototypical implementation and demonstrate with two case
studies that the theoretical concepts work the way that they were intended. The evalu-
ation is based on two parts: A descriptive as well as an observational evaluation (as it
is proposed by Hevner et al. [219]). The descriptive evaluation (section 7.3) is based on
scenarios and separated into three parts ( [220]):

1. Modifiability: We show the impact that different requirements for modifying
knowledge can have on the ontology. Further we argue how much effort is required
to fulfill these requirements.

2. Reusability: Certain scenarios can be solved much faster if knowledge or compo-
nents from previous projects are reused. We present different scenarios and how
reuse does affect them.

3. Performance: An important part of any application is its performance. Therefore,
we argue what the most critical part of the SE-DSNL concept is and which param-
eter has the biggest impact on performance.

To show that the overall concept works as intended we created two different case stud-
ies:

1. The first case study focuses on the question if and how SE-DSNL can be applied to
linguistically broad domains. We further investigated if the integration of semantic
knowledge into the analysis process is helpful. For this, several smaller texts were
randomly selected from an online car community (amongst others), for which an
ontology was built. Next the tests were analyzed by the SE-DSNL prototype and
the results were checked for their validity.

2. The second case study tried to answer the question if SE-DSNL can be used in a
real world application in order to control the application with natural language
commands. The difference between both case studies is that the linguistic expres-
siveness in this case study was limited to a bare minimum by using a simple con-
trolled natural language. Based on this, a set of commands was created which had
to be parsed with maximum precision and an acceptable performance. The result
of the parsing process had to be classified according to the function that the com-
mand should actually execute. Therefore, the Pattern concept from chapter 6 was
applied. Further the SemanticElements which should be used as input parameters

1Download: http://thesis.ds-lab.org/wolffischer/
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for the to-be-executed-function were retrieved from the InterpretationModels.

The chapter is structured as follows. First, section 7.2 gives an overview of the prototyp-
ical implementation. Next, we discuss the different scenarios in section 7.3. The first and
second case study follow in sections 7.4 and 7.5.
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7.2. Framework Architecture

This section gives an overview of the architecture and all components which have been
developed as part of the thesis. Further the prototypical implementation is explained.
Figure 7.1 shows the main components of our framework. At its core, there is the sed-
snl::ontology component which is a representation of the meta model described in section
3. The component automatically manages the correct creation, altering and storage of
ontologies. Each other component is based on it. In order to create a SE-DSNL model
the sedsnl::design component provides an application which supports an expert in this
task. While creating or altering a model, the sedsnl:validation component validates that
the information in the model confirms to our guidelines of section 3.5.4. The validation
is based on the data-flow framework [113]. The sedsnl::design component further uses the
sedsnl::owlImport component which allows the direct import of information from an exist-
ing OWL ontology (as described in section 3.5.1). Three different components have been
developed to allow a simplified ontology design by focusing only on the relevant infor-
mation. First, sedsnl::filterView allows the filtering of information in a SE-DSNL model
by searching for specific information as well as hiding irrelevant information. Next, sed-
snl::constructionView provides a simplified way of designing Constructions, i.e., an ex-
pert using this component receives suggestions to what he might have meant (this is
similar to modern programming environments which suggest to the programmer which
methods he / she can use within a given class). The component sedsnl::mappingView pro-
vides a simplified way of associating SemanticElements to their corresponding Forms.
The sedsnl::analysis component analyzes text based on the information available within
a SE-DSNL model, which is provided by the sedsnl::ontology component. The analysis
component further makes use of the features offered by the sedsnl::pattern component.
It realizes the functionality which has been described in chapter 6. The syntax parser
which is used for the analysis component is provided by the StanfordParser component.
A simple web interface for the sedsnl::analysis component has been implemented in the
sedsnl::webInterface component.

Figure 7.2 gives an overview of the core classes of both the sedsnl::analysis (blue entangled)
and sedsnl::pattern (green entangled) components. The starting class is the AnalysisPipeline
class which controls the overall process by calling all different components when they are
needed. The process begins in the SemanticTextSolver class. It initiates the syntax parser
(i.e., the Stanford Parser in StanfordTreeNode). The root node of the syntax tree is fed to
the PostOrderRunner class. It checks the different nodes of the tree and accordingly calls
the ComplexConstructionQuery class which applies Constructions. It, therefore, executes
the specified Statements (only a few can be seen in the figure, i.e., InOrder, CheckFor-
Triple and FindAnaphoras; The latter two further call the SemanticSpreadingActivation class,
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Figure 7.1.: Framework architecture

which implements the functionality of section 5). After the ComplexConstructionQuery
class finishes the computation on a SyntaxTreeNode, all ConstructionInstances are added
to the InstanceManager. It first gives all new ConstructionInstances to the InstanceClassifi-
cation, which classifies and filters new information. Next, the InstanceManager stores the
information. If the overall process has terminated, the solutions are extracted and stored
inside the TextSolutionPaths. This serves as the basis for the InterpretationCreator which
creates the InterpretationModels. This is the input for the PatternEvaluation which takes
these InterpretationModels and first tries to map all available Patterns to them in the Pat-
ternCombination class. The result is stored in the PatternElementCandidate class and given
to the PatternSolver which evaluates both the structural relations as well as attributes of
a Pattern. For the process it uses the DecisionEngine which allows the algorithm to return
to any previously made decision and search for other possible outcomes.
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Figure 7.2.: Class diagram of the core classes of the Analysis and Pattern components
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7.3. Scenario-based Evaluation

To study quality related aspects of a concept or prototype the method of creating and
evaluating scenarios has been established. A scenario is described as "a set of situations
of common characteristics that might reasonably occur in the interactions between stake-
holders and a system" [220]. In the following we describe several different situations
which might occur during the lifetime of the SE-DSNL concept and its prototypical im-
plementation. We show how these situations can be handled and how much effort is
needed in order to cope with the specific situations. There are two main sections: The
first one 7.3.1 describes different kinds of scenarios all of which are related to modify-
ing information as well as specific components of the SE-DSNL prototype or an ontology.
The second section 7.3.2 defines scenarios which might occur if someone is trying to reuse
specific parts of the SE-DSNL prototype or ontology.

7.3.1. Modi�ability

In this section we describe a set of scenarios which describe situations regarding the mod-
ifiability of the software. This basically means scenarios in which parts of our prototyp-
ical implementation have to be adapted in order to meet new domain specific require-
ments. Each of those scenarios is rated on how difficult they are to accomplish, i.e., the
amount of work needed to realize them.

Scenario 1: Updating lexical information In any domain, new descriptions and terms
can be introduced or existing ones might be changed. Adding new lexical information
to SemanticElements is simple, as it is facilitated by the sedsnl::mappingView component
(see figure 7.1). It, however, is more difficult if compound terms have to be mapped
as this might require structural information. Therefore, mapping compounds requires
more complex Constructions which have to be created within the sedsnl::constructionView
component. Most of the time, however, adding new lexical information or changing
existing ones is only related to atomic forms, which is a fast process. Table 7.1 gives an
overview of the different aspects.

Scenario 2: Editing semantic information The knowledge of domains changes con-
stantly. The semantic information which represents the domain must, therefore, also be
updated continuously. The sedsnl::design component together with the sedsnl::filterView
component facilitates the work of an expert, i.e., editing the available information or
adding new information. However, it must be noted that adding new semantic informa-
tion might also require the mapping of new SemanticElements to existing or new lexical
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Table 7.1.: Scenario 1: Updating lexical information
Aspects Description
Causes - Introduction of new Forms for existing SemanticElements

- Editing existing Forms
Goals - The new lexical information has been mapped to the

SE-DSNL model
- The lexical information has been altered

Quality Attributes
Approach Use the sedsnl::design component to add, edit and map

lexical information
Risks No known risks
Sensitivity Points Compound terms are more difficult to treat than

atomic forms; Creating and mapping such is facilitated
by the sedsnl::constructionView component

Effort Low, because process is facilitated by components

information as in the previous scenario. Depending on how much information has be
changed or added, the process may be time consuming but is easy to handle. The dif-
ficulty lies in keeping the ontology up to date with the real world information of the
domain. Table 7.2 gives an overview of the different aspects.

Table 7.2.: Scenario 2: Editing semantic information
Aspects Description
Causes - Introduction of new semantic information

- Update of existing information required
Goals - New semantic information have been integrated

into a SE-DSNL model
- Existing semantic information have been updated

Quality Attributes
Approach Use the sedsnl::design component to add, edit and map

semantic information
Risks - New information might eventually have an impact on

the result of some of the algorithms
Sensitivity Points - Mappings to lexical information might be required

- Continuously changing domains require continuous
changes to the SE-DSNL model

Effort Low, because process is facilitated by components

Scenario 3: Modifying Functions New languages, new types of information or new
algorithms might require new Functions such that a new language can be parsed or that
new types of semantic knowledge can be incorporated into the parsing process. Adding
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new Functions is a straight forward process. Basically, the information about the new
Function has to be inserted into the ontology by adding a new Function element to the
ConstructionScope. Next, a new class with the same name as the Function must be cre-
ated as a child of AbstractFunction (seen in figure 7.1) within the sedsnl::analysis compo-
nent. The new Function is ready and can be used by Statements as soon as the sed-
snl::analysis component has been recompiled. The process is neither difficult nor time
consuming. Table 7.3 gives an overview of the different aspects.

Table 7.3.: Scenario 3: Modifying Functions
Aspects Description
Causes New functionality because of , e.g., a new language is required
Goals A new Function, which has been integrated into the

sedsnl::analysis component
Quality Attributes Depending on the Function, Performance and Stability

can be affected
Approach - Use the sedsnl::design component to update the required

Constructions
- Implement and integrate the new Function into the
sedsnl::analysis component

Risks - Unexpected results of the analysis process
- Eventually lowered runtime performance or stability

Sensitivity Points
Effort Low, if the functionality is already available

Scenario 4: Updating Constructions Parsing grammatical structures is based solely on
the Constructions within the ConstructionScope. If new Constructions have to be cre-
ated or existing ones should be edited, this can be done in the sedsnl::constructionView
component. Depending on the overall complexity and amount of grammatical struc-
tures to parse, creating Constructions can be both difficult and time consuming. The
reason is that an expert which creates the Constructions, directly influences the preci-
sion, tolerance and performance of the sedsnl::analysis component. If the Constructions
are too generic, many new Construction instances might be created at runtime, leading
to a decrease in performance and perhaps even precision. However, a too precise Con-
struction might only be applicable to very specific grammatical structures, which in turn
might require additional Constructions for similar, but not identical structures. Finding
the correct mixture is an iterative process. It, therefore, requires an experienced user with
knowledge about the current domain. The expert also needs knowledge about the design
of Constructions. Table 7.4 gives an overview of the different aspects.
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Table 7.4.: Scenario 4: Updating Constructions
Aspects Description
Causes - New grammatical structures have to be parsed

- Existing parsing results should be restructured
Goals Newly created or updated Constructions within the

SE-DSNL model
Quality Attributes Runtime performance and precision

can be affected
Approach Use the sedsnl::constructionView component to

create or update a (new) Construction
Risks - Unexpected results of the analysis process

- Strong correlation with runtime performance
Sensitivity Points Complex Constructions have the highest impact

on runtime performance
Effort Medium to High

Scenario 5: Changing the syntax parser Changing the syntax parser can be a diffi-
cult task to do and depends on different parameters. The main question is how much
the new parser component differs from the previous one both in terms of the quality of
the result as well as the names of the different POS and syntactic categories. In order
to change the parser component basically two steps have to be done: First, the existing
parser has to be exchanged from an architectural point of view. This means for our pro-
totypical implementation that the Stanford Parser would be exchanged with a different
parser. The architectural impact is low as only one class has to be edited. This can be
seen in figure 7.2. Only StanfordTreeNode has a reference on the Stanford Parser. Hence, a
sibling class to StanfordTreeNode should be created, implementing all the features which
are required to correctly instantiate and execute the new parser component. Further it
must be registered in the SemanticTextSolver class. This is enough from an architectural
point of view. A bigger problem is imposed by the SyntacticCategories of the current SE-
DSNL model. They are used to map the different labels of the syntax tree to the ontology.
Different parsers may provide at least some different tags, even for the same language.
Therefore, the mapping between the syntax tree nodes and the SE-DSNL model would
be incomplete, meaning that the user must manually update the SyntacticCategories as
well as all Constructions which use outdated information. The process can be facilitated
with proper tool support. Further, depending on the way that the new parser creates its
syntax trees, all Constructions might have to be adapted to the new grammatical struc-
tures as well. This is a very time consuming process (as already described in the previous
scenario). It might actually be easier to start from scratch in this case. Overall it is a very
difficult scenario to handle. Table 7.5 gives an overview of the different aspects.
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Table 7.5.: Scenario 5: Changing the syntax parser
Aspects Description
Causes - A new language must be parsed

- A new parser offers better precision or performance
Goals Fully working SE-DSNL framework with the newly

integrated syntactic parsers
Quality Attributes Performance, Precision and Stability
Approach - Exchange the syntactic parser component in the

SE-DSNL component
- Update the SE-DSNL model

Risks - Unexpected results of the analysis process
- Unexpected behavior of the analysis process

Sensitivity Points - New SyntacticCategories as well as
new taxonomy required
- Existing Constructions might have
to be updated

Effort High

Scenario 6: Adding a new Language The time it takes to represent a given Semantic-
Scope in a complete new language depends on many different factors. This basically is
a collection of all the previous scenarios. First of all, all the SemanticElements must be
represented with terms of the new language. This is a straight forward process as it as
already been described in the previous scenario 1. Next, a new syntactic parser might
be needed. The architectural implementation is straight forward. Additionally, as we are
not coping with existing Constructions, the expert can start from scratch, which might
actually be easier than updating existing ones. If the new Constructions require new
Functions, those have to be created as well (see scenario 3 for more details). Overall,
adding a complete new language is the most time consuming and difficult scenario as it
incorporates every previous scenario and, therefore, all the steps which are required to
fulfill the prior scenarios. An overview of the different aspects of the scenario is given in
table 7.6.

7.3.2. Reusability

Existing information or components should be reused if possible. As has been shown in
the previous section, a knowledge intensive concept can be difficult and time consuming
to maintain. Especially language related changes can lead to problems. However, specific
parts can also be reused and do, therefore, not occur very often.
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Table 7.6.: Scenario 6: Adding a new Language
Aspects Description
Causes A new language must be parsed
Goals Semantic information within a SE-DSNL model

has been mapped to a new language
Quality Attributes Performance, Precision and Stability
Approach - Exchange the syntactic parser component in the

SE-DSNL component
- Update the SE-DSNL model

Risks - Unexpected results of the analysis process
- Unexpected behavior of the analysis process

Sensitivity Points Similar to all previous scenarios
Effort High

Scenario 7: Introducing the SE-DSNL concept to a new but known domain Creating
all the information from scratch (i.e., SemanticScope, SyntacticScope and Construction-
Scope) can be a very time consuming task. However, if an SE-DSNL model has been
created for a similar domain previously, parts of it can be reused in other projects. The
SemanticScope can for example be reused, at least specific parts of it (i.e., the topmost
part). This facilitates the overall process of introducing the new technology to an un-
known domain and thereby reduces the required time. It is especially helpful, if the new
domain requires the same language as the previous one. In this case, even the lexical rep-
resentations as well as Constructions and Functions can be reused (if the syntax parser
also stays the same). The latter especially is the most time consuming task in introducing
the SE-DSNL concept. Hence, if the linguistic information has been modeled once, it can
and should be reused. An overview of the scenario is available in table 7.7.

Table 7.7.: Scenario 7: Introducing the SE-DSNL concept to a new but known domain
Aspects Description
Causes Available Domain knowledge must be updated and

mapped to natural language
Goals SE-DSNL has been fully integrated into a new domain
Quality Attributes Security can be an issue, depending on

the owners of the domain knowledge
Approach - Introduce the existing SE-DSNL model

- Update it such that the new domain is fully represented
Risks Security
Sensitivity Points The time to introduce SE-DSNL depends

on the similarity of both domains
Effort Medium to high



7.3 Scenario-based Evaluation 211

Scenario 8: Introducing the SE-DSNL concept to a new and unknown domain Intro-
ducing SE-DSNL to a completely unknown domain is the worst case possible regarding
the required time and effort. Because the domain is completely unknown, there is no
prior information available, neither semantic nor linguistic knowledge. This means that
there is no reuse possible. As has been elaborated in the previous scenarios, creating
linguistic knowledge can be very time consuming (depending on the grammatical com-
plexity). Further, architectural changes or new Functions might be required. Basically,
everything has be created from scratch. This is why it is the worst case possible. An
overview can be seen in table 7.8.

Table 7.8.: Scenario 8: Introducing the SE-DSNL concept to a new and unknown domain
Aspects Description
Causes Domain knowledge must be created and mapped to

(unknown) natural language
Goals SE-DSNL is fully integrated into the domain
Quality Attributes Performance, Stability
Approach - Create a new SE-DSNL model and all its

scopes
- Create new Functions and integrate them into the
analysis process

Risks Required time is difficult to estimate
Sensitivity Points Many tests are required in order to achieve

good parsing results
Effort High

Scenario 9: Portability In the computer industry, several different platforms exist. The
question is how much effort is required to port the current prototype to other platforms.
The prototype has been developed based on Java and Eclipse only. Therefore, porting
the code should be simple as many platforms offer Java and Eclipse support. This makes
it possible to port the code to platforms like MacOS or Linux without big changes to
the SE-DSNL framework prototype. However, if either Java or Eclipse support or both
are missing, there are still ways of enabling access to the sedsnl::analysis component at
least, e.g., by wrapping the prototype in a web service (which has already been done in
component sedsnl::webInterface as seen in figure 7.1). Hence, the prototype can be ported
easily by reusing most of the existing code and components. Table 7.9 represents an
overview of the scenario.
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Table 7.9.: Scenario 9: Portability
Aspects Description
Causes New platforms want to make use of SE-DSNL
Goals SE-DSNL has been ported to a different platform
Quality Attributes Performance and Stability can be affected

by different implementations of the JRE
Approach Either port the complete code or provide a

web service which can be accessed from any
platform

Risks Eclipse or Java may not be available, which could make
a port of the complete SE-DSNL framework difficult

Sensitivity Points
Effort Low to High

7.3.3. Performance

Assessing the performance of the SE-DSNL concept is difficult as it depends on many
variables and algorithm. The core part which is responsible for the main computational
time is the Construction application algorithm (as described in section 4.2.2). In the fol-
lowing, we only look at this part as the remaining algorithms (e.g., all implemented Func-
tions or the SpreadingActivation) have a maximum worst case performance of O(n2).
The same is true for the current implementation of the semantic information retrieval
concept of chapter 6. Therefore, we analyze the worst case runtime performance of the
Construction application process only. We make the following assumptions:

1. No optimizations or heuristics are applied.

2. None of the Constructions contain ConditionStatements, therefore, no Construc-
tions can be filtered as all have the same result value. This further means that each
Construction can be applied to any node in the syntax tree.

3. The SE-DSNL model contains a total of c Constructions.

4. All Constructions have the same amount of ConstructionSymbols s.

5. We assume that the syntax tree is a binary tree, i.e., each node has exactly two
children.

6. Each leaf of the syntax tree has been mapped to the same amount of Construction
instances m.

7. The syntax tree has a height of h at the root node and 1 at the leafs.
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The runtime complexity is measured by the amounts of Construction instances which
could be created in the scenario at the root of the syntax tree. As it was explained earlier,
a bottom-up approach is used, in which for every node in the syntax tree all instances
of all children are collected. This means that for each node at level 1 there are exactly m
Construction instances, i.e., f (1) = m. For each node at level 2, there are f (2) = (22−1 ∗
nodelvl1)s. For nodes at level 3, there are f (3) = (23−2 ∗nodelvl2 + 23−1 ∗nodelvl1)s and so on.
Generically this means that the number of Construction instances for a node of the syntax
tree at level n (this must be a value within [1..h]) in the worst case scenario is equal to

f (n) ∶= c ∗ (
n−1

∑
i=1

f (n − i) ∗ 2i)s (7.1)

and f (1) ∶= m. As can be seen this is a recursive function which largely depends on the
number of ConstructionSymbols s per Construction. For a tree of height 4 and s ∶= 2, c ∶=
1, m ∶= 4 the result of f (4) ∶= 1, 743, 897, 600. The biggest problem is, therefore, the average
number of ConstructionSymbols as this largely influences the number of potential new
Construction instance. In tables 7.10 and 7.11 the difference can be seen immediately. For
both calculations we assumed a tree of height h ∶= 3. In the first table, only the number of
available Constructions c has been changed, which leads to a big increase in Construction
instances at the root node. However, a slight increase of s from two to three has a much
bigger impact on the generated Construction instances. The reason is obvious: In the
previous formula s is an exponent to the complete sum, whereas c only acts as factor of
the product. However, as has been stated before, this is a worst case scenario and can
not be computed. By using ConditionStatements and different heuristics the amount of
instances could be restricted to a bare minimum in the prototypical implementation. This
resulted in an average analysis time of 2.7s in case study 1 (section 7.4) which consisted of
many more Constructions and ConstructionSymbols than the exemplary calculation.

Description 1 Construction 5 Constructions 10 Constructions
h ∶= 3, s ∶= 2 20736 2151680 16796160

Table 7.10.: Construction instances depending on varying numbers of Constructions

Description 2 Symbols 3 Symbols 4 Symbols
h ∶= 3, c ∶= 1 20736 1124864000 4,53889E+15

Table 7.11.: Construction instances depending on varying numbers of ConstructionSym-
bols



214 Evaluation

7.4. Case Study 1

The main focus of the thesis was to provide a concept as well as a prototypical imple-
mentation which allows to map language to the semantic information within a specific
domain and parse natural language texts of the domain. Normally, any Domain Specific
Language (DSL) has a limited set of elements and rules on how to build a structure be-
tween those elements. However, natural language itself is not limited. Even in a specific
domain, the linguistic expressiveness must not necessarily be limited. An example is a
company which provides online support and wants the incoming requests to be parsed
automatically. Those requests do not necessarily apply to exact grammatical rules. This
is problematic for the exact analysis of a textual request. Still, such domains have a need
for mapping natural language texts to the available semantic information, too. Therefore,
we want to look if it is possible to apply SE-DSNL in such a domain. In this case study
we focus on the following questions:

1. How well can SE-DSNL perform in a domain with basically no restrictions regard-
ing the linguistic expressiveness?

2. Can SE-DSNL take advantage of the combination of semantic and syntactic infor-
mation?

The first question implies an open domain which is the opposite of what SE-DSNL was
initially designed for. It is of course not possible to apply a closed domain concept to
a completely open domain. However, we designed an ontology for a set of sentences
and sentence pairs. Those were chosen randomly from a German online community, i.e.,
we created a linguistically closed domain, which however possesses a wide variety of
syntactic structures. The second question relates to if the integration of semantic infor-
mation into the analysis process can really be useful in the parsing process. The system
is designed to check semantic as well as syntactic information in parallel as well as rely
on available semantic information to generate relevant information (e.g., for WSD and
pronominal anaphora resolution). Hence, some tests are run twice, i.e., the second time
some of the Statements which relied on semantic information are disabled. We show how
this affects the parsing results. All of this is shown in section 7.4.3. For this case study
we decided to have a look at the car support domain. As input we selected some manu-
ally created as well as several randomly selected sentences and sentence pairs. The latter
were randomly chosen from a German online car community (it should be noted that the
parsing results of the manually created sentences do not differ much from the randomly
selected texts). The sentences taken from the car community were checked for spelling
errors and corrected. Based on those test sentences, an SE-DSNL model was developed.
The ratio between manually created and online test sentences is about 1:2. Due to the ran-
domly selected sentences, many ambiguities were introduced, both on a lexical as well
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as a syntactical level. In the following, we describe how the case study was designed and
what the results look like.

This section is structured as follows: Section 7.4.1 describes the overall design of the
case study. It specifies the design of the SemanticScope, SyntacticScope as well as Con-
structionScope. Next, we present the results of the evaluation in section 7.4.2, before
discussing them in detail in section 7.4.3. The case study is concluded in section 7.4.4.

7.4.1. Case Study Design

As mentioned before the goal of the case study is to show how well the SE-DSNL con-
cept can be used in linguistically complex domains. All semantically relevant information
which is mentioned within the texts is contained within the SE-DSNL model. This means
that all relevant lexical, syntactic and semantic information of every text exists within
the SE-DSNL model. Relevant information is such which is represented by verbs, nouns
as well as to a certain degree adjectives and adverbs. The semantic information has to
be integrated within the generalization hierarchy as well as associated to related Seman-
ticElements, such that the model as a whole conforms to the guidelines of section 3.5.4.
Further as the semantic information should be constructed according to the meaning of
the sentences, the potential syntactic structures must also be identified accordingly. All
the information must be part of the SE-DSNL model.

We randomly selected a set of small text samples, which were written in a German online
community about cars or handmade for test purposes. All test data can be seen in section
A.2 of the appendix. Misspellings as well as major syntactical problems were corrected.
Next, each of the test sentences was analyzed for its semantic information which was
extracted and integrated into the SE-DSNL model. The process is described in section
7.4.1.1. Next, the semantic information was mapped to its corresponding Forms and
phrases (specified in section 7.4.1.2). Finally all Constructions for the available syntactic
structures have been created. This is shown in section 7.4.1.3.

7.4.1.1. Semantic Scope

As mentioned before, all the relevant factual semantic information was extracted from
the sentences and put into an SE-DSNL model. This is shown in figure 7.3. It depicts
the first sentence of text 16 in the appendix. Its English meaning would correspond to
"I have to change the alternator of my Trajet, because it ran for 160000 km". We assume
that not all the words in the sentence are of acute importance. Therefore, we focused
on words which contain information that is more likely to have a high value to the se-
mantic meaning of the complete text. Those words are "Ich" (English "I"), "bei" (English



216 Evaluation

Figure 7.3.: Part of text 16 which shows the selected words which transport semantically
relevant information

Figure 7.4.: Small excerpt of the SemanticScope which has been created for the first case
study

"of"), "meinem" ("my"), "Trajet", "Lima" ("Alternator"), "wechseln" ("change"), "sie" ("it"),
"160000" and "hat" ("has" / "ran"). Corresponding SemanticElements for all those words
were created, i.e., the elements have been inserted into the Generalization hierarchy at
a fitting position. Next, the SemanticElements have been connected with Associations.
These structures represent information about things specific elements can do or be. A
classic example is an Association of type ’Drive’ between ’Driver’ and ’Car’. Another ex-
ample would be that a ’Car’ has an Association of type ’Attribute’ to the concept ’Color’,
indicating that a car can have a color. Figure 7.4 shows an excerpt of the SemanticScope
containing the information. At the top, there is the element ’Object’, which represents
the root element of the SemanticScope Generalization hierarchy. There are three children
(which we also call categories), named ’Abstract Object’, ’Physical Object’ and ’Dynamic
Object’. The first one is a category representing all types of more abstract concepts like
’Color’. The second element ’Physical Object’ represents, as the name implies, physical
objects of all kinds, amongst which are ’Person’ and ’Car’. The third element ’Dynamic
Object’ is the category which contains all those elements which are used for specifying the
structural relations between the elements of the other two categories. Hence, the Seman-
ticElement ’Attribute’ is used to specify attribute-like relations between elements, e.g.,
from ’Car’ to ’Color’ and ’Drive’ specifies one possible relation from ’Driver’ to ’Car’.

One aspect which has already been mentioned in the previous parts of the thesis is that
the SE-DSNL concept does not yet support a clear separation of instance and concept
layer. This can also be seen in figure 7.4. Here, the element ’Trajet’ could represent an
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instance (as it is also being used in figure 7.3). However, there is no possibility to clearly
distinguish between an instance element and a concept element. Therefore, the instance
has been modeled as a normal SemanticElement which is a child of another SemanticEle-
ment. As a rule of thumb it can be said that only if an element is a leaf of the Generaliza-
tion hierarchy it is possible that the element might be an instance. This means that ’Trajet’
would be an instance in our context, however, e.g., the element ’Driver’ is not, although
it also is a leaf.

The final SemanticScope consists of 210 SemanticElements, 212 Generalizations and 50
Associations.

7.4.1.2. Syntactic Scope

The SyntacticScope is necessary for two reasons: First it provides all Forms which are
used to represent SemanticElements, i.e., every element from the SemanticScope can be
represented by single words. These are modeled as Forms or FormRoots within the
SyntacticScope. An example is the representation for the SemanticElement ’Accelerate’
whose German translation is "beschleunigen". Its word stem is "beschleunig", different
possible inflections are "beschleunigt", "beschleunigen" and "beschleunige". Hence, we
introduced a FormRoot, which represents the word stem "beschleunig". The FormRoot
references the three previously mentioned different inflections. We did however not add
all possible inflections to every form root but only those which were actually being used.
Future applications could also be mapped to a database containing all different inflection
forms and / or rely on similarity based string measurements in order to find the most
likely form to match a specific word.

Some terms like numbers impose specific problems, i.e., there are infinite numbers and,
therefore, also infinite possible representations. Therefore, we created a regular expres-
sion which matches strings that consist of digits only.

One aspect of the SyntacticScope besides containing all the different Forms is the repre-
sentation of all possible SyntacticCategories which can be used by the syntactic parser to
tag the words of a sentence as well as label the nodes within the syntax tree. For the case
study we used the Stanford Parser 2.0.1 with its corresponding German parsing model.
We of course need to be able to identify the different nodes of a syntax tree (for example
the one seen in figure 7.6) correctly. Therefore, we put all the different POS tags and syn-
tax tree node labels within one Generalization hierarchy. An excerpt of this can be seen
in figure 7.5. The part which is shown there represents information about noun related
categories. In order to create the structure, all categories were collected. Next they were
classified to our best ability within a Generalization hierarchy. During experiments some-
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Figure 7.5.: Excerpt of the syntactic categories generalization hierarchy

times a situation A came up which showed similarities to another situation B that could
already be parsed correctly. However, due to small differences between A and B, A could
not be parsed with the same Construction as B. The differences between A and B were
that the syntax tree for A used the syntactic category ’NE’, whereas the one for B men-
tioned ’NN-SB’. As the Construction which had been successfully applied to situation B
was using symbol ’NN-SB’ directly, it could not yet be applied to situation A. In order to
parse A and B with one Construction we first had to introduce a new SyntacticCategory
which would be a parent to both ’NE’ and ’NN-SB’. We called the category ’ThingRef’,
as shown in figure 7.5 (it does also reference other categories besides the previous two).
Then the Construction was altered, i.e., the type of the SyntacticSymbol, which had been
’NN-SB’, was changed to ’ThingRef’. From this moment on, the Construction was capa-
ble of parsing both situations A and B, as the referenced SyntacticCategory ’ThingRef’ is
a parent of both ’NE’ and ’NN-SB’.

The process was applied in many situations, therefore, introducing new SyntacticCate-
gories which were not directly part of the tag set of the syntax parser. However, the new
information allows us to limit the amount of Constructions necessary to parse similar
but not equal structures. This is done by introducing a certain degree of tolerance into
designing Constructions by not using the most specific SyntacticCategories but more ab-
stract ones. The process of relaxing precision as well as the ambiguities resulting from it
is specified further in the following section.

The final SyntacticScope consists of 182 FormRoots (with mostly multiple different
Forms), 121 SyntacticCategories and 133 Generalizations between the SyntacticCate-
gories.
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Figure 7.6.: Syntax tree of sentence 28

7.4.1.3. Construction Scope

The first created Constructions are the ones mapping the forms of the SyntacticScope to
the SemanticElements. We do not explain the process, as it is actually relatively simple
and has already been shown in section 3.5.2. In this section we focus on the process of
how the Constructions have been created which map grammatical structures to the Se-
manticScope. We start by looking at the syntax tree in figure 7.6 and compare it to what
the actual sentence says. The syntactic structure of the sentence matches the content of
the sentence perfectly. The first part "Nach Erlöschen der Heizwendel" (English: "After
the cool down of the heating coil") is correctly marked as a prepositional phrase. Next,
the word "drehe" (English: "Turn") has been tagged as the verb of the sentence. The
tag ’PPER’ of the word "ich" (English: "I") has the small post fix ’SB’, indicating that this
seems to be the subject of the sentence. Next, the two words "den Schlüssel" (English: "the
key") represent the noun phrase object of the sentence. "Weiter" (the best English transla-
tion would probably in combination with the word "turn" be "keep turning") is marked
as a separated verb particle. The final two words "auf Starten" (English: "to start") are
again a prepositional phrase. Here, the syntax parser delivered a good parsing result.
Based on this we show how the Constructions have been built. We start at the beginning
of the initial prepositional phrase. It is constructed out of four words: one preposition,
two nouns and an article. Semantically the prepositional phrase is about the ’cool down’
of the ’heating coil’, where the ’heating coil’ represents more specific information about
the ’cool down’ process. We, therefore, created a Construction which expects a syntactic
structure as indicated by the prepositional phrase. The Construction can be seen in table
7.12. It obviously references four ConstructionSymbols ’cs1’ to ’cs4’, one for every word
to be checked. Next, a SemanticSymbol ’obj’ of the semantic type ’Object’ has been cre-
ated. It simply identifies if a word has a semantic meaning which is available within the
ontology (i.e., the word has been mapped to the SemanticScope). Following, Syntactic-
Symbols for the different syntactic categories of the tree have been created. Note that ’N*’
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Table 7.12.: Textual Representation Construction APPR + NN + ART + NN
Name Content
Symbols ConstructionSymbol Construction cs1

ConstructionSymbol Construction cs2
ConstructionSymbol Construction cs3
ConstructionSymbol Construction cs4
SemanticSymbol Object obj
SyntacticSymbol Appr appr
SyntacticSymbol ART art
SyntacticSymbol N* n
SyntacticSymbol PP pp

Condition Statements inOrder(cs1, cs2, cs3, cs4)
isOfType(cs1, appr)
isOfType(cs2, n)
isOfType(cs2, obj)
isOfType(cs3, art)
isOfType(cs4, n)
isOfType(cs4, obj)
isSyntacticallyRelated(cs1, cs2)
isSyntacticallyRelated(cs2, cs3)
isSyntacticallyRelated(cs3, cs4)

Effect Statements addAttribute(cs2, cs4)
representsSemanticSymbol(cs2)
representsSyntacticSymbol(pp)

is the same element which can also be seen in figure 7.5. Next the different constraints
are checked. Those involve the order of the words (’inOrder(cs1, cs2, cs3, cs4)’) as well as
the types of the single words. The first and the second noun are further required to have
been mapped to the ontology. This is checked by the Statement ’isOfType(cs2, obj)’ which
validates if there is a SemanticElement ’Object’ available within the referenced Construc-
tion instances. The mixture of syntactic and semantic type checks enables us to search
for information of the correct type. However, those checks alone are not enough. We
also have to specify that those words are not too far apart. This is done by checking the
syntactic relations trough the Statement ’isSyntacticallyRelated’. It calculates how far the
different words are apart from each other. The higher the return value of the Statement
is, the closer the words are actually located together in the sentence. If this would not
be validated the words could be dispersed over the whole sentence although belonging
to completely different semantic entities. Introducing the syntactic distance bias does
of course not directly prevent this from happening, however we assume that as we ide-
ally have all required Constructions available, the ideal Constructions should also be the
best match to its corresponding phrase structure. If all ConditionStatements have been



7.4 Case Study 1 221

evaluated successfully, the EffectStatements will be executed. First of all, the semantic
information of the instance behind the symbol ’cs4’ is added to the semantic information
of ’cs2’ as an attribute. The result of the Statement is a generic AssociationInterpretation
between ’cs2’ and ’cs4’, i.e., an AssociationInterpretation of type ’Object’. Further, the
Construction instance which is the result of the Construction execution, represents the
same SemanticElement as ’cs2’ (indicated by ’representsSemanticSymbol(cs2)’). Further,
it represents the SyntacticCategory ’PP’. A similar, although much simpler Construction
has been created to correctly parse the prepositional phrase at the end of the sentence in
figure 7.6.

In order to put the complete sentence together the Construction in table 7.13 has been
created. The Construction is more complicated as the previous one. It especially incor-
porates direct checks of the information within the SemanticScope. This is shown in the
following. The Construction consists of five ConstructionSymbols ’cs1’ to ’cs5’. It fur-
ther references three SemanticElements ’Object’, ’Dynamic Object’ and ’Process’. There
further are three SyntacticCategories, i.e., ’VV*’ (which matches anything that is a full
verb), ’ThingRef’ (which is a parent SyntacticCategory of both nouns as well as personal
pronouns) and ’PP’. First the Construction checks for semantic information within the
SemanticScope (’checkForTriple’). For this it only considers the information of those two
ConstructionSymbols which are of type ’ThingRef’, i.e., ’cs3’ and ’cs4’. It requires that
the SemanticElements behind the instances, which are matched to ’cs3’ and ’cs4’, are con-
nected by an Association of the semantic type of the instance behind ’cs2’, the verb of the
sentence. The assumption is that if the information of the sentence is available within the
SemanticScope this is an indication that the currently parsed structure is correct. How-
ever, the Statement can not yet exclude any given information. Instead it can only confirm
if information exists. Next, the correct order of the words and phrases to be matched is
validated. Note that ’cs2’ is missing here. The reason is that the position of the verb often
changes. In order to still apply the same Construction to similar situations, the correct or-
der condition has been relaxed here. However, the verb is still required to be close to ’cs3’,
the probable subject of the sentence (as indicated by ’isSyntacticallyRelated(cs2, cs3)’).
Additionally, ’cs1’ should be syntactically close to ’cs3’, ’cs3’ to ’cs4’ as well as ’cs4’ to
’cs5’. Next, the different types of the instantiated ConstructionSymbols are checked. The
instance of ’cs2’ (the verb) is required to be of the semantic type ’Dynamic Object’ instead
of just ’Object’, e.g., the concept ’Turn’ for turning-a-key is a child of ’Dynamic Object’.
As explained previously, the ’Dynamic Object’ element subsumes all SemanticElements
which are used to relate other elements. This introduces a higher degree of precision not
only for the ConstructionSymbol ’cs2’, but also for all remaining ConstructionSymbols.
The reason is that in order to instantiate ’cs2’ a more specific type of information must be
used, which can not be used to instantiate any of the other ConstructionSymbols. Besides
enhancing precision this also reduces computational complexity as fewer combinations
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exist for how the different ConstructionSymbols can be instantiated. Aside from ’cs2’, all
other instantiated symbols are also required to contain semantic information. Besides the

Table 7.13.: Textual Representation Construction PP + V + ThingRef + ThingRef + PP
Name Content
Symbols ConstructionSymbol Construction cs1

ConstructionSymbol Construction cs2
ConstructionSymbol Construction cs3
ConstructionSymbol Construction cs4
ConstructionSymbol Construction cs5
SemanticSymbol Object obj
SemanticSymbol Dynamic Object act
SemanticSymbol Process proc
SyntacticSymbol V* vv
SyntacticSymbol ThingRef thing
SyntacticSymbol PP pp

Condition Statements checkForTriple(cs3, cs2, cs4)
inOrder(cs1, cs3, cs4, cs5)
isSyntacticallyRelated(cs1, cs3)
isSyntacticallyRelated(cs2, cs3)
isSyntacticallyRelated(cs3, cs4)
isSyntacticallyRelated(cs4, cs5)
isOfType(cs1, obj)
isOfType(cs1, pp)
isOfType(cs2, act)
isOfType(cs2, vv)
isOfType(cs3, obj)
isOfType(cs3, thing)
isOfType(cs4, obj)
isOfType(cs4, thing)
isOfType(cs5, obj)
isOfType(cs5, pp)

Effect Statements addAttribute(cs2, cs1)
addAttribute(cs2, cs5)
createTriple(cs3, cs2, cs4)
findNewInfo(cs3, cs2, cs4)
representsSemanticSymbol(proc)

ConditionStatements, the EffectStatements also have a higher degree of complexity. First
the structure within the InterpretationModel is created. Hence, the semantic information
is generically added to the semantic information of ’cs2’, the verb (indicated by both ’ad-
dAttribute’ Statements). Further, ’cs3’ is connected to ’cs4’ via the type of ’cs2’. Note
the same order of arguments as in the ConditionStatement ’checkForTriple’: If the Con-
ditionStatements have been evaluated correctly, ’checkForTriple’ will at least not have
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failed or in contrast will have been evaluated successfully. Therefore, it is reasonable
to connect the information in the same order as they have been validated in. Next, the
Statement ’findNewInfo’ is called with again the same arguments as before. The State-
ment adds completely new information to CI (the set of all Construction instances, see
definition 22), if it can find any, based on the given triple. The Statement, therefore, relies
on the spreading activation algorithm (section 5). Finally the semantic type of the new
instance, which is created as a result of the Construction application, is set to ’Process’.
The element has been chosen because sentences often describe processes or situations.

The Construction shows precisely how both semantic and syntactic information are
checked simultaneously during the Construction application process. All of the remain-
ing Constructions have been created similarly. In total, there are 201 mapping Construc-
tions (note that the number is higher than the amount of FormRoots available within
the SyntacticScope, meaning that homonyms exist) and 12 Constructions for composite
terms (i.e., mapping multiple words to one single SemanticElement). Further, a total of 63
grammatical Constructions have been created, similar to the two which were presented
in this section.

7.4.2. Results

The results were gathered by parsing all sentences / sentence pairs based on the informa-
tion available within the SE-DSNL model. The best rated InterpretationModel of every
text was evaluated against what we expected to be the perfect result. In the following
we present the results of the case study. The data can be seen in table 7.14. The first
row ’Total # texts’ describes the number of sentences / sentence pairs which have been
analyzed in total. The test data can be seen in appendix section A.2). The second row ’Com-
pletely correct results’ shows the number of sentences which have been parsed correctly,
i.e., all relevant information are available within the InterpretationModel and all results
contain useful and correct semantic types; Further the semantic structure within the In-
terpretationModel is correct and complete (i.e., no pronominal anaphora is missing). The
third row ’Completely correct results percent’ shows the percentage of correctly parsed re-
sults, i.e., all relevant information are available within the InterpretationModel, all results
contain useful and correct semantic types; Further the semantic structure within the In-
terpretationModel is correct and complete (i.e., no pronominal anaphora is missing). The
fourth row ’Partially usable results’ shows the number of partially usable results, i.e., results
whose semantic information is not as specific or accurate as they could be or which con-
tain a wrong pronominal anaphora. Still, the semantic structure which has been created
as a result of the Construction application must be correct. The fifth row ’Partially usable
results percent’ shows the percentage of partially usable results, i.e., results whose seman-
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ID Description Value
1. Total # texts: 32
2. Completely correct results: 26
3. Completely correct results percent: 81.3%
4. Partially usable results: 3
5. Partially usable results percent: 9.35%
6. Not usable results: 3
7. Not usable results percent: 9.35%
8. Texts with solvable pronominal anaphoras: 10
9. Correctly resolved pronominal anaphoras: 8
10. Falsely resolved pronominal anaphoras: 5
11. Texts with more specific information: 8
12. More specific information correctly identified: 7
13. Average parsing time: 2.7s
14. Minimum parsing time: 0.8s
15. Maximum parsing time: 21s

Table 7.14.: Results of the first case study

tic information is not as specific or accurate as they could be or which contain a wrong
pronominal anaphora. Still, the semantic structure which has been created as a result of
the Construction application must be correct. The sixth row ’Not usable results’ specifies
the number of unusable results, i.e., sentences from which not all semantic information
was used or for which wrong Constructions have been applied, leading to incorrect se-
mantic structures. The seventh row ’Not usable results percent’ specifies the percentage of
unusable results, i.e., sentences from which not all semantic information was used or for
which wrong Constructions have been applied, leading to incorrect semantic structures.
The eighth row ’Texts with solvable pronominal anaphoras’ describes sentences which contain
solvable pronominal anaphoras, i.e., pronouns which a precedent noun. The ninth row
’Correctly resolved pronominal anaphoras’ states the number of sentences from row eight
whose pronominal anaphoras have been correctly resolved. The tenth row ’Falsely resolved
pronominal anaphoras’ specifies the number of sentences in which pronominal anaphoras
have been resolved mistakenly. The number refers to the amount of total sentences tested,
not the amount of text with solvable pronominal anaphoras. The eleventh row ’Texts with
more specific information’ defines the number of sentences in which the semantic infor-
mation could be made more specific based on the information within the ontology. The
twelfth row ’More specific information correctly identified’ specifies in how many of the sen-
tences of the previous row the more specific information has been found correctly. The
13th, 14th and 15th row represent the average, minimum and maximum time in seconds
that the complete parsing process for one sentence took (starting with the syntax parser,
applying the Constructions and extracting the InterpretationModels) on an Intel Core i5-
2400 system with 8GB RAM, Windows 7 x64 and JDK 6U27; The Stanford parser used
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was version 2.0.1 with its corresponding German PCFG model.

7.4.3. Discussion

The previous section shows an overall good result of 81.3% correctly parsed texts al-
though the tested scenario is not optimally suited for SE-DSNL. The number means that
out of the 32 sentences, 26 were parsed correctly, including correctly disambiguated
semantic information, correctly identified more specific information and pronominal
anaphora resolution. In the following, we explain especially the partially as well as not
usable results and what lead to them. We start with the unusable results.

As was explained while describing the case study design in section 7.4.1 we tried to ex-
tract and add all relevant information from the test texts to the SE-DSNL. Still not every
text was correctly parsed. The first two sentences which yielded wrong results were 15
and 28:

• 15: Ich muß bei meinem Trajet die Lima wechseln, da sie jetzt 160000 drauf hat.
Außerdem lädt sie unter 2500 UPM nur manchmal. (English: I have to change the
alternator of my Trajet, because it has run for 160000. Further, she only sometimes
works correctly below 2500 UPM)

• 28: Es dauert ungefähr 20 Sekunden, bis der Anlasser den Motor startet (English: It
takes about 20 seconds until the starter starts the engine)

We begin with the second sentence 28. It is a relatively simple sentence (in contrast to
others from the test set). Still the best rated InterpretationModel is not the correct one.
A Construction has been applied to the first part of the sentence ("Es dauert ungefähr
20 Sekunden") which is not the ideal match. It means that a wrong structure has been
created out of the first part of the sentence until the comma. The actual problem here is
that the correct InterpretationModel is available but has not been rated the highest. The
reason is the following: A Construction has been applied to the first part which is more
simplistic (i.e., it contains fewer Statements and references fewer ConstructionSymbols)
than the ideal Construction for this part. More complex Constructions tend to get lower
likeliness values when being evaluated. The reason can be seen in definition 21 and how
the value vst is calculated: It is the product of all return values of the executed Statements.
As soon as there is one Statement with a very low return value or multiple Statements
with lower return values, the whole vst value drops accordingly. Normally, this is not a
problem as the vint introduces a bias based on how much of a sentence a Construction
actually covers. However, in the best rated InterpretationModel the wrong Construction
does not cover the complete first part of the sentence, i.e., it only covers the sentence
starting at "dauert", whereas in the correct InterpretationModel the correct Construction
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Figure 7.7.: Part of text 16 which shows the selected words and the structure the Con-
structions creates

Figure 7.8.: Syntax tree of the first part of text 15

starts at "Es". Still, the difference in textual coverage is not sufficient to rate the correct
InterpretationModel higher than the actually best rated one. Hence, the correct result is
available in the final solution set, however it has not been rated accordingly.

The second unusable result is the parsing result for text 15. In section 7.4.1.2 we have
used a part of text 15, which can be seen in figure 7.3. The simplified interpretation of the
parsing process is seen in figure 7.7 (the straight lines indicate an Association, the dashed
lines going out from the straight lines point to the type of the Association). Ideally, "Ich"
should reference "Lima", the type of the Association being "wechseln". However, "Ich"
references the semantic information of "bei meinem Trajet", which is connected to "Lima"
with a generic Association. The reason lies within the syntax tree, which is shown in
figure 7.8. We focus on the first prepositional phrase of the sentence. The problem with
the phrase structure is that it is not optimal. Normally, only "bei meinem Trajet" should
be a ’PP’ whereas ’die Lima’ should be a noun phrase which is not subordinated to the
prepositional phrase. This leads to a wrong Construction being applied, to be more pre-
cise the Construction which we have shown in table 7.12. The Construction is especially
intended for structures like the ones in figure 7.6, but not this one here. It is also im-
possible to differentiate the ’PP’ structures of both sentences, i.e., there is no additional
syntactic information available which could be helpful in refining the Construction such
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that it would only be applicable to the sentence of figure 7.6. Even on a semantic level
it is difficult to imagine what kind of information must be available to correctly iden-
tify the structure. The problem is that in both sentences the meanings behind the nouns
or named entities are also semantically related (as each ’Car’ has an ’Alternator’ and a
’Heating coil’ can ’cool down’). Perhaps it could be helpful to check for an ’Attribute’ or
’Ability’-like relation between the existing concepts, e.g., an ’Alternator’ has the ’Ability’
to ’Cool Down’. In contrast, there is no such relation between ’Car’ and ’Alternator’.
However, it can be thought of other situations which contain the same ’PP’ structure
but don’t have an ’Attribute’ or ’Ability’ like Association between the referenced Seman-
ticElements. As can be seen, the situation is difficult to tackle, especially because of an
incorrect syntax tree.

Another problem with text 15 happens in its second sentence "Außerdem lädt sie unter
2500 UPM nur manchmal." The problem here is the pronoun "sie", which references the
word "Lima" from the first sentence. The pronominal anaphora has not been resolved
correctly, as the syntactic distance from the pronoun in the second sentence to the word
"Lima" in the first sentence is too big. Another problem occurs with pronoun "sie" in the
second part of the first sentence. Because of the wrong ’PP’ structure the pronominal
anaphora does not reference the word "Lima" but instead references the information of
"meinem Trajet". This clearly shows how much a small variation in the syntax tree can
still affect the overall result of the prototypical SE-DSNL implementation, although the
syntax tree is only used as a soft alignment structure.

The next sentence with unusable results is sentence 39: "Meine Motorkopfdichtung ist
defekt, ich muss immer Kühlflüssigkeit nachfüllen." (English: "My engine head gasket is
broken, I always have to refill coolant"). The sentence shows two problems:

1. The word "ich" is marked by the syntax parser as a personal pronoun, therefore,
our pronominal anaphora algorithm tries to resolve it. However, there is no corre-
sponding noun available in the sentence. Still, the algorithm identifies a possible
anchor and inserts the corresponding information. This is a classic example of a
false positive.

2. The other problem is that in this case there is no Construction available which can
fully parse the second part of the sentence. This means that either the SemanticEle-
ments of "ich", "immer" and "nachfüllen" are put together or "ich", "Kühlflüssigkeit"
and "nachfüllen". The sentence would partially be usable, if the best rated Interpre-
tationModel would at least reference the Construction which uses the latter three
words. However, the Construction is again more complicated as the Construction
for the best rated InterpretationModel. Therefore, the wrong result is again rated
better than the correct result, as it has already been the case in the previous text 28.
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Figure 7.9.: Syntax tree of sentence 17

This could probably be fixed with a new Construction for specifically the syntactic
structure. However, is has to be checked if this might lead to new ambiguities.

Regarding the partially usable results we begin with sentence 17: "Meine Eltern fahren
einen Lantra, welcher seit 2 Tagen nicht mehr anspringt." (English: "My parents drive a
Lantra which doesn’t startup since 2 days"). The corresponding syntax tree is available
in figure 7.9. The reason the sentence was rated as only being partially correct, is that the
pronominal anaphora of "welcher" has not been resolved correctly. Instead of referencing
the SemanticElement of "Lantra" it references the part of "Meine Eltern". There are two
reasons for this behaviour:

1. The verb of the second part of the sentence (after the comma) has been modelled as
a compound phrase, i.e., "anspringt" and "nicht" have been mapped together on a
single SemanticElement ’NotStartup’. The problem is that the information is only
available at a later stage in the analysis process, i.e., only when the process reaches
the second ’S’ node. The reason is that the analysis process is based on a bottom-
up approach. At this stage in the process, the pronominal anaphora resolution has
already been applied to the word "welcher", however with a wrong verb (i.e., the
SemanticElement of the single word "anspringt", which is exactly the opposite of
"nicht anspringt").

2. Even if the pronominal anaphora resolution algorithm would have received the
correct arguments, it would have been doubtful that it could have identified the
correct information. The problem is that no information has been created within
the SemanticScope which allows to identify that a car may not startup, i.e., a corre-
sponding Association is not available.

Therefore, the reason for sentence 17 not being parsed correctly is not exactly a shortcom-
ing of the SE-DSNL concept, but a not existing feature in the prototypical implementation
as well as missing information in the SemanticScope.
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The second partially usable sentence is the one with ID 27 "Nach Erlöschen der Heizwen-
del drehe ich den Schlüssel weiter auf Starten." (English: "After cool down of the heat
coil I keep turning the key to start"). The sentence also has a false pronominal anaphora
because of the word "ich", which has no preceding noun that actually represents a Se-
manticElement of type ’Person’. This is also a classical false positive.

The last partially usable sentence 29 also shows the same problem, i.e., a false positive
pronominal anaphora: "Wenn ich nicht länger als eine halbe Stunde warte, dann startet
er ganz normal." (English: "If I do not wait for more than an hour, it starts up normally").
Here, the problem lies within the pronoun "er", which actually refers to a car, however
there is no such noun preceding the pronoun. Still, the pronominal anaphora algorithm
detects a seemingly correct mapping, therefore, a pronominal anaphora is introduced
into the final result.

In the previous part of the section we elaborated the negative results of this case study
and why they occurred. One thing that is left is showing that the integration of semantic
information in the analysis process is possible and helpful. Basically there are three ways
how the semantic information is incorporated into the parsing process of the SE-DSNL
prototype.

1. Word Sense Disambiguation: By continuously checking if information is available
within the SemanticScope, our approach directly integrates those results into the
parsing process. To better validate the Statement we changed a single parameter
of the prototype, which controlled the string similarity threshold in order to match
a word from a sentence to a Form within the SyntacticScope. It has the effect that
a word is more likely to be mapped to multiple different Forms. Based on this
we reevaluated sentence 1: "Nachdem die Person im Auto sitzt, kann sie das Auto
starten und fahren" (English: "After the person sits in the car, she can startup and
drive the car"). Due to the changed parameter, there were now four homonyms:
"Nachdem" (mapped to two different SemanticElements), "sitzt" (mapped to three
SemanticElements), "starten" (mapped to three SemanticElements) and "fahren"
(mapped to three SemanticElements). This means a total of 2 ∗ 3 ∗ 3 ∗ 3 = 54 pos-
sibilities. However, all of the elements except the word "starten" were correctly
disambiguated because of the semantic checks.

2. Pronominal anaphora resolution: As we presented previously in the results table
7.14, 8 out of 10 possible pronominal anaphoras were correctly identified. As shown
in section 4.3.2, the pronominal anaphora algorithm relies to a large degree on the
available semantic information. Hence, without the semantic information, the pre-
cision rapidly drops as the only other remaining feature (the syntactic distance) is
not enough to correctly identify the right anchors.
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3. More specific information: People often tend to talk about things in a very generic
way (see the section 2.1.4 about vagueness). Specifying the mentioned informa-
tion is easy for humans but difficult to do for computers. Our approach is capable
of extracting the information from the SemanticScope, if the information is avail-
able in specific situations. This can be seen, e.g., in sentence 12: "Wenn ich die
Warnblinkanlage einschalte, dann höre ich ein Geräusch" (English: "If I turn on the
warning indicator, I hear some noise"). The word "ich" is mapped to the Seman-
ticElement "Person" only. However, in the InterpretationModel, the SemanticEle-
ment ’Person’ has been replaced with ’Driver’, which is correct, based on the given
context. To compute the result, the algorithm from section 5 received the param-
eters ’Person’, ’Turn On’ and ’Warning Indicator’. It found a corresponding con-
nection between ’Driver’, ’Turn On’ and ’Warning Indicator’. This had the effect
that a new instance of type ’Driver’ for the word ’ich’ was introduced. The com-
plete analysis process was repeated with the new information, which in the end
was rated higher than the similar result with the less specific information ’Person’.

These results clearly show that the direct integration of semantic information is possible
and useful. All three areas for which semantic information have been used, showed good
results despite their prototypical nature.

7.4.4. Conclusion

The first case study showed that it is possible to use the SE-DSNL concept to create a pro-
totypical implementation which is capable of parsing even a wide variety of linguistic
expressions. It further showed that incorporating semantic information from ontologies
can be useful in solving different parsing tasks like WSD, pronominal anaphora resolu-
tion or enhancing the precision of the semantic information.

However there are of course certain restrictions within this case study. The size of the
test data is not comparable to real world data. Larger data sets would certainly introduce
more problems, one of them surely being performance. As the case study has shown,
performance is not yet suited for problems of similar dimensions. It would, therefore,
require further optimizations. This would especially be true for larger data sets. Also,
the creation of Constructions has proven to be difficult and time consuming because of
ambiguities, some of which have also been shown in the previous chapters. Therefore,
finding a good balance between parsing precision and tolerance as well as performance
is difficult (the more tolerant Constructions are, the worse the performance of the overall
system becomes because more Constructions can be applied to one and the same context
and thereby increasing the amount of instances at runtime, which again leads to more
possibilities for creating new Construction instances etc.).
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Aside from those more general challenges, the problems which have been found during
this case study, can be classified into one of the following four categories:

1. Problematic pronominal anaphora: If the sentence contains a resolvable pronoun
(i.e., the noun which the pronoun refers to, is available in the preceding part of the
sentence) and the information is available within the SemanticScope, there is a high
probability for the pronominal anaphora to be resolved correctly (80% precision).
However, if one or both are missing, many false positives are detected (overall five).
Changes to the way the pronominal anaphora algorithm works are therefore neces-
sary to solve the problem.

2. Not fully implemented features: Some problems came up due to not yet imple-
mented features. One is that pronouns are not yet being rechecked for possible
anchors if a compound verb has been identified at a later stage of the parsing pro-
cess.

3. Not optimally rated Constructions: Finding a good balance on how the likeliness of
Construction instances is being rated is difficult. The current values have proven to
yield good results, but these could even be optimized. Especially the mixture of the
Statement return value and interval ratio is difficult to weight, as has been shown
in the discussion section.

4. Missing information: Although we started the case study with the assumption that
all relevant information should be contained within the ontology, not all have been
added. This can be problematic for matching all available syntactic and lexical in-
formation correctly. Further, it might lower the precision in identifying the correct
word senses or resolving pronominal anaphoras properly. In real world scenarios
the problem is most probably even more pressing as real world scenarios require a
constant knowledge refinement and update cycle.

Either of the first three categories can be fixed or optimized in the future, thereby in-
creasing the overall precision of the system. The last point however is more difficult to
treat. There are, however, domains in which a limited amount of information is enough
to correctly apply the SE-DSNL prototype. We show such an example in the second case
study.
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7.5. Case Study 2

The first case study showed that SE-DSNL can be used in domains which do not im-
pose specific restrictions on syntactic structures. However, such domains currently come
with several disadvantages, especially regarding the runtime performance of the analy-
sis, which may last several seconds on long and grammatically complicated sentences.
Also, the design of a set of Constructions can be very time consuming.

In our second case study we therefore focused on a scenario which is better suited for the
original intentions of SE-DSNL, i.e., parsing texts of a specific kind in a specific domain.
A topic which has gained a lot of attention in the last couple of years is controlling soft-
ware by using natural language, i.e., the user can either speak or type a natural language
command which is analyzed and executed by an application. The probably most famous
example at this time is Siri2 from Apple. It allows a user to state commands which are
interpreted and (in case of a successful interpretation) executed by Siri accordingly. Com-
mands can be such things like searching for information, ordering a seat at a restaurant
or more humorous things like asking Siri for a joke.

This area is very interesting for SE-DSNL as it shows many of the characteristics which
SE-DSNL was developed for:

1. The domain is limited by the requirements of the application, i.e., the domain con-
tains a finite set of things which can be done. Further, the changes within the do-
main are better measurable and can, therefore, be integrated within an ontology
more simply. The user can only control what is available in this restricted space.

2. If a domain should be controllable with natural language, it is common to restrict
the linguistic expressiveness of the user. This makes it easier for a software compo-
nent to parse the information a user expresses, which improves the precision of the
analysis and parsing process. This is due to less possibilities of how the user can
state his / her natural language commands. Further, the fewer information there is,
the lower the probability of ambiguities becomes.

Both facts ideally match the prerequisites of SE-DSNL. We, therefore, demonstrate in
this case study that SE-DSNL can be used to make an application controllable by using
natural language commands. The goals of the case study are that

1. a controlled natural language can be parsed with high precision in SE-DSNL,

2. the commands can be classified by using the Pattern concept (see chapter 6) and

3. the arguments which are necessary to execute a command can be extracted correctly

2http://www.apple.com/de/ios/siri/
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from the command.

The section is structured as follows: In section 7.5.1 first the overall design of the case
study is explained. Following, it describes how the ontology, its Constructions as well
as the Pattern have been designed. Next, the results of the case study are presented in
section 7.5.2, before we discuss the results in 7.5.3. The case study is concluded in section
7.5.4.

7.5.1. Case Study Design

For this case study we decided to design a fictitious project management software. The
software should allow users to do anything that supports them in managing their projects
and teams. The user has the possibilities to add employees to teams, initiate calls, send
an email or write a new task. Further, the user should be able to retrieve different in-
formation, e.g., mails about specific projects or from specific employees. A full list of all
commands which have been used for the evaluation, is available in the appendix section
A.3.

The case study is designed as follows: We first explain in section 7.5.1.1 what type and
kind of information the SemanticScope must contain. Following in section 7.5.1.2, we
explain how we mapped the information of the SemanticScope to the elements of the
SyntacticScope. Next we describe the simplified syntactic structures available in our con-
troller natural language (section 7.5.1.3) and the Constructions we developed in order to
parse them. The section also explains how the semantic information of a command are
connected within an InterpretationModel. Finally, section 7.5.1.4 explains the process of
designing Patterns which are able to correctly classify commands.

7.5.1.1. Semantic Scope

As we described briefly in section 3.5 gathering the semantic information can be done ei-
ther automatically (if the information is available within an OWL ontology) or manually.
For the case study we had to develop the information within the SemanticScope using
a manual approach. A lot of the semantic information that is needed for controlling a
software with natural language is available in the meta model of the application’s data
structure and the instances of the meta model. For example, the meta model of a project
management software does most likely contain the information that, e.g., employees are
part of project teams, employees have more specific child classes like project members
and project leaders etc. This is shown in figure 7.10. The presented model is already in
line with our guidelines of section 3.5.4.
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Figure 7.10.: Excerpt of a UML metamodel for a project management software

Figure 7.11.: Simplified excerpt of the Semantic Scope for case study 2

The information of the meta model is both useful as well as usable for our project, we,
therefore, insert the information directly into our SemanticScope, part of which can be
seen in figure 7.11. The ’Object’ element of the previous meta model has been replaced by
the element ’Static Object’ in the SemanticScope. Further, we introduced new elements
for the types of the Associations between the UML classes, e.g., a new element ’Send’
which is used as the actual type of the relation between ’Project’ and ’Employee’.

Overall, the SemanticScope has been differentiated into four different branches, two of
which are ’static’ objects (i.e., physical objects, projects, etc.) and the other ones for dy-
namic objects and concepts, i.e., elements which normally describe relations between
static objects (this is in compliance with guideline 5 which requires that the types of As-
sociations are part of a different Generalization branch). Besides the already mentioned
relation between ’Project’ and ’Employee’ we specified that a ’Project Leader’ obviously
’leads’ a ’Project’. Further, we do not separate the instance level from the concept level,
therefore, instances are directly contained within the SemanticScope (e.g., the elements
’Wolf Fischer’ and ’Bernhard Bauer’).
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The two other Generalization branches below the root object are ’User’ and ’Unknown
Object’. The ’User’ has been modeled as an element which is completely independent
of the remaining objects within the ontology. The reason is that the program in our case
does never know exactly who is currently using the program. Thus, in order to have a
clear and clean separation between the representation of the user in the ontology and all
the remaining elements it was decided to make him a distinct element.

The ’Unknown Object’ is an element which is used to ’map’ unknown words to it, i.e.,
words which have no mapping to other SemanticElements from the ’User’, ’Static Object’
or ’Dynamic Object’ Generalization paths. Normally, in a situation with an unknown
word, the semantic spreading activation algorithm could be of help by ’guessing’ the
best suitable concept in a specific context. However, in this case study, we assume that
unknown words are most of the times new names for already existing elements (e.g., if
the user wants to rename something) or new names for new elements (e.g., if the user
wants to create a new task or project). This means that commands may contain unknown
words intentionally as the command creates or renames an existing element. In order
to handle those cases we decided to use a default element which all unknown words
are mapped to. This helps increasing the precision as unknown elements can easily be
spotted. Thereby, elements can easily be created or renamed.

The final Semantic Scope consists of a total of 99 SemanticElements, 25 Associations and
99 Generalizations.

7.5.1.2. Syntactic Scope

The SyntacticScope contains all the SyntacticCategories which are required to map the
results of the syntax parser and the SE-DSNL model. The SyntacticCategories are similar
to those of the first case study, as we again use the Stanford Parser for creating both the
POS tagging as well as the syntax tree. The main difference is that the commands are
given in English. However, the labels of the tree nodes are basically the same as in the
first case study (see section 7.4.1.2). Besides the SyntacticCategories, the SyntacticScope
contains all lexical information for the SemanticElements of the SemanticScope.

A special case poses the element ’Unknown Object’ as explained earlier. To linguistically
represent it, we created a regular expression which basically matches to any string and
maps it to the element ’Unknown Object’. However, the regular expression would map
every word additionally to the ’Unknown Object’, leading to a huge increase in com-
putational complexity (as additional elements would have to be considered during the
Construction application process). Therefore, we made a small change to our implemen-
tation such that only those words which have not been mapped to another SemanticEle-
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ment besides ’Unknown Object’, are mapped to ’Unknown Object’.

7.5.1.3. Construction Scope

We first created all mapping Constructions from Forms to their corresponding Seman-
ticElements, thereby closing the gap between the syntactical representation and the Se-
manticScope. We continued with creating the complex Constructions. Natural language
commands for a software can be expressed in many different forms. In order to limit
complexity we created a simple controlled natural language. Commands should, there-
fore, come in one of the following shapes (C refers to the grammatical structure of the
command itself, V to a Verb, NP to a noun or noun phrase and PP to a prepositional
phrase; for the remaining tags have a look at section A.1):

1. C ∶= V +NP+PP : A verb is followed by a noun and a prepositional phrase. Exam-
ple: ’Add Enrique to Development’

2. C ∶= V +NP+NP : A verb is followed by two nouns. Example: ’Show me my mails’

3. C ∶= V +NP+NP+PP : A verb is followed by two nouns and a prepositional phrase.
Example: ’Give me the phone number of Enrique’

A syntax tree can contain certain substructures which themselves represent a NP or a PP.
Those structures are: NP ∶= NP + PP ∣ NP +NP ∣ DT +NN ∣ PRON +NN ∣ DT + JJ ∣ DT + JJ +
NN ∣ PRP + JJ +NN and PP ∶= APPR +NP. All of the commands in appendix section A.3
apply to one of the three structures above. Accordingly we created three Constructions
for the three grammatical structures. All three Constructions were designed the same
way: They check the correct order and types of the single words / phrases as well as
relate them accordingly in the InterpretationModel. We decided to relate the semantic
meaning of the words in the same order as the words are related within the sentences,
i.e., in a sequential order. Table 7.15 represents the Construction which can parse the first
command structure from above. It enforces the correct order of all referenced Construc-
tionSymbols ’cs1’, ’cs2’ and ’cs3’. Following, the different types of the ConstructionSym-
bols are checked. We decided to use a mixture of precision and tolerance in checking
types, i.e., if we check for syntactic features, there is a relatively high precision involved.
This means, ConstructionSymbol ’cs1’ must be of SyntacticCategory type ’VB’ (this cat-
egory only has a single child within the SyntacticCategory Generalization branch which
means that it is a very specific element). ’cs2’ must be of the syntactic type ’PP’, which is a
leaf of the SyntacticCategory tree. In contrast, we have a very tolerant approach to check-
ing the semantic constraints. We simply require each of the three ConstructionSymbols to
be mapped to one SemanticElement. This helps us in parsing words / phrases which are
known within the SemanticScope, i.e., there is a Construction mapping the correspond-
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Table 7.15.: Textual Representation of Construction V + NP + PP
Name Content
Symbols ConstructionSymbol Construction cs1

ConstructionSymbol Construction cs2
ConstructionSymbol Construction cs3
SemanticSymbol Object obj
SemanticSymbol Command cc
SyntacticSymbol PP pp
SyntacticSymbol VB vb

Condition Statements inOrder(cs1, cs2, cs3)
isOfType(cs1, obj)
isOfType(cs1, vb)
isOfType(cs2, obj)
isOfType(cs3, obj)
isOfType(cs3, pp)
checkUserAction(cs1, cs2)
isSyntacticallyRelated(cs1, cs2)
isSyntacticallyRelated(cs2, cs3)

Effect Statements addAttribute(cs1, cs2)
addAttribute(cs2, cs3)
representsSemanticSymbol(cc)

ing word to a SemanticElement. Note that we do not check the second symbol ’cs2’ for
a syntactic type. The reason is that the syntax parser sometimes created syntax trees in
which the second argument was classified as an adjective instead of a noun (this again
brings us to our previous statement about the problem with parsing precision in section
4.2). Hence, we decided to relax the constraints in this aspect. Still, we could hold up a
high precision regarding the final result, as is shown later.

After checking the different types of the Constructions, we next introduce a Condition-
Statement which is specific to this case study. It validates if the user is capable of exe-
cuting the action mentioned in this specific command. This is done by calling the Func-
tion ’checkUserAction’ which receives ’cs1’ and ’cs2’ as input parameters, i.e., the ele-
ment ’User’ within the SemanticScope should have an Association of the type ’cs1’ to the
SemanticElement of ’cs2’. For example, if ’cs1’ represents the SemanticElement ’Send’
and ’cs2’ represents ’Mail’, then ’checkUserAction’ checks if there is an Association from
’User’ to ’Mail’ of the type ’Send’. For the ontology in figure 7.11, the Statement, there-
fore, returns 1.

After ’checkUserAction’, the ConditionStatements ’isSyntacticallyRelated’ introduce a
bias based on the syntactic distance between the phrases / words behind the three Con-
structionSymbols. The smaller the distance is between the three phrases / words, the
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Figure 7.12.: Simplified InterpretationModel for the command ’Give me all mails about
SDSNL’, representing only the ConstructionInterpretation elements

better.

If the ConditionStatements can be executed successfully and the return values are good
enough, the EffectStatements are executed. The ’addAttribute’ Statements add the infor-
mation of the Constructions behind ’cs2’ as an attribute to the information of ’cs1’. This is
done generically by relating the two corresponding InterpretationElements with an As-
sociationInterpretation of the semantic type ’Object’. As ’cs1’ is related to ’cs2’ and ’cs2’
is related to ’cs3’, a sequential order has been created.

Finally, ’representsSemanticSymbol’ is called which states that the newly created Con-
struction instance is of the semantic type ’Command’ (the symbol ’cc’ references the Se-
manticElement ’Command’).
Note that although the Statement creates a sequential semantic structure, this does not
imply that every InterpretationModel simply consists of a sequential semantic struc-
ture. The reason is that noun phrases can contain sequential semantics which together
with other noun phrases form tree like structures. An example can be seen in fig-
ure 7.12. It shows a simplified InterpretationModel of a command with the structure
C ∶= V +NP +NP + PP. At the beginning of the InterpretationModel, there is the Con-
struction interpretation element representing the action ’Give’, followed by the first ar-
gument ’User’ and a noun phrase ConstructionInterpretation, which represents the Se-
manticElement ’Mail’. The noun phrase is followed by the InterpretationElement for the
prepositional phrase, which itself is connected to the ’SEDSNL’ element. As can be seen,
the model has a tree like structure with the branching starting in the node NP ∶= DT+NN.

We built a total of eleven complex syntactic Constructions which are sufficient to parse
all tested commands (note that this is not even 1

5 th of the Construction amount of the



7.5 Case Study 2 239

Figure 7.13.: Overview of the Pattern mechanism in the second case study

first case study, as seen in section 7.4.1.3: Syntactic complexity and potential ambiguities
has been decreased by a large amount). Further, five Constructions for mapping com-
posite terms were created (i.e., Constructions which map compound terms to a single
SemanticElement, e.g., a Construction for the compound term "project leader").

7.5.1.4. Pattern Scope

Patterns allow to classify InterpretationModels and retrieve information from them. This
is based on available semantic information and the structure between SemanticElements
(for more details have a look at chapter 6). In this case study we need Patterns to clas-
sify the commands accordingly to the functions which are available within our fictitious
project management application. An overview of the architecture is available in fig-
ure 7.13. It answers the basic question, how information within a given command can
actually be used to control a software application. In order to use the information of
the command we need to know which of the words within in the command apply to
which parameter of which function of the software. An example would be the command
’Send mail to Wolf’, where the word ’Wolf’ would be the parameter for a function ’send-
Mail(receiver)’. However, all the information within the command is needed to classify
the command and associate it to the correct function. If for example the command is
’Read mails from Wolf’, it would require a completely different software function. Also,
a similar sounding command like ’Send message to Wolf’ could actually mean a different
function like ’sendSMS(receiver)’, depending on what the semantic information of the
word ’message’ is. We show in the following how the Patterns for the case study have
been designed in order to differentiate similar commands.

We began by classifying the commands according to the functions which the software
application should provide. We came up with a total of 18 different patterns that are
required to classify the commands as well as map the parameters correctly. Next we
created each of the 18 patterns. A Pattern consists of basically three things:
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1. PatternElements of a specific semantic type, which represent the semantic informa-
tion that should or must be available within the InterpretationModel

2. PatternRelationships between the PatternElements, which specify the structure that
should exist within the InterpretationModel

3. Attributes like transitivity and necessity that further specify or relax certain condi-
tions

We continued with selecting the elements that are required for satisfying a Pattern. As an
example we have a look at commands 25 and 26 from the appendix section A.3:

25. Give me all emails from Enrique

26. Give me the last email from Enrique

We assume that both sentences (as well as all others from the same category) can be han-
dled by the same software function, i.e., a function which returns one or several mails
which correspond to certain criteria specified in the command. To start the Pattern cre-
ation process we first focused on the common information within both commands. Both
mention the action ’Give’, both contain the concept ’Mail’ as well as a person by the
name ’Enrique’. Therefore, it is reasonable to assume that a Pattern which should detect
both commands must contain elements of the semantic types ’Give’, ’User’, ’Commu-
nicationElement’ (which is the parent element of the SemanticElement ’Mail’) and ’Em-
ployee’ (which is the parent element of the SemanticElement ’Enrique’). These four build
the core of our new Pattern as seen in figure 7.14 (the representation within the figures is
not a 100% accurate as normally each PatternElement would have a reference on its cor-
responding SemanticElement; Because of clarity, the representation means that the name
of the PatternElement matches the one of its SemanticElement and, therefore, each shown
PatternElement also implicitly references a corresponding SemanticElement). However,
the figure shows two other elements ’Order’ and ’Amount’. In command 25 there ex-
ists the word ’all’. It indicates a certain amount of mails which should be returned to the
user. Command 26 in contrast mentions the word ’last’, which implies a specific email
from an ordered list. Both words transport information which is relevant to executing
the commands such that the user is satisfied. We, therefore, added the elements ’Order’
and ’Amount’ to the Pattern. However, we have to treat them distinctly from the rest as
we show later.

For now, all the required semantic information of the Pattern have been gathered. Yet
missing is the structure. As we explained previously in section 7.5.1.3 we simply con-
nect the information within the InterpretationModel in a sequential order with generic
relations (i.e., the type of the relations is always of type ’Object’). As we know what
the structure of the InterpretationModels looks like we connect the elements of the Pat-
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Figure 7.14.: First step of creating a Pattern is selecting the correct elements

Figure 7.15.: Second step of creating a Pattern is adding the relations which represent the
required structure within the InterpretationModel

tern similarly. This can be seen in figure 7.15. In a sequential way ’Give’ is connected
to ’CommunicationElement’, which itself is related to ’Employee’. Also, ’Communica-
tionElement’ is connected to both ’Order’ and ’Amount’. At this point, the Pattern could
only be solved on an InterpretationModel, which represents the very same structure as
the Pattern at this point. This of course is a problem due to two different reasons:

1. Neither command 25 nor 26 contain all the information of the current Pattern. More
precisely, command 25 only contains information about the amount of information,
but not about the position of the email in a specific order. In contrast, command 26
only contains information about a specific position of an email in a given order, but
not about any amount.

2. As seen in figure 7.12, the structure of the InterpretationModel does not necessar-
ily represent the most cohesive structure possible. Instead, the information can
be a bit distributed because there may be InterpretationElements which represent
grammatical Constructions only. Those elements simply indicate which Interpreta-
tionElements have been put together using which Construction. An example is the
element NP ∶= DT +NN as seen in figure 7.12.

We, therefore, have to relax the constraints of the Pattern such that it can be applied
correctly to the InterpretationModels of both commands. This is done as follows:

1. Necessity: Both the ’Amount’ and the ’Order’ are not present within both com-
mands. Hence, we cannot treat them as core elements of the Pattern, although they
contain relevant information. This means that we want to be able to extract the
information from the commands if it is available. However, it should not hinder
the Pattern from being applied correctly if the corresponding information is not
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Figure 7.16.: Third step of creating a Pattern is setting the required attributes

available. Therefore, instead of requiring both elements as well as their incoming
relations to be always available, we change their necessity attribute values to ’Even-
tually’, i.e., on the relations from ’CommunicationElement’ to ’Amount’ as well as
from ’CommunicationElement’ to ’Order’ and on the PatternElements ’Amount’
and ’Order’. The change allows the Pattern to be resolved correctly, even if neither
or just one of both elements is available within the InterpretationModel.

2. Transitivity: As shown before, the structure of the InterpretationModels may differ
from that of the Pattern. However, it is not so much the structure itself as the num-
ber of InterpretationRelations between specific elements (as can be seen in figure
7.12 in which actually two steps exist between the element ’User’ and the element
’Mail’). Hence, we have to relax the transitivity attributes of the PatternRelation-
ships from ’User’ to ’CommunicationElement’ as well as from ’CommunicationEle-
ment’ to ’Employee’ by changing their values to ’Directed Transitivity’.

The result of the changed attributes can be seen in 7.16. ’Tr:’ represents the ’Transitiv-
ity’ attribute which has been set to ’DT’ (’Directed Transitivity’). Further, ’Nec:’ is the
shortcut of the attribute ’Necessity’ whose value has been set to ’Eventually’ (’Ev’ is its
abbreviation). With these attribute changes the Pattern now matches both commands
mentioned above as well as all other commands of the same category (for a complete list,
look at section A.3 in the appendix). All other 17 Patterns were built in a similar way.

7.5.2. Results

All commands (see the complete list in section A.3 of the appendix) were matched against
all available Patterns. The results can be seen in table 7.16. The first row ’Total # commands’
represents the amount of commands tested; The second row ’Total # Patterns’ specifies the
amount of Patterns available within the SE-DSNL model; The third row ’Correctly resolved
commands’ defines, for how many of the commands the highest rated of the correctly
solved Patterns was the intended Pattern (according to the previously created manual
classification); The fourth row ’Correctly mapped commands’ describes how many of the cor-
rectly resolved commands in row three were mapped correctly to its Pattern, i.e., which
information of the command were mapped to its intended PatternElement; The fifth row
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’Commands with multiple Patterns instantiated’ shows the number of commands, which
were matched to more than one Pattern based on the SemanticElements only (i.e., ig-
noring the structural information within the Pattern; This is the result of the first phase
in section 6.4.1); The sixth row ’Commands with more than one matching Pattern’ means the
number of commands for which more than one Pattern has been solved correctly, includ-
ing the structural information of the Pattern (i.e., the result of phase two in section 6.4.2)
The seventh, eighth and ninth row represent the average, minimum and maximum time in
milliseconds that the complete parsing process took for one command (starting with the
syntax parser, applying the Constructions, extracting the InterpretationModels and fi-
nally applying the Patterns) on an Intel Core i5-2400 system with 8GB RAM, Windows 7
x64 and JDK 6U27; The utilized Stanford parser was version 2.0.1 with its corresponding
English PCFG caseless model.

ID Description Value
1. Total # commands: 35
2. Total # Pattern: 18
3. Correctly resolved commands: 34
4. Correctly mapped commands: 34
5. Commands with multiple Patterns instantiated: 7
6. Commands with more than one matching Pattern: 1
7. Average parsing time: 147ms
8. Minimum parsing time: 46ms
9. Maximum parsing time: 486ms

Table 7.16.: Results of the second case study

7.5.3. Discussion

The most important information gathered from the results is that it is possible with SE-
DSNL to achieve a very high precision in parsing commands, if the available grammatical
structures of the language have been limited. In this case, 34 out of 35 commands have
been parsed correctly which corresponds to a precision of 97%. The average time that
a complete parsing process took was 147ms. Those numbers suggest that the SE-DSNL
concept is in fact suited for the task. In the following, we discuss the numbers and cir-
cumstances that lead to them in greater detail.

As can be seen, 7 of the 35 commands have initially been matched to more than one
Pattern, i.e., the first phase of the Pattern evaluation process as described in section 6.4.1
has been finished successfully for more than one Pattern for some commands. Those
commands as well as their Patterns can be seen in table 7.17. The first table column
describes the ID of the command, the next column the Patterns which have been matched
successfully after the first phase (as described in section 6.4.1), the column ’Phase 2’ the
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Patterns which remained after the second phase (as shown in section 6.4.1), the column
’Best Rated’ the Pattern which was rated the highest and finally column ’Intended’ the
Pattern which was actually intended for the command.

Comparing the number of Patterns which could be matched to the commands at those
different phases is interesting as the result of the first phase can be compared to an en-
hanced keyword based matching process: More simplistic approaches to classifying texts
often rely on identifying all the keywords relevant to a specific category. A similar mech-
anism is performed in the first phase of the Pattern evaluation process, i.e., potential
Patterns are selected based on the identified SemanticElements within the Interpretation-
Models of the corresponding commands. As this is a semantic instead of a syntactic level
many problems like synonyms and homonyms have already been dissolved at this stage
which of course is an advantage over normal keyword based approaches. However, am-
biguities still remain as seven commands have been matched to more than one Pattern.
To eliminate these ambiguities the structural information within the Pattern is valuable,
which can be seen in the column ’Phase 2’. For six out of those seven commands the
structural check helps identifying the correct (i.e., intended) Pattern.

Command ID Phase 1 Phase 2 Best Rated Intended
8 50, 52 50 50 50
10 50, 52 50 50 50
11 50, 51, 52 51 51 51
21 100, 130 130 130 130
28 170, 190 170, 190 190 170
29 100, 170 170 170 170
32 170, 180 170 170 170

Table 7.17.: Commands which have been matched to more than one Pattern in the first
phase of the Pattern evaluation

The advantages of having a structural matching is shown for command 11. A simplified
InterpretationModel of the command is available in figure 7.17. Note that the Interpre-
tationModel representation does not contain any grammar related ConstructionInterpre-
tation, i.e., these would normally be located where the wave-symbols are positioned.
Therefore, e.g., between ’User’ and ’Mail’ is not just one InterpretationRelation but sev-
eral as the ConstructionInterpretations are missing in the figure. The sequential order of
the ConstructionInterpretations is apparent. The two prepositions ’In’ and ’Out’ lead to
a tree like structure as they branch out of the ’trunk’. The question is, why the three Pat-
terns 50, 51 and 52 can be matched to command 11 in phase 1 of the Pattern evaluation.

First we look at Pattern 50 in figure 7.18. The Pattern consists of four elements: ’Create’,
’Note’, ’OrganizationalUnit’ and ’NoteName’. The first element ’Create’ is obviously a
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Figure 7.17.: Simplified InterpretationModel for command 11: ’Create a note in the wiki
of project SEDSNL’

Figure 7.18.: Structure of Pattern 50

part of the InterpretationModel. The SemanticElement ’Note’ is a parent of the element
’Entry’ in the command. The semantic type of the PatternElement ’OrganizationalUnit’
is a parent of the SemanticElement ’Project’. The PatternElement ’NoteName’ is not re-
quired to be part of a corresponding InterpretationModel, therefore, it does not have to
be matched. As all three required PatternElements can be mapped to the Interpretation-
Model, phase 1 of the Pattern evaluation can be completed successfully. However, the
Pattern can not be solved correctly in the structural evaluation. Although the first rela-
tion between ’Create’ and ’Note’ is found (between ’Create’ and ’Entry’), resolving the
PatternRelation between ’Note’ and ’OrganizationalUnit’ is not possible. The reason is
that between the ConstructionInterpretations ’Entry’ and ’Project’ there is not one but
multiple relations. This would, therefore, require a transitive relation, however, the ac-
cording attribute has not been set. Therefore, the Pattern fails to be resolved correctly.

Next, we describe the evaluation of Pattern 51 (figure 7.19) on command 11. The mapping
is similar to the one of Pattern 50. ’Location’ has been defined as a parent of ’Wiki’ in the
SemanticScope, therefore, these two elements can be mapped. We won’t go into detail
about the remaining mappings as they are obvious. Note, however, that all elements have
to be mapped as all necessity attributes have their default value, i.e., ’Always’. For the
structural matching nearly all relations have been set to ’Directed Transitivity’. This way
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Figure 7.19.: Structure of Pattern 51

Figure 7.20.: Structure of Pattern 52

the relations between ’Entry’ and ’Wiki’ as well as ’Wiki’ and ’Project’ can be resolved
correctly.

The last Pattern 52 is shown in figure 7.20. It consists of only three elements. The first two
elements can be matched easily to the InterpretationModel. The last element, however,
can not and does not have to be matched as its necessity attribute is set to ’Eventually’.
In the second Pattern evaluation phase, the only remaining relation between ’Create’ and
’Project’ can not be solved correctly as there are too many steps between the ’Create’ and
’Project’ elements within the InterpretationModel. This shows that having a structural
match increases the overall precision.

In contrast to the previous examples, command 28 has not been classified as intended.
However, we show in the following that the result is not immediately wrong. Figure
7.21 represents its simplified InterpretationModel. The structure is also tree like with the
branching beginning after the InterpretationElement ’Mail’. Pattern 170 is actually very
similar to the Pattern which we created in section 7.5.1.4. There are some small differences
which can be seen in figure 7.22: The element ’Employee’ as well as the relation from
’CommunicationElement’ to ’Employee’ both have an ’Eventually’ necessity. The task
of Pattern 170 is to classify commands, which are about reading, e.g., all mails from a
specific employee. In contrast, Pattern 190 (which is shown in figure 7.23) should return
all mails about a specific topic. Hence, it had to be modeled in a way which allowed
to capture any topic a mail could be about. The problem is that the concept ’Topic’ is
difficult to grasp. Theoretically this could be anything, e.g., a project, a specific employee,
a company etc. We decided to simply ask for an ’Object’ (as this must be the parent
element of all other elements in the ontology). However, we require the ’Object’ element
to be related to the preposition ’About’ such that this is not too arbitrary.

If one compares both Patterns, it becomes obvious that both are nearly the same. Both
contain the elements ’Give’, ’User’, ’CommunicationElement’ and ’Amount’ (even with
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Figure 7.21.: Simplified InterpretationModel for command 28: ’Give me all mails about
SEDSNL’

Figure 7.22.: Simplified InterpretationModel for Pattern 170

the same necessity attribute). The only difference is at the end, where Pattern 170 has
an ’Employee’ element only. In contrast, Pattern 190 has the ’Object’ element with the
addendum ’About’. However, the ’Employee’ element in Pattern 170 is not mandatory.
Therefore, Pattern 170 can in certain contexts be seen as a smaller and less specific ver-
sion of Pattern 190. Command 28 represents exactly such a context which allows both
Patterns to be solved correctly. Hence, this is not actually a wrong result, it is just not
as intended due to an imprecise Pattern. The problem could be solved by, e.g., defining
PatternElements which are explicitly not allowed to exist in an InterpretationModel. This
means that specifying the absence of the ’About’ element in Pattern 170 would solve the
problem.

We finally discuss the performance numbers shown in the result section. They indicate
that it is possible to create a system based on SE-DSNL that runs fast enough for a real

Figure 7.23.: Simplified InterpretationModel for Pattern 190
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world application, i.e., there is no notable delay for the user. In the scenario it is not so
much the linguistic complexity which limits the performance but the number of Patterns
which are available within the model. However, the prototypical implementation has
not yet been optimized for the best possible performance. Therefore, if the amount of
Patterns would be increased by a larger factor, it is certainly possible to optimize the
implementation and still retain a good performance.

7.5.4. Conclusion

In this case study SE-DSNL as well as the Pattern based information retrieval and clas-
sification concept was used to parse commands, classify them according to the functions
of a project management software and further retrieve the required input parameters for
the software functions. The results as well as the discussion showed conclusively that
the requirements from section 7.5 can be fulfilled, even with a prototypical implementa-
tion. A small but efficient set of Constructions was used to parse the natural language
command and create the InterpretationModels. Next, a set of Patterns was applied to the
interpretations.

As the high precision indicates, both the Construction application process as well as the
semantic information retrieval and classification work well. This fulfills requirement 2,
i.e., by using the Pattern concept the commands could be classified correctly. This further
fulfills requirement 1 (i.e., a controlled natural language can be parsed with high preci-
sion in SE-DSNL): If the parsing process would deliver ’unusable’ results, the Patterns
could not have been designed in a common, simple way and still deliver such a high
precision. Also, as our manual validation showed, if the Pattern classified a command
properly, the commands information was always mapped correctly to the corresponding
PatternElements, therefore fulfilling requirement 3 (i.e., by using the Pattern concept the
arguments which are necessary in order to execute a command can be extracted correctly
from the command itself).

From these results we conclude that SE-DSNL can successfully be applied to domain
specific real world problems.
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8.1. Summary

The initial motivation behind SE-DSNL was to develop a system which bridges the gap
between semantic and linguistic knowledge. We collected several requirements which we
thought would be necessary for such a system. In the following paragraphs, a summary
of the works which have been done in this thesis is given. We will further show if and
how the different parts of SE-DSNL concept fulfill the initially specified objectives.

1. Combining Ontologies with Natural Language: In section 3 we introduced the meta
model which is at the center of SE-DSNL. At its core it consists of three different
scopes: One for ontological information, one for lexical and syntactic information
and a third one which creates a bridge between the first two scopes. The model al-
lows the integration of external Functions which makes it possible to tailor the SE-
DSNL framework to any domain. This means that both arbitrary ontological as well
as linguistic information can be represented. Further we showed how knowledge
from existing OWL ontologies can be transformed to SE-DSNL and to which guide-
lines such knowledge must conform. The validity of the model has been demon-
strated in both case studies in chapter 7. Therefore, the objective from section 1.3.1
is fulfilled.

2. Concurrent Analysis, Semantic Interpretation and Linguistic Phenomena: After the
definition of the meta model, we specified the algorithm to concurrently analyze
a natural language text and create an InterpretationModel from it (see section 4.2).
It requires a SE-DSNL model whose Constructions are concurrently applied to a
natural language text. The process is aligned to a syntax tree. The Statements
of each Construction are executed and checked. Only if all ConditionStatements
of a Construction return a successful value, the Construction is instantiated and
its EffectStatements can be executed. Further we specified a set of different State-
ments which, based on the semantic information within the SE-DSNL model, solve
linguistic tasks like pronominal anaphora resolution, word-sense disambiguation,
vagueness and reference transfer. For the latter three, a spreading activation based
approach was developed (chapter 5) which, based on a given triple input, discovers
elements which are more likely to conform to the given input. The process together
with the mechanisms of the different Statements has successfully been evaluated as
shown in chapter 7.

These concepts fulfill several of the initially stated objectives. First, the require-
ment "Concurrent Analysis of NLP specific problems" (section 1.3.2) is fulfilled, as
the overall process is based on single Constructions which are put together con-
currently, i.e., the result of one Construction can be used by another Construction,
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which in turn creates new information which may be used by another one and so
on. Next, the result of the Construction application process is an Interpretation-
Model, i.e., a model which represents the semantic interpretation of the natural
language input. This fulfills the requirement "Semantic Interpretation of Natural
Language Text" (section 1.3.3). The final requirement is "Handling Ambiguities,
Vagueness and Reference Transfer" (section 1.3.4), i.e., handling problems like WSD
and vagueness with the available semantic knowledge. These problems are solved
by the spreading activation based algorithm from section 5.

3. Semantic Information Retrieval: In chapter 6 a concept was introduced which al-
lows the retrieval of information from InterpretationModels and their classification
as well. The process is based on Patterns, which specify how a set of SemanticEle-
ments should be related to each other. Patterns can also be refined by specifying
certain attributes like transitivity. Next, a graph-matching algorithm tries to re-
solve the previously defined Patterns on a given InterpretationModel. The concept
fulfills the requirement "Semantic Information Retrieval" from section 1.3.5, which
has been shown in the second case study (section 7.5).

It can be concluded that all of the initially specified objectives have successfully been
fulfilled by the SE-DSNL approach and its prototypical implementation.

In contrast to existing OBIR and OBIE systems, SE-DSNL introduces many different as-
pects which have not or only partially been considered by state-of-the-art approaches.
The concept for mapping lexical, syntactic and semantic information is powerful and can
be used with arbitrary languages which is a clear advantage over most of the existing
systems. Other recent approaches like LexInfo also show that this is an important chal-
lenge and must be further elaborated.
The concurrent analysis has rarely been looked at. NLP in general and OBIE as well as
OBIR often rely on a pipelined processes. In the past decade, some approaches used joint
inference in OBIE systems [221] [222], however most approaches still rely on pipelined
concepts (as shown in section 4.4). SE-DSNL is the first approach to our knowledge
which combines the advantages of a flexible and adaptable concept (by using Construc-
tion) with the advantages of a concurrent approach (i.e., mutual disambiguation).
One final aspect which this thesis contributes, is a first idea and prototypical realization
of how underspecification and reference transfer can be handled in a computational do-
main. Both are phenomena which are rarely treated by available components. Only a few
concepts try to solve vagueness (e.g., Prince and Sabah [223]), however we know of no
computational approach which handles reference transfer. The SE-DSNL concept shows
how these challenges (besides WSD) can be solved in specific situations using only one
algorithm and the available domain knowledge.
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Many questions have come up during the development which are worth to be considered
for future research. Some of these have been presented in section 8.2 and are already be-
ing worked on. The currently prioritized task is the feasibility evaluation of integrating
SE-DSNL in Model-driven development (MDD) approaches, which shows promising re-
sults and will lead to a prototypical implementation.
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8.2. Outlook

The concept and framework that have been developed in this thesis have only a proto-
typical status. There are many ways of improving the current state. We describe some of
these potential tasks in the following.

1. Reducing the effort of Construction creation: Constructions are currently created
manually, i.e., one expert creates the grammar for a specific language. Further each
Construction has to know how to semantically enrich the interpretation (as this is
the core result of the analysis process). However, a manual process is very time
consuming and error-prone. Therefore, it is an important task to reduce the effort
required to create a Construction. One approach would be to automatically deduce
this information from a given database. The problem is that there are no sources
which present a cohesive semantic representation of sample sentences, i.e., a se-
mantic alternative to treebanks is missing. Current semantic evaluations mostly
focus on senses of single words only. Another approach could be crowdsourc-
ing [224] [225], i.e., outsourcing the task to a group of people each of which handles
a small portion of the challenge. Creating Constructions could be ideally suited for
crowdsourcing. Either, each expert would be given a single sentence or text which
has to be parsed by SE-DSNL or he / she would be given the task of developing
one specific Construction. This divide and conquer approach could speed up the
Construction creation tremendously. However, aspects like security and trust have
to be considered.

2. Machine-Learning for Construction application: Machine-learning approaches are
known to show better results as their application is more flexible to different situ-
ations. The current concept already has the ability to assign probabilities to Con-
structions. That implies that given the context a Construction does appear in and
the number of times this happens, it could receive a probability value. However,
as a corresponding training set for semantic information is missing, it has not yet
been developed and implemented. Still it could be evaluated how probabilities de-
duced from a mainly syntactic database would affect the overall performance of the
analysis step.

3. Enhancing precision: Several of the developed algorithms, e.g., for WSD or
pronominal anaphora resolution, yield good results in identifying the correct in-
formation if all required information is available within the SE-DSNL model. How-
ever, in case that certain information is missing or the problem is not solvable, the
precision suffers, resulting in false positives. This was especially shown in the
first case study, where pronominal anaphoras were falsely resolved. Hence, the
algorithms computing the corresponding tasks should be improved to increase the
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overall precision and performance.

4. Enhancing runtime performance: The evaluation showed that in smaller domains
the SE-DSNL framework can be applied successfully, both in terms of precision as
well as computational performance. However, the performance drops if the domain
knowledge increases. One goal, therefore, should be to optimize the application
algorithm. Well known in language processing are Finite-State Transducers (FSTs)
[226] [20] for which efficient implementations are available. The challenge is to
transform the Constructions with their varying Statements into a FST. However,
the prospect of a better runtime performance might be worth the effort.

5. Adding new information to the SemanticScope: Currently the SE-DSNL framework
creates a semantic interpretation which contains the mappings of which words cor-
respond to which SemanticElements and which syntactic structures express which
semantic information. The InterpretationModel can however also contain new in-
formation, both single elements as well as new relations between those elements.
As part of an IE component it would be helpful if new information would automat-
ically be added to the existing SemanticScope.

6. Natural Language text production: So far, the algorithms of SE-DSNL have been
implemented to only parse natural language text. However, the underlying con-
cept could also be used to produce natural language text, i.e., starting with the
knowledge within the SemanticScope specific information would be selected and
expressed with natural language. Such a process would require some new State-
ments and algorithms, however certain aspects could also be reused. Similar work
has been done by Steels and Beule in FCG [46]. The production of text from knowl-
edge can be helpful in a variety of scenarios, e.g., if the system needs feedback about
specific knowledge, it can ask the user to validate it. The advantage is that the user
would not need to manually search for the corresponding knowledge structures,
but would receive the information in a form which he / she is used to.

7. Integration into Model-driven development: MDD describes concepts which gen-
erate code from models. An example is the Graphical Modeling Framework (GMF)
[227]. It requires several models and can automatically create a fully-working appli-
cation from them. Due to the technological similarity between the implementation
of SE-DSNL and GMF it should be possible to integrate SE-DSNL directly into the
MDD process, i.e., the user would have to create some additional SE-DSNL spe-
cific models during the development process. After the application is generated,
it would immediately contain a component which allows the software to be con-
trolled with natural language commands (similar to the ones from the second case
study in section 7.5). The feasibility of this idea is currently being evaluated.
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A.1. POS Tags and Syntactic Categories from Penn Treebank

1. CC Coordinating conjunction 25. TO to
2. CD Cardinal number 26. UH Interjection
3. DT Determiner 27. VB Verb, base form
4. EX Existential there 28. VBD Verb, past tense
5. FW Foreign word 29. VBG Verb, gerund / present participle
6. IN Preposition 30. VBN Verb, past participle
7. JJ Adjective 31. VBP Verb, non-3rd ps. sing. present
8. JJR Adjective, comparative 32. VBZ Verb, 3rd ps. sing. present
9. JJS Adjective, superlative 33. WDT wh-determiner
10. LS List item marker 34. WP wh-pronoun
11. MD Modal 35. WP possessive wh-pronoun
12. NN Noun, singular or mass 36. WRB wh-adverb
13. NNS Noun, plural 37. # Pound sign
14. NNP Proper noun, singular 38. $ Dollar sign
15. NNPS Proper noun, plural 39. . Sentence-final punctuation
16. PDT Predeterminer 40. , Comma
17. POS Possessive ending 41. : Colon, semi-colon
18. PRP Personal pronouns 42. ( Left bracket character
19. PP Possessive pronouns 43. ) Right bracket character
20. RB Adverb 44. " Straight double quote
21. RBR Adverb, comparative 45. ‘ Left open single quote
22. RBS Adverb, superlative 46. “ Left open double quote
23. RP Particle 47. ’ Right open single quote
24. SYM Symbol 48. ” Right open double quote

Table A.1.: POS tagset of the Penn Treebank [228]

1. ADJP Adjective phrase
2. ADVP Adverb phrase
3. NP Noun phrase
4. PP Prepositional phrase
5. S Simple declarative clause
6. SBAR Clause introduced by subordinating conjunction
7. SBARQ Direct question introduced by wh-word or wh-phrase
8. SINV Declarative sentence with subject-aux inversion
9. SQ Subconstituent of SBARQ excluding wh-word or wh-phrase
10. VP Verb phrase
11. WHADVP Wh-adverb phrase
12. WHNP Wh-noun phrase
13. WHPP Wh-prepositional phrase
14. X Constituent of unknown or uncertain category

Table A.2.: Syntactic tagset of the Penn Treebank
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A.2. Case Study 1 Texts

ID Text
1 Nachdem die Person im Auto sitzt, kann sie das Auto starten und fahren.
2 Eine Person hört Musik. Sie sitzt im Auto.
3 Beim Beschleunigen geht der Motor aus.
4 Wenn ich von der Kupplung gehe, geht der Motor aus.
5 Wenn ich von der Kupplung gehe, geht der Motor aus. Er stottert erst noch.
6 Wenn ich von der Kupplung meines Polos gehe, geht der Motor aus.
7 Der Motor geht aus, nachdem ich von der Kupplung meines Polos gehe.
8 Mein Auto verliert an Leistung, wenn es kalt ist.
9 Mein Auto stottert, nachdem ich es starte.
10 Wenn das Auto kalt ist, geht der Motor nicht an.
11 Mein Blinker leuchtet nur 1 mal, und der Warnblinker leuchtet

auch nur manchmal.
12 Wenn ich die Warnblinkanlage einschalte, dann höre ich ein Geräusch.
13 Ich habe mir jetzt einen Mini USB Stick von Zinc Classic Line mit

4GB gekauft. Er funktioniert nicht im Auto.
14 Ich besitze einen neuen I20 ohne Handbuch.
15 Ich muß bei meinem Trajet die Lima wechseln, da sie jetzt 160000

drauf hat. Außerdem lädt sie unter 2500 UPM nur manchmal.
16 Wie kann ich den Keilrippenriemen entspannen?
17 Meine Eltern fahren einen Lantra, welcher seit 2 Tagen nicht mehr anspringt.
18 Meine Motorkopfdichtung ist defekt, ich muss immer Kühlflüssigkeit

nachfüllen.
19 Beim Beschleunigen machen sich im Motorraum Geräusche bemerkbar.
20 Der Motor versucht zu zünden, aber der Drehzahlanzeiger zuckt nicht.

Im Motorraum tut sich auch nichts.
21 Jetzt ist es nur mittlerweile so, dass die Heizung nicht mehr funktioniert.
22 Der Motor zieht beim Beschleunigen nicht sauber durch.
23 Das Pedal der Kupplung ist schlapp. Ich kann es treten bis zum Boden.
24 Ich wollte mal wissen, wieviel der A2 im Stand so verbraucht pro Stunde.
25 Mit zunehmender Kälte hat mein Auto manchmal Probleme beim Kaltstart.

Es braucht länger als gewöhnlich beim Anspringen.
26 Bei kalter Witterung springt der Motor nicht sofort an.
27 Nach Erlöschen der Heizwendel drehe ich den Schlüssel weiter auf Starten.
28 Es dauert ungefähr 20 Sekunden, bis der Anlasser den Motor startet.
29 Wenn ich nicht länger als eine halbe Stunde warte,

dann startet er ganz normal.
30 Nach dem Einlegen des 1ten Gangs kann ich die Fenster nicht mehr öffnen.
31 Bei meinem A2 tritt ein rhythmisches Schlagen im Motorraum auf.
32 Wolf wurde mit seinem Auto geblitzt.

Table A.3.: All test sentences and sentence pairs for case study 1
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A.3. Case Study 2 Commands

ID Command Pattern ID
0 Add Enrique to Development. 10
1 Add Enrique to SEDSNL. 10
2 Make Enrique supervisor for Coding. 20
3 Make Wolf responsible for ITManagement. 20
4 Make call to Wolf. 80
5 Remove Enrique from Development. 30
6 Remove Enrique from SEDSNL. 30
7 Remove task testtask from SEDSNL. 31
8 Take note for SEDSNL3. 50
9 Create project testproject1. 52
10 Create task testtask in SEDSNL. 50
11 Create entry in wiki of project SEDSNL. 51
12 Send mail to Wolf. 80
13 Send mail to all team leaders of Development. 80
14 Send mail to all team members of Development. 80
15 Send mail to all employees. 80
16 Send mail to Enrique. 80
17 Give me the chief of ITManagement. 100
18 Give me the team leader of Development. 100
19 Give me all team leaders in SEDSNL. 100
20 Give me the progress of SEDSNL. 130
21 Give me the progress from Enrique in SEDSNL. 130
22 Give me all tasks from SEDSNL. 140
23 Give me the budget of SEDSNL. 150
24 Give me the number of Enrique. 160
25 Give me all emails from Enrique. 170
26 Give me the last email from Enrique. 170
27 Give me all calls from Enrique. 170
28 Give me all mails about SEDSNL. 190
29 Give me all messages from members of development. 170
30 Give me all emails from Enrique. 170
31 Give me the last email from Enrique. 170
32 Give me the time of my last call to Enrique. 170
33 Show me my mails. 170
34 Change name of project testproject1 to oldproject1. 90
35 Change budget of SEDSNL to 100.000. 91

Table A.4.: Commands for a fictitious project management software; The row ’Pattern ID’
defines the pattern which should identify this command
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AI Artificial Intelligence

CxG Construction Grammar

DL Description Logic

DSL Domain Specific Language

FCG Fluid Construction Grammar

FOL First-Order Logic

FST Finite-State Transducer

GMF Graphical Modeling Framework

IDE Integrated Developer Environment

IE Information Extraction

IR Information Retrieval

LCA Lowest Common Ancestor

LMF Lexical Markup Framework

LTAG Lexicalized Tree Adjoining Grammar

MDD Model-driven development

N3 Notation 3

NER Named Entity Recognition

NLP Natural Language Processing

OBIE Ontology-based Information Extraction

OBIR Ontology-based Information Retrieval

OBJ Object

259
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OBJ2 Secondary Object

OBL Oblique Argument

OWL Web Ontology Language

OWL2 OWL 2 Web Ontology Language

PCFG Probabilistic context-free grammar

POS Part-Of-Speech

RDF Resource Description Framework

RDFS RDF Schema

SE-DSNL Semantically Enhanced Domain Specific Natural Language

SUBJ Subject

TAG Tree Adjoining Grammar

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WSD Word Sense Disambiguation
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