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Abstract. We study the effect of a uniform background of external charges on the
superconductor–insulator phase transition and on single-vortex properties, such as mass and
damping, in a quantum (zero-temperature) Josephson junction array, in the case of long-
range Coulomb interaction between Cooper pairs. We find, by an analytical method based
on a small- ( 2 8 ) expansion, that the phase transition moves quickly to higher

with increasing offset charge, indicating that external charges significantly stabilize the
superconducting phase. At the transition the vortex mass vanishes and the spin-wave damping
decreases, as a consequence of the suppression of charge fluctuations, while upon decreasing ,
we confirm the ‘classical’ result for the mass and the damping, independently of the external
charges.

1. Introduction

In recent years much attention has been devoted to the study of Josephson junction arrays
(JJA) [1], because, in ultrasmall junctions, charging effects lead to the observation of
quantum properties at the macroscopic level. Furthermore, due to the fact that junction
parameters can be controlled accurately and disorder is weak, Josephson junction arrays
offer a unique opportunity to test models of quantum statistical mechanics.

In particular, such an array can undergo a superconductor–insulator transition at low
temperature [2, 3, 4], when the Coulomb charging energy becomes comparable to
the Josephson coupling energy ( 8 1). The transition separates
two phases: in the superconducting phase, vortices, that are topological excitations of the
phase, are bound in dipoles of opposite vorticity and Cooper pairs are delocalized, while
in the insulating phase, Cooper pairs are localized and the phase becomes delocalized.
The transition has been studied numerically and analytically in [5] using a description in
terms of the topological excitations of the system, charges and vortices. In this formulation
various collective properties in the superconducting phase can be analysed; in particular,
the dynamics of a single vortex can be studied.

The presence of offset charges on the metallic islands can be a problem in the
experiments. Presumably they are induced by trapped impurities in the substrate, and
generally are hard to avoid. Furthermore an external gate voltage applied between the
array and the substrate has a similar effect. Several authors [6, 7] have studied the phase
diagram in the presence of external charges for a short-ranged Coulomb interaction; much
less is known when the interaction is long range. Nevertheless, the latter case is relevant
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for some of the arrays investigated experimentally [2, 8], as well as being very interesting
theoretically.

Motivated by this problem, we study in this article the influence of a static background
of external charges on the superconductor–insulator phase transition and on the quantum
vortex dynamics in a Josephson junction array. We assume that the capacitance between
islands, 1, is much larger than the ground capacitance, 0. Of course, a homogeneous
background represents only a poor approximation of the real distribution of charges due to
the impurities, but it is a first step, and we expect insights into the general problem.

To investigate the system, we use the method introduced in [9], which, in particular,
preserves two essential features of the model: the discreteness of charge transfer (by Cooper
pairs) between islands, and the invariance of the system, when all external charges are
increased by a multiple of 2 leading to the expected periodicity of all physical quantities.
This method is based on the approach described in [3, 5], where by a Villain transformation
[10, 11] the partition function is expressed as a collection of vortex–antivortex pairs. In
section 2 we use this approach to obtain an expression for the charge–charge correlation
function, which plays the main role in studying the transition and in determining various
aspects of the vortex dynamics. Section 3 is devoted to the evaluation of this quantity on
the superconducting side, by an analytical method, similar to a low-temperature expansion.
For large Josephson coupling, , the charge–charge correlation function reduces
to its classical limit form, independently of the offset charges, confirming the continuum
limit results for mass and damping of the vortex. This means that, for a large value of
the ratio , the charges can flow in a continuous fashion across the junctions. The
superconductor–insulator transition is discussed in section 4. It is strongly affected by the
offset charges and moves quickly to smaller when the magnitude of the external
charges is increased. In particular, it seems to disappear for a large enough charge. The
dynamics of an individual vortex added to the array is studied in section 5. We calculate
its mass and study the possibility of ballistic motion when an external current is applied to
the array. We show that, with increasing offset charge, the vortex mass increases and the
ballistic regime is less likely to be observable.

2. Description of the model

We consider a system of superconducting grains, which form a two-dimensional square
lattice with lattice constant 1, coupled by Josephson junctions. The relevant variables
of the model are the phases of the superconducting order parameter, (the index

labels the islands) and their conjugate variables, which are the charges, 2 :
[ ] i . Introducing static (generally noninteger) external charges, 2 , on each
island, the quantum Hamiltonian of the array is given by

1

2
2 2 1 cos (1)

The Josephson coupling energy, , is related to the critical current of a single junction,
¯ 2 , and 1 is the inverse of the capacitance matrix. We take only the

ground capacitance, 0, into account, and the capacitance between neighbouring islands, 1

( 2 2 1). Thus the only nonvanishing elements are 0 4 1 and 1

( nearest neighbours). Note that, in the long-wavelength limit, the Fourier transform of
is given by

0 1
2 (2)
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so, for distances which are large compared to the lattice spacing, the Coulomb interaction
in real space ( , with ) is

1 1

2 1
0 (3)

which identifies 1 0
1 2 as the screening length. We assume below that 1 0

which means a long-range Coulomb interaction between the Cooper pairs.
In the superconducting phase the partition function can be expressed as a collection of

vortex–antivortex pairs of vorticity (the vorticity at each space-time point can take the
values 0 or 1) [3]. A cumulant expansion yields the partition function in the following
form [5]:

e 0 1 (4)

with

0 (5)

and

1
1

2
i (6)

where 8 is the Josephson plasma frequency (its inverse is chosen to define
the time spacing, 1; ¯ 1), and ln is the logarithmic vortex–
vortex interaction. Here, and in the following, a dot means a discrete, dimensionless
time derivative. Furthermore, we defined the phase configuration around a vortex,

arctan , and the connected charge–charge correlation function,
. Averages are performed with respect to the charge

action:
1

2
(7)

Tr[exp ], and the matrix is defined by [5]

4

2
2 (8)

where 2 1
1.

In order to evaluate and explicitly, we perform a Poisson resummation. The
averages are expressed in terms of discrete auxiliary fields, , that run over all integers,

0 1 2 . The resulting expressions for and are the following:

2 i 1 (9)

and
1 2 2

1 2

1
1 1 2

1
2

(10)

where the new average is performed with the action

2 2 1 2 i (11)
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The advantage of introducing the -fields is that, in the limit 1, they interact through
the short-ranged kernel

1 1

16
2 e (12)

where 2 denotes the Laplacian on the lattice. This simplifies the problem of calculating
the correlation function, because, as described in the next section, we will apply an
expansion method that would be inefficient for a long-range interaction. In Fourier space,

, the kernel is given by ( )

1

8

2

2 2
(13)

The action is invariant when the external charges are increased by a multiple of 2 ,
leading to the expected periodicity of all of the physical quantities. This invariance is a
direct consequence of the discreteness of the auxiliary fields (note that in the Gaussian
approximation and in the self-consistent harmonic approximation [5] the periodicity is lost,
because, for calculating the correlation functions, the fields are considered as continuous
variables).

From now on we examine a homogeneous external charge, . Clearly, 2 0
independently of , and hence, considering (9), . Several features of the
superconductor–insulator transition (see section 4), and various aspects of the quantum
vortex dynamics, such as mass and damping (see section 5), are determined by the charge–
charge correlation function. Thus, in the next section, we focus our attention on this
quantity.

3. Charge–charge correlation functions

In the representation given by equation (10), the charge–charge correlation function
is expressed as a function of the fields ; the first term on the right-hand side describes the
classical contribution for the correlation function, whereas the second term takes into account
the discreteness of the charge variables. It begins to be important when the overall phase
coherence between the islands becomes small, i.e. with increasing . In order to evaluate

, we explicitly need the connected correlation function, ,
where , ( are integers; clearly, this quantity is independent
of ). Making the -dependence explicit, we may write, for example,

cos 2
0

cos 2
0

(14)

where the index 0 indicates that the averages are performed for 0.

3.1. The small- expansion

can be calculated exactly for 0, yielding 0 0, as follows easily
with the help of equation (11); this implies that 1 in this limit. Thus, for dominant
Josephson coupling, , the charge–charge correlation function reduces to the
classical contribution, independently of , i.e. the discreteness of the charges does not
affect . Of course, as a direct consequence of this result, all single-vortex properties
tend to those obtained in the classical limit, 0. This disagrees with the result given in
[5] on the basis of a Monte Carlo simulation and a self-consistent harmonic approximation
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(SCHA), namely that does not vanish for 0. We believe that this conclusion is
physically unreasonable.

For finite but small , is computed via a small- expansion, similar to the low-
temperature expansion [12]. Only a few sites are ‘excited’; that is, we can compute the
average by including only those configurations that have a small number of excitations. To
be more precise, the ground state for the system is 0 . Due to the form of the
kernel in (11), there is an arbitrariness, with an integer, but this ambiguity
is not important in the calculation of the configuration. The lowest excitation is obtained
by considering only one site with the value 1 (the model is symmetric with respect
to the sign of the fields ). The degeneracy of a single excitation is , where is the
total number of sites, and the cost of this unit step is e

2 2 . Additional configurations can
be obtained by increasing the number of excitations and by changing their position in the
space-time lattice. Configurations can be visualized as surfaces joining plaquettes at height

above the ground. Of course, for small , configurations with equal are favoured,
and the surface tends to be smooth.

depends on the parameter , the charge , and the space-time distance between
the sites. The first contributions, as obtained within the low- expansion, are given below

e
2 4 :

00 0 2 cos 2 2 8 cos 4 3

[ 8 12 cos 4 36 cos 6 8 cos 8 ] 4 O 5

2 4

0

O 4 1 1 4 (15)

10 0 2 cos 4 3 [2 2 cos 4 12 cos 6 4 cos 8 ] 4 O 5 (16)

11 0 [4 cos 6 2 cos 8 ] 4 O 5 (17)

20 0 2 cos 6 4 O 5 (18)

00 2 4 (19)

where [ 4 e 1] cos 4 [ 4 e 1], and e 2 71 . The terms with integer
exponents of refer to the excitations in the space directions, whereas those with noninteger
exponents originate from excitations in the time direction.

3.2. Large : the continuum approximation

For and in the absence of external charges, the correlation function can be
computed by treating the -fields as continuous variables. For example, becomes

e e e e (20)

with

2 2 1 (21)

where . If we now replace the sum over by an integration, we obtain 0,
and

2 2 (22)

Substituting this result in equation (10), we eventually obtain 0. The
extension of this approximation to the case of finite external charges is an open problem.
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4. Phase transitions

The analysis of section 3 shows that the correlation function , and, consequently,
, behaves differently in the two limits, 0 and . For small ,

approaches a constant as , while for large , this correlation function diverges,
2 2 ln . This indicates that in between, at a critical value , the

model shows a transition from a superconducting to an insulating phase, as argued before
in the absence of external charges [3], similar to the roughening transition. This is clear
when we replace the exponential time dependence in (12) by a -function. Considering for
a moment 0, the action reduces to the discrete Gaussian model

2

8
2 (23)

where means nearest-neighbour sites. This model has been studied in connection
with the roughening transition of solid–solid interfaces [13, 14]. Any site of the array
is characterized by a value of the -fields, the ‘height’, that is, in a lattice-gas model, a
measure of the number of atoms in the column. The interaction energy is an increasing
function of the difference in heights between two nearest-neighbour sites. For small ,
configurations with equal are favoured, and the surface is smooth. As increases and
approaches , the heights at different sites become more fuzzy and the surface changes (it
is said to become more ‘rough’) in such a way that two distant points have uncorrelated
heights. The phase transition can be characterized by the behaviour of the correlation
function 2 , relating the mean square height difference between two
columns separated by the distance . It coincides, except for a constant, with
the correlation function . Below the roughening transition, , has a finite
asymptotic value as , indicating a finite interface width, while at and above the
transition this correlation function diverges ln , with an increasing function
of .

When 0, the action does not reduce to a Gaussian model. However, the
behaviour of the correlation function for small and large is still obtained, suggesting
that the offset charges should not change the type of the phase transition of the model.
However, the roughening analogy certainly requires further investigations.

To study the phase transition, it is useful to transform to Fourier space .
For large enough , i.e. in the insulating regime, the correlation function, using equations
(22) and (13), is given by

:
2

2

2 2

2
(24)

which gives the expected logarithmic divergence as . Furthermore, the prefactor
increases linearly in . For , i.e. in the superconducting regime, the correlation
function is obtained via the low- expansion. If we restrict ourselves to the terms (15)–
(19), the correlation function becomes

00 0 2 cos cos 10 0 4 cos cos 11 0

2 cos 2 cos 2 20 0
0

cos 00 (25)
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Figure 1. Normalized correlation functions —compare equations (15)–(18)—for 0 0
versus space distance. The different symbols refer to different values of ( : 0 0; :

0 5; : 1 0; : 1 5; : 2 0). The inset shows the normalization, 00 0, for
the same -values.

Figure 2. Normalized correlation functions —compare equations (15) and (19)—for
0 0 versus time distance, for the same -values as in figure 1.

Thus, for 0, 0, it reduces to a constant, 0 0
2 2 2 O 2 , which

defines the correlation length, . Explicitly,

2
2

2
2 cos 2 2 16 cos 4 3

[ 20 cos 4 108 cos 6 32 cos 8 ] 4
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4 4

0

4 e 1 cos 4

 

(26)

In the last expression, we have taken into account for only the terms (15)–(19), and
higher-order terms in the distance between the sites are disregarded. For not too large
an external charge, is strongly peaked at 0, and falls off rapidly
with increasing space or time distance (see figures 1 and 2). However, when becomes
too large, this is no longer true, and our approximation for evaluating is not reliable.
Furthermore, the terms with noninteger exponent, which originate from the excitations in
the time direction, do not play a significant role in the calculation of , and we neglect them
in the following. Eventually,

2
2

2
2 cos 2 2 16 cos 4 3

[ 20 cos 4 108 cos 6 32 cos 8 ] 4 (27)

The correlation length vanishes exponentially for 0, whereas it is expected to diverge
at the transition. The series expansion gives in the superconducting phase and not too near
the critical value , but strictly speaking does not allow the determination of its singularity.
However, the knowledge of (27) is enough to extract information on the critical point by
using, for example, the Padé approximant method [15]. The Padé approximations, 0

1 ,
0
2 , and 1

1 , for (27) are:

2
2

2
2 2

2 1
8 4

2
(28)

2
2

2
2 2

2 1
8 4

2

8 4

2

2 10 4 54 6 16 8

2

2 (29)

2
2

2
2 2

2 16 4
5 4 27 6 8 8 2

2 4

3 1
5 4 27 6 8 8

4 4
(30)

where cos .
In figure 3 we show the results for 2 as obtained from the series expansion (27) (curve

a), and from 2, 2, and 2 (the plots b, c, and d respectively) for 0. The behaviour
of 2 is qualitatively similar for the different Padé approximations even though the series
(27) is rather short; in particular, the divergence is close to 1.2. This value is in reasonable
agreement with the result 1 05 obtained with the SCHA approximation [5], but differs
somewhat from other approaches, such as the duality argument [3] ( 0 79), variational
method [4] ( 0 5), and Monte Carlo simulation [5] ( 0 46). Note that the experimental
data [2, 8] give 0.5 as the critical value.

To study the effect of the external charges on the phase transition, we work in the
following with the diagonal Padé approximation, 1

1 . In figure 4 we show the correlation
length as a function of for some values of , in the range where our results are
reliable. With increasing , the divergence of 2 moves quickly to higher from the
value 0 1 2. This means that a finite external charge significantly stabilizes
the superconducting phase. From these results, it is straightforward to determine the phase
diagram in the variables and 1 , shown in figure 5. From the form of the phase diagram,
we speculate that the transition almost disappears when the magnitude of the offset charge
is strong enough.
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Figure 3. The squared correlation length versus in the absence of external charges, based on
equation (27), curve a, and for the three Padé approximations of this expression, 0

1 , 0
2 ,

and 1
1 (curves b–d, respectively).

Figure 4. The squared correlation length versus , on the basis of 1
1 , for different values

of the external charge. From a to f, increases from 0.00 to 0.05 in steps of 0.01.

5. Quantum single-vortex dynamics

The aim of this section is to study the quantum properties of an individual vortex moving
in the array. In the superconducting phase a small number of vortices can be induced by a
small external magnetic field, and, when a current is applied, vortices experience a force and
move. (For simplicity, we do not consider here the periodic potential due to the lattice.) An
external uniform current can be accounted for by adding to the action in the partition
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Figure 5. The phase diagram as a function of 1 and . I: superconducting phase; II: insulating
phase. The range of -values where our approach is less reliable is shown with dashed lines.

function (4) the term [1]

2
2 i

2
(31)

If the magnetic frustration is small, we may suppose that the vortex motion is not influenced
by their mutual interaction, and hence we focus our attention on an individual vortex with
trajectory and configuration . Its effective action (see equations (5),
(6), and (31)) becomes , with

1

2
[ ] (32)

i (33)

2 i
(34)

where 2 , and the vortex mass tensor is given by

[ ] (35)

5.1. The vortex mass

In the limit of a constant and small velocity, the action reduces to that of a particle with
mass

1 0
1

2

d2

2
0 (36)

To clarify the concept of the vortex mass: when a vortex moves in the array, voltages
across the junctions appear and, since the junctions have a capacitance 1, electrostatic
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energy is stored. This electrostatic energy can be interpreted [16, 17] as the kinetic energy
of the vortex, which therefore has a mass . Thus, is proportional to the junction
capacitance. Of course, the concept of a vortex mass only makes sense as long as the system
is in the superconducting phase. It is expected that close to the superconductor–insulator
transition the vortex mass will decrease rapidly as a consequence of the suppression of
charge fluctuations, causing the vortex to become delocalized.

To evaluate the vortex mass, the Fourier transform of the charge–charge correlation
function has to be computed. As obtained in section 3, 0 at the phase transition
and hence, from equation (36), 0. The vanishing of the mass at the phase transition
indicates that in a sense describes the stability of the vortex configuration: it goes to
zero when the vortex ‘evaporates’.

In the limit 0, 1 . Substituting this result into equation (36), the vortex
mass becomes

1

2

d2

2

2

8

2

4
(37)

This result is independent of the offset charge ; thereby we confirm the classical result
[17], for all .

Hence the vortex mass tends to a constant ( ) for large Josephson coupling , and
vanishes as approaches the critical value . In order to evaluate in the intermediate
area, we will assume that the connected correlation function is of the form given by
the SCHA approximation [5]:

2
2

2 2 2

2 2 1 2 2
(38)

Using equation (10), this implies (compare equation (13))

8

2

2 2 (39)

where 2 2 1 2 2 . Thus characterizes the stiffening of the spin-wave spectrum.
Note, however, that as a direct consequence of the ansatz (39), we have for 0 and
small ,

0
2

2
2 1 2 2 (40)

which we cannot confirm from our approximative result given in equation (25). Using
equation (39), we compute the mass according to [5]

4 2 1 ln 1 4 2 (41)

This expression is obtained using a sharp—symmetric—cut-off. Note that at the transition
coincides with equation (24), while for small , is exponentially small and

approaches a constant, as discussed above.
The vortex mass versus for some values of the offset charges is shown in figure 6,

using the Padé approximation 1
1 , from equation (30).

5.2. Spin-wave damping and the ballistic regime

The notion of a massive vortex leads us to the question of whether or not a vortex can
move ballistically in the array. This question has recently attracted considerable attention,
experimentally [18] as well as theoretically [19, 20]. In high-quality JJA, where ohmic
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Figure 6. The vortex mass (normalized to ) versus , as calculated from equation (41), for
the same -values as in figure 4.

dissipation is negligibly small, and at a temperature low enough to freeze out quasiparticle
excitations, the main mechanism of friction is the coupling of the vortex to the plasma
oscillations: a moving vortex can lose its kinetic energy by emitting spin waves. It has
been shown [19] that the spin-wave damping is strongly nonlinear, and it is active for vortex
velocities larger than a certain threshold velocity, . Below this velocity the vortex may
move ballistically.

We pursue the approach discussed in detail in [19]. Following the standard analytical
continuation procedure (see, e.g., [21]), we derive the equation of motion for the vortex
coordinate. Considering then a constant vortex velocity, perpendicular to the applied current,
we put 0 , and 0 for simplicity. The result is the following [19]:

2 d2
2

4
d (42)

where is the retarded continuation of , and i . By using the
expression (38) for the connected correlation function, we obtain (including the smooth
cut-off [17]; 2 2 )

4
d2 e

2

2
(43)

This relation determines the (nonlinear) dependence of the vortex velocity on the external
current.

The vortex velocity as a function of the current for several values of and in the
absence of external charges is shown in figure 7 (for the correlation length we have again
used the Padé approximation 1

1 , from equation (30)). It is apparent that the spin-wave
damping is active only for velocities larger than a certain threshold ; for a
constant-velocity solution of (43) exists only for zero current. This indicates the possibility
of ballistic motion.
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Figure 7. The vortex velocity (in units of the plasma frequency) versus the driving current
in the absence of external charges and for different values of the parameter (a: 0 0;

b: 0 9; c: 1 1).

Figure 8. The threshold velocity as function of . The plots refer to different values of the
offset charges. From a to d, increases from 0.00 to 0.045 in steps of 0.015. All of the plots
tend to the classical limit result, 0 1 , for 0.

For 0 (figure 7, curve a) the continuum model result [19] is obtained. In particular,
the threshold velocity is given by 0 1 . On increasing the ratio , a larger
window for ballistic motion opens, as is obvious from figure 8 (curve a), where we show
the threshold velocity versus . At the transition, , the vortex decouples completely
from the spin waves, and diverges.

The curves b–d in figure 8 show versus for different values of the offset charge.
The threshold velocity for 0 approaches for all , because the offset charges do
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not affect the classical limit. When 0, the threshold velocity depends strongly on the
charge. In particular, decreases with increasing and, as a consequence, the critical
value moves to higher

The critical behaviour of can be compared to that of the vortex mass For large
, the vortex mass and the threshold velocity approach a constant value, while close

to the phase transition, decreases and increases rapidly. In particular, at the critical
value , the mass vanishes and the threshold velocity diverges, and with increasing ,
increases and decreases. We conclude that offset charges frustrate the array, favouring
superconductivity (increasing ), but reducing the ballistic window (decreasing ).

5.3. The linear response of a moving vortex

Given the above (or any other) approximation of the charge–charge correlation function,
equation (39), it is straightforward to write down the nonlinear equation of motion for
the vortex coordinate; the result (we ignore the Hall contribution, compare [8], chapter 8)
is given in [19], equation (10), provided that we identify defined there, with

2 Furthermore, we assume that in addition to the constant external current,
which leads to a constant vortex velocity in the -direction, there is a small oscillating
current at frequency Thus we put linearize the equation of motion
with respect to and define a frequency- and velocity-dependent vortex
mass tensor as a generalization of equation (36). This quantity is not directly related to the
analytic continuation of equation (35), except for for 0 where

1

2

d2

2
(44)

The real part of this quantity (which is even in ) increases quadratically for small
diverges logarithmically at becomes negative for 1 4 2 1 2 and
decreases 2 for extremely large frequencies. The details depend on the form of
the cut-off. Furthermore, its imaginary part (which is odd in ) is finite (and 2) only
in the frequency range where real spin waves exist, i.e. between and 1 4 2 1 2

Details will be presented elsewhere.

6. Summary

We have studied the superconductor–insulator transition in a Josephson junction array with
a uniform static background of offset charges , in the limit of a long-ranged Coulomb
interaction, by an analytical method similar to a low-temperature expansion. We have
shown that the transition strongly depends on the external charge. It moves quickly from
the value 0 1 2 to higher with increasing , and seems to disappear when the
magnitude of the offset charge is strong enough: a finite frustrates the charge order in the
array and strongly stabilizes superconductivity.

We also studied various aspects of the vortex dynamics. We have calculated the vortex
mass, confirming the classical result, , independently of , in the limit of a dominant
Josephson coupling energy ( 0). Close to the phase transition the vortex mass decreases
and vanishes at a critical value .

We eventually investigated the vortex motion driven by an external current. It was
confirmed that nondissipative motion is only possible for velocities below a certain threshold

, while for , the creation of spin-wave excitations leads to a constant velocity in
the presence of a constant current. The threshold velocity becomes larger as approaches
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, which means that ballistic motion of vortices is more likely to be observable in arrays
that are close to the superconductor–insulator phase transition. Furthermore, offset charges
strongly reduce the window for ballistic motion.
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