
Universität Augsburg

An Algebra of Database Preferences

B. Möller P. Roocks

Report 2013-08 July 2013

Institut für Informatik
D-86135 Augsburg

Copyright c© B. Möller P. Roocks
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

An Algebra of Database Preferences

Bernhard Möllera, Patrick Roocksa

aInstitut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany

Abstract

Preferences allow more flexible and personalised queries in database systems. Evaluation of such a query
means to select the maximal elements from the respective database w.r.t. to the preference, which is a
partial strict-order. We present a point-free calculus of such preferences and exemplify its use in proving
algebraic laws about preferences that can be used in query optimisation. We show that this calculus can be
mechanised using off-the-shelf automated first-order theorem provers.

Keywords: relational algebra, complex preferences, preference algebra

1. Introduction

In the field of data bases, the relational calculus is a well established discipline which, among other
applications, is used in algebraic query optimisation. The classical operations there are union, difference,
cartesian product, selection and projection. The queries treated with this calculus mostly pose so-called hard
constraints, by which the objects sought in the data base are clearly and sharply characterised. Hence, if
there are no exact matches the empty result set is returned, which is very frustrating for users.

As a remedy, over the last decade queries with soft constraints have been studied. These arise from
a formalisation of the user’s preferences in the form of partial strict-orders. A realisation of this idea
is presented by the language Preference SQL [11] and its current implementation [12]. For example,
a consumer wants to buy a new car. Her preference relation has two components: she prefers cars with
high power and low fuel consumption. Hence, in addition to offering the possibility of specifying simple
preferences, one needs flexible and powerful combination operators. There, such hierarchies of user wishes
can be handled by complex preferences. The constructs of the Pareto and the Prioritisation preference are
used to model equal and more/less important user preferences. Complex preferences are constructions where
base preferences like “lowest fuel consumption” are at the bottom of the hierarchy. Since the resulting strict-
orders are partial, they frequently admit many best or maximal data base objects, which helps to avoid
empty result sets for queries.

Naturally, also for queries using such preferences efficient optimisation has to be performed, for which an
algebraic calculus is indispensable. Although there is by now a well developed set of preference constructors
with associated algebraic laws, the underlying theory was based on pointwise definitions with complex first-
order formulas, which made proofs of new optimisation rules or the addition of further preference constructed
a tedious and error-prone task. The present paper unifies and extends a point-free calculus for preference
relations and their laws that has developed over the last two years and is meant to help in resolving the
mentioned problems. Not least, it can be easily used with off-the-shelf automated theorem provers, which
provides an additional level of trustworthyness.

Before we delve into the technical details, we provide some examples that illustrate the phenomena to
be tackled.

Email addresses: moeller@informatik.uni-augsburg.de (Bernhard Möller), roocks@informatik.uni-augsburg.de
(Patrick Roocks)

Preprint submitted to Journal of Logic and Algebraic Programming July 5, 2013

Example 1. We return to the sketched example concerning cars. The goals the user wants to achieve are
conflicting, because cars with high power tend to have a higher fuel consumption. To get the optimal results
according to both of these equally important goals from a database, the concept of skyline queries [3] is
used: A car belongs to the result set if there is no other car which is better in both criteria, i.e. has a lower
fuel consumption and a higher power. In a 2-dimensional diagram for both criteria the result set looks like
a “skyline”, viewed from the origin.

Concretely, consider the data set in table 1. The skyline query for minimal fuel consumption and maximal
power returns the “BMW 5” and “Mercedes E”, because each of these is better than the other by one
criterion. The “Audi 6” is not returned, as it is worse by both criteria. ut

Model Fuel Power Color

BMW 5 11.4 230 silver
Mercedes E 12.1 275 black
Audi 6 12.7 225 red

Table 1: Example of a data set of cars

Imagine that a large database, for example a catalogue containing all the cars for the European market,
returns a quite large result for the above skyline query. Assume that the consumer has even more wishes,
for example prefers cars with a specific colour, but this is less important than the preference for low fuel
and high power.

Next, we exemplify the formal notation for expressing preferences.

Example 2. In the abstract notation of Preference SQL, the preference for “Lowest fuel consumption and
(equally important) highest power, both more important than a preference for black cars” can be expressed
by

P = (LOWEST(fuel)⊗ HIGHEST(power)) & POS(color , {black}) ,

where LOWEST and HIGHEST induce the “<” and “>” orders on their respective numerical domains, while
POS creates a preference for values contained in the given set on a discrete domain. Pareto-composition and
Prioritisation are denoted by ⊗ and & and are defined formally later on. ut

In Preference SQL many base preferences have the nice property of being strict weak orders, and
prioritisation constructs of strict weak orders have this property again. In the scope of preferences we also call
such relations layered preferences. This allows fast algorithms and a very intuitive way to define equally good
results: The incomparability relation w.r.t. a layered preference is an equivalence relation. Unfortunately
the Pareto preference constructor does not preserve layered preferences. This is the technical reason for an
counter-intuitive effect which occurs in Preference SQL, shown in the following example.

Example 3. The best objects according to P from Example 2 in the data set of table 1 are again “BMW 5”
and “Mercedes E”. This is quite counterintuitive, because the preference for black cars should decide for the
Mercedes only. ut

After these motivating examples we present the pointfree calculus of preferences developed in [20] and
[18], extended by some additional material.

As our first contribution, we enrich the standard theory of relational databases by an algebraic framework
that allows completely point-free reasoning about (complex) preferences and their best matches. This “black-
box view” is amenable to a treatment in first-order logic and hence to fully automated proofs using off-the-
shelf verification tools. We exemplify the use of the calculus with some non-trivial laws, notably concerning
so-called preference prefilters (introduced in [6]), which perform a preselection to speed up the computation
of the best matches proper, in particular, for queries involving expensive join operations. It turns out that
the original laws hold under much weaker assumptions; moreover, several new ones are derived.

Additionally we define a transformation of the Pareto preference to a layered one which then avoids the
counter-intuitive effect of the previous example. We show the well-definedness and some other interesting

2

properties algebraically using our calculus. The complex preferences are represented in an abstract relation
algebra embedded into a join algebra which allows reasoning about complex preferences in a point-free
fashion.

New results with respect to [20] and [18] are the theorems about additivity of maxima and subset
preferences and the discussion of normality and its relation to noetherity in Appendix E. Thereby we
algebraically characterise normal elements as noetherian strict orders. Furthermore, we extend the results
from [20] to the more general view of [18], thus achieving a much more uniform overall treatment.

2. Types and Tuples

In this section we present the formal framework to model database objects as tuples. We introduce
typed relations whose types represent attributes, i.e. the columns of a database relation. Conceptually and
notationally, we largely base on [9].

2.1. Typed Tuples

Definition 1. Let A be a set of attribute names. For A ∈ A the set DA is called the domain of A, and
(DA)A∈A is a family of domains. We define the following notions:

• A type T is a subset T ⊆ A.

• An attribute A ∈ A is also used for the type {A}, omitting the set braces.

• A T -tuple is a mapping

t : T →
⋃
A∈A

DA where ∀A ∈ T : t(A) ∈ DA.

• For a T -tuple t and a sub-type T ′ ⊆ T we define the projection πT ′(t) to T ′ as the restriction of the
mapping t to T ′: πT ′(t) : T ′ →

⋃
A∈ADA, A 7→ t(A).

• The domain DT for a type T is the set of all T -tuples, i.e., DT =
∏

A∈T
DA.

• The set U =df

⋃
T⊆A

DT is called the universe.

• For a tuple t, and a set of tuples M we introduce the following abbreviations:

t :: T ⇔df t ∈ DT , M :: T ⇔df M ⊆ DT .

Definition 2 (Join). The join of two types T1, T2 is the union of their attributes:

T1 1 T2 =df T1 ∪ T2.

For sets of tuples Mi :: Ti (i = 1, 2), the join is defined as the set of all consistent combinations of Mi-tuples:

M1 1M2 =df {t :: T1 1 T2 | πTi
(t) ∈Mi, i = 1, 2} .

We illustrate this concept with the following example.

Example 4. Assume a database of cars with a unique ID and further attributes for model and horsepower.
Hence the attribute names, i.e. types, are ID,model and hp. The tuples are written as explicit mappings.
Assume the following sets:

M1 =df {{ID 7→ 1, model 7→ ’BMW 7’}, {ID 7→ 3, model 7→ ’Mercedes CLS’}},
M2 =df {{ID 7→ 2, hp 7→ 230}, {ID 7→ 3, hp 7→ 315}}.

3

The sets have the types M1 :: ID 1 model and M2 :: ID 1 hp. Now we consider the join M1 1 M2 :: ID 1

model 1 hp. We have (ID 1 model)∩ (ID 1 hp) = ID. The only tuple t :: ID 1 model 1 hp which fulfills both
πT1

(t) ∈M1 and πT2
(t) ∈M2 is the one with t : ID 7→ 3. Hence the join is given by:

M1 1M2 = {{ID 7→ 3, model 7→ ’Mercedes CLS’, hp 7→ 315}} .

Corollary 1. The following laws hold:

1. 1 is associative and commutative and distributes over ∪.

2. 1 preserves the inclusion order, i.e. M 1 N ⊆M ′ 1 N for M ⊆M ′.
3. Assume Mi, Ni :: Ti (i = 1, 2). Then the following exchange law holds:

(M1 ∩N1) 1 (M2 ∩N2) = (M1 1M2) ∩ (N1 1 N2).

Proof. (1) and (2) follow directly from definition. Using the definition of the join and the usual intersection
of sets we show the exchange law as follows:

x ∈ (M1 ∩N1) 1 (M2 ∩N2)

⇔ πT1
(x) ∈ (M1 ∩N1) ∧ πT2

(x) ∈ (M2 ∩N2)

⇔ πT1(x) ∈M1 ∧ πT1(x) ∈ N1 ∧ πT2(x) ∈M2 ∧ πT2(x) ∈ N2

⇔ x ∈M1 1M2 ∧ x ∈ N1 1 N2

⇔ x ∈ (M1 1M2) ∩ (N1 1 N2) .

2.2. Typed Relations

Definition 3 (Typed homogeneous binary relations). For a type T we define the following abbrevia-
tions:

(t1, t2) :: T 2 ⇔df ti ∈ DT , R :: T 2 ⇔df R ⊆ DT ×DT .

We say that the typed relation R has type T . There are some special relations for every type T : The full
relation >T =df DT ×DT , the identity 1T =df {(x, x) | x ∈ DT } and the empty relation 0T =df ∅.

This concept of typed relations also appears in the relation-based logical, but not primarily algebraic,
approach to database notions of [14]. We will generalise it in Section 3.2.

Definition 4 (Join of relations). Let Ri :: T 2
i (i = 1, 2). Then the composition R1 1 R2 :: (T1 1 T2)2 is

defined by
t (R1 1 R2)u ⇔df πT1(t)R1 πT1(u) ∧ πT2(t)R2 πT2(u).

Corollary 2.

1. Assume Mi, Ni :: Ti (i = 1, 2). Then the following exchange law holds:

(M1 1M2)× (N1 1 N2) = (M1 ×N1) 1 (M2 ×N2).

2. For types T1, T2 and X ∈ {0, 1,>} we have XT11T2
= XT1

1 XT1
.

Proof.

1. Straightforward from Definition 4.

2. Using part (1), (DT1
1 DT2

) × (DT1
1 DT2

) = (DT1
× DT1

) 1 (DT2
× DT2

). By definition of the
join for types we have that T1 1 T2 = T1 ∪ T2. From the definition of the join for sets we infer
that DT11T2 = DT1 1 DT2 . This shows the claim for X = >. For X = 1 we show the equality
component-wise using again the argument DT11T2

= DT1
1 DT2

. For X = ∅ the claim is obvious.

Corollary 3.

4

1. For M,N :: T we have M 1 N = M ∩N . In particular, we have N 1 N = N .

2. For R1, R2 :: T we have R1 1 R2 = R1 ∩R2.

3. For Mi :: Ti (i = 1, 2) with disjoint Ti, i.e., with T1 ∩ T2 = ∅, the join M =df M1 1M2 is isomorphic
to the cartesian product of M1 and M2.

Proof.

1. By the definition of join and the typing assumptions we have

t ∈M 1 N ⇔ t ∈M ∧ t ∈ N .

2. Similarly we conclude for all x, y :: T :

x (R1 1 R2) y ⇔ πT (x)Ri πT (y) (i = 1, 2) ⇔ xR1 y ∧ xR2 y

3. For x ∈ M , the two join conditions πTi
(x) ∈ Mi are independent. Hence all elements of M1 can be

joined with all elements of M2. Thus, by definition,

t ∈M ⇔ πT1
(t) ∈M1 ∧ πT2

(t) ∈M2 ⇔ (πT1
(t), πT2

(t)) ∈M1 ×M2.

2.3. Inverse Image and Maximal Elements

Definition 5 (Inverse image). For a relation R :: T 2 the inverse image of a set Y :: T under R is formally
defined as

〈R〉Y =df {x :: T | ∃y ∈ Y : xR y} .

The notation stems from the fact that in modal logic the inverse-image operator is a (forward) diamond.

Lemma 1. Assume Ri :: T 2
i and Yi :: Ti (i = 1, 2) with disjoint T1, T2. Then the following exchange law for

the join and the inverse image holds:

〈R1 1 R2〉 (Y1 1 Y2) = 〈R1〉Y1 1 〈R2〉Y2 .

Proof. Using the definition of the inverse image and the composition of relations we infer:

x ∈ 〈R1 1 R2〉 (Y1 1 Y2)

⇔ ∃y ∈ (Y1 1 Y2) : x (R1 1 R2) y

⇔ ∃y ∈ (Y1 1 Y2) : πT1(x)R1 πT1(y) ∧ πT2(x)R2 πT2(y)

⇔ ∃y1 ∈ Y1 : ∃y2 ∈ Y2 : πT1
(x)R1 y1 ∧ πT2

(x)R2 y2
⇔ πT1

(x) ∈ 〈R1〉Y1 ∧ πT2
(x) ∈ 〈R2〉Y2

⇔ x ∈ (〈R1〉Y1 1 〈R2〉Y2) .

Note that splitting y into y1 and y2 in the third step is justified by disjointness of the types: because of
T1 ∩ T2 = ∅ the two join conditions πTi

(y) ∈ Yi for i = 1, 2 are independent of each other, hence the
substitution yi := πTi

(y) is allowed.

Assume that R1, R2 are strict orders (irreflexive and transitive), which is the case in our application do-
main of preferences. Then, together with Corollary 3.3, this lemma means that, under the stated disjointness
assumption, R1 1 R2 behaves like the product order of R1 and R2 on the Cartesian product DT1

×DT2
.

The inverse image of a set Y under a relation R, when viewed the other way around, consists of the
objects that have an R-successor in Y , i.e., are R-related to some object in Y or, in the preference context,
dominated by some object in Y . For this reason we can characterise the set of R-maximal objects within a
set Y , as follows.

5

Definition 6 (Maximal elements). For a relation R :: T 2 and a set Y :: T we define

R . Y =df Y − 〈R〉Y ,

where “−” is set difference.

These are the Y -objects that do not have an R-successor in Y , i.e., are not dominated by any object in
Y . The mnemonic behind this notation is that in an order diagram for a preference relation R the maximal
objects within Y are the peaks in Y ; rotating the diagram clockwise by 90◦ puts the peaks to the right.
Hence R . Y might also be read as “R-peaks in Y ”.

To develop the central properties of our algebra and the maximality operator it turns out useful to
abstract from the concrete setting of binary relations over sets of tuples, which will be done in the next
section.

3. An Algebraic Calculus

Since we have shown how to characterise the maximal elements concisely using a diamond operation, it
seems advantageous to reuse the known algebraic theory around that. This also allows us to exhibit clearly
which assumptions are really necessary; it turns out that most of the development is completely independent
of the properties of irreflexivity and transitivity that were originally assumed for preference relations in [10],
and in fact also independent of the use of relations at all.

3.1. Semirings

Definition 7. An idempotent semiring consists of a set S of elements together with binary operations +
of choice and · of composition. Both are required to be associative, choice also to be commutative and
idempotent. Moreover, composition has to distribute over choice in both arguments. Finally, there have to
be units 0 for choice and 1 for composition.

Binary homogeneous relations over a set form an idempotent semiring with choice ∪ and composition
“;”, which have ∅ and the identity relation as their respective units.

Definition 8. Every idempotent semiring induces a subsumption order by x ≤ y ⇔ x + y = y. A test is
an element x ≤ 1 that has a complement ¬x relative to 1, i.e., that satisfies

x+ ¬x = 1 , x · ¬x = 0 .

It is well known (e.g. [16]) that the complement is unique when it exists and that the set of all tests
forms a Boolean algebra with + as join and · as meet. Tests are used to represent subsets or assertions in
an algebraic way. In the semiring of binary relations over a set M the tests are subidentities, i.e., subsets of
the identity relation, of the form IN =df {(x, x) |x ∈ N} for some subset N ⊆ M and hence in one-to-one
correspondence with the subsets of M . Because of that we will, by a slight abuse of language, say that x
lies in IN when (x, x) ∈ IN .

We will use small letters a, b, c, ... at the beginning of the alphabet to denote arbitrary semiring elements
and p, q, ... to denote tests.

Based on complementation, the difference of two tests p, q can be defined as p− q =df p · ¬q. It satisfies,
among other laws,

(p+ q)− r = (p− r) + (q − r) , (p− q)− r = p− (q + r) ,
p− (q + r) = (p− q) · (p− r) , p− (q · r) = (p− q) + (p− r) .

For the interaction between complements and the subsumption ordering we can use the shunting rule

p · q ≤ r ⇔ p ≤ ¬q + r .

6

A special case of applying this rule twice with p = 1 is the contraposition rule

q ≤ r ⇔ ¬r ≤ ¬q .

Tests can be used to express domain or range restrictions. For instance, when a is a relation and p, q
are tests, p · a and a · q are the subrelations of a all of whose initial points lie in p and end points in q,
respectively. Hence, all initial points of a lie in p if and only if a ≤ p · a.

With these properties we can give an algebraic characterisation of the test 〈a〉 q that represents the
inverse image under a of the set represented by q or, equivalently, the set of initial points of a · q.

Definition 9. Following [5], the (forward) diamond is axiomatised by the universal property

〈a〉 q ≤ p ⇔ a · q ≤ p · a · q ⇔ a · q ≤ p · a .

Following the terminology of [5], it would be more accurately termed a pre-diamond, since we do not require
the axiom 〈a · b〉 q = 〈a〉 〈b〉 q, which is not needed for our application. In the relational setting of [1], test
and diamond are called monotoype and monotype factor, respectively.

The diamond enjoys the following useful algebraic properties:

〈a〉 0 = 0 , 〈a+ b〉 p = 〈a〉 p+ 〈b〉 p , 〈a〉 (p+ q) = 〈a〉 p+ 〈a〉 q , 〈r · a〉 p = r · 〈a〉 p .

The latter two imply that diamond is isotone (i.e., monotonically increasing) in both arguments:

a ≤ b ⇒ 〈a〉 p ≤ 〈b〉 p , p ≤ q ⇒ 〈a〉 p ≤ 〈a〉 q .

A special role is played by the test
pa =df 〈a〉 1 .

It represents the set of all objects that have an a-successor at all and therefore is called the domain of a.
From the isotony of diamond we conclude, for test p,

〈a〉 p ≤ pa .

3.2. Representing Types

There are a number of ways to represent types algebraically, among them heterogeneous relation alge-
bras [22], relational allegories [2] or typed Kleene algebra [13]. All these involve some amount of machinery
and notation, which we want to avoid here.

More simply, we now interpret the largest test 1 as representing the universe U and use other tests to
stand for subsets of it, e.g., for the domains associated with types. With every type T ⊆ A, we associate a
test 1T representing its domain DT . An assertion p :: T means that p is a test, representing a set of tuples,
with p ≤ 1T . Arbitrary semiring elements a, b, c, ... will stand for preference relations. A type assertion
a :: T 2 is short for a ≤ 1T · a · 1T . By 1T ≤ 1 this can be strengthened to an equality. Hence, since tests are
idempotent under composition, a :: T 2 implies 1T · a = a = a · 1T .

This latter property entails that the diamond respects types, i.e., for a :: T 2 and q :: T we calculate

〈a〉 q :: T ⇔ 〈a〉 q ≤ 1T ⇔ a · q ≤ 1T · a · q ⇔ a · q ≤ a · q ⇔ TRUE .

To express that x is either an element which represents a relation or a test, we introduce the following
notation:

x :: T (2) ⇔ x :: T ∨ x :: T 2 .

We assume for every type T a greatest element >T in {x |x :: T (2)}, i.e., we assume ∀x :: T (2) : x ≤ >T .
Additionally we introduce sub-types. Let r :: T be a test. The r-induced sub-type of T , formally T [r], is

defined by the new identity 1T [r] =df r. For the type assertions this implies

p :: T [r] ⇔ p ≤ r, a :: T [r]2 ⇔ a ≤ r·a·r .

7

For the greatest element of this type we have >T [r] = r·>T ·r while the smallest element 0T [r] = 0T remains
unchanged. As T = T [1T] the concept of subtypes generalizes the typing concept.

For sake of readability we use the following abbreviations for x :: T 2:

0x =df 0T , 1x =df 1T , >x =df >T .

3.3. Abstract relation algebra

The following definitions are the formal foundations for our preference calculus. First, we define abstract
relation algebras using the axiomatisation in [15]:

Definition 10 (Abstract relation algebra). An abstract relation algebra is an idempotent semiring with
additional operators (...)−1, (...)) for converse and complement, axiomatised by the Schröder equivalences
and Huntington’s axiom:

x·y ≤ z ⇔ x−1 ·z ≤ y ⇔ z ·y−1 ≤ x , x = x+ y + x+ y .

For our applications, we additionally stipulate the Tarski rule

a 6= 0a ⇒ >a ·a·>a = >a ,

where >a = 0a .

We assume that our underlying semiring is an abstract relation algebra and each type domain is closed
under converse and complement, i.e. for x :: T (2) we have also x−1, x :: T (2). Note that this also holds for
sub-types T [r], where the complement is relative to r.

For an easier notation, we introduce the meet operation and the difference between two elements as
follows:

x u y =df x+ y , x− y =df x u y .
For relations these correspond to intersection and set difference. For tests p, q ≤ 1 they are equal to compo-
sition and relative complement:

p u q = p·q , p− q = p·¬q .

3.4. Join Algebras

We now deal with the central notion of join. For this, we assume the typing mechanism of the previous
section.

Definition 11 (Join algebra). A join algebra is an abstract relation algebra with an additional binary
operator 1 satisfying the following requirements.

1. Join is associative, commutative and idempotent and distributes over choice + in both arguments.
Hence 1 is isotone in both arguments.

2. If ai :: T
(2)
i (i = 1, 2) then a1 1 a2 :: (T1 1 T2)(2).

3. For types Ti (i = 1, 2) we have

1T11T2
= 1T1

1 1T2
and >T11T2

= >T1
1 >T2

.

4. Join and composition satisfy, for ai, bi :: T
(2)
i (i = 1, 2) with disjoint Ti, the exchange law

(a1 1 a2) · (b1 1 b2) = (a1 · b1) 1 (a2 · b2).

5. The diamond operator respects joins of elements with disjoint types: for a :: T 2
1 , p :: T1 and b :: T 2

2 , q ::
T2 with T1 ∩ T2 = ∅ we have the exchange law

〈a 1 b〉 (p 1 q) = 〈a〉 p 1 〈b〉 q .

6. If a1, a2 :: T (2), then a1 1 a2 = a1 u a2.

Our typed relations from Section 2.2 form a join algebra.

8

3.5. Representation of Preferences

Preferences introduced in [10] are strict partial orders, i.e. a special kind of binary homogeneous relations.
These relations are defined on domains of types, and the objects compared are “database tuples” contained
in a “database relation”, i.e., a set of tuples.

To avoid confusion between the two uses of the word “relation” we call tuples database elements here
and the database relation the basic set of objects. This means that we consider a “static” snapshot of the
database at the time of the respective preference-based query and assume that no data is deleted or inserted
into the database while the query being evaluated.

Abstractly, preferences can now be modelled as typed elements a :: T 2 for some type T representing
strict partial orders.

Definition 12 ((Layered) preferences). A relation a :: T 2 is a preference if and only if it is irreflexive
and transitive, i.e.

1. a u 1a = 0a,

2. a·a ≤ a.

a is a layered preference if additionally negative transitivity a·a ≤ a holds.

However, as we will see, for the most part the assumptions of irreflexivity and transitity are inessential
for the laws we will derive.

Strict partial orders satisfying negative transitivity are sometimes called strict weak orders. In the scope
of preferences, i.e. in [11] they are called weak order preferences. In this paper we will only use the term
layered preferences. The reason for this is that such relations induce a “layered structure”, i.e. there is always
a function f : DA → N s.t. t1 a t2 ⇔ f(t1) < f(t2), which is shown in [7], Thm. 2.2.

Although we use an abstract relation algebra, in the examples one may always think of a concrete
representation, where general elements a, b, c, ... are relations and tests p, q, r, ... are sets. To make our
examples easy to follow, we sometimes use a point-wise notation: For a relation a :: T 2 the expression t a t′

for tuples t, t′ ∈ DT means that the tuple t is related to t′ via a. Analogously we use ¬(t a t′) if t is not
a-related to t′.

4. Maximal Element Algebra

Now we are ready for the algebraic treatment of our central notion.

4.1. Basic Definitions and Results

Definition 13. The best or maximal objects w.r.t. element a :: T 2 and a test p :: T are represented by the
test

a . p =df p− 〈a〉 p .

This definition is also given, in different notation, in [5]. An analogous formulation, however, with tests
encoded as vectors, i.e., right-universal relations, can be found in [8].

To give a first impression of the algebra at work, we show a number of useful basic properties of the .
operator. Proofs of the following two lemmas can be found in Appendix Appendix B.1 and Appendix B.2.

In the following the test r represents a finite data set. Requiring a :: T [r] means that we restrict the
element a to this data set. Note that for p ≤ r we always have (r·a·r).p = a.p, as the following calculation
shows:

(r·a·r) . p = p− 〈r·a·r〉 p = p− p(r·a·r·p) = p− p(r·a·p) = p− (r·p(a·p)) =
p− (r· 〈a〉 p) = (p− r) + (p− 〈a〉 p) = 0 + a . p = a . p .

The following lemmas collect useful properties of the maximality operator; proofs can be found in Ap-
pendix B.

9

Lemma 2. Assume a type T and let a, b :: T [r]2, 1T [r] = r :: T and p :: T [r], i.e., p ≤ r. Then the following
holds:

1. a . r = ¬pa.

2. pb ≤ pa ⇔ a . r ≤ b . r.
3. a . p ≤ p.

4. a . r ≤ p ⇔ a . r ≤ a . p.

5. a . r ≤ a . (a . r).

6. a . (a . r) = a . r.

7. (a+ b) . p = (a . p) · (b . p).
8. b ≤ a ⇒ a . p ≤ b . p.

9. r ≤ a ⇒ a . p = 0T .

Lemma 3. Let p, q :: T [r] be a disjoint decomposition of r, i.e. p+ q = r, p · q = 0T . Then we have ¬p = q.

4.2. Basic Applications

Now we want to show the maximality operator . in action.

Example 5. Let a :: T 2 be a preference relation, r a data set and suppose p1, p2 :: T [r] are tests that form
a disjoint decomposition of 1T . Assume that all elements in p2 are better than all elements in p1, i.e.,

〈a〉 p2 = p1, 〈a〉 p1 = 0T .

We show that p2 represents the maximal elements, i.e. p2 = a . r:

a . r

= {[definition]}
¬ 〈a〉 r

= {[p1 + p2 = r]}
¬(〈a〉 (p1 + p2))

= {[distributivity of diamond]}
¬(〈a〉 p1 + 〈a〉 p2)

= {[assumptions of a]}
¬p1

= {[Lemma 3]}
p2

By this tiny example one can see how the maximality operator works in general, because one can always
decompose r into tests representing the non-maximal (p1) and the maximal (p2) elements, where p1 and p2
are disjoint.

4.3. Prefilters

In practical applications, e.g., in databases, the tests, in particular the test r representing all objects in
the database, can be quite large. Hence it may be very expensive to compute a . r for a given a. However, it
can be less expensive to compute b . r for another element b; ideally, that set is much smaller and the a-best
objects overall coincide with the a-best objects within b . r. This motivates the following definition.

Definition 14. Assume a, b :: T [r]2 and a data set r :: T . We call b a prefilter for a, written as b pref a, if
and only if

a . r = a . (b . r) .

10

Note that no connection between a and b is assumed. By Lemma 2.6 we have a pref a for all a. A concrete
example of a prefilter will be given in Section 5.1.

We can give another, calculationally useful, characterisation of prefilters. The proof of the following
theorem can be found in appendix Appendix B.3.

Theorem 1. b pref a ⇔ pb ≤ pa ∧ pa ≤ pb+ 〈a〉 ¬pb.

So far, we have not required any special properties of the elements a that represent, e.g., preference
relations. Instead of transitivity or irreflexivity we need an assumption that such elements admit “enough”
maximal objects. This is expressed by requiring every non-maximal object to be dominated by some maximal
one. In a setting with finitely many objects, such as a database, and a preference relation on them this
property is always satisfied and hence is no undue restriction for our purposes. We forego a discussion of this
assumption for infinite sets of objects, since there it is related to fundamental issues such as Zorn’s Lemma
and Hausdorff’s maximality principle, hence to the axiom of choice.

Definition 15. We call a normal if
∀ p : 〈a〉 p ≤ 〈a〉 (a . p) .

By a . p ≤ p and isotony of diamond this strengthens to

∀ p : 〈a〉 p = 〈a〉 (a . p) . (1)

This is a compact algebraic formulation of the above domination requirement. Note that this is a stronger
requirement than the normality definition in [20], in which we defined normality as the special case of the
above definition with p = 1. For the following theorem that weaker notion would be sufficient.

First we show that any relation on a subset of the domain of a normal relation provides a prefilter.

Theorem 2. Assume a, b :: T [r]2.

1. Let a be normal. Then pb ≤ pa ⇒ b pref a.

2. Let a+ b be normal. Then a pref (a+ b).

Proof.

1. The assumption about b is the first conjunct of the right hand side in Theorem 1. For the second
conjunct we calculate

TRUE

⇔ {[normality of a, setting p = 1T [r]]}
pa ≤ 〈a〉 ¬pa

⇒ {[pb ≤ pa, contraposition and isotony of diamond]}
pa ≤ 〈a〉 ¬pb

⇒ {[x ≤ x+ y and transitivity of ≤]}
pa ≤ pb+ 〈a〉 ¬pb .

2. Since a ≤ a + b, isotony of diamond and hence of domain imply pa ≤ p(a + b) and the claim follows
from Part 1.

Next we show that under certain conditions prefilters can be nested.

Theorem 3. Assume a, b, c :: T [r]2, where b . r ≤ c . r and b pref a with normal a. Then also c pref a.

Proof. First, by Theorem 1 we have pb ≤ pa ∧ pa ≤ pb+ 〈a〉 ¬pb. Second, by Lemma 2.1 and contraposition
the assumption b.r ≤ c.r is equivalent to pc ≤ pb. Hence by transitivity of ≤ we infer pc ≤ pa. Now normality
of a and Theorem 2.1 show the claim.

11

4.4. Related properties of maxima

Starting from the definition of normality we can show further interesting properties of maximal elements.
Normality means that all elements that are dominated by some element of a set p are also dominated by a
maximal element of p. This property is satisfied by all preferences on finite sets. We will treat the case of
infinite sets in Theorem 7 in Appendix E where we establish a connection between the notions of normality
and being noetherian.

Theorem 4. Let a be normal. Then

a . (p+ q) = a . (a . p+ a . q)

Proof. We first rewrite the left hand side:

a . (p+ q)

= {[definition of .]}
(p+ q)− 〈a〉 (p+ q)

= {[distributivity of diamond]}
(p+ q)− (〈a〉 p+ 〈a〉 q)

= {[De Morgan and distributivity of ·]}
(p− 〈a〉 p− 〈a〉 q) + (q − 〈a〉 p− 〈a〉 q)

= {[right-commutativity of − and definition of .]}
(a . p− 〈a〉 q) + (a . q − 〈a〉 p) .

For the right hand side we obtain therefore

a . (a . p+ a . q)

= {[above calculation]}
(a . (a . p)− 〈a〉 (a . q)) + (a . (a . q)− 〈a〉 (a . p))

= {[idempotence of .]}
(a . p− 〈a〉 (a . q)) + (a . q − 〈a〉 (a . p)) .

Since normality (1) immediately entails a . p−〈a〉 q = a . p−〈a〉 (a . q) and a . q−〈a〉 p = a . q−〈a〉 (a . p),
we are done.

This theorem paves the way for a distributed computation of maxima, as the calculations a . p and a . q
are independent.

Next we deal with nested maxima.

Theorem 5. Let a, b preferences with b . p ≤ a . p. Then we have

1. a . b . p = b . p

2. b . a . p = b . p

Proof.

1. “≤”: We have a . b . r ≤ b . r by Lemma 2.2. “≥”: We substitute p := b . p′ for arbitrary r′ and use
Lemma 2.6. We yield a . b . r′ ≥ b . r′.

2. At first we show “≤”:

b . a . p

= {[definitions]}
(p− 〈a〉 p)− 〈b〉 (a . p)

12

≤ p− 〈b〉 (a . p)
≤ {[b . r ≤ a . r and isotony of diamond]}

p− 〈b〉 (b . p)
= {[b normal]}

p− 〈b〉 p
= b . p

Then we show “≥”:

b . a . p

= {[definitions]}
(p− 〈a〉 p)− 〈b〉 (p− 〈a〉 p)

≥ {[isotony of diamond]}
(p− 〈a〉 p)− 〈b〉 p

≥ {[b . p ≤ a . p and isotony of diamond]}
(p− 〈b〉 p)− 〈b〉 p

= {[tests are idempotent, definitions]}
b . p

Note that a ≤ b with a arbitrary p is also sufficient for the above theorem, using Lemma 2.8. Hence a ≤ b
implies a pref b by Theorem 5.2, i.e., a is a prefilter for b in this case.

5. Complex Preferences

We have seen how some laws of single preference relations can be proved in point-free style in our algebra.
Now we want to compose preferences into complex preferences. To this end we will introduce some special
operators. The standard semiring operations like multiplication, addition and meet also lead to some kind
of complex preferences, but they are rarely used in the typical application domain of preference algebra
[10, 12]. Instead the so-called Prioritisation and Pareto composition are the most important constructors
for complex preferences.

5.1. Complex Preferences as Typed Relations

To motivate our algebraic treatment we first repeat the definitions of these preference combinators in
the concrete setting of typed relations [10].

For basic sets M,N and preference relations R ⊆M2, S ⊆ N2 the prioritisation R& S is defined as:

(x1, x2) (R& S) (y1, y2) ⇔df x1Ry1 ∨ (x1 = y1 ∧ x2 S y2)

where xi ∈M,yi ∈ N . The Pareto preference is defined as:

(x1, x2) (R⊗ S) (y1, y2) ⇔df x1Ry1 ∧ (x2 S y2 ∨ x2 = y2) ∨
x2 S y2 ∧ (x1Ry1 ∨ x1 = y1)

In order theory the prioritisation is well-known as lexicographical order.
We now want to get rid of the point-wise notation in favour of operators on relations. The technique

is mostly standard; we exemplify it for the prioritisation. We calculate, assuming first M :: A,N :: B with
distinct attribute names A,B,

13

(x1, x2) (R& S) (y1, y2)

⇔ {[definition]}
x1Ry1 ∨ (x1 = y1 ∧ x2 S y2)

⇔ {[logic]}
(x1Ry1 ∧ true) ∨ (x1 = y1 ∧ x2 S y2)

⇔ {[definitions of >B and 1A]}
(x1Ry1 ∧ x2>B y2) ∨ (x1 1A y1 ∧ x2 S y2)

⇔ {[definition of cartesian product of relations]}
(x1, x2) (R×>B) (y1, y2) ∨ (x1, x2) (1A × S) (y1, y2)

⇔ {[definition of relational union]}
(x1, x2) ((R×>B) ∪ (1A × S)) (y1, y2) .

A similar calculation can be done for the Pareto composition. Now we can write the point-free equations

R& S = (R×>B) ∪ (1A × S) ,
R⊗ S = (R× (S ∪ 1B)) ∪ ((R ∪ 1A)× S) .

This is close to an abstract algebraic formulation. However, since we want to cover also the case of non-
disjoint, overlapping tuples, we will replace the Cartesian product × by the join 1 . To simplify notation
we use the convention that a preference x has type Tx, i.e. a :: T 2

a , b :: T 2
b , We will keep these types

“general” as long as possible. Only when a complement relative to a given data set r :: T is needed, e.g., for
the maxima a . r, we will use explicit sub-types , e.g., Ta[r].

Definition 16. For the sake of readability we define for x :: T 2:

0x =df 0T , 1x =df 1T , >x =df >T

In a join algebra, assume preferences a :: T 2
a , b :: T 2

b . We can rewrite the above point-free equation as:

a& b =df a 1 >b + 1a 1 b.

So “equal w.r.t. a” is represented by the identity 1a, while >b represents that one does not care about the
Tb-part when the Ta-part already decides about the overall relation.

However, it is questionable whether this always meets the user’s expectation. If a is a layered preference,
then the incomparability relation (a+ a−1) is an equivalence relation. Hence, if two tuples t1, t2 are incom-
parable w.r.t. a layered preference a but t2 is better than t1 w.r.t. b, it is quite intuitive to say that t2 is
better than t1 (and not incomparable with t1) in a& b.

Formally this is reflected by the SV-semantics of [11]. “SV” stands for “substitutable values” and means
that a comparison between two tuples t1, t2 with respect to a remains unchanged if t1 is substituted for an
SV-related t′1. In relational notation, with sa being the SV relation and “≡” meaning logical equivalence of
formulas, we have

∀t1, t′1, t2 : t1 sa t
′
1 =⇒ t1 a t2 ≡ t′1 a t2 ∧ t2 a t1 ≡ t2 a t′1 . (2)

We give an algebraic characterisation of SV relations.

Definition 17 (SV relation). For a preference a :: T 2
a we call sa :: T 2

a an SV relation for a, if sa fulfils
the following properties:

1. The relation sa is an equivalence relation, i.e. sa is reflexive (1a ≤ sa), symmetric (s−1a = sa) and
transitive (sa ·sa ≤ sa).

2. sa is compatible with a:

(a) sa u a = 0a,

14

(b) sa ·a ≤ a,
(c) a·sa ≤ a.

If the SV relation is not stated explicitly, then it is assumed to be the identity, i.e. we set sa = 1a.

Using this concept we will below adapt our definition of prioritisation. Next to the prioritisation preference
there is another important complex preference constructor called Pareto composition which combines two
preferences a :: T 2

a , b :: T 2
b . It is denoted as a⊗ b :: (Ta 1 Tb)

2 and has the intuitive meaning: “Better w.r.t.
to a in the Ta-part or b in the Tb-part and not worse (i.e. equal or better) in the other part”.

Using SV relations where the “equal w.r.t to a” is formalised by “sa-related” we define the following
complex preferences:

Definition 18 (Prioritisation and Pareto composition with SV). Let a :: T 2
a and b :: T 2

b be prefer-
ences with associated SV relations sa :: T 2

a and sb :: T 2
b . The prioritisation is given by:

a& b :: (Ta 1 Tb)
2 ,

a& b = a 1 >b + sa 1 b ,

whereas the Pareto compositions are defined as

a <⊗ b, a⊗> b, a⊗ b :: (Ta 1 Tb)
2 ,

a <⊗ b =df a 1 (b+ sb),

a⊗> b =df (a+ sa) 1 b,

a⊗ b =df a <⊗ b+ a⊗> b.

We say that a ∗ b for ∗ ∈ {&, <⊗,⊗>,⊗} is SV-preserving if sa∗b = sa 1 sb. Note that one may always define
SV relations other than 1 for complex preferences, as long as they fulfil the conditions of Definition 17.

Corollary 4. The above notions are well-defined, i.e. sa 1 sb is indeed a valid SV relation for a ∗ b with
∗ ∈ {&, <⊗,⊗>,⊗}.

Proof. Straightforward from distributivity and isotony of join and the exchange laws. ut

Now we consider SV relations larger than 1a. For weak orders a typical SV relation is the incomparability
relation, which we state in the following lemma:

Lemma 4. If a :: T 2 is a layered preference then sa = a+ a−1 is an SV relation.

Proof. The equivalence property for this relation is well known and saua = 0a is clear. We show sa ·a ≤ a.
By definition of sa, the exchange law for complement and converse, and finally the infimum property we
infer:

sa ·a =
(
a u a−1

)
·a =

(
a u (a)−1

)
·a ≤ (a)−1 ·a .

We still have to show that (a)−1 ·a ≤ a. By the Schröder equivalences, this is equivalent to a·a ≤ a, which
is true by negative transitivity of a. For a·sa ≤ a an analogous argument holds; hence sa is compatible with
a. ut

Note, that this does not hold if a is not a layered preference, which we show with the following example:

Example 6. Assume preferences a :: A2, b :: B2 on attributes A,B with DA = DB = {0, 1, 2}. The
preferences a and b both are the <-relation on the natural numbers, i.e. we have (0x 1), (1x 2) and (0x 2)
for x ∈ {a, b}. Assume tuples t1 = (1, 2) and t2 = (2, 1). Then, by definition, t1 and t2 are not related
w.r.t. to (a ⊗ b) or 1A 1 1B , i.e. they are incomparable. Now we consider the incomparability relation
sinc =df (a⊗ b) + (a⊗ b)−1. We have, by definition of a⊗ b,

(2, 0) (a⊗ b) (2, 1), ¬((2, 0) (a⊗ b)k (1, 2)), ¬((2, 1) (a⊗ b)k (1, 2)) ,

15

where k ∈ {−1, 1}. By definition of sinc this implies

¬((2, 0) sinc (2, 1)), (2, 0) sinc (1, 2), (2, 1) sinc (1, 2) ,

which means that sinc is not transitive, hence no equivalence relation and therefore no SV relation for a.

Remark 1. Under certain circumstances the term 〈>T 〉 q occurring, for example, in 〈a& b〉 (p 1 q) can be
simplified. Call an idempotent semiring weakly Tarskian if for all types T and tests q :: T we have

〈>T 〉 q =

{
1T if q 6= 0T ,
0T if q = 0T .

For instance, the semiring of binary relations is weakly Tarskian. This implies that in a term like 〈a 1 >b〉 (q1 1

q2) with a :: T 2
a the test q2 is irrelevant as long as q2 6= 0b. This is exactly what we want, because

q1 1 0b (= 0a1b) is a zero element and must not have successors in any relation.
A semiring with > is called Tarskian when a 6= 0 ⇒ >· a · > = >. This property was first stated for the

semiring of binary relations (see, e.g., [8]). By the standard theory of diamond and domain [5], a Tarskian
semiring is also weakly Tarskian, but generally not vice versa.

In our hotel example from the introduction, the user would typically express her preference as the Pareto
composition of price and distance to the beach.

The definition of the Pareto compositions immediately yields an important optimisation tool.

Corollary 5. The preferences a <⊗ b and a⊗> b are prefilters for a⊗ b. Likewise, a 1 >B is a prefilter for
a& b.

Proof. By definition, a <⊗ b, a⊗> b ≤ a⊗ b and a 1 >B ≤ a& b; hence Theorem 2.1 applies.

Hence, in our hotel example from the introduction, we may prefilter by price or by distance to the beach
to speed up the overall filtering. Further applications of this principle are discussed in detail in [6].

5.2. Maximality for Complex Preferences

We first state the behaviour of the maximality operator for joins of preference elements.

Lemma 5. For a :: T 2
a , p :: Ta and b :: T 2

b , q :: Tb with Ta ∩ Tb = ∅ we have

(a 1 b) . (p 1 q) = (a . p) 1 q + p 1 (b . q) .

Proof. We observe that, under the disjointness assumption, by Corollary 3.3 and a standard law for
Cartesian products, for r :: Ta, s :: Tb, we have

(p 1 q)− (r 1 s) = (p− r) 1 q + p 1 (q − s) .

Hence, by the definitions and Lemma 1,

(a 1 b) . (p 1 q)

= (p 1 q)− 〈a 1 b)〉 (p 1 q)

= (p 1 q)− (〈a〉 p 1 〈b〉 q)
= (p− 〈a〉 p) 1 q + p 1 (q − 〈b〉 q)
= (a . p) 1 q + p 1 (b . q) .

Since both prioritisation and Pareto composition are defined as sums of joins, we can now use this together
with Lemma 2.7, 2.1 and the exchange axiom of Definition 11.4 to calculate their maximal elements.

16

Lemma 6. For a :: T 2
a , p :: Ta and b :: T 2

b , q :: Tb with Ta ∩ Tb = ∅ we have

(a <⊗ b) . (p 1 q) = (a . p) 1 q ,
(a⊗> b) . (p 1 q) = p 1 (b . q) ,
(a⊗ b) . (p 1 q) = (a . p) 1 (b . q) ,
(a& b) . (p 1 q) = (a . p) 1 (b . q) .

The proofs are straightforward and hence omitted.

Remark 2. It follows directly from the above lemma that

(a& b) . (p 1 q) = (b& a) . (q 1 p) = (a⊗ b) . (p 1 q) ,

i.e. Pareto composition and Prioritisation are identical on tests of the form p 1 q.
Note that this does not hold for general tests. Consider, for instance, the basic set {0, 1}2 and its subset

N =df {(0, 1), (1, 0)}, both represented by tests. Assume a preference order Ri in the i-th component which
fulfills 0Ri 1, for i = 1, 2. Then (R1 & R2) . N = {(1, 0)}, whereas (R1 ⊗ R2) . N = N . This does not
contradict our above result, since N cannot be represented in the form L×M with L,M ⊆ {0, 1}.

5.3. Equivalence of Preference Terms

In the following we will show equalities of more complex preference terms, where prioritization and Pareto
composition are both involved. In the following we assume that all complex preferences (Definition 18) are
SV-preserving.

Corollary 6. Let a :: T 2
a and b, b′ :: T 2

b . Then we have:

a& (b+ b′) = a& b+ a& b′.

Proof. Follows from definition of & and distributivity of 1 over +.

Corollary 7. For a :: T 2
a we have a <⊗ a = a⊗> a = a⊗ a = a.

Proof. a <⊗ a =df (a+ sa) 1 a = (a+ sa) u a = a by Definitions 11.6 and 17.2. For Right Semi-Pareto
and Pareto an analogous argument shows the claim.

Theorem 6. For a :: Ta we have that (a &), where & is SV-preservingg, distributes over <⊗,⊗> and ⊗.

Proof. Let b :: T 2
b , c :: T 2

c . We use the auxiliary equation (see Appendix C for a proof)

a& b+ sa& b = a& (b+ sb). (3)

Now we calculate:

(a& b)⊗> (a& c)

= {[definition of ⊗>]}
(a& b+ sa&b) 1 (a& c)

= {[equation (3)]}
(a& (b+ sb)) 1 (a& c)

= {[definition of &]}
(a 1 >b + sa 1 (b+ sb)) 1 (a 1 >c + sa 1 c)

= {[distributivity of 1]}
a 1 >b 1 a 1 >c + a 1 >b 1 sa 1 c +
sa 1 (b+ sb) 1 a 1 >c + sa 1 (b+ sb) 1 sa 1 c

17

= {[a 1 a = a and a 1 sa = a u sa, Definition 11.6]}
a 1 >b 1 >c + (a u sa) 1 >b 1 c +
(a u sa) 1 (b+ sb) 1 >c + sa 1 (b+ sb) 1 c

= {[a u sa ≤ a, c ≤ >c, subsumption order]}
a 1 >b 1 >c + sa 1 (b+ sb) 1 c

= {[>b1c = >b 1 >c, definition of &]}
a& ((b+ sb) 1 c)

= {[definition ⊗>]}
a& (b⊗> c)

A symmetric argument holds for <⊗, so that (a &) distributes over <⊗ and ⊗>. Using this we infer the
distributivity over ⊗, see Appendix C for details.

The proof of this theorem shows that the framework of typed relations is rich enough to prove non-trivial
preference term equivalences.

We have proved this theorem using Prover9. The input for the auxiliary equation (3) can be found in
Appendix A and the input for the entire theorem is given in [19].

Such equivalences are useful for an optimized evaluation of preferences, because the evaluation of an
equivalent term may be faster.

6. Layered Preferences

Layered Preferences as defined in Definition 12 are not closed under the Pareto operator. Therefore the
question arises whether there is a similar operator under which layered preferences are closed. The answer
is yes and our strategy to construct such a preference is as follows:

• Let r be a test representing the basic set, i.e. the data set. We take the maxima of r w.r.t. (a⊗ b), i.e.
(a⊗ b) . r, and call them layer-0 elements.

• We remove them from the basic set, i.e. we define r1 = r− (a⊗ b). r, take their maxima and call these
layer-1 elements.

• We iterate this process to obtain the layer-n elements for n = 2, 3,

• We define a new preference induced by ordering the elements according to their layers, placing layer
0 at the top and the layer with the largest number at the bottom. This yields a layered preference by
construction.

We will call the new preference the Pareto-regular preference. This name stems from the implementation
of preferences in Preference SQL [12]: The keyword regular after a layered preference means that the
SV relation from Lemma 4 is applied. As the Pareto preference need not be a layered preference, we call
“Pareto-regular” the result of transforming the Pareto preference into a layered preference and then applying
Lemma 4.

The process of successive removal of maximal elements corresponds to the repeated removal of sinks in a
classical algorithm for cycle detection in directed graphs [17, 8]. That algorithm terminates when the set of
maxima/sinks to be removed becomes empty. The original graph contained a cycle iff the remaining set is
nonempty. Since our preference relations, as strict partial orders, correspond to acyclic graphs, the iteration
necessarily will reach the empty set, which, however, is not counted as a separate layer. We will make this
more precise in the next section.

18

6.1. Computing Layer-i Elements

The concept of layer-i elements was originally introduced under the term “Iterated preferences” in [4],
where the maximum operator is called “winnow operator”. Here we give an algebraic definition, and prove
some properties. In particular, we show that the induced order is indeed a layered preference.

Definition 19 (Layer-i Elements). Let a :: T 2
a be a preference, and r :: Ta a basic set. For i = 0, 1, 2, ...

we define the tests qi and ri characterising the layer-i elements and the remainders, resp.:

qi =df a . ri where ri =df r −
i−1∑
j=0

qj .

By convention, the empty sum is 0a, hence we have r0 = r.

A mnemonic for the qi is that the letter “b” for “best”, rotated by 180◦ becomes a “q”. This matches
our convention that a, b, c, ... are used for general elements and p, q, r for tests.

Using our algebra we deduce a closed formula for the ri. In this, we write ra short for r·a. The powers
xk are defined by xk = xk−1 ·x and x0 = 1. The proof of the following lemma can be found in Appendix
D.1.

Lemma 7 (Closed formula for layer-i elements). For i ∈ N we have the following properties:

1. (ra)i+1 ≤ (ra)i provided i > 0,
2.
〈
(ra)i+1

〉
r ≤

〈
(ra)i

〉
r,

3. ri =
〈
(ra)i

〉
r.

With this lemma we have a compact representation of layer-n elements. This helps us to show some
interesting properties of ri and qi which we will need for the construction of the Pareto-regular preference
later on. These properties are stated in the following lemma, which is proved in Appendix F.

Lemma 8. Assume qi, rj as in Definition 19. We have:

1. The ri are decreasing in i, i.e., r0 ≥ r1 ≥ r2 ≥
2. The qi are pairwise disjoint, i.e., for i 6= j we have qi ·qj = 0a.
3. Let r be finite, i.e., assume that there do not exist infinitely many disjoint pi 6= 0 with

∑
i pi = r. Then

the calculation of the ri becomes stationary, i.e. there exists an N ∈ N with N = max{k ∈ N | rk 6= 0a}.
4. The qi cover r, i.e.,

∑N
i=0 qi = r.

5. For i ≤ j we have qi ·a·qj = 0a.

6.2. The Induced Layered Preference

Now we will construct the preference induced by the layer-i elements and the corresponding induced SV
relation.

Definition 20 (Induced layered preference). Let a :: T 2
a be a preference and r :: Ta a basic set. Con-

sider the corresponding layer-i elements qi = a.
〈
(ra)i

〉
r with i ∈ [1, N] and N = max{k ∈ N | rk 6= 0a} (see

Lemma 8.3). We define relations bij (i, j ∈ [1, N]) by bij = qi ·>a ·qj . In the concrete model these represent
universal relations between the sets qi and qj . With their help, the induced layered preference m(a, r) :: Ta[r]2

is defined as
m(a, r) =df

∑
i>j

bij ,

where Ta[r] is the sub-type of Ta with identity r and greatest element r·>a ·r.
By the summation over i > j the less preferred elements w.r.t. to a (with higher layer numbers) are

m(a, r)-related to the more preferred elements (with lower layer numbers).
A corresponding SV relation sm(a,r) :: Ta[r]2 is defined as

sm(a,r) =df

∑
i

bii .

19

We note an important property of the relations bij : by disjointness of the qi and the Tarski rule we have

bij ·bkl =

{
bil if j = k,

0a otherwise.
(4)

Our goal is to construct the Pareto-regular preference, and we are close to this by constructing m(a, r)
for a Pareto preference a = a1⊗a2. But is the resulting relation fulfilling the (layered) preference properties,
i.e. would such a preference be well-defined? We show this in the next lemma.

Lemma 9.

1. The relation m(a, r) from the previous definition is a layered preference.

2. sm(a,r) is an SV relation for m(a, r).

Proof.

1. Transitivity follows from the definition of m(a, r) and eq. (4). Again by definition of m(a, r) and
disjointness of qi (Lemma 8.2) we have irreflexivity. It remains to show that negative transitivity
holds. Note that due to the type Ta[r]2 of m(a, r) and sm(a,r) the complement (...) is relative to r.

With this we infer (m(a, r))2 ≤ m(a, r):(
m(a, r)

)2
=

(∑
i≤j

bij

)
·
(∑

k≤l
bkl

)
=
∑

i≤j≤l
bij ·bjl ≤

∑
i≤l

bil = m(a, r) .

2. We infer that

m(a, r) +m(a, r)−1 =
∑
i>j

bij +
∑
i<j

bij =
∑
i 6=j

bij =
∑
i

bii = sm(a,r).

Together with Lemma 4 this shows the claim. ut

We give two further useful properties of the induced layered preference:

• The original preference is still contained in the induced layered preference.

• The induced SV relation is part of the incomparability relation of the original preference.

Formally this is stated in the following lemma. There again we restrict the “original preference” and the
“incomparability relation” to r on both sides, because the induced layered preference and the induced SV
relation is only defined on the basic set r.

Lemma 10. Let a :: T 2
a be a preference and r :: Ta a basic set. We have:

1. r·a·r ≤ m(a, r).

2. sm(a,r) ≤ r·(a+ a−1)·r.

Proof.

1. By Lemma 8.5 we get qi ·a·qj = 0 for i ≤ j. This implies:∑
i≤j

qi ·a·qj = 0a . (5)

We use this in the following deduction:

20

TRUE

⇔ {[definition >a]}
a ≤ >a

⇒ {[qj ·(...), (...)·qi, summation over i > j]}∑
i>j

qi ·a·qj ≤
∑
i>j

qi ·>a ·qj

⇔ {[Eq. (5) (additional term is 0), def. of bij]}∑
i>j

qi ·a·qj +
∑
i≤j

qi ·a·qj ≤
∑
i>j

bij

⇔ {[re-indexing of sum, def. of m(a, r)]}∑
i,j

qi ·a·qj ≤ m(a, r)

⇔ {[distributivity and
∑

i qi = r (Lemma 8.4)]}
r·a·r ≤ m(a, r) .

2. The claim is equivalent to

sm(a,r) u (r·ak ·r) = 0a for k ∈ {−1, 1} .

From Part 1 we obtain r·ak ·r ≤ m(ak, r) for k ∈ {−1, 1}, because a−1 is again a preference, hence the
same argument holds for it. Thus it is sufficient to prove:

sm(a,r) u m(ak, r) = 0a for k ∈ {−1, 1} .

This follows from the definitions of sm(a,r) and m(ak, r) and the disjointness of the qi (Lemma 8.2). ut

Remark 3. The inequations in the previous lemma are equations if a is already a layered preference.

Now we have everything ready to define the Pareto-regular preference. All we have to do is to apply
m(...) to the classic Pareto preference, which yields a well defined result by the previous lemma.

Definition 21 (Pareto-regular preference). For preferences a :: T 2
a , b :: T 2

b and a basic set r :: Ta 1 Tb
the Pareto-regular preference and its SV relation are defined as:

a⊗reg b :: (Ta 1 Tb)
2 ,

a⊗reg b = m(a⊗ b, r) ,
sa⊗regb = sm(a⊗b,r) .

Note that the Pareto-regular preference depends on the concrete basic set, i.e. the data stored in the
database table. This is a fundamental difference to the classical preferences, which are independent of the
data. But Lemma 10 tells us that this is kind of “harmless”.

6.3. Application: Pareto(-regular) and Prioritisation

With the Pareto-regular preference we have a layered preference which is quite similar to the classic
Pareto preference (which is not layered in general). But this is primarily a technical feature, which at first
sight changes nothing, because the maxima set of a Pareto preference is the same as that for the associated
Pareto-regular preference. For preferences a :: T 2

a , b :: T 2
b and a basic set r :: Ta 1 Tb we get immediately

from the definitions that (a⊗ b) . r = (a⊗reg b) . r.
So where is the practical difference between ⊗ and ⊗reg? The effect of the latter becomes evident in

combination with other complex preferences, especially if the Pareto-regular preference is the first part of a
prioritisation. We consider the following example:

21

Example 7. Let a :: A2, b :: B2, c :: C2 be preferences on attributes A,B,C. Let their type domains be
DA = DB = DC = {1, 2}. Let a, b, c each be the <-order, i.e. we have (1x 2) for x ∈ {a, b, c}. Consider the
basic set r :: A 1 B 1 C given by t1 =df (1, 2, 1), t2 =df (2, 1, 2), r =df t1 + t2, and the preferences

d1 =df (a⊗reg b) & c, d2 =df (a⊗ b) & c .

For (a⊗ b) we have only one maxima set q0 = (a⊗ b) . r = r. Hence we get:

t1 d1 t2 , ¬(t1 d2 t2) .

This means that the preference c decides about the maxima of di only if the previous Pareto preference
a⊗ b has no incomparable elements. This incomparability is avoided by construction in the Pareto-regular
preference. Probably the preference d1 is what the user expected, or at least expected more than d2. ut

This is the abstract formulation of the introductory example on a car database (Examples 1–3). The
same results are obtained as follows: Define a =df LOWEST(fuel), b =df HIGHEST(power), c =df

POS(color , {black}) and set the tuples t1 and t2 to the fuel/power/color values of “BMW 5” (t1) and
“Mercedes E” (t2) as denoted in table 1 on page 2; then the result is that “Mercedes E” is the best object
according d1.

Unfortunately the⊗reg operator is not associative, i.e., in general we have (a⊗regb)⊗regc 6= a⊗reg(b⊗regc).
Assume that a user wants to compose three equally important preferences, followed by a prioritization, i.e.,
(a⊗b⊗c)&d. We think that the most intuitive way to construct a layered preference from this is to define a
modified prioritisation operator that incorporates the m function. We call this the regularised prioritisation.

Definition 22 (Regularised prioritisation). For preferences a :: T 2
a , b :: T 2

b and a basic set r :: Ta 1 Tb
the regularised prioritisation is defined as:

a® b :: (Ta 1 Tb)
2 ,

a® b = m(a, r) & b.

An explicit SV relation is not specified for ®. According to Definition 18 we call it SV-preserving if
sa®b = sa 1 sb. As this does not respect the layered preference m(a, r), we call it layered-SV-preserving
if sa®b = sm(a) 1 sb

Corollary 8. Pareto-regular is a special case of the regularized prioritisation, we have for preferences a, b, c:

(a⊗reg b) & b = (a⊗ b) ® b

7. Conclusion and Outlook

The present work intends to advance the state of the art in formalising preference algebra. Besides
the point-wise “semi-formal” proofs by hand that had been used originally we wanted to use automatic
theorem provers like Prover9 to get the theorems of preference algebra machine-checked. But we realized
that there was no straightforward way to put theorems like the prefilter properties or the distributive
law for Prioritisation/Pareto into a theorem prover. Especially for the latter problem, the main reason is
that originally the equivalence of preference terms was defined, e.g. in [10], in a very implicit manner: two
preference terms are equivalent if and only if the corresponding relations are identical on the basic set. This
definition is not very useful if one tries to find (automatically) general equivalence proofs.

The presented concept of a typed join algebra makes it possible to define such equivalences explicitly:
two preference terms are identical, if and only if their algebraic representations are equal in the algebra.

The search for another kind of Pareto preference was originally motivated by a past project where Pref-
erence SQL was used for context-aware suggestions in a hiking-tour recommender. In [21] the context model
is described and some sample queries are given; these are very complex preference constructs, where base

22

preferences or Pareto compositions are put into long prioritisation chains. Within the project we noticed that
the less-prioritized preferences, like “c” in Example 7, are not decisive for the maxima set, because a Pareto
preference at the beginning of the term (like “a⊗b” in the example) generates incomparable elements, hence
the set of maxima cannot be reduced by c. With the Pareto-regular preference these prioritisation chains
become a chain of “filters” where the set of maxima can be reduced by adding less-prioritized preferences
at the end of the chain. By calculating not only the maximal elements for the Pareto preference but the
layer-i elements we are also able to answer TOP-k queries, i.e. a query like “What are the 10 best elements
according to preference a”.

For this work we have extended our algebraic calculus with layered preferences and SV relations. Inter-
esting connections and properties can be stated and proved algebraically, i.e., in a point-free fashion. These
methods are important for a better understanding of preferences and constructing algorithms for preference
evaluation.

For future research, there is a large number of theorems about preferences which have only been proved
in a point-wise fashion which makes the proofs hardly readable. These theorems are important for optimizing
the algorithms for evaluating preference queries. In addition, we are also working on methods for parallel
computation of the maxima according to preferences; hopefully algebraic methods will support us, e.g., the
methods of concurrent Kleene Algebra.

References

[1] Backhouse, R., van der Woude, J., 11 1993. Demonic operators and monotype factors. Mathematical Structures in Com-
puter Science 3, 417–433.

[2] Bird, R., de Moor, O., Sep. 1996. Algebra of Programming, The. Prentice Hall PTR.
[3] Borzsony, S., Kossmann, D., Stocker, K., 2001. The skyline operator. In: Data Engineering, 2001. Proceedings. 17th

International Conference on. pp. 421–430.
[4] Chomicki, J., 2003. Preference Formulas in Relational Queries. In: TODS ’03: ACM Transactions on Database Systems.

Vol. 28. ACM Press, New York, NY, USA, pp. 427–466.
[5] Desharnais, J., Möller, B., Struth, G., Oct. 2006. Kleene algebra with domain. ACM Trans. Comput. Logic 7 (4), 798–833.
[6] Endres, M., 2011. Semi-Skylines und Skyline Snippets - Theory and Applications. Fakultät für Angewandte Informatik,

Universität Augsburg, Dissertation. Books on Demand GmbH, Norderstedt.
[7] Fishburn, P. C., 1970. Utility theory for decision making. Tech. rep., New York, NY, USA.
[8] G. Schmidt, T. S., 1993. Relations and Graphs: Discrete Mathematics for Computer Scientists. EATCS Monographs on

Theoretical Computer Science.
[9] Kanellakis, P. C., 1989. Elements of relational database theory. Tech. rep., Providence, RI, USA.

[10] Kießling, W., 2002. Foundations of Preferences in Database Systems. In: VLDB ’02: Proceedings of the 28th International
Conference on Very Large Data Bases. VLDB, Hong Kong, China, pp. 311–322.

[11] Kießling, W., 2005. Preference Queries with SV-Semantics. In: Haritsa, J. R., Vijayaraman, T. M. (Eds.), COMAD ’05:
Advances in Data Management 2005, Proceedings of the 11th International Conference on Management of Data. Computer
Society of India, Goa, India, pp. 15–26.

[12] Kießling, W., Endres, M., Wenzel, F., 2011. The Preference SQL System - An Overview. Bulletin of the Technical Commitee
on Data Engineering, IEEE Computer Society 34 (2), 11–18.

[13] Kozen, D., 1998. Typed Kleene algebra. Tech. Rep. TR98-1669, Computer Science Department, Cornell University.
[14] MacCaull, W., Or?owska, E., 2004. A calculus of typed relations. In: Berghammer, R., Möller, B., Struth, G. (Eds.),

Relational and Kleene-Algebraic Methods in Computer Science. Vol. 3051 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 191–201.

[15] Maddux, R. D., 1997. Relation Algebras. Advances in Computing. Springer-Verlag, Wien, New York, Ch. 2, pp. 22–38.
[16] Manes, E., Benson, D., 1985. The inverse semigroup of a sum-ordered semiring. Semigroup Forum 31 (1), 129–152.
[17] Marimont, R. B., Apr. 1959. A new method of checking the consistency of precedence matrices. J. ACM 6 (2), 164–171.
[18] Möller, B., Roocks, P., 2012. An algebra of layered complex preferences. In: Kahl, W., Griffin, T. (Eds.), Relational and

Algebraic Methods in Computer Science. Vol. 7560 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp.
294–309.

[19] Möller, B., Roocks, P., 2012. Proof of the Distributive Law for Prioritisation and Pareto Composition. http://tinyurl.
com/c79wdrt.

[20] Möller, B., Roocks, P., Endres, M., 2012. An Algebraic Calculus of Database Preferences. In: Gibbons, J., Nogueira, P.
(Eds.), Mathematics of Program Construction. Vol. 7342 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
pp. 241–262.

[21] Roocks, P., Endres, M., Mandl, S., Kießling, W., 2012. Composition and Efficient Evaluation of Context-Aware Preference
Queries. In: DASFAA ’12: Proceedings of the 17th international conference on Database systems for advanced applications.

[22] Schmidt, G., Hattensperger, C., Winter, M., 1997. Heterogeneous relation algebra. In: Brink, C., Kahl, W., Schmidt, G.
(Eds.), Relational Methods in Computer Science. Advances in Computing Sciences. Springer Vienna, pp. 39–53.

23

http://tinyurl.com/c79wdrt
http://tinyurl.com/c79wdrt

Appendix A. Sample Prover Input

For a :: T 2
a and b :: T 2

b we show the auxiliary equation (3) from Theorem 6:

a& b+ sa1 b = a& (b+ 1b).

We use the following operators:

Prover-Input mathematically
a typed T a a :: T 2

a

a join b a 1 b
T a tjoin T b Ta 1 Tb
a prior b a& b
a + b a+ b

The assumptions are given as follows:

% all elements are typed
exists T (x typed T).

% addition is associative
(x + y) + z = x + (y + z).

% addition preserves type
x typed z & y typed z -> (x+y) typed z.

% SV relations preserve type
x typed z -> sv(x) typed z.

% abbreviated typing
x typed z -> top(x) = top(z).

% distributivity of the join over addition
x join (y1 + y2) = x join y1 + x join y2.

% typing of join
x typed z1 & y typed z2 -> (x join y) typed (z1 tjoin z2).

% prioritisation (without resulting type)
x prior y = x join top(y) + sv(x) join y.

% prioritisation is sv -preserving
sv(x prior y) = sv(x) join sv(y).

Finally our goal is:

% auxiliary equation for distributive law
u prior v + sv(u prior v) = u prior (v + sv(v)).

The entire input for the proof of theorem 6 can be found in [18].

Appendix B. Proofs for Section 4

For the sake of readability we define for the proofs in this section: 1 =df 1T [r] = r.

Appendix B.1. Proof of Lemma 2
1. Immediate from the definitions and 1− p = ¬p.
2. Immediate from Part 1 and shunting.
3. a . p

= {[definitions of . and −]}
p · ¬ 〈a〉 p

≤ {[property of intersection]}
p .

24

4. a . 1 ≤ a . p
⇔ {[definition of . and Part 1]}
¬pa ≤ p− 〈a〉 p

⇔ {[definition of − and universal property of intersection]}
¬pa ≤ p ∧ ¬pa ≤ ¬〈a〉 p

⇔ {[shunting in second conjunct]}
¬pa ≤ p ∧ 〈a〉 p ≤ pa

⇔ {[second conjunct true by (3.1)]}
¬pa ≤ p

⇔ {[definition of .]}
a . 1 ≤ p .

5. Immediate from the previous property by setting p = a . 1.

6. a . (a . p)

= {[definition of .]}
(p− 〈a〉 p)− 〈a〉 (p− 〈a〉)

= {[property of difference]}
p− (〈a〉 p+ 〈a〉 (p− 〈a〉))

= {[distributivity of 〈〉]}
p− 〈a〉 (p+ (p− 〈a〉))

= {[since p− 〈a〉 ≤ p]}
p− 〈a〉 p

= {[definition of .]}
a . p .

7. (a+ b) . p

= {[definition of .]}
p− 〈a+ b〉 p

= {[distributivity of 〈〉]}
p− (〈a〉 p+ 〈b〉 p)

= {[property of difference]}
(p− 〈a〉 p) · (p− 〈b〉 p)

= {[definition of .]}
(a . p) · (b . p) .

8. Assume b ≤ a, i.e., b+ a = a.

a . p

= {[assumption]}
b+ a . p

= {[previous property]}
(b . p) · (a . p)

≤ {[property of intersection]}
b . p .

9. By isotony of the diamond we have p = 〈1〉 p ≤ 〈a〉 p and hence a . p = p− 〈a〉 p = 0.

25

Appendix B.2. Proof of Lemma 3

q = (p+ ¬p) · q =

=0︷︸︸︷
p · q + ¬p · q ≤ ¬p

¬p = (p+ q)︸ ︷︷ ︸
=1

·¬p = p · ¬p+ q · ¬p ≤ q

By antisymmetry we have ¬p = q.

Appendix B.3. Proof of Theorem 1

We split the left-hand side of the claim equivalently into

b pref a ⇔ a . 1 ≤ a . (b . 1) ∧ a . (b . 1) ≤ a . 1 .

By Parts 4 and 2 of Lemma 2 the first conjunct is equivalent to pb ≤ pa. For the second conjunct we calculate

a . (b . 1) ≤ a . 1

⇔ {[definition of . and Lemma 2.1]}
¬pb− 〈a〉 ¬pb ≤ ¬pa

⇔ {[contraposition and De Morgan]}
pa ≤ pb+ 〈a〉 ¬pb .

Appendix C. Proof of Theorem 6

Auxiliary equation (3):

a& b+ sa&b

= {[definition of & (SV-preserving)]}
a 1 >b + sa 1 b+ sa 1 sb

= {[distributivity of 1]}
a 1 >b + sa 1 (b+ sb)

= {[definition of &]}
a& (b+ sb)

Distributivity of (a &) over ⊗:

a& (b⊗ c)
= {[definition of ⊗]}

a& (b <⊗ c+ b⊗> c)

= {[distributivity of & over +, cor. 6]}
a& (b <⊗ c) + a& (b⊗> c)

= {[distributivity of (a &) over <⊗ and ⊗>]}
(a& b)<⊗ (a& c) + (a& b)⊗> (a& c)

= {[definition of ⊗]}
(a& b)⊗ (a& c)

26

Appendix D. Proofs for Section 6

Appendix D.1. Proof of Lemma 7
1. By transitivity of a we have

(ra)2 = r·a·r·a ≤ r·a·a ≤ r·a = (ra)1

which implies transitivity of (ra). Iterated application of transitivity shows the claim.
2. For i = 0 we obtain by a diamond property〈

(ra)1
〉
r = 〈ra〉 r = r· 〈a〉 r ≤ r =

〈
(ra)0

〉
r

For i > 0 the claim is immediate from Part 1 and isotony of diamond.
3. We perform again an induction on i.

• i = 0:
〈
(ra)0

〉
r = 〈1〉 r = r.

• i→ i+ 1: Assume ri =
〈
(ra)i

〉
r.

ri+1

= {[definitions]}

r −
i∑

j=0

qj

= {[splitting the sum and definitions]}
ri − qi

= {[definition qi]}
ri − a . ri

= {[definition .]}
ri − (ri − 〈a〉 ri)

= {[definition of −, De Morgan]}
ri · (¬ri + 〈a〉 ri)

= {[distributivity, p·¬p = 0]}
ri · 〈a〉 ri

= {[ri ≤ r by definition]}
ri ·r· 〈a〉 ri

= {[diamond property]}
ri · 〈ra〉 ri

= {[induction hypothesis]}(〈
(ra)i

〉
r
)
·
(
〈ra〉

〈
(ra)i

〉
r
)

= {[diamond property, definition of powers]}(〈
(ra)i

〉
r
)
·
(〈

(ra)i+1
〉
r
)

= {[Part 2]}〈
(ra)i+1

〉
r

Appendix E. About Normality

We now state the announced condition for normality that covers also infinite sets. It turns out that
essentially absence of infinitely ascending sequences w.r.t. an element a is sufficient. This property is also
known as noetherity. Mathematically, it is equivalent to the property that for every non-empty set p also the
set a.p of maxima is non-empty. We use the logical contraposition of this property for the formal definition.

27

Definition 23 (Noetherian Elements and d-Transitivity). An element a of a pre-domain semiring
(S, T, p) is noetherian if, for all p ∈ T ,

a . p ≤ 0⇒ p ≤ 0.

An element a is d-transitive if for all p we have 〈a〉 〈a〉 p ≤ 〈a〉 p.

By the definition of . and shunting noetherity is equivalent to

p ≤ 〈a〉 p ⇒ p ≤ 0 .

The condition of d-transitivity (the “d” referring to “diamond”) is more liberal than the notion of transitivity
given in Def. 12 and suffices for the proofs in this section.

Theorem 7 (Normality and Noetherity).

1. Every normal element a is noetherian and d-transitive.

2. Every d-transitive and noetherian element a is normal.

Proof.

1. Assume a.p ≤ 0, which is equivalent to p ≤ 〈a〉 p, cf. Definition 23. Now we obtain by the assumptions,
normality of a and isotony/strictness of diamond

p ≤ 〈a〉 p ≤ 〈a〉 (a . p) ≤ 〈a〉 (0) = 0 .

For d-transitivity, we will show 〈a〉 p + 〈a〉 〈a〉 p ≤ 〈a〉 p, which implies 〈a〉 〈a〉 p ≤ 〈a〉 p. First, by
distributivity of diamond and normality we obtain

〈a〉 p+ 〈a〉 〈a〉 p = 〈a〉 (p+ 〈a〉 p) = 〈a〉 (a . (p+ 〈a〉 p)) .

Now we continue with the maximum expression.

a . (p+ 〈a〉 p)
= {[definition of .]}

(p+ 〈a〉 p)− 〈a〉 (p+ 〈a〉 p)
= {[distributivities]}

(p− 〈a〉 p− 〈a〉 〈a〉 p) + (〈a〉 p− 〈a〉 p− 〈a〉 〈a〉 p)
= {[Boolean algebra]}

(p− 〈a〉 p− 〈a〉 〈a〉 p) + 0

≤ {[definition of − and neutrality of 0]}
p .

Hence, by isotony of diamond we are done.

2. To show 〈a〉 q ≤ 〈a〉 (a . q) for all q we reason as follows.

〈a〉 q ≤ 〈a〉 (a . q)
⇔ {[shunting]}
〈a〉 q − 〈a〉 (a . q) ≤ 0

⇐ {[noetherity]}
〈a〉 q − 〈a〉 (a . q) ≤ 〈a〉 (〈a〉 q − 〈a〉 (a . q))

⇔ {[shunting]}
〈a〉 q ≤ 〈a〉 (a . q) + 〈a〉 (〈a〉 q − 〈a〉 (a . q))

⇔ {[d-transitivity of a]}

28

〈a〉 q ≤ 〈a〉 (a . q) + 〈a〉 〈a〉 (a . q) + 〈a〉 (〈a〉 q − 〈a〉 (a . q))
⇔ {[distributivity]}
〈a〉 q ≤ 〈a〉 (a . q) + 〈a〉 (〈a〉 (a . q) + (〈a〉 q − 〈a〉 (a . q)))

⇔ {[Boolean algebra]}
〈a〉 q ≤ 〈a〉 (a . q) + 〈a〉 (〈a〉 (a . q) + 〈a〉 q)

⇔ {[distributivity, d-transitivity of a and distributivity again]}
〈a〉 q ≤ 〈a〉 (a . q + 〈a〉 q)

⇔ {[definition of .]}
〈a〉 q ≤ 〈a〉 ((q − 〈a〉 q) + 〈a〉 q)

⇔ {[Boolean algebra]}
〈a〉 q ≤ 〈a〉 (q + 〈a〉 q)

⇔ {[subsunption order and isotony of diamond]}
TRUE .

ut

Appendix F. Proof of Lemma 8

1. Immediate from Lemma 7.

2. Let w.l.o.g. j ≥ i+ 1. It follows:

qi ·qj
= {[definition of ri and .]}

(ri − 〈a〉 ri)·(rj − 〈a〉 rj)
= {[Boolean algebra]}

ri ·rj − (〈a〉 ri + 〈a〉 rj)
= {[rj ≤ ri by (1) and j ≥ i+ 1, isotony of diamond]}

rj − 〈a〉 ri
= {[Lemma 7 for ri, rj]}〈

(ra)j
〉
r − 〈a〉

〈
(ra)i

〉
r

≤ {[r ≤ 1A]}〈
(ra)j

〉
r − r· 〈a〉

〈
(ra)i

〉
r

= {[diamond properties]}〈
(ra)j

〉
r −

〈
(ra)i+1

〉
r

= {[(ra)j ≤ (ra)i+1 by Lemma 7.1 and j ≥ i+ 1]}
0a

3. By transitivity and irreflexivity of a there are always maximal elements in non-empty sets, i.e. we have
r 6= 0a ⇒ a . r 6= 0a. Hence ri 6= 0a implies qi 6= 0a. Additionally the qi are pairwise disjoint by
Part 2, hence ri+1 is strictly less (i.e. ri+1 ≤ ri ∧ri+1 6= ri) than ri. Induction shows that the sequence
ri is strictly decreasing for i = 0, ..., (N + 1) and equals 0a for i = (N + 1), ...,∞.

4. Immediate from Part 3 and the definition of the qi, since the definition of N implies rN+1 = 0a.

5. First, we have

qi ·a·qj = 0a

⇔ {[domain is strict w.r.t. 0a]}
p(qi ·a·qj) = 0a

⇔ {[definition of diamond]}

29

〈qi ·a〉 qj = 0a

⇔ {[property of diamond]}
qi · 〈a〉 qj = 0a

Now,

qi · 〈a〉 qj
= {[definition of qi, qj]}

(ri − 〈a〉 ri)· 〈a〉 (rj − 〈a〉 rj)
≤ {[isotony of diamond]}

(ri − 〈a〉 ri)· 〈a〉 rj
≤ {[i ≤ j, hence rj ≤ ri by Part 1]}

(ri − 〈a〉 ri)· 〈a〉 ri
= {[Boolean algebra]}

0a

30

	Introduction
	Types and Tuples
	Typed Tuples
	Typed Relations
	Inverse Image and Maximal Elements

	An Algebraic Calculus
	Semirings
	Representing Types
	Abstract relation algebra
	Join Algebras
	Representation of Preferences

	Maximal Element Algebra
	Basic Definitions and Results
	Basic Applications
	Prefilters
	Related properties of maxima

	Complex Preferences
	Complex Preferences as Typed Relations
	Maximality for Complex Preferences
	Equivalence of Preference Terms

	Layered Preferences
	Computing Layer-i Elements
	The Induced Layered Preference
	Application: Pareto(-regular) and Prioritisation

	Conclusion and Outlook
	Sample Prover Input
	Proofs for Section 4
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1

	Proof of Theorem 6
	Proofs for Section 6
	Proof of Lemma 7

	About Normality
	Proof of Lemma 8

