An Algebra of Database Preferences

B. Möller P. Roocks

Report 2013-08 July 2013

Institut für Informatik
D-86135 Augsburg
Abstract

Preferences allow more flexible and personalised queries in database systems. Evaluation of such a query means to select the maximal elements from the respective database w.r.t. to the preference, which is a partial strict-order. We present a point-free calculus of such preferences and exemplify its use in proving algebraic laws about preferences that can be used in query optimisation. We show that this calculus can be mechanised using off-the-shelf automated first-order theorem provers.

Keywords: relational algebra, complex preferences, preference algebra

1. Introduction

In the field of data bases, the relational calculus is a well established discipline which, among other applications, is used in algebraic query optimisation. The classical operations there are union, difference, cartesian product, selection and projection. The queries treated with this calculus mostly pose so-called hard constraints, by which the objects sought in the data base are clearly and sharply characterised. Hence, if there are no exact matches the empty result set is returned, which is very frustrating for users.

As a remedy, over the last decade queries with soft constraints have been studied. These arise from a formalisation of the user’s preferences in the form of partial strict-orders. A realisation of this idea is presented by the language Preference SQL [11] and its current implementation [12]. For example, a consumer wants to buy a new car. Her preference relation has two components: she prefers cars with high power and low fuel consumption. Hence, in addition to offering the possibility of specifying simple preferences, one needs flexible and powerful combination operators. There, such hierarchies of user wishes can be handled by complex preferences. The constructs of the Pareto and the Prioritisation preference are used to model equal and more/less important user preferences. Complex preferences are constructions where base preferences like “lowest fuel consumption” are at the bottom of the hierarchy. Since the resulting strict-orders are partial, they frequently admit many best or maximal data base objects, which helps to avoid empty result sets for queries.

Naturally, also for queries using such preferences efficient optimisation has to be performed, for which an algebraic calculus is indispensable. Although there is by now a well developed set of preference constructors with associated algebraic laws, the underlying theory was based on pointwise definitions with complex first-order formulas, which made proofs of new optimisation rules or the addition of further preference constructed a tedious and error-prone task. The present paper unifies and extends a point-free calculus for preference relations and their laws that has developed over the last two years and is meant to help in resolving the mentioned problems. Not least, it can be easily used with off-the-shelf automated theorem provers, which provides an additional level of trustworthyness.

Before we delve into the technical details, we provide some examples that illustrate the phenomena to be tackled.
Example 1. We return to the sketched example concerning cars. The goals the user wants to achieve are conflicting, because cars with high power tend to have a higher fuel consumption. To get the optimal results according to both of these equally important goals from a database, the concept of skyline queries is used: A car belongs to the result set if there is no other car which is better in both criteria, i.e. has a lower fuel consumption and a higher power. In a 2-dimensional diagram for both criteria the result set looks like a “skyline”, viewed from the origin.

Concretely, consider the data set in table 1. The skyline query for minimal fuel consumption and maximal power returns the “BMW 5” and “Mercedes E”, because each of these is better than the other by one criterion. The “Audi 6” is not returned, as it is worse by both criteria.

<table>
<thead>
<tr>
<th>Model</th>
<th>Fuel</th>
<th>Power</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMW 5</td>
<td>11.4</td>
<td>230</td>
<td>silver</td>
</tr>
<tr>
<td>Mercedes E</td>
<td>12.1</td>
<td>275</td>
<td>black</td>
</tr>
<tr>
<td>Audi 6</td>
<td>12.7</td>
<td>225</td>
<td>red</td>
</tr>
</tbody>
</table>

Table 1: Example of a data set of cars

Imagine that a large database, for example a catalogue containing all the cars for the European market, returns a quite large result for the above skyline query. Assume that the consumer has even more wishes, for example prefers cars with a specific colour, but this is less important than the preference for low fuel and high power.

Next, we exemplify the formal notation for expressing preferences.

Example 2. In the abstract notation of Preference SQL, the preference for “Lowest fuel consumption and (equally important) highest power, both more important than a preference for black cars” can be expressed by

\[P = (\text{LOWEST}(\text{fuel}) \otimes \text{HIGHEST}(\text{power})) \& \text{POS} (\text{color}, \{\text{black}\}) \]

where LOWEST and HIGHEST induce the “<” and “>” orders on their respective numerical domains, while POS creates a preference for values contained in the given set on a discrete domain. Pareto-composition and Prioritisation are denoted by \(\otimes \) and \& and are defined formally later on.

In Preference SQL many base preferences have the nice property of being strict weak orders, and prioritisation constructs of strict weak orders have this property again. In the scope of preferences we also call such relations layered preferences. This allows fast algorithms and a very intuitive way to define equally good results: The incomparability relation w.r.t. a layered preference is an equivalence relation. Unfortunately the Pareto preference constructor does not preserve layered preferences. This is the technical reason for an counter-intuitive effect which occurs in Preference SQL, shown in the following example.

Example 3. The best objects according to \(P \) from Example 2 in the data set of table 1 are again “BMW 5” and “Mercedes E”. This is quite counterintuitive, because the preference for black cars should decide for the Mercedes only.

After these motivating examples we present the pointfree calculus of preferences developed in [20] and [13], extended by some additional material.

As our first contribution, we enrich the standard theory of relational databases by an algebraic framework that allows completely point-free reasoning about (complex) preferences and their best matches. This “black-box view” is amenable to a treatment in first-order logic and hence to fully automated proofs using off-the-shelf verification tools. We exemplify the use of the calculus with some non-trivial laws, notably concerning so-called preference prefilters (introduced in [6]), which perform a preselection to speed up the computation of the best matches proper, in particular, for queries involving expensive join operations. It turns out that the original laws hold under much weaker assumptions; moreover, several new ones are derived.

Additionally we define a transformation of the Pareto preference to a layered one which then avoids the counter-intuitive effect of the previous example. We show the well-definedness and some other interesting
properties algebraically using our calculus. The complex preferences are represented in an abstract relation algebra embedded into a join algebra which allows reasoning about complex preferences in a point-free fashion.

New results with respect to [20] and [18] are the theorems about additivity of maxima and subset preferences and the discussion of normality and its relation to noetherity in Appendix E. Thereby we algebraically characterise normal elements as noetherian strict orders. Furthermore, we extend the results from [20] to the more general view of [18], thus achieving a much more uniform overall treatment.

2. Types and Tuples

In this section we present the formal framework to model database objects as tuples. We introduce typed relations whose types represent attributes, i.e. the columns of a database relation. Conceptually and notationally, we largely base on [9].

2.1. Typed Tuples

Definition 1. Let \(A \) be a set of attribute names. For \(A \in A \) the set \(D_A \) is called the domain of \(A \), and \((D_A)_{A \in A} \) is a family of domains. We define the following notions:

- A type \(T \) is a subset \(T \subseteq A \).
- An attribute \(A \in A \) is also used for the type \(\{A\} \), omitting the set braces.
- A \(T \)-tuple is a mapping \(t : T \rightarrow \bigcup_{A \in A} D_A \) where \(\forall A \in T : t(A) \in D_A \).
- For a \(T \)-tuple \(t \) and a sub-type \(T' \subseteq T \) we define the projection \(\pi_{T'}(t) \) to \(T' \) as the restriction of the mapping \(t \) to \(T' : \pi_{T'}(t) : T' \rightarrow \bigcup_{A \in A} D_A, A \rightarrow t(A) \).
- The domain \(D_T \) for a type \(T \) is the set of all \(T \)-tuples, i.e., \(D_T = \prod_{A \in T} D_A \).
- The set \(U = \bigcup_{T \subseteq A} D_T \) is called the universe.
- For a tuple \(t \), and a set of tuples \(M \) we introduce the following abbreviations:

\[t :: T \iff t \in D_T, \quad M :: T \iff M \subseteq D_T. \]

Definition 2 (Join). The join of two types \(T_1, T_2 \) is the union of their attributes:

\[T_1 \bowtie T_2 =_{df} T_1 \cup T_2. \]

For sets of tuples \(M_i :: T_i \) \((i = 1, 2)\), the join is defined as the set of all consistent combinations of \(M_i \)-tuples:

\[M_1 \bowtie M_2 =_{df} \{ t :: T_1 \bowtie T_2 \mid \pi_{T_i}(t) \in M_i, i = 1, 2 \}. \]

We illustrate this concept with the following example.

Example 4. Assume a database of cars with a unique ID and further attributes for model and horsepower. Hence the attribute names, i.e. types, are ID, model and hp. The tuples are written as explicit mappings. Assume the following sets:

\[
M_1 =_{df} \{ \{\text{ID} \mapsto 1, \text{model} \mapsto \text{'BMW 7'}\}, \{\text{ID} \mapsto 3, \text{model} \mapsto \text{'Mercedes CLS'}\} \},
\]

\[
M_2 =_{df} \{ \{\text{ID} \mapsto 2, \text{hp} \mapsto 230\}, \{\text{ID} \mapsto 3, \text{hp} \mapsto 315\} \}.
\]

3
The sets have the types $M_1 :: \text{ID} \Join \text{model}$ and $M_2 :: \text{ID} \Join \text{hp}$. Now we consider the join $M_1 \Join M_2 :: \text{ID} \Join \text{model} \Join \text{hp}$. We have $(\text{ID} \Join \text{model}) \cap (\text{ID} \Join \text{hp}) = \text{ID}$. The only tuple $t :: \text{ID} \Join \text{model} \Join \text{hp}$ which fulfills both $\pi_{T_1}(t) \in M_1$ and $\pi_{T_2}(t) \in M_2$ is the one with $t :: \text{ID} \rightarrow 3$. Hence the join is given by:

$$M_1 \Join M_2 = \{ \{ \text{ID} \rightarrow 3, \text{model} \rightarrow 'Mercedes CLS', \text{hp} \rightarrow 315 \} \}.$$

Corollary 1. The following laws hold:

1. \Join is associative and commutative and distributes over \cup.
2. \Join preserves the inclusion order, i.e. $M \Join N \subseteq M' \Join N$ for $M \subseteq M'$.
3. Assume $M_i, N_i :: T_i$ ($i = 1, 2$). Then the following exchange law holds:

$$(M_1 \cap N_1) \Join (M_2 \cap N_2) = (M_1 \Join M_2) \cap (N_1 \Join N_2).$$

Proof. (1) and (2) follow directly from definition. Using the definition of the join and the usual intersection of sets we show the exchange law as follows:

\[
\begin{align*}
& x \in (M_1 \cap N_1) \Join (M_2 \cap N_2) \\
& \Leftrightarrow \pi_{T_1}(x) \in (M_1 \cap N_1) \land \pi_{T_2}(x) \in (M_2 \cap N_2) \\
& \Leftrightarrow \pi_{T_1}(x) \in M_1 \land \pi_{T_1}(x) \in N_1 \land \pi_{T_2}(x) \in M_2 \land \pi_{T_2}(x) \in N_2 \\
& \Leftrightarrow x \in M_1 \Join M_2 \land x \in N_1 \Join N_2 \\
& \Leftrightarrow x \in (M_1 \Join M_2) \cap (N_1 \Join N_2).
\end{align*}
\]

2.2. Typed Relations

Definition 3 (Typed homogeneous binary relations). For a type T we define the following abbreviations:

\[
(t_1, t_2) :: T^2 \Leftrightarrow_{df} t_i \in D_T, \quad R :: T^2 \Leftrightarrow_{df} R \subseteq D_T \times D_T.
\]

We say that the typed relation R has type T. There are some special relations for every type T: The full relation $\top_T =_{df} D_T \times D_T$, the identity $1_T =_{df} \{(x, x) \mid x \in D_T\}$ and the empty relation $0_T =_{df} \emptyset$.

This concept of typed relations also appears in the relation-based logical, but not primarily algebraic, approach to database notions of [14]. We will generalise it in Section 3.2.

Definition 4 (Join of relations). Let $R_i :: T_i^2$ ($i = 1, 2$). Then the composition $R_1 \Join R_2 :: (T_1 \Join T_2)^2$ is defined by

\[
t(R_1 \Join R_2)u =_{df} \pi_{T_1}(t) R_1 \pi_{T_1}(u) \land \pi_{T_2}(t) R_2 \pi_{T_2}(u).
\]

Corollary 2.

1. Assume $M_i, N_i :: T_i$ ($i = 1, 2$). Then the following exchange law holds:

\[
(M_1 \Join M_2) \times (N_1 \Join N_2) = (M_1 \times N_1) \Join (M_2 \times N_2).
\]

2. For types T_1, T_2 and $X \in \{0, 1, \top\}$ we have $X_{T_1 \Join T_2} = X_{T_1} \Join X_{T_1}$.

Proof.

1. Straightforward from Definition 3.

2. Using part (1), $(D_{T_1} \Join D_{T_1}) \times (D_{T_2} \Join D_{T_2}) = (D_{T_1} \times D_{T_1}) \Join (D_{T_2} \times D_{T_2})$. By definition of the join for types we have that $T_1 \Join T_2 = T_1 \cup T_2$. From the definition of the join for sets we infer that $D_{T_1 \Join T_2} = D_{T_1} \Join D_{T_2}$. This shows the claim for $X = \top$. For $X = 1$ we show the equality component-wise using again the argument $D_{T_1 \Join T_2} = D_{T_1} \Join D_{T_2}$. For $X = \emptyset$ the claim is obvious.

Corollary 3.
1. For $M,N :: T$ we have $M \Join N = M \cap N$. In particular, we have $N \Join N = N$.
2. For $R_1,R_2 :: T$ we have $R_1 \Join R_2 = R_1 \cap R_2$.
3. For $M_i :: T_i$ (i = 1, 2) with disjoint T_i, i.e., with $T_1 \cap T_2 = \emptyset$, the join $M = \text{df} M_1 \Join M_2$ is isomorphic to the cartesian product of M_1 and M_2.

Proof.

1. By the definition of join and the typing assumptions we have

$$t \in M \Join N \Leftrightarrow t \in M \land t \in N .$$

2. Similarly we conclude for all $x,y :: T$:

$$x (R_1 \Join R_2) y \Leftrightarrow \pi_T(x) R_i \pi_T(y) \text{ (i = 1, 2)} \Leftrightarrow x R_1 y \land x R_2 y .$$

3. For $x \in M$, the two join conditions $\pi_T(x) \in M_i$ are independent. Hence all elements of M_1 can be joined with all elements of M_2. Thus, by definition,

$$t \in M \Leftrightarrow \pi_{T_1}(t) \in M_1 \land \pi_{T_2}(t) \in M_2 \Leftrightarrow (\pi_{T_1}(t), \pi_{T_2}(t)) \in M_1 \times M_2 .$$

2.3. Inverse Image and Maximal Elements

Definition 5 (Inverse image). For a relation $R :: T^2$ the inverse image of a set $Y :: T$ under R is formally defined as

$$(R) Y = \text{df} \{ x :: T \mid \exists y \in Y : x R y \} .$$

The notation stems from the fact that in modal logic the inverse-image operator is a (forward) diamond.

Lemma 1. Assume $R_i :: T_i^2$ and $Y_i :: T_i$ (i = 1, 2) with disjoint T_1,T_2. Then the following exchange law for the join and the inverse image holds:

$$(R_1 \Join R_2) (Y_1 \Join Y_2) = (R_1) Y_1 \Join (R_2) Y_2 .$$

Proof. Using the definition of the inverse image and the composition of relations we infer:

$$x \in (R_1 \Join R_2) (Y_1 \Join Y_2)$$
$$\Leftrightarrow \exists y \in (Y_1 \Join Y_2) : x (R_1 \Join R_2) y$$
$$\Leftrightarrow \exists y \in (Y_1 \Join Y_2) : \pi_{T_1}(x) R_1 \pi_{T_1}(y) \land \pi_{T_2}(x) R_2 \pi_{T_2}(y)$$
$$\Leftrightarrow \exists y_1 \in Y_1 : \exists y_2 \in Y_2 : \pi_{T_1}(x) R_1 y_1 \land \pi_{T_2}(x) R_2 y_2$$
$$\Leftrightarrow \pi_{T_1}(x) \in (R_1) Y_1 \land \pi_{T_2}(x) \in (R_2) Y_2$$
$$\Leftrightarrow x \in ((R_1) Y_1 \Join (R_2) Y_2) .$$

Note that splitting y into y_1 and y_2 in the third step is justified by disjointness of the types: because of $T_1 \cap T_2 = \emptyset$ the two join conditions $\pi_{T_i}(y) \in Y_i$ for $i = 1, 2$ are independent of each other, hence the substitution $y_i := \pi_{T_i}(y)$ is allowed.

Assume that R_1,R_2 are strict orders (irreflexive and transitive), which is the case in our application domain of preferences. Then, together with Corollary 3.3, this lemma means that, under the stated disjointness assumption, $R_1 \Join R_2$ behaves like the product order of R_1 and R_2 on the Cartesian product $D_{T_1} \times D_{T_2}$.

The inverse image of a set Y under a relation R, when viewed the other way around, consists of the objects that have an R-successor in Y, i.e., are R-related to some object in Y or, in the preference context, dominated by some object in Y. For this reason we can characterise the set of R-maximal objects within a set Y, as follows.
Definition 6 (Maximal elements). For a relation \(R : T^2 \) and a set \(Y : T \) we define

\[
R \upharpoonright Y = \text{df} \ Y - \langle R \rangle Y ,
\]

where “-” is set difference.

These are the \(Y \)-objects that do not have an \(R \)-successor in \(Y \), i.e., are not dominated by any object in \(Y \). The mnemonic behind this notation is that in an order diagram for a preference relation \(R \) the maximal objects within \(Y \) are the peaks in \(Y \); rotating the diagram clockwise by 90° puts the peaks to the right. Hence \(R \upharpoonright Y \) might also be read as “\(R \)-peaks in \(Y \)”.

To develop the central properties of our algebra and the maximality operator it turns out useful to abstract from the concrete setting of binary relations over sets of tuples, which will be done in the next section.

3. An Algebraic Calculus

Since we have shown how to characterise the maximal elements concisely using a diamond operation, it seems advantageous to reuse the known algebraic theory around that. This also allows us to exhibit clearly which assumptions are really necessary; it turns out that most of the development is completely independent of the properties of irreflexivity and transitivity that were originally assumed for preference relations in [10], and in fact also independent of the use of relations at all.

3.1. Semirings

Definition 7. An idempotent semiring consists of a set \(S \) of elements together with binary operations \(+\) of choice and \(\cdot \) of composition. Both are required to be associative, choice also to be commutative and idempotent. Moreover, composition has to distribute over choice in both arguments. Finally, there have to be units 0 for choice and 1 for composition.

Binary homogeneous relations over a set form an idempotent semiring with choice \(\cup \) and composition “\(; \)”, which have \(\emptyset \) and the identity relation as their respective units.

Definition 8. Every idempotent semiring induces a subsumption order by \(x \leq y \iff x + y = y \). A test is an element \(x \leq 1 \) that has a complement \(\neg x \) relative to 1, i.e., that satisfies

\[
x + \neg x = 1 , \quad x \cdot \neg x = 0 .
\]

It is well known (e.g., [16]) that the complement is unique when it exists and that the set of all tests forms a Boolean algebra with \(+ \) as join and \(\cdot \) as meet. Tests are used to represent subsets or assertions in an algebraic way. In the semiring of binary relations over a set \(M \) the tests are subidentities, i.e., subsets of the identity relation, of the form \(I_N = \text{df} \ \{(x,x) \mid x \in N\} \) for some subset \(N \subseteq M \) and hence in one-to-one correspondence with the subsets of \(M \). Because of that we will, by a slight abuse of language, say that \(x \) lies in \(I_N \) when \((x,x) \in I_N \).

We will use small letters \(a, b, c, \ldots \) at the beginning of the alphabet to denote arbitrary semiring elements and \(p, q, \ldots \) to denote tests.

Based on complementation, the difference of two tests \(p, q \) can be defined as \(p - q = \text{df} \ p \cdot \neg q \). It satisfies, among other laws,

\[
(p + q) - r = (p - r) + (q - r) , \quad (p - q) - r = p - (q + r) ,
\]

\[
p - (q + r) = (p - q) \cdot (p - r) , \quad p - (q \cdot r) = (p - q) + (p - r) .
\]

For the interaction between complements and the subsumption ordering we can use the shunting rule

\[
p \cdot q \leq r \iff p \leq \neg q + r .
\]
A special case of applying this rule twice with \(p = 1 \) is the \textit{contraposition} rule

\[
q \leq r ~\iff~ \neg r \leq \neg q .
\]

Tests can be used to express domain or range restrictions. For instance, when \(a \) is a relation and \(p, q \) are tests, \(p \cdot a \) and \(a \cdot q \) are the subrelations of \(a \) all of whose initial points lie in \(p \) and end points in \(q \), respectively. Hence, all initial points of \(a \) lie in \(p \) if and only if \(a \leq p \cdot a \).

With these properties we can give an algebraic characterisation of the test \(\langle a \rangle q \) that represents the inverse image under \(a \) of the set represented by \(q \) or, equivalently, the set of initial points of \(a \cdot q \).

Definition 9. Following \([3]\), the \textit{(forward) diamond} is axiomatised by the universal property

\[
\langle a \rangle q \leq p \iff a \cdot q \leq p \cdot a \iff a \cdot q \leq p \cdot a .
\]

Following the terminology of \([3]\), it would be more accurately termed a \textit{pre-diamond}, since we do not require the axiom \(\langle a \cdot b \rangle q = \langle a \rangle \langle b \rangle q \), which is not needed for our application. In the relational setting of \([1]\), test and diamond are called monotype and monotype factor, respectively.

The diamond enjoys the following useful algebraic properties:

\[
\langle a \rangle 0 = 0 , \quad \langle a + b \rangle p = \langle a \rangle p + \langle b \rangle p , \quad \langle a \rangle (p + q) = \langle a \rangle p + \langle a \rangle q , \quad \langle r \cdot a \rangle p = r \cdot \langle a \rangle p .
\]

The latter two imply that diamond is isotone (i.e., monotonically increasing) in both arguments:

\[
a \leq b \Rightarrow \langle a \rangle p \leq \langle b \rangle p , \quad p \leq q \Rightarrow \langle a \rangle p \leq \langle a \rangle q .
\]

A special role is played by the test \(\preceq_a =_{df} \langle a \rangle 1 \).

It represents the set of all objects that have an \(a \)-successor at all and therefore is called the \textit{domain} of \(a \). From the isotony of diamond we conclude, for test \(p \),

\[
\langle a \rangle p \leq \preceq_a .
\]

3.2. Representing Types

There are a number of ways to represent types algebraically, among them heterogeneous relation algebras \([22]\), relational allegories \([2]\) or typed Kleene algebra \([13]\). All these involve some amount of machinery and notation, which we want to avoid here.

More simply, we now interpret the largest test \(1 \) as representing the universe \(\mathcal{U} \) and use other tests to stand for subsets of it, e.g., for the domains associated with types. With every type \(T \subseteq \mathcal{A} \), we associate a test \(1_T \) representing its domain \(D_T \). An assertion \(p :: T \) means that \(p \) is a test, representing a set of tuples, with \(p \leq 1_T \). Arbitrary semiring elements \(a, b, c, \ldots \) will stand for preference relations. A type assertion \(a :: T^2 \) is short for \(a \leq 1_T \cdot a \cdot 1_T \). By \(1_T \leq 1 \) this can be strengthened to an equality. Hence, since tests are idempotent under composition, \(a :: T^2 \) implies \(1_T \cdot a = a = a \cdot 1_T \).

This latter property entails that the diamond respects types, i.e., for \(a :: T^2 \) and \(q :: T \) we calculate

\[
\langle a \rangle q :: T \Leftrightarrow \langle a \rangle q \leq 1_T \Leftrightarrow a \cdot q \leq 1_T \cdot a \cdot q \Leftrightarrow a \cdot q \leq a \cdot q \Leftrightarrow \text{TRUE} .
\]

To express that \(x \) is either an element which represents a relation or a test, we introduce the following notation:

\[
x :: T^{(2)} \Leftrightarrow x :: T \lor x :: T^2 .
\]

We assume for every type \(T \) a greatest element \(\top_T \) in \(\{ x \mid x :: T^{(2)} \} \), i.e., we assume \(\forall x :: T^{(2)} : x \leq \top_T \).

Additionally we introduce \textit{sub-types}. Let \(r :: T \) be a test. The \textit{\(r \)-induced sub-type of \(T \)}, formally \(T[r] \), is defined by the new identity \(1_{T[r]} =_{df} r \). For the type assertions this implies

\[
p :: T[r] \Leftrightarrow p \leq r , \quad a :: T[r]^2 \Leftrightarrow a \leq r \cdot a \cdot r .
\]
For the greatest element of this type we have $\top_{T[r]} = r \cdot \top_{T} \cdot r$ while the smallest element $0_{T[r]} = 0_T$ remains unchanged. As $T = T[1_T]$ the concept of subtypes generalizes the typing concept.

For sake of readability we use the following abbreviations for $x :: T^2$:

$$0_x =_{df} 0_T, \quad 1_x =_{df} 1_T, \quad \top_x =_{df} \top_T.$$

3.3. Abstract relation algebra

The following definitions are the formal foundations for our preference calculus. First, we define abstract relation algebras using the axiomatisation in [15]:

Definition 10 (Abstract relation algebra). An abstract relation algebra is an idempotent semiring with additional operators $(\cdots)^{-1}, (\cdots)$ for converse and complement, axiomatised by the Schröder equivalences and Huntington’s axiom:

$$x \cdot y \leq z \Leftrightarrow \overline{x} \cdot y^{-1} \leq \overline{z}, \quad x = \overline{x+y + \overline{x+y}}.$$

For our applications, we additionally stipulate the Tarski rule

$$a \neq 0_a \Rightarrow \top_a \cdot a \cdot \top_a = \top_a,$$

where $\top_a = \overline{0_a}$.

We assume that our underlying semiring is an abstract relation algebra and each type domain is closed under converse and complement, i.e. for $x :: T^{(2)}$ we have also $x^{-1}, \overline{x} :: T^{(2)}$. Note that this also holds for sub-types $T[r]$, where the complement is relative to r.

For an easier notation, we introduce the meet operation and the difference between two elements as follows:

$$x \sqcap y =_{df} \overline{x+y}, \quad x - y =_{df} x \sqcap \overline{y}.$$

For relations these correspond to intersection and set difference. For tests $p, q \leq 1$ they are equal to composition and relative complement:

$$p \sqcap q = p \cdot q, \quad p - q = p \cdot \neg q.$$

3.4. Join Algebras

We now deal with the central notion of join. For this, we assume the typing mechanism of the previous section.

Definition 11 (Join algebra). A join algebra is an abstract relation algebra with an additional binary operator \Join satisfying the following requirements.

1. Join is associative, commutative and idempotent and distributes over choice $+$ in both arguments. Hence \Join is isotone in both arguments.
2. If $a_i :: T^{(2)}_i$ ($i = 1, 2$) then $a_1 \Join a_2 :: (T_1 \Join T_2)^{(2)}$.
3. For types T_i ($i = 1, 2$) we have

 $$1_{T_i \Join T_2} = 1_{T_1} \Join 1_{T_2} \quad \text{and} \quad \top_{T_1 \Join T_2} = \top_{T_1} \Join \top_{T_2}.$$

4. Join and composition satisfy, for $a_i, b_i :: T^{(2)}_i$ ($i = 1, 2$) with disjoint T_i, the exchange law

 $$(a_1 \Join a_2) \cdot (b_1 \Join b_2) = (a_1 \cdot b_1) \Join (a_2 \cdot b_2).$$

5. The diamond operator respects joins of elements with disjoint types: for $a :: T^2_1, p :: T_1$ and $b :: T^2_2, q :: T_2$ with $T_1 \cap T_2 = \emptyset$ we have the exchange law

 $$(a \Join b) (p \Join q) = \langle a \rangle p \Join \langle b \rangle q.$$

6. If $a_1, a_2 :: T^{(2)}$, then $a_1 \Join a_2 = a_1 \sqcap a_2$.

Our typed relations from Section 2.2 form a join algebra.
3.5. Representation of Preferences

Preferences introduced in [10] are strict partial orders, i.e. a special kind of binary homogeneous relations. These relations are defined on domains of types, and the objects compared are “database tuples” contained in a “database relation”, i.e., a set of tuples.

To avoid confusion between the two uses of the word “relation” we call tuples database elements here and the database relation the basic set of objects. This means that we consider a “static” snapshot of the database at the time of the respective preference-based query and assume that no data is deleted or inserted into the database while the query being evaluated.

Abstractly, preferences can now be modelled as typed elements $a :: T^2$ for some type T representing strict partial orders.

Definition 12 ((Layered) preferences). A relation $a :: T^2$ is a preference if and only if it is irreflexive and transitive, i.e.

1. $a \sqcap 1_a = 0_a$,
2. $a \cdot a \leq a$.

a is a layered preference if additionally negative transitivity $\overline{a} \cdot a \leq \overline{a}$ holds.

However, as we will see, for the most part the assumptions of irreflexivity and transitivity are inessential for the laws we will derive.

Strict partial orders satisfying negative transitivity are sometimes called strict weak orders. In the scope of preferences, i.e. in [11] they are called weak order preferences. In this paper we will only use the term layered preferences. The reason for this is that such relations induce a “layered structure”, i.e. there is always a function $f : D_A \rightarrow \mathbb{N}$ s.t. $t_1 a t_2 \Leftrightarrow f(t_1) < f(t_2)$, which is shown in [7], Thm. 2.2.

Although we use an abstract relation algebra, in the examples one may always think of a concrete representation, where general elements $a, b, c, ...$ are relations and tests $p, q, r, ...$ are sets. To make our examples easy to follow, we sometimes use a point-wise notation: For a relation $a :: T^2$ the expression $t a t'$ for tuples $t, t' \in D_T$ means that the tuple t is related to t' via a. Analogously we use $\neg(t a t')$ if t is not a-related to t'.

4. Maximal Element Algebra

Now we are ready for the algebraic treatment of our central notion.

4.1. Basic Definitions and Results

Definition 13. The best or maximal objects w.r.t. element $a :: T^2$ and a test $p :: T$ are represented by the test $a \triangleright p = \downarrow_f p - \langle a \rangle p$.

This definition is also given, in different notation, in [5]. An analogous formulation, however, with tests encoded as vectors, i.e., right-universal relations, can be found in [8].

To give a first impression of the algebra at work, we show a number of useful basic properties of the \triangleright operator. Proofs of the following two lemmas can be found in Appendix B.1 and Appendix B.2.

In the following the test r represents a finite data set. Requiring $a :: T[r]$ means that we restrict the element a to this data set. Note that for $p \leq r$ we always have $(r \cdot a \cdot r) \triangleright p = a \triangleright p$, as the following calculation shows:

\[
(r \cdot a \cdot r) \triangleright p = \langle r \cdot a \cdot r \rangle p = p - \langle r \cdot a \cdot r \cdot p \rangle = p - \langle r \cdot a \cdot p \rangle = p - \langle r \cdot \langle a \cdot p \rangle \rangle = p - (r - \langle a \rangle p) = (p - r) + (p - \langle a \rangle p) = 0 + a \triangleright p = a \triangleright p.
\]

The following lemmas collect useful properties of the maximality operator; proofs can be found in Appendix B.
Lemma 2. Assume a type T and let $a, b :: T[r]^2$, $1_{T[r]} = r :: T$ and $p :: T[r]$, i.e., $p \leq r$. Then the following holds:

1. $a \triangleright r = \neg \langle a \rangle r$.
2. $\neg \langle a \rangle r \iff a \triangleright r \leq b \triangleright r$.
3. $a \triangleright p \leq p$.
4. $a \triangleright r \leq p \iff a \triangleright r \leq a \triangleright p$.
5. $a \triangleright (a \triangleright r) = a \triangleright r$.
6. $(a + b) \triangleright p = (a \triangleright p) \cdot (b \triangleright p)$.
7. $b \leq a \Rightarrow a \triangleright p \leq b \triangleright p$.
8. $r \leq a \Rightarrow a \triangleright p = 0_T$.

Lemma 3. Let $p, q :: T[r]$ be a disjoint decomposition of r, i.e., $p + q = r$, $p \cdot q = 0_T$. Then we have $\neg p = q$.

4.2. Basic Applications

Now we want to show the maximality operator \triangleright in action.

Example 5. Let $a :: T^2$ be a preference relation, r a data set and suppose $p_1, p_2 :: T[r]$ are tests that form a disjoint decomposition of 1_T. Assume that all elements in p_2 are better than all elements in p_1, i.e.,

$\langle a \rangle p_2 = p_1$, $\langle a \rangle p_1 = 0_T$.

We show that p_2 represents the maximal elements, i.e. $p_2 = a \triangleright r$:

\[
\begin{align*}
a \triangleright r &= \{ \text{definition} \} \\
\neg \langle a \rangle r &= \{ \text{Lemma 3} \}
\end{align*}
\]

By this tiny example one can see how the maximality operator works in general, because one can always decompose r into tests representing the non-maximal (p_1) and the maximal (p_2) elements, where p_1 and p_2 are disjoint.

4.3. Prefilters

In practical applications, e.g., in databases, the tests, in particular the test r representing all objects in the database, can be quite large. Hence it may be very expensive to compute $a \triangleright r$ for a given a. However, it can be less expensive to compute $b \triangleright r$ for another element b; ideally, that set is much smaller and the a-best objects overall coincide with the a-best objects within $b \triangleright r$. This motivates the following definition.

Definition 14. Assume $a, b :: T[r]^2$ and a data set $r :: T$. We call b a prefilter for a, written as $b \text{pref} a$, if and only if

\[a \triangleright r = a \triangleright (b \triangleright r) . \]
Note that no connection between a and b is assumed. By Lemma 2.6 we have a pref a for all a. A concrete example of a prefilter will be given in Section 5.1.

We can give another, calculationally useful, characterisation of prefilters. The proof of the following theorem can be found in appendix Appendix B.3.

Theorem 1. \(b \text{ pref } a \iff \lbrack b \leq \lbrack a \land \lbrack a \leq b + \langle a \rangle \neg b \rbrack. \)

So far, we have not required any special properties of the elements a that represent, e.g., preference relations. Instead of transitivity or irreflexivity we need an assumption that such elements admit “enough” maximal objects. This is expressed by requiring every non-maximal object to be dominated by some maximal one. In a setting with finitely many objects, such as a database, and a preference relation on them this property is always satisfied and hence is no undue restriction for our purposes. We forego a discussion of this assumption for infinite sets of objects, since there it is related to fundamental issues such as Zorn’s Lemma and Hausdorff’s maximality principle, hence to the axiom of choice.

Definition 15. We call a normal if

\[\forall p : \langle a \rangle p \leq \langle a \rangle (a \triangleright p). \]

By \(a \triangleright p \leq p \) and isotony of diamond this strengthens to

\[\forall p : \langle a \rangle p = \langle a \rangle (a \triangleright p). \]

(1)

This is a compact algebraic formulation of the above domination requirement. Note that this is a stronger requirement than the normality definition in [20], in which we defined normality as the special case of the above definition with \(p = 1 \). For the following theorem that weaker notion would be sufficient.

First we show that any relation on a subset of the domain of a normal relation provides a prefilter.

Theorem 2. Assume \(a,b :: T[r]^2 \).

1. Let a be normal. Then \(\lbrack b \leq \lbrack a \rbrack \Rightarrow b \text{ pref } a \).
2. Let \(a + b \) be normal. Then \(a \text{ pref } (a + b) \).

Proof.

1. The assumption about b is the first conjunct of the right hand side in Theorem 1. For the second conjunct we calculate

\[\forall \ lbrack a \rbrack^\prime \lor \ lbrack b \rbrack^\prime \](normality of a, setting \(p = 1_T[r] \))

\[\forall \ lbrack a \rbrack^\prime \lor \ lbrack b \rbrack^\prime \](normality of a, setting \(p = 1_T[r] \))

2. Since \(a \leq a + b \), isotony of diamond and hence of domain imply \(\lbrack a \rbrack \leq \lbrack a + b \rbrack \) and the claim follows from Part 1.

Next we show that under certain conditions prefilters can be nested.

Theorem 3. Assume \(a,b,c :: T[r]^2 \), where \(b \triangleright r \leq c \triangleright r \) and \(b \text{ pref } a \) with normal a. Then also \(c \text{ pref } a \).

Proof. First, by Theorem 1 we have \(\lbrack b \leq \lbrack a \rbrack \land \lbrack a \leq b + \langle a \rangle \neg b \rbrack \). Second, by Lemma 2.1 and contraposition the assumption \(b \triangleright r \leq c \triangleright r \) is equivalent to \(\lbrack c \leq \lbrack b \rbrack \). Hence by transitivity of \(\leq \) we infer \(\lbrack c \leq \lbrack a \rbrack \). Now normality of a and Theorem 2.1 show the claim.
4.4. Related properties of maxima

Starting from the definition of normality we can show further interesting properties of maximal elements. Normality means that all elements that are dominated by some element of a set \(p \) are also dominated by a maximal element of \(p \). This property is satisfied by all preferences on finite sets. We will treat the case of infinite sets in Theorem 7 in Appendix E where we establish a connection between the notions of normality and being noetherian.

Theorem 4. Let \(a \) be normal. Then

\[
a \triangleright (p + q) = a \triangleright (a \triangleright p + a \triangleright q)
\]

Proof. We first rewrite the left hand side:

\[
a \triangleright (p + q) = (p + q) - \langle a \rangle (p + q)
\]

\[
= (p + q) - ((a) p + (a) q)
\]

\[
= (p - \langle a \rangle p) + (q - \langle a \rangle q)
\]

For the right hand side we obtain therefore

\[
a \triangleright (a \triangleright p + a \triangleright q)
\]

\[
= (a \triangleright (a \triangleright p) - \langle a \rangle (a \triangleright q)) + (a \triangleright (a \triangleright q) - \langle a \rangle (a \triangleright p))
\]

\[
= (a \triangleright p - \langle a \rangle q) + (a \triangleright q - \langle a \rangle p)
\]

Since normality immediately entails \(a \triangleright p - \langle a \rangle q = a \triangleright p - \langle a \rangle (a \triangleright q) \) and \(a \triangleright q - \langle a \rangle p = a \triangleright q - \langle a \rangle (a \triangleright p) \), we are done.

This theorem paves the way for a distributed computation of maxima, as the calculations \(a \triangleright p \) and \(a \triangleright q \) are independent.

Next we deal with nested maxima.

Theorem 5. Let \(a, b \) preferences with \(b \triangleright p \leq a \triangleright p \). Then we have

1. \(a \triangleright b \triangleright p = b \triangleright p \)
2. \(b \triangleright a \triangleright p = b \triangleright p \)

Proof.

1. “\(\leq \)”: We have \(a \triangleright b \triangleright r \leq b \triangleright r \) by Lemma 2.2. \(\geq \)”: We substitute \(p := b \triangleright p' \) for arbitrary \(r' \) and use Lemma 2.6. We yield \(a \triangleright b \triangleright r' \geq b \triangleright r' \).

2. At first we show “\(\leq \)”: \n
\[
b \triangleright a \triangleright p
\]

\[
= \langle b \rangle (a \triangleright p)
\]

\[
= (p - \langle a \rangle p) - (b) (a \triangleright p)
\]

12
\[
\leq p - \langle b \rangle (a \triangleright p)
\leq \left\{ \begin{array}{l}
 b \triangleright r \leq a \triangleright r \text{ and isotony of diamond} \\
 b \triangleright (b \triangleright p)
\end{array} \right.
\]
\[
p - \langle b \rangle (b \triangleright p)
= \left\{ \begin{array}{l}
 b \text{ normal} \\
 p - \langle b \rangle p
\end{array} \right.
\]
\[
= b \triangleright p
\]

Then we show “\(\geq\)”:
\[
b \triangleright a \triangleright p
= \left\{ \begin{array}{l}
 \text{definitions} \\
 (p - \langle a \rangle p) - \langle b \rangle (p - \langle a \rangle p)
\end{array} \right.
\]
\[
\geq \left\{ \begin{array}{l}
 \text{isotony of diamond} \\
 (p - \langle a \rangle p) - (b) p
\end{array} \right.
\]
\[
\geq \left\{ \begin{array}{l}
 b \triangleright p \leq a \triangleright p \text{ and isotony of diamond} \\
 (p - (b) p) - (b) p
\end{array} \right.
\]
\[
= \left\{ \begin{array}{l}
 \text{tests are idempotent, definitions} \\
 b \triangleright p
\end{array} \right.
\]

Note that \(a \leq b\) with \(a\) arbitrary \(p\) is also sufficient for the above theorem, using Lemma [2,8]. Hence \(a \leq b\) implies \(a \text{ pref } b\) by Theorem [5,2] i.e., \(a\) is a prefilter for \(b\) in this case.

5. Complex Preferences

We have seen how some laws of single preference relations can be proved in point-free style in our algebra. Now we want to compose preferences into complex preferences. To this end we will introduce some special operators. The standard semiring operations like multiplication, addition and meet also lead to some kind of complex preferences, but they are rarely used in the typical application domain of preference algebra [10, 12]. Instead the so-called Prioritisation and Pareto composition are the most important constructors for complex preferences.

5.1. Complex Preferences as Typed Relations

To motivate our algebraic treatment we first repeat the definitions of these preference combinators in the concrete setting of typed relations [10].

For basic sets \(M, N\) and preference relations \(R \subseteq M^2, S \subseteq N^2\) the prioritisation \(R \triangleleft S\) is defined as:

\[
(x_1, x_2) (R \triangleleft S) (y_1, y_2) \iff x_1 R y_1 \lor (x_1 = y_1 \land x_2 S y_2)
\]

where \(x_i \in M, y_i \in N\). The Pareto preference is defined as:

\[
(x_1, x_2) (R \otimes S) (y_1, y_2) \iff x_1 R y_1 \land (x_2 S y_2 \lor x_2 = y_2) \lor x_2 S y_2 \land (x_1 R y_1 \lor x_1 = y_1)
\]

In order theory the prioritisation is well-known as lexicographical order.

We now want to get rid of the point-wise notation in favour of operators on relations. The technique is mostly standard; we exemplify it for the prioritisation. We calculate, assuming first \(M ::= A, N ::= B\) with distinct attribute names \(A, B\),

13
\[(x_1, x_2) (R \& S) (y_1, y_2)\]
\[\Leftrightarrow \begin{array}{l}
\quad \text{definition} \\
\quad x_1 R y_1 \lor (x_1 = y_1 \land x_2 S y_2)
\end{array}\]
\[\Leftrightarrow \begin{array}{l}
\quad \text{logic} \\
\quad (x_1 R y_1 \land \text{true}) \lor (x_1 = y_1 \land x_2 S y_2)
\end{array}\]
\[\Leftrightarrow \begin{array}{l}
\quad \text{definitions of } \top_B \text{ and } 1_A \\
\quad (x_1 R y_1 \land x_2 \top_B y_2) \lor (x_1 1_A y_1 \land x_2 S y_2)
\end{array}\]
\[\Leftrightarrow \begin{array}{l}
\quad \text{definition of cartesian product of relations} \\
\quad (x_1, x_2) (R \times \top_B) (y_1, y_2) \lor (x_1, x_2) (1_A \times S) (y_1, y_2)
\end{array}\]
\[\Leftrightarrow \begin{array}{l}
\quad \text{definition of relational union} \\
\quad (x_1, x_2) ((R \times \top_B) \cup (1_A \times S)) (y_1, y_2).
\end{array}\]

A similar calculation can be done for the Pareto composition. Now we can write the point-free equations
\[
R \& S = (R \times \top_B) \cup (1_A \times S), \\
R \otimes S = (R \times (S \cup 1_B)) \cup ((R \cup 1_A) \times S).
\]

This is close to an abstract algebraic formulation. However, since we want to cover also the case of non-disjoint, overlapping tuples, we will replace the Cartesian product \(\times \) by the join \(\sqcup \). To simplify notation we use the convention that a preference \(x \) has type \(T_x \), i.e. \(a :: T^2_a \), \(b :: T^2_b \), ... We will keep these types “general” as long as possible. Only when a complement relative to a given data set \(r :: T \) is needed, e.g., for the maxima \(a \triangleright r \), we will use explicit sub-types, e.g., \(T_a[r] \).

Definition 16. For the sake of readability we define for \(x :: T^2 \):
\[
0_x =_{df} 0_T, \quad 1_x =_{df} 1_T, \quad \top_x =_{df} \top_T.
\]

In a join algebra, assume preferences \(a :: T^2_a, b :: T^2_b \). We can rewrite the above point-free equation as:
\[
a \& b =_{df} a \sqcup b \sqcup 1_a \sqcup 1_b.
\]

So “equal w.r.t. \(a \)” is represented by the identity \(1_a \), while \(\top_a \) represents that one does not care about the \(T_a \)-part when the \(T_a \)-part already decides about the overall relation.

However, it is questionable whether this always meets the user’s expectation. If \(a \) is a layered preference, then the incomparability relation \(\{ a + a^{-1} \} \) is an equivalence relation. Hence, if two tuples \(t_1, t_2 \) are incomparable w.r.t. a layered preference \(a \) but \(t_2 \) is better than \(t_1 \) w.r.t. \(b \), it is quite intuitive to say that \(t_2 \) is better than \(t_1 \) (and not incomparable with \(t_1 \)) in \(a \& b \).

Formally this is reflected by the **SV-semantics of** \(T^2_a \). “SV” stands for “substitutable values” and means that a comparison between two tuples \(t_1, t_2 \) with respect to \(a \) remains unchanged if \(t_1 \) is substituted for an SV-related \(t'_1 \). In relational notation, with \(s_a \) being the SV relation and “\(\equiv \)” meaning logical equivalence of formulas, we have
\[
\forall t_1, t'_1, t_2 : \quad t_1 s_a t'_1 \Rightarrow t_1 a t_2 \equiv t'_1 a t_2 \quad \land \quad t_2 a t_1 \equiv t_2 a t'_1.
\]

We give an algebraic characterisation of SV relations.

Definition 17 (SV relation). For a preference \(a :: T^2_a \) we call \(s_a :: T^2_a \) an **SV relation for** \(a \), if \(s_a \) fulfils the following properties:

1. The relation \(s_a \) is an equivalence relation, i.e. \(s_a \) is reflexive \((1_a \leq s_a) \), symmetric \((s_a^{-1} = s_a) \) and transitive \((s_a \cdot s_a \leq s_a) \).
2. \(s_a \) is compatible with \(a \):
 1. \(s_a \cap a = 0_a \),
(b) \(s_a \cdot a \leq a \),
(c) \(a \cdot s_a \leq a \).

If the SV relation is not stated explicitly, then it is assumed to be the identity, i.e. we set \(s_a = 1_a \).

Using this concept we will below adapt our definition of prioritisation. Next to the prioritisation preference there is another important complex preference constructor called Pareto composition which combines two preferences \(a :: T_a^2 \), \(b :: T_b^2 \). It is denoted as \(a \odot b :: (T_a \bowtie T_b)^2 \) and has the intuitive meaning: “Better w.r.t. to \(a \) in the \(T_a \)-part or \(b \) in the \(T_b \)-part and not worse (i.e. equal or better) in the other part”.

Using SV relations where the “equal w.r.t. to \(a \)” is formalised by “\(s_a\)-related” we define the following complex preferences:

Definition 18 (Prioritisation and Pareto composition with SV). Let \(a :: T_a^2 \) and \(b :: T_b^2 \) be preferences with associated SV relations \(s_a :: T_a^2 \) and \(s_b :: T_b^2 \). The prioritisation is given by:

\[
\begin{align*}
a \& b &= (T_a \bowtie T_b)^2, \\
a \& b &= a \bowtie T_b + s_a \bowtie b,
\end{align*}
\]

whereas the Pareto compositions are defined as

\[
\begin{align*}
a \& b &= (T_a \bowtie T_b)^2, \\
a \& b &= a \bowtie (b + s_b), \\
a \& b &= (a + s_a) \bowtie b, \\
\end{align*}
\]

We say that \(a \ast b \) for \(\ast \in \{\& , \bowtie , \gg , \odot \} \) is SV-preserving if \(s_{a+b} = s_a \bowtie s_b \). Note that one may always define SV relations other than 1 for complex preferences, as long as they fulfil the conditions of Definition 17.

Corollary 4. The above notions are well-defined, i.e. \(s_a \bowtie s_b \) is indeed a valid SV relation for \(a \ast b \) with \(\ast \in \{\& , \bowtie , \gg , \odot \} \).

Proof. Straightforward from distributivity and isotony of join and the exchange laws. \(\Box \)

Now we consider SV relations larger than 1. For weak orders a typical SV relation is the incomparability relation, which we state in the following lemma:

Lemma 4. If \(a :: T^2 \) is a layered preference then \(s_a = a + a^{-1} \) is an SV relation.

Proof. The equivalence property for this relation is well known and \(s_a \cap a = 0_a \) is clear. We show \(s_a \cdot a \leq a \).

By definition of \(s_a \), the exchange law for complement and converse, and finally the infimum property we infer:

\[
s_a \cdot a = (\pi \cap a^{-1}) \cdot a = (\pi \cap (\pi^{-1})) \cdot a \leq (\pi)^{-1} \cdot a.
\]

We still have to show that \((\pi)^{-1} \cdot a \leq a \). By the Schröder equivalences, this is equivalent to \(\pi \cdot \pi \leq \pi \), which is true by negative transitivity of \(a \). For \(a \cdot s_a \leq a \) an analogous argument holds; hence \(s_a \) is compatible with \(a \). \(\Box \)

Note, that this does not hold if \(a \) is not a layered preference, which we show with the following example:

Example 6. Assume preferences \(a :: A^2 \), \(b :: B^2 \) on attributes \(A, B \) with \(D_A = D_B = \{0, 1, 2\} \). The preferences \(a \) and \(b \) both are the \(\prec \)-relation on the natural numbers, i.e. we have \((0 \times 1), (1 \times 2) \) and \((0 \times 2) \) for \(x \in \{a, b\} \). Assume tuples \(t_1 = (1, 2) \) and \(t_2 = (2, 1) \). Then, by definition, \(t_1 \) and \(t_2 \) are not related w.r.t. to \((a \odot b) \) or \(1_a \bowtie 1_B \), i.e. they are incomparable. Now we consider the incomparability relation \(s_{inc} = a \odot b + (a \odot b)^{-1} \). We have, by definition of \(a \odot b \),

\[
(2, 0) (a \odot b) (2, 1), \quad \neg((2, 0) (a \odot b) (1, 2)), \quad \neg((2, 1) (a \odot b) (1, 2)),
\]

and

\[
\begin{align*}
(2, 0) (a \odot b) (2, 1), & \quad \neg((2, 0) (a \odot b) (1, 2)), \\
(2, 1) (a \odot b) (1, 2), & \quad \neg((2, 1) (a \odot b) (1, 2)),
\end{align*}
\]
where \(k \in \{-1, 1\} \). By definition of \(s_{\text{inc}} \) this implies
\[
\neg((2, 0) s_{\text{inc}} (2, 1)) \land (2, 0) s_{\text{inc}} (1, 2) \land (2, 1) s_{\text{inc}} (1, 2),
\]
which means that \(s_{\text{inc}} \) is not transitive, hence no equivalence relation and therefore no SV relation for \(a \).

Remark 1. Under certain circumstances the term \(\langle \top T \rangle q \) occurring, for example, in \(\langle a \land b \rangle (p \land q) \) can be simplified. Call an idempotent semiring weakly Tarskian if for all types \(T \) and tests \(q :: T \) we have
\[
(\langle \top T \rangle q = \begin{cases} 1_T & \text{if } q \not= 0_T, \\ 0_T & \text{if } q = 0_T. \end{cases})
\]

For instance, the semiring of binary relations is weakly Tarskian. This implies that in a term like \(\langle a \land b \rangle (p \land q) \) with \(a :: T_2 \) the test \(q_2 \) is irrelevant as long as \(q_2 \not= 0_b \). This is exactly what we want, because \(q_1 \not= 0_b \) is a zero element and must not have successors in any relation.

In our hotel example from the introduction, the user would typically express her preference as the Pareto composition of price and distance to the beach.

The definition of the Pareto compositions immediately yields an important optimisation tool.

Corollary 5. The preferences \(a \otimes b \) and \(a \lor b \) are prefilters for \(a \land b \). Likewise, \(a \land \top_B \) is a prefilter for \(a \land b \).

Proof. By definition, \(a \otimes b \leq a \land b \) and \(a \land \top_B \leq a \land b \); hence Theorem 2.1 applies.

Hence, in our hotel example from the introduction, we may prefilter by price or by distance to the beach to speed up the overall filtering. Further applications of this principle are discussed in detail in [6].

5.2. Maximality for Complex Preferences

We first state the behaviour of the maximality operator for joins of preference elements.

Lemma 5. For \(a :: T_2^2, p :: T_a \) and \(b :: T_2^2, q :: T_b \) with \(T_a \cap T_b = \emptyset \) we have
\[
(a \land b) \triangleright (p \land q) = (a \triangleright p) \land q + p \land (b \triangleright q).
\]

Proof. We observe that, under the disjointness assumption, by Corollary 3.3 and a standard law for Cartesian products, for \(r :: T_a, s :: T_b \), we have
\[
(p \land q) - (r \land s) = (p - r) \land q + p \land (q - s).
\]

Hence, by the definitions and Lemma 1,
\[
(a \land b) \triangleright (p \land q) = (p \land q) - (a \land b) (p \land q) = (p \land q) - ((a) p \land (b) q) = (p - (a) p) \land q + p \land (q - (b) q) = (a \triangleright p) \land q + p \land (b \triangleright q).
\]

Since both prioritisation and Pareto composition are defined as sums of joins, we can now use this together with Lemma 2.7 and the exchange axiom of Definition 11.4 to calculate their maximal elements.
Lemma 6. For \(a :: T^2_a, p :: T^2_p, q :: T^2_q \) with \(T_a \cap T_b = \emptyset \) we have
\[
(a \otimes b) \triangleright (p \boxtimes q) = (a \triangleright p) \boxtimes q,
\]
\[
(a \otimes b) \triangleright (p \boxtimes q) = p \boxtimes (b \triangleright q),
\]
\[
(a \otimes b) \triangleright (p \boxtimes q) = (a \triangleright p) \boxtimes (b \triangleright q).
\]

The proofs are straightforward and hence omitted.

Remark 2. It follows directly from the above lemma that
\[
(a \& b) \triangleright (p \boxtimes q) = (b \& a) \triangleright (q \boxtimes p) = (a \otimes b) \triangleright (p \boxtimes q),
\]
i.e. Pareto composition and Prioritisation are identical on tests of the form \(p \boxtimes q \).

Note that this does not hold for general tests. Consider, for instance, the basic set \(\{0, 1\}^2 \) and its subset \(N = \{(0, 1), (1, 0)\} \), both represented by tests. Assume a preference order \(R_i \) in the \(i \)-th component which fulfills \(0 R_i 1 \), for \(i = 1, 2 \). Then \((R_1 \& R_2) \triangleright N = \{(1, 0)\} \), whereas \((R_1 \otimes R_2) \triangleright N = N \). This does not contradict our above result, since \(N \) cannot be represented in the form \(L \times M \) with \(L, M \subseteq \{0, 1\} \).

5.3. Equivalence of Preference Terms

In the following we will show equalities of more complex preference terms, where prioritization and Pareto composition are both involved. In the following we assume that all complex preferences (Definition 18) are SV-preserving.

Corollary 6. Let \(a :: T^2_a \) and \(b, b' :: T^2_b \). Then we have:
\[
a \& (b + b') = a \& b + a \& b'.
\]

Proof. Follows from definition of \& and distributivity of \(\boxtimes \) over +.

Corollary 7. For \(a :: T^2_a \) we have \(a \otimes a = a \otimes a = a \otimes a = a \).

Proof. \(a \otimes a =_df \{ (a + s_a) \boxtimes a = (a + s_a) \cap a = a \} \) by Definitions 11.6 and 17.2. For Right Semi-Pareto and Pareto an analogous argument shows the claim.

Theorem 6. For \(a :: T_a \) we have that \(a \& \) where \& is SV-preserving, distributes over \(\otimes, \otimes, \) and \(\otimes \).

Proof. Let \(b :: T^2_b, c :: T^2_c \). We use the auxiliary equation (see Appendix C for a proof)
\[
a \& b + s_{a\&b} = a \& (b + s_b).
\]

Now we calculate:
\[
(a \& b) \otimes (a \& c)
\]
\[
= \{ \text{definition of } \otimes \} \]
\[
(a \& b + s_{a\&b}) \boxtimes (a \& c)
\]
\[
= \{ \text{equation (1)} \} \]
\[
(a \& (b + s_b)) \boxtimes (a \& c)
\]
\[
= \{ \text{definition of } \& \} \]
\[
(a \boxtimes T_b + s_a \boxtimes (b + s_b)) \boxtimes (a \boxtimes T_c + s_a \boxtimes c)
\]
\[
= \{ \text{distributivity of } \boxtimes \} \]
\[
a \boxtimes T_b \boxtimes a \boxtimes T_c + a \boxtimes T_b \boxtimes s_a \boxtimes c +
\]
\[
s_a \boxtimes (b + s_b) \boxtimes a \boxtimes T_c + s_a \boxtimes (b + s_b) \boxtimes s_a \boxtimes c
\]
A symmetric argument holds for \otimes, so that $(a \& b)$ distributes over \otimes and \otimes. Using this we infer the distributivity over \otimes, see Appendix C for details.

The proof of this theorem shows that the framework of typed relations is rich enough to prove non-trivial preference term equivalences.

We have proved this theorem using PROVER9. The input for the auxiliary equation (3) can be found in Appendix A and the input for the entire theorem is given in [19]. Such equivalences are useful for an optimized evaluation of preferences, because the evaluation of an equivalent term may be faster.

6. Layered Preferences

Layered Preferences as defined in Definition 12 are not closed under the Pareto operator. Therefore the question arises whether there is a similar operator under which layered preferences are closed. The answer is yes and our strategy to construct such a preference is as follows:

- Let r be a test representing the basic set, i.e. the data set. We take the maxima of r w.r.t. $(a \otimes b)$, i.e. $(a \otimes b) \triangleright r$, and call them layer-0 elements.
- We remove them from the basic set, i.e. we define $r_1 = r - (a \otimes b) \triangleright r$, take their maxima and call these layer-1 elements.
- We iterate this process to obtain the layer-n elements for $n = 2, 3, ...$
- We define a new preference induced by ordering the elements according to their layers, placing layer 0 at the top and the layer with the largest number at the bottom. This yields a layered preference by construction.

We will call the new preference the Pareto-regular preference. This name stems from the implementation of preferences in Preference SQL [12]: The keyword regular after a layered preference means that the SV relation from Lemma 4 is applied. As the Pareto preference need not be a layered preference, we call “Pareto-regular” the result of transforming the Pareto preference into a layered preference and then applying Lemma 4.

The process of successive removal of maximal elements corresponds to the repeated removal of sinks in a classical algorithm for cycle detection in directed graphs [17, 8]. That algorithm terminates when the set of maxima/sinks to be removed becomes empty. The original graph contained a cycle iff the remaining set is nonempty. Since our preference relations, as strict partial orders, correspond to acyclic graphs, the iteration necessarily will reach the empty set, which, however, is not counted as a separate layer. We will make this more precise in the next section.
6.1. Computing Layer-i Elements

The concept of layer-i elements was originally introduced under the term "Iterated preferences" in [4], where the maximum operator is called "wimow operator". Here we give an algebraic definition, and prove some properties. In particular, we show that the induced order is indeed a layered preference.

Definition 19 (Layer-i Elements). Let $a : T_n^2$ be a preference, and $r : T_n$ a basic set. For $i = 0, 1, 2, \ldots$ we define the tests q_i and r_i characterising the layer-i elements and the remainders, resp.:

$$
q_i =_a r_i \quad \text{where} \quad r_i =_a r - \sum_{j=0}^{i-1} q_j .
$$

By convention, the empty sum is 0_a, hence we have $r_0 = r$.

A mnemonic for the q_i is that the letter "b" for "best", rotated by 180° becomes a "q". This matches our convention that a, b, c, \ldots are used for general elements and p, q, r for tests.

Using our algebra we deduce a closed formula for the r_i. In this, we write ra short for $r\cdot a$. The powers x^k are defined by $x^k = x^{k-1}\cdot x$ and $x^0 = 1$. The proof of the following lemma can be found in Appendix D.1.

Lemma 7 (Closed formula for layer-i elements). For $i \in \mathbb{N}$ we have the following properties:

1. $(ra)^{i+1} \leq (ra)^i$ provided $i > 0$,
2. $(ra)^{i+1} \leq (ra)^i r$,
3. $r_i = (ra)^i r$.

With this lemma we have a compact representation of layer-n elements. This helps us to show some interesting properties of r_i and q_i which we will need for the construction of the Pareto-regular preference later on. These properties are stated in the following lemma, which is proved in Appendix F.

Lemma 8. Assume q_i, r_j as in Definition 19. We have:

1. The r_i are decreasing in i, i.e., $r_0 \geq r_1 \geq r_2 \geq \ldots$.
2. The q_i are pairwise disjoint, i.e., for $i \neq j$ we have $q_i \cdot q_j = 0_a$.
3. Let r be finite, i.e., assume that there do not exist infinitely many disjoint $p_i \neq 0$ with $\sum_i p_i = r$. Then the calculation of the r_i becomes stationary, i.e., there exists an $N \in \mathbb{N}$ with $N = \max\{k \in \mathbb{N} \mid r_k \neq 0_a\}$.
4. The q_i cover r, i.e., $\sum_{i=0}^N q_i = r$.
5. For $i \leq j$ we have $q_i \cdot a \cdot q_j = 0_a$.

6.2. The Induced Layered Preference

Now we will construct the preference induced by the layer-i elements and the corresponding induced SV relation.

Definition 20 (Induced layered preference). Let $a : T_n^2$ be a preference and $r : T_n$ a basic set. Consider the corresponding layer-i elements $q_i = a \odot (ra)^i r$ with $i \in [1, N]$ and $N = \max\{k \in \mathbb{N} \mid r_k \neq 0_a\}$ (see Lemma 8.3). We define relations b_{ij} ($i, j \in [1, N]$) by $b_{ij} = q_i \cdot T_n \cdot q_j$. In the concrete model these represent universal relations between the sets q_i and q_j. With their help, the *induced layered preference* $m(a, r) : T_n[r]^2$ is defined as

$$
m(a, r) =_a \sum_{i > j} b_{ij} ,
$$

where $T_n[r]$ is the sub-type of T_n with identity r and greatest element $r \cdot T_n \cdot r$.

By the summation over $i > j$ the less preferred elements w.r.t. to a (with higher layer numbers) are $m(a, r)$-related to the more preferred elements (with lower layer numbers).

A corresponding SV relation $s_m(a, r) : T_n[r]^2$ is defined as

$$
s_m(a, r) =_a \sum_i b_{ii} .
$$
We note an important property of the relations \(b_{ij} \): by disjointness of the \(q_i \) and the Tarski rule we have

\[
b_{ij} \cdot b_{kl} = \begin{cases} b_{il} & \text{if } j = k, \\ 0_a & \text{otherwise}. \end{cases}
\]

Our goal is to construct the Pareto-regular preference, and we are close to this by constructing \(m(a, r) \) for a Pareto preference \(a = a_1 \otimes a_2 \). But is the resulting relation fulfilling the (layered) preference properties, i.e. would such a preference be well-defined? We show this in the next lemma.

Lemma 9.

1. The relation \(m(a, r) \) from the previous definition is a layered preference.
2. \(s_{m(a, r)} \) is an SV relation for \(m(a, r) \).

Proof.

1. Transitivity follows from the definition of \(m(a, r) \) and eq. (4). Again by definition of \(m(a, r) \) and disjointness of \(q_i \) (Lemma 8.2) we have irreflexivity. It remains to show that negative transitivity holds. Note that due to the type \(T_a[r]^2 \) of \(m(a, r) \) and \(s_{m(a, r)} \) the complement \((...)\) is relative to \(r \). With this we infer \((m(a, r))^2 \leq m(a, r) \):

\[
\left(m(a, r) \right)^2 = \left(\sum_{i \leq j} b_{ij} \right) \cdot \left(\sum_{k \leq l} b_{kl} \right) = \sum_{i \leq j \leq l} b_{ij} \cdot b_{jl} \leq \sum b_{il} = m(a, r).
\]

2. We infer that

\[
m(a, r) + m(a, r) - 1 = \sum_{i > j} b_{ij} + \sum_{i < j} b_{ij} = \sum_{i \neq j} b_{ij} = \sum b_{ii} = s_{m(a, r)}.
\]

Together with Lemma 4 this shows the claim.

We give two further useful properties of the induced layered preference:

- The original preference is still contained in the induced layered preference.
- The induced SV relation is part of the incomparability relation of the original preference.

Formally this is stated in the following lemma. There again we restrict the “original preference” and the “incomparability relation” to \(r \) on both sides, because the induced layered preference and the induced SV relation is only defined on the basic set \(r \).

Lemma 10. Let \(a :: T^2_2 \) be a preference and \(r :: T_a \) a basic set. We have:

1. \(r \cdot a \cdot r \leq m(a, r) \).
2. \(s_{m(a, r)} \leq r \cdot (a + a^{-1}) \cdot r \).

Proof.

1. By Lemma 8.3 we get \(q_i \cdot a \cdot q_j = 0 \) for \(i \leq j \). This implies:

\[
\sum_{i \leq j} q_i \cdot a \cdot q_j = 0_a.
\]

We use this in the following deduction:
TRUE

\[
\begin{align*}
&\iff \left\{ \text{definition } \top_a \right\} \\
& a \leq \top_a \\
&\Rightarrow \left\{ q_j \cdot (\ldots), (\ldots) q_i, \text{ summation over } i > j \right\} \\
& \sum_{i>j} q_i \cdot a \cdot q_j \leq \sum_{i>j} q_i \cdot \top_a \cdot q_j \\
&\iff \left\{ \text{Eq. (5) (additional term is 0), def. of } b_{ij} \right\} \\
& \sum_{i>j} q_i \cdot a \cdot q_j + \sum_{i\leq j} q_i \cdot a \cdot q_j \leq \sum_{i>j} b_{ij} \\
&\iff \left\{ \text{re-indexing of sum, def. of } m(a, r) \right\} \\
& \sum_{i,j} q_i \cdot a \cdot q_j \\& \leq m(a, r) \\
&\iff \left\{ \text{summation over } i > j \right\} \\
& \sum_{i>j} q_i \cdot a \cdot q_j \leq \sum_{i>j} \top_a \cdot a \cdot q_j \\
&\iff \left\{ \text{Eq. (5) (additional term is 0), def. of } b_{ij} \right\} \\
& \sum_{i>j} q_i \cdot a \cdot q_j + \sum_{i\leq j} q_i \cdot a \cdot q_j \leq \sum_{i>j} b_{ij} \\
&\iff \left\{ \text{re-indexing of sum, def. of } m(a, r) \right\} \\
& \sum_{i,j} q_i \cdot a \cdot q_j \\& \leq m(a, r) .
\end{align*}
\]

2. The claim is equivalent to

\[
s_{m(a, r)} \cap (r \cdot a^k \cdot r) = 0_a \text{ for } k \in \{-1, 1\} .
\]

From Part 1, we obtain \(r \cdot a^k \cdot r \leq m(a^k, r) \) for \(k \in \{-1, 1\} \), because \(a^{-1} \) is again a preference, hence the same argument holds for it. Thus it is sufficient to prove:

\[
s_{m(a, r)} \cap m(a^k, r) = 0_a \text{ for } k \in \{-1, 1\} .
\]

This follows from the definitions of \(s_{m(a, r)} \) and \(m(a^k, r) \) and the disjointness of the \(q_i \) (Lemma 8.2).

\(\square \)

Remark 3. The inequations in the previous lemma are equations if \(a \) is already a layered preference.

Now we have everything ready to define the Pareto-regular preference. All we have to do is to apply \(m(\ldots) \) to the classic Pareto preference, which yields a well defined result by the previous lemma.

Definition 21 (Pareto-regular preference). For preferences \(a :: T_a^2, b :: T_b^2 \) and a basic set \(r :: T_a \bowtie T_b \) the Pareto-regular preference and its SV relation are defined as:

\[
\begin{align*}
a \otimes_{\text{reg}} b &:: (T_a \bowtie T_b)^2 \\
a \otimes_{\text{reg}} b &:: m(a \otimes b, r) \\
s_{a \otimes_{\text{reg}} b} &:: s_{m(a \otimes b, r)} .
\end{align*}
\]

Note that the Pareto-regular preference depends on the concrete basic set, i.e. the data stored in the database table. This is a fundamental difference to the classical preferences, which are independent of the data. But Lemma 10 tells us that this is kind of “harmless”.

6.3. Application: Pareto(-regular) and Prioritisation

With the Pareto-regular preference we have a layered preference which is quite similar to the classic Pareto preference (which is not layered in general). But this is primarily a technical feature, which at first sight changes nothing, because the maxima set of a Pareto preference is the same as that for the associated Pareto-regular preference. For preferences \(a :: T_a^2, b :: T_b^2 \) and a basic set \(r :: T_a \bowtie T_b \) we get immediately from the definitions that \((a \otimes b) \triangleright r = (a \otimes_{\text{reg}} b) \triangleright r \).

So where is the practical difference between \(\otimes \) and \(\otimes_{\text{reg}} \)? The effect of the latter becomes evident in combination with other complex preferences, especially if the Pareto-regular preference is the first part of a prioritisation. We consider the following example:
Example 7. Let \(a :: A^2, b :: B^2, c :: C^2 \) be preferences on attributes \(A, B, C \). Let their type domains be \(D_A = D_B = D_C = \{1, 2\} \). Let \(a, b, c \) each be the \(<\)-order, i.e. we have \((1 \times 2)\) for \(x \in \{a, b, c\}\). Consider the basic set \(r :: A \Join B \Join C \) given by \(t_1 =_{df} \langle 1, 2, 1 \rangle \), \(t_2 =_{df} \langle 2, 1, 2 \rangle \), \(r =_{df} t_1 + t_2 \), and the preferences

\[
d_1 =_{df} (a \otimes_{reg} b) \& c, \quad d_2 =_{df} (a \otimes b) \& c.
\]

For \((a \otimes b)\) we have only one maxima set \(q_0 = (a \otimes b) \triangleright r = r \). Hence we get:

\[
t_1 d_1 t_2, \quad \neg(t_1 d_2 t_2).
\]

This means that the preference \(c \) decides about the maxima of \(d_i \) only if the previous Pareto preference \(a \otimes b \) has no incomparable elements. This incomparability is avoided by construction in the Pareto-regular preference terms. Probably the preference \(d_1 \) is what the user expected, or at least expected more than \(d_2 \). \(\Box \)

This is the abstract formulation of the introductory example on a car database (Examples 1, 3). The same results are obtained as follows: Define \(a =_{df} \text{LOWEST(fuel)}, b =_{df} \text{HIGHEST(power)}, c =_{df} \text{POS(color, \{black\})} \) and set the tuples \(t_1 \) and \(t_2 \) to the fuel/power/color values of “BMW 5” \((t_1)\) and “Mercedes E” \((t_2)\) as denoted in table 1 on page 2; then the result is that “Mercedes E” is the best object according \(d_1 \).

Unfortunately the \(\otimes_{reg} \) operator is not associative, i.e., in general we have \((a \otimes_{reg} b) \otimes_{reg} c \neq a \otimes_{reg} (b \otimes_{reg} c)\). Assume that a user wants to compose three equally important preferences, followed by a prioritization, i.e., \((a \otimes b \otimes c)\) & \(d \). We think that the most intuitive way to construct a layered preference from this is to define a modified prioritisation operator that incorporates the \(m \) function. We call this the regularised prioritisation.

Definition 22 (Regularised prioritisation). For preferences \(a :: T^2_a, b :: T^2_b \) and a basic set \(r :: T_a \Join T_b \) the regularised prioritisation is defined as:

\[
a \&_{reg} b :: (T_a \Join T_b)^2,
\]

\[
a \&_{reg} b = m(a, r) \& b.
\]

An explicit SV relation is not specified for \(\&_{reg} \). According to Definition 18 we call it SV-preserving if \(s_{a \&_{reg} b} = s_a \Join s_b \). As this does not respect the layered preference \(m(a, r) \), we call it layered-SV-preserving if \(s_{a \&_{reg} b} = s_{m(a)} \Join s_b \).

Corollary 8. Pareto-regular is a special case of the regularized prioritisation, we have for preferences \(a, b, c: \)

\[
(a \otimes_{reg} b) \& b = (a \otimes b) \&_{reg} b
\]

7. Conclusion and Outlook

The present work intends to advance the state of the art in formalising preference algebra. Besides the point-wise “semi-formal” proofs by hand that had been used originally we wanted to use automatic theorem provers like Prover9 to get the theorems of preference algebra machine-checked. But we realized that there was no straightforward way to put the theorems like the preorder properties or the distributive law for Prioritisation/Pareto into a theorem prover. Especially for the latter problem, the main reason is that originally the equivalence of preference terms was defined, e.g. in [10], in a very implicit manner: two preference terms are equivalent if and only if the corresponding relations are identical on the basic set. This definition is not very useful if one tries to find (automatically) general equivalence proofs.

The presented concept of a typed join algebra makes it possible to define such equivalences explicitly: two preference terms are identical, if and only if their algebraic representations are equal in the algebra.

The search for another kind of Pareto preference was originally motivated by a past project where Preference SQL was used for context-aware suggestions in a hiking-tour recommender. In [21] the context model is described and some sample queries are given; these are very complex preference constructs, where base
preferences or Pareto compositions are put into long prioritisation chains. Within the project we noticed that the less-prioritized preferences, like "c" in Example 7, are not decisive for the maxima set, because a Pareto preference at the beginning of the term (like "a ⊗ b" in the example) generates incomparable elements, hence the set of maxima cannot be reduced by c. With the Pareto-regular preference these prioritisation chains become a chain of "filters" where the set of maxima can be reduced by adding less-prioritized preferences at the end of the chain. By calculating not only the maximal elements for the Pareto preference but the layer-i elements we are also able to answer \(\text{TOP-}k \) queries, i.e. a query like "What are the 10 best elements according to preference \(a \)?”.

For this work we have extended our algebraic calculus with layered preferences and SV relations. Interesting connections and properties can be stated and proved algebraically, i.e., in a point-free fashion. These methods are important for a better understanding of preferences and constructing algorithms for preference evaluation.

For future research, there is a large number of theorems about preferences which have only been proved in a point-wise fashion which makes the proofs hardly readable. These theorems are important for optimizing the algorithms for evaluating preference queries. In addition, we are also working on methods for parallel computation of the maxima according to preferences; hopefully algebraic methods will support us, e.g., the methods of concurrent Kleene Algebra.

References

Appendix A. Sample Prover Input

For $a :: T^2_a$ and $b :: T^2_b$ we show the auxiliary equation (3) from Theorem 6:

$$a & b + s_{a \bowtie b} = a & (b + 1_b).$$

We use the following operators:

<table>
<thead>
<tr>
<th>Prover-Input</th>
<th>mathematically</th>
</tr>
</thead>
<tbody>
<tr>
<td>a typed T_a</td>
<td>$a :: T^2_a$</td>
</tr>
<tr>
<td>a join b</td>
<td>$a \bowtie b$</td>
</tr>
<tr>
<td>T_a tjoin T_b</td>
<td>$T_a \bowtie T_b$</td>
</tr>
<tr>
<td>a prior b</td>
<td>$a & b$</td>
</tr>
<tr>
<td>$a + b$</td>
<td>$a + b$</td>
</tr>
</tbody>
</table>

The assumptions are given as follows:

\% all elements are typed
exists T (x typed T).

\% addition is associative
$(x + y) + z = x + (y + z)$.

\% addition preserves type
x typed z & y typed z -> $(x+y)$ typed z.

\% SV relations preserve type
x typed z -> sv(x) typed z.

\% abbreviated typing
x typed z -> top(x) = top(z).

\% distributivity of the join over addition
x join $(y_1 + y_2) = x$ join $y_1 + x$ join y_2.

\% typing of join
x typed z_1 & y typed z_2 -> $(x$ join $y)$ typed $(z_1$ tjoin $z_2)$.

\% prioritisation (without resulting type)
x prior $y = x$ join top(y) + sv(x) join y.

\% prioritisation is sv-preserving
$sv(x$ prior $y) = sv(x)$ join $sv(y)$.

Finally our goal is:

\% auxiliary equation for distributive law
u prior $v + sv(u$ prior $v) = u$ prior $(v + sv(v))$.

The entire input for the proof of theorem 6 can be found in [18].

Appendix B. Proofs for Section 4

For the sake of readability we define for the proofs in this section: $1 =_{df} 1_{T[r]} = r$.

Appendix B.1. Proof of Lemma 2
1. Immediate from the definitions and $1 - p = \neg p$.
2. Immediate from Part 1 and shunting.
3. $a \triangleright p$
 $$= \quad \{ \text{definitions of } \triangleright \text{ and } \neg \}$$
 $$p \cdot \neg (a) p$$
 $$\leq \quad \{ \text{property of intersection} \}$$
 $$p .$$
4. \[a \triangleright 1 \leq a \triangleright p \]
\[\iff \{ \text{definition of } \triangleright \text{ and Part 1} \} \]
\[\neg a \leq p - \langle a \rangle p \]
\[\iff \{ \text{definition of } - \text{ and universal property of intersection} \} \]
\[\neg a \leq p \land \neg a \leq \neg \langle a \rangle p \]
\[\iff \{ \text{shunting in second conjunct} \} \]
\[\neg a \leq p \land \langle a \rangle p \leq \neg a \]
\[\iff \{ \text{second conjunct true by (3.1)} \} \]
\[\neg a \leq p \]
\[\iff \{ \text{definition of } \triangleright \} \]
\[a \triangleright 1 \leq p . \]

5. Immediate from the previous property by setting \(p = a \triangleright 1 \).

6. \[a \triangleright (a \triangleright p) \]
\[= \{ \text{definition of } \triangleright \} \]
\[(p - \langle a \rangle p) - \langle a \rangle (p - \langle a \rangle) \]
\[= \{ \text{property of difference} \} \]
\[p - ((\langle a \rangle p + \langle a \rangle (p - \langle a \rangle)) \]
\[= \{ \text{distributivity of } \langle \rangle \} \]
\[p - \langle a \rangle (p + (p - \langle a \rangle)) \]
\[= \{ \text{since } p - \langle a \rangle \leq p \} \]
\[p - \langle a \rangle p \]
\[= \{ \text{definition of } \triangleright \} \]
\[a \triangleright p . \]

7. \[(a + b) \triangleright p \]
\[= \{ \text{definition of } \triangleright \} \]
\[p - \langle a + b \rangle p \]
\[= \{ \text{distributivity of } \langle \rangle \} \]
\[p - ((\langle a \rangle p + \langle b \rangle p)) \]
\[= \{ \text{property of difference} \} \]
\[(p - \langle a \rangle p) \cdot (p - \langle b \rangle p) \]
\[= \{ \text{definition of } \triangleright \} \]
\[(a \triangleright p) \cdot (b \triangleright p) . \]

8. Assume \(b \leq a \), i.e., \(b + a = a \).

9. By isotony of the diamond we have \(p = \langle 1 \rangle p \leq \langle a \rangle p \) and hence \(a \triangleright p = p - \langle a \rangle p = 0 \).
Appendix B.2. Proof of Lemma 3

\[q = (p + \neg p) \cdot q = p \cdot q + \neg p \cdot q \leq \neg p \]

\[\neg p = (p + q) \cdot \neg p = p \cdot \neg p + q \cdot \neg p \leq q \]

By antisymmetry we have \(\neg p = q \).

Appendix B.3. Proof of Theorem 1

We split the left-hand side of the claim equivalently into

\[b \text{ pref } a \iff a \triangleright 1 \leq a \triangleright (b \triangleright 1) \land a \triangleright (b \triangleright 1) \leq a \triangleright 1. \]

By Parts 4 and 2 of Lemma 2, the first conjunct is equivalent to \(\neg b \leq \neg a \). For the second conjunct we calculate

\[a \triangleright (b \triangleright 1) \leq a \triangleright 1 \]

\[\iff \{ \text{definition of } \triangleright \text{ and Lemma 2.1} \} \]

\[\neg \neg b - \langle a \rangle \neg \neg b \leq \neg \neg a \]

\[\iff \{ \text{contraposition and De Morgan} \} \]

\[\neg a \leq \neg \langle b \rangle + \langle a \rangle \neg \neg b. \]

Appendix C. Proof of Theorem 6

Auxiliary equation (3):

\[a \& b + s_{a,b} = \{ \text{definition of } \& \text{ (SV-preserving)} \} \]

\[a \triangleright T_b + s_a \triangleright b + s_a \triangleright s_b = \{ \text{distributivity of } \triangleright \} \]

\[a \triangleright T_b + s_a \triangleright (b + s_b) = \{ \text{definition of } \& \} \]

\[a \& (b + s_b) \]

Distributivity of \((a \&)\) over \(\otimes\):

\[a \& (b \otimes c) = \{ \text{definition of } \otimes \} \]

\[a \& (b \otimes c + b \otimes c) = \{ \text{distributivity of } \& \text{ over } +, \text{ cor. 6} \} \]

\[a \& (b \otimes c) + a \& (b \otimes c) = \{ \text{distributivity of } (a \&) \text{ over } \otimes \text{ and } \otimes \} \]

\[(a \& b) \otimes (a \& c) + (a \& b) \otimes (a \& c) = \{ \text{definition of } \otimes \} \]

\[(a \& b) \otimes (a \& c) \]
Appendix D. Proofs for Section 6

Appendix D.1. Proof of Lemma 7

1. By transitivity of \(a \) we have

\[
(ra)^2 = r \cdot a \cdot r \cdot a \leq r \cdot a = (ra)^1
\]

which implies transitivity of \((ra)\). Iterated application of transitivity shows the claim.

2. For \(i = 0 \) we obtain by a diamond property

\[
((ra)^1) r = (ra) r = r \cdot (ra) \leq r = ((ra)^0) r
\]

For \(i > 0 \) the claim is immediate from Part 1 and isotony of diamond.

3. We perform again an induction on \(i \).

- \(i = 0 \): \((ra)^0 r = (1) r = r \).
- \(i \rightarrow i + 1 \): Assume \(r_i = ((ra)^i) r \).

\[
\begin{align*}
r_{i+1} &= \quad \{ \text{definitions} \} \\
r &= \sum_{j=0}^{n} q_j \\
r_i - q_i &= \quad \{ \text{spliit the sum and definitions} \} \\
r_i - a \bowtie r_i &= \quad \{ \text{definition} \}
\end{align*}
\]

\[
\begin{align*}
r_i - (r_i - (a) r_i) &= \quad \{ \text{definition of } \bowtie, \text{De Morgan} \} \\
r_i \cdot (a) r_i &= \quad \{ \text{distributivity, } p \cdot \neg p = 0 \} \\
r_i \cdot (ra) r_i &= \quad \{ \text{induction hypothesis} \} \\
((ra)^i) r \cdot ((ra) ((ra)^i) r) &= \quad \{ \text{diamond property, definition of powers} \} \\
((ra)^i) r \cdot ((ra)^{i+1}) r &= \quad \{ \text{Part 2} \} \\
((ra)^{i+1}) r
\end{align*}
\]

Appendix E. About Normality

We now state the announced condition for normality that covers also infinite sets. It turns out that essentially absence of infinitely ascending sequences w.r.t. an element \(a \) is sufficient. This property is also known as noetherity. Mathematically, it is equivalent to the property that for every non-empty set \(p \) also the set \(a \bowtie p \) of maxima is non-empty. We use the logical contraposition of this property for the formal definition.

27
Definition 23 (Noetherian Elements and d-Transitivity). An element a of a pre-domain semiring $(S,T,⌜)$ is noetherian if, for all $p \in T$,\[a \triangleright p \leq 0 \Rightarrow p \leq 0.\]

An element a is d-transitive if for all p we have $\langle a \rangle \langle a \rangle p \leq \langle a \rangle p$.

By the definition of \triangleright and shunting noetherity is equivalent to\[p \leq \langle a \rangle p \Rightarrow p \leq 0.\]

The condition of d-transitivity (the “d” referring to “diamond”) is more liberal than the notion of transitivity given in Def. 12 and suffices for the proofs in this section.

Theorem 7 (Normality and Noetherity).

1. Every normal element a is noetherian and d-transitive.
2. Every d-transitive and noetherian element a is normal.

Proof.

1. Assume $a \triangleright p \leq 0$, which is equivalent to $p \leq \langle a \rangle p$, cf. Definition 23. Now we obtain by the assumptions, normality of a and isotony/strictness of diamond\[p \leq \langle a \rangle p \leq \langle a \rangle (a \triangleright p) \leq \langle a \rangle (0) = 0.\]

For d-transitivity, we will show $\langle a \rangle p + \langle a \rangle \langle a \rangle p \leq \langle a \rangle p$, which implies $\langle a \rangle \langle a \rangle p \leq \langle a \rangle p$. First, by distributivity of diamond and normality we obtain\[\langle a \rangle p + \langle a \rangle \langle a \rangle p = \langle a \rangle (p + \langle a \rangle p) = \langle a \rangle (a \triangleright (p + \langle a \rangle p)).\]

Now we continue with the maximum expression.
\[
\begin{align*}
 a \triangleright (p + \langle a \rangle p) \\
 = & \quad \{ \text{definition of } \triangleright \} \\
 (p + \langle a \rangle p) - \langle a \rangle (p + \langle a \rangle p) \\
 = & \quad \{ \text{distributivities} \} \\
 (p - \langle a \rangle p - \langle a \rangle \langle a \rangle p) + (\langle a \rangle p - \langle a \rangle p - \langle a \rangle \langle a \rangle p) \\
 = & \quad \{ \text{Boolean algebra} \} \\
 (p - \langle a \rangle p - \langle a \rangle \langle a \rangle p) + 0 \\
 \leq & \quad \{ \text{definition of } - \text{ and neutrality of } 0 \} \\
 p.
\end{align*}
\]

Hence, by isotony of diamond we are done.

2. To show $\langle a \rangle q \leq \langle a \rangle (a \triangleright q)$ for all q we reason as follows.
\[
\begin{align*}
 \langle a \rangle q \leq \langle a \rangle (a \triangleright q) \\
 \Leftrightarrow & \quad \{ \text{shunting} \} \\
 \langle a \rangle q - \langle a \rangle (a \triangleright q) \leq 0 \\
 \Leftrightarrow & \quad \{ \text{noetherity} \} \\
 \langle a \rangle q - \langle a \rangle (a \triangleright q) \leq \langle a \rangle (\langle a \rangle q - \langle a \rangle (a \triangleright q)) \\
 \Leftrightarrow & \quad \{ \text{shunting} \} \\
 \langle a \rangle q \leq \langle a \rangle (a \triangleright q) + \langle a \rangle (\langle a \rangle q - \langle a \rangle (a \triangleright q)) \\
 \Leftrightarrow & \quad \{ \text{d-transitivity of } a \}
\end{align*}
\]

28
Appendix F. Proof of Lemma 8

1. Immediate from Lemma 7.

2. Let w.l.o.g. \(j \geq i + 1 \). It follows:

\[
q_i \cdot q_j = \langle (a) \cdot r_i \rangle \cdot (r_j - \langle a \rangle r_j)
\]

\[
= \langle (a) r_i \cdot (r_j - \langle a \rangle r_j) \rangle
\]

\[
= \langle (a) r_i \rangle \cdot (r_j - \langle a \rangle r_j)
\]

\[
= \langle r_j \leq r_i \rangle \text{ by (1) and } j \geq i + 1, \text{ isotony of diamond } \}
\]

\[
r_j - \langle a \rangle r_i
\]

\[
= \langle (ra)^j \rangle - \langle (ra)^i \rangle
\]

\[
\leq \langle r \leq 1_A \rangle
\]

\[
\langle (ra)^j \rangle - r \cdot \langle (ra)^i \rangle
\]

\[
= \langle (ra)^j \rangle - \langle (ra)^{i+1} \rangle
\]

\[
= \langle (ra)^j \leq (ra)^{i+1} \rangle \text{ by Lemma 7.1 and } j \geq i + 1 \}
\]

\[
0_a
\]

3. By transitivity and irreflexivity of \(a \) there are always maximal elements in non-empty sets, i.e., we have \(r \neq 0_a \Rightarrow a \cdot r \neq 0_a \). Hence \(r_i \neq 0_a \) implies \(q_i \neq 0_a \). Additionally, \(q_i \) are pairwise disjoint by Part 2, hence \(r_{i+1} \) is strictly less (i.e. \(r_{i+1} \leq r_i \land r_{i+1} \neq r_i \)) than \(r_i \). Induction shows that the sequence \(r_i \) is strictly decreasing for \(i = 0, \ldots, (N+1) \) and equals \(0_a \) for \(i = (N+1), \ldots, \infty \).

4. Immediate from Part 3 and the definition of the \(q_i \), since the definition of \(N \) implies \(r_{N+1} = 0_a \).

5. First, we have

\[
q_i \cdot a \cdot q_j = 0_a
\]

\[
\Rightarrow \quad \text{domain is strict w.r.t. } 0_a
\]

\[
\Rightarrow \quad (q_i \cdot a \cdot q_j) = 0_a
\]

\[
\Rightarrow \quad \text{definition of diamond}
\]

\[
\square
\]
\(\langle q_i \cdot a \rangle q_j = 0_a \)

\[\iff \quad \text{property of diamond} \]

\[q_i \cdot \langle a \rangle q_j = 0_a \]

Now,

\[q_i \cdot \langle a \rangle q_j = \]

\[\text{definition of } q_i, q_j \]

\[(r_i - \langle a \rangle r_i) \cdot \langle a \rangle (r_j - \langle a \rangle r_j) \]

\[\leq \quad \text{isotony of diamond} \]

\[(r_i - \langle a \rangle r_i) \cdot \langle a \rangle r_j \]

\[\leq \quad \text{i \leq j, hence } r_j \leq r_i \text{ by Part 1} \]

\[(r_i - \langle a \rangle r_i) \cdot \langle a \rangle r_i \]

\[= \quad \text{Boolean algebra} \]

\[0_a \]