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Residuals and Detachments

Bernhard Möller

Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany

Abstract. We give a compendium of algebraic calculation rules for the
operations of residuation and detachment in semirings.

1 Introduction

Residuals [1,2] and detachments have many useful applications. This
report serves as a compendium of laws for these operations, many of
which are known from early residuation theory. However, there is also
some new material relating residuals with tests and (pre)domain, in
particular, a characterisation of locality of composition [7] without
recourse to the domain operation.

2 Definitions and Proof Principles

Definition 2.1 1. A structure (S,≤, 0,>, ·, 1) is called a left (right)
quantale if (S,≤, 0,>) is a complete lattice with least element 0
and greatest element > such that (S, ·, 1) is a monoid and · pre-
serves arbitrary suprema in its left (right) argument. The supre-
mum of elements x and y is denoted by x + y. Any left (right)
quantale satisfies 0 · x = 0 and (x + y) · z = x · z + y · z (x · 0 = 0
and x · (y +z) = x ·y +x ·z). S is called a quantale [8] if it is both
a left and right quantale. Quantales have been called standard
Kleene algebras in [3].

2. A (left or right) quantale is called Boolean if its underlying lattice
is a completely distributive Boolean algebra.

3. In a left quantale, the left residual and right detachment opera-
tions are defined as usual:

z ≤ x/y
def⇔ z · y ≤ x , xb y

def
= x/y . (GC)



By these definitions, the function λx . x/y is the upper adjoint
and the function λz . z · y the lower adjoint of a Galois connection.

Symmetric definitions and laws apply to the right residual \ and
left detachment c in a right quantale.

A useful tool for working with elements of a poset are the rules
of indirect inequality:

x ≤ y ⇔ (∀ z : z ≤ x ⇒ z ≤ y) ,
x ≤ y ⇔ (∀ z : y ≤ z ⇒ x ≤ z) .

Moreover, we have the rules of indirect equality:

x = y ⇔ (∀ z : z ≤ x ⇔ z ≤ y) ⇔ (∀ z : x ≤ z ⇔ y ≤ z) .

As special cases of this, we get

x => ⇔ (∀ z : z ≤ x ⇔ TRUE) ,
x = 0 ⇔ (∀ z : x ≤ z ⇔ TRUE) ,

A related principle is provided by the universal characterisations of
infima and suprema:

y ≤ uX (∀ x ∈ X : y ≤ x) ,
tX ≤ y (∀ x ∈ X : x ≤ y) .

(Inf/Sup)

We will use all these rules tacitly in the remainder.

Definition 2.2 1. The dual f \ of an endofunction f on a Boolean
algebra is defined by

f \(x)
def
= f(x) .

2. Two functions f, g between Boolean algebras are called conju-
gate [6] if they satisfy

f(x) ≤ y ⇔ g(y) ≤ x . (∗)

By straightforward Boolean algebra, the property that f and g
are conjugate is equivalent to the Galois connection

f(x) ≤ y ⇔ x ≤ g\(y) .
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Lemma 2.3 Assume that f, g are conjugate.

1. f
(
g(y)

)
≤ y .

2. g
(
f(x)

)
≤ x .

3. f and g preserve all suprema and hence are isotone and strict.

Proof. 1. Set x = g(y) in (∗).
2. Set y = f(x) in (∗).
3. By the above remark, both f and g are lower adjoints in Galois

connections.

Lemma 2.4 (Modularity; Dedekind) For conjugate f and g,

f(x) u y ≤ f(x u g(y)) .

Proof. f(x) u y

= {[ Boolean algebra ]}
f((x u g(y)) t (x u g(y))) u y

= {[ f preserves suprema ]}
(f(x u g(y)) t f(x u g(y))) u y

≤ {[ definition of u and isotony of f ]}
(f(x u g(y)) t f(g(y))) u y

≤ {[ by Lemma 2.3.1 ]}
(f(x u g(y)) t y) u y

= {[ Boolean algebra ]}
f(x u g(y)) u y

≤ {[ definition of u ]}
f(x u g(y)) .

As our final proof tool in Boolean algebras we mention

x u y ≤ z ⇔ x ≤ y t z . (Shunting)
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3 Laws for Residuals

Law 3.1 (Left-Conjunctivity) (uX)/y = u (X/y).
Proof: Upper adjoints preserve all infima.

Law 3.2 >/y = >.
Proof: Set X = ∅ in the previous law.

Law 3.3 u ≤ v ⇒ u/y ≤ v/y.
Proof: Immediate from left-conjunctivity.

Law 3.4 (Right-Antidisjunctivity) x/(tY ) = u (x/Y ).

Proof: z ≤ x/(tY )

⇔ {[ by (GC) ]}
z ·tY ≤ x

⇔ {[ disjunctivity of · ]}
t (z · Y ) ≤ x

⇔ {[ lattice algebra ]}
∀ y ∈ Y : z · y ≤ x

⇔ {[ by (GC) ]}
∀ y ∈ Y : z ≤ x/y

⇔ {[ lattice algebra ]}
z ≤ ux/Y .

Law 3.5 x/0 = >.
Proof: Set Y = ∅ in the previous law.

Law 3.6 u ≤ v ⇒ x/u ≥ x/v.
Proof: Immediate from right-antidisjunctivity.

Law 3.7 1 ≤ x/x.
Proof: Immediate from (GC) and neutrality of 1.
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Law 3.8 (x/y) · y ≤ x.
Proof: Set z = x/y in (GC).

Law 3.9 (x/y) · y = x ⇔ ∃ z : x = z · y.
Proof: The implication (⇒) is trivial. For (⇐) assume z ·y = x. Then
z · y ≤ x and hence by (GC) we get z ≤ x/y. Since also x ≤ z · y we
obtain from this by isotony x ≤ (x/y) · y. The reverse inequality is
given by Law 3.8.

Law 3.10 (x/x) · x = x.
Proof: Use Law 3.9 and set x = y and z = 1.

Law 3.11 x/1 = x.
Proof: Use Law 3.9 and set y = 1 and z = x.

Law 3.12 (0/y) · y = 0.
Proof: For (≤) set x = 0 in Law 3.8. (≥) is trivial.

Law 3.13 x/(y · z) = (x/z)/y.

Proof: u ≤ x/(y · z)

⇔ {[ by (GC) ]}
u · y · z ≤ x

⇔ {[ by (GC) ]}
u · y ≤ x/z

⇔ {[ by (GC) ]}
u ≤ (x/z)/y .

Law 3.14 (“Euclid” for Residual) x · (y/z) ≤ (x · y)/z.

Proof: x · (y/z) ≤ (x · y)/z

⇔ {[ by (GC) ]}
x · (y/z) · z ≤ x · y

⇐ {[ by Law 3.8 and isotony ]}
TRUE .
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Law 3.15 x ≤ (x · y)/y.
Proof: Immediate by (GC) and reflexivity of ≤.

Law 3.16 (x · y)/y = x ⇔ ∃ z : x = z/y.
Proof: (⇒) is trivial. For (⇐) assume x = z/y. Then

(x · y)/y

= {[ assumption ]}
((z/y) · y)/y

≤ {[ by Law 3.8 and left-isotony of / ]}
z/y

= {[ assumption ]}
x

The reverse inequality is given by Law 3.15.

Law 3.17 (> · y)/y = >.
Proof: For (≥) set x = > in Law 3.15. (≤) is trivial.

Law 3.18 x · y = ((x · y)/y) · y.
Proof: By GC and standard Galois theory.

Law 3.19 x/y = ((x/y) · y)/y.
Proof: By GC and standard Galois theory.

Law 3.20 1/x ≤ y/(x · y).

Proof: 1/x

≤ {[ by Law 3.7 and left-isotony of / ]}
(y/y)/x

= {[ by Law 3.13 ]}
y/(x · y) .
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Law 3.21 (x/y) · (y/z) ≤ x/z.

Proof: (x/y) · (y/z) ≤ x/z

⇔ {[ by (GC) ]}
(x/y) · (y/z) · z ≤ x

⇐ {[ by Law 3.8 and isotony of · ]}
(x/y) · y ≤ x

⇔ {[ by Law 3.8 ]}
TRUE .

Law 3.22 x/x is a preorder.
Proof: Immediate from Law 3.7 and Law 3.21.

Law 3.23 x/y ≤ (x/z)/(y/z).

Proof: u ≤ (x/z)/(y/z)

⇔ {[ by (GC) ]}
u · (y/z) ≤ x/z

⇔ {[ by (GC) ]}
u · (y/z) · z ≤ x

⇐ {[ by Law 3.8 and isotony ]}
u · y ≤ x

⇔ {[ by (GC) ]}
u ≤ x/y .

4 Interaction Between Residuals

Law 4.1 (x\y)/z = x\(y/z).

Proof: u ≤ (x\y)/z

⇔ {[ by (GC) ]}
u · z ≤ x\y
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⇔ {[ by (GC) ]}
x · u · z ≤ y

⇔ {[ by (GC) ]}
x · u ≤ y/z

⇔ {[ by (GC) ]}
u ≤ x\(y/z) .

5 Laws for Detachments

Law 5.1 (Exchange; Schröder) x · y ≤ z ⇔ zb y ≤ x.

Proof: x · y ≤ z

⇔ {[ by (GC) ]}
x ≤ z/y

⇔ {[ Boolean algebra ]}
z/y ≤ x

⇔ {[ Boolean algebra and definition b ]}
zb y ≤ x .

By this law the functions λx . x · y and λz . zb y are conjugates:

Law 5.2 x · y u z = 0 ⇔ zb y u x = 0.
Proof: Immediate from exchange by shunting (substitute z for z).

Law 5.3 (Dedekind)
x u y · z ≤ (xb z u y) · z and x u yb z ≤ (x · z u y)b z.

Proof: Set f(z)
def
= a · z and g(z)

def
= ab z in Lemma 2.4.

Law 5.4 (Left-Disjunctivity) (tX)b y = t (Xb y).
Proof: Conjugates preserve suprema (Lemma 2.3.3).

Law 5.5 0b y = 0.
Proof: Set X = ∅ in the previous law.
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Law 5.6 u ≤ v ⇒ ub y ≤ vb y.
Proof: Immediate from left-disjunctivity.

Law 5.7 (Right-Disjunctivity) xb(tY ) = t (xbY ).

Proof: xb(tY )

= {[ definition ]}
x/tY

= {[ Law 3.4 ]}
ux/Y

= {[ de Morgan ]}
tx/Y

= {[ definition ]}
txbY .

Law 5.8 xb 0 = 0.
Proof: Set Y = ∅ in the previous law.

Law 5.9 u ≤ v ⇒ xb u ≤ xb v.
Proof: Immediate from right-disjunctivity.

Law 5.10 xb 1 = x.

Proof: xb 1 ≤ u

= {[ exchange and neutrality of 1 ]}
u ≤ x

= {[ shunting ]}
x ≤ u .

Law 5.11 >b> = >.
Proof: Immediate from the previous law, 1 ≤ > and isotony.
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Law 5.12 xb(y · z) = (xb z)b y.

Proof: xb(y · z)

= {[ definition ]}
x/(y · z)

= {[ by Law 3.13 ]}
(x/z)/y

= {[ involution ]}

(x/z)/y

= {[ definitions ]}
(xb z)b y .

6 Interaction Between Detachments

Law 6.1 (x cy)b z = x c(yb z).

Proof: (x cy)b z

= {[ definitions ]}

x\y/z

= {[ involution ]}
(x\y)/z

= {[ by Law 4.1 ]}
x\(y/z)

= {[ involution ]}

x\y/z

= {[ definitions ]}
x c(yb z) .

7 Residuals and Detachment in Particular
Quantales

For a completely distributive Boolean algebra (M,≤), the structure

B(M)
def
= (M,≤, 0,>,u,>) is a Boolean quantale.
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Law 7.1 In B(M) one has x/y = y → x.

Proof: z ≤ x/y

⇔ {[ by (GC) ]}
z u y ≤ x

⇔ {[ shunting ]}
z ≤ y t x .

Law 7.2 In B(M) one has xb y = x u y.

Proof: xb y

= {[ definition ]}
x/y

= {[ previous law ]}
y t x

= {[ de Morgan ]}
x u y .

Dually, (M,≥,>, 0,t, 0) is again a Boolean quantale with anal-
ogous laws.

8 Interaction with Subidentities

In this section we deal with subidentities p ≤ 1 in a Boolean quantale

and their relative complements ¬p
def
= pu 1. As auxiliary properties

we note the complement rules

p · > = ¬p · > , > · p = > · ¬p , (CR)

and the restriction law

p · x = x u p · > (RE)

(see e.g. [4]). In the remainder we assume p, q ≤ 1.
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Law 8.1 x/p = x +> · ¬p.

Proof: z ≤ x/p

⇔ {[ by (GC) ]}
z · p ≤ x

⇔ {[ by (RE) ]}
z u > · p ≤ x

⇔ {[ shunting ]}
z ≤ > · p + x

⇔ {[ by (CR) ]}
z ≤ > · ¬p + x .

Law 8.2 0/p = > · ¬p.
Proof: Set x = 0 in the previous law.

Law 8.3 x/p = x + 0/p.
Proof: Immediate from the previous two laws.

Law 8.4 x · p = x u 0/¬p.

Proof: x · p
= {[ by (RE) ]}

x u > · p
= {[ by Law 8.2 ]}

x u 0/¬p .

Law 8.5 xb p = x · p.

Proof: xb p

= {[ definition ]}
x/p

= {[ by Law 8.1 ]}
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x +> · ¬p

= {[ de Morgan ]}
x u > · ¬p

= {[ by (CR) ]}
x u > · p

= {[ by (RE) ]}
x · p .

9 Interaction with Predomain and Precodomain

Definition 9.1 The predomain operation in a Boolean left quantale
is defined by the following Galois connection [7,5]:

pa ≤ p ⇔ a ≤ p · > .

It is called domain operation if additionally it satisfies the axiom of
left locality of composition [7]

p(a · b) = p(a · pb) .

The (pre)codomain operation in a Boolean right quantale is defined
symmetrically.

This is well defined, since one can show that · preserves arbitrary
infima of subidentities [4].

Law 9.2 p(p · a) = p · pa.

Proof: p · pa ≤ q

⇔ {[ by (GC) ]}
pa ≤ p\q

⇔ {[ definition of domain ]}
a ≤ (p\q) · >

⇔ {[ dual of Law 8.1 ]}
a ≤ (q + ¬p · >) · >
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⇔ {[ distributivity and idempotence of > ]}
a ≤ q · >+ ¬p · >

⇔ {[ dual of Law 8.1 ]}
a ≤ p\(q · >)

⇔ {[ by (GC) ]}
p · a ≤ q · >

⇔ {[ definition of domain ]}
p(p · a) ≤ q .

Law 9.3 p(xb y) ≤ px.

Proof: p(xb y) ≤ q

⇔ {[ definition of domain ]}
xb y ≤ q · >

⇔ {[ exchange ]}
q · > · y ≤ x

⇔ {[ by (CR) ]}
¬q · > · y ≤ x

⇐ {[ by > · y ≤ > and isotony ]}
¬q · > ≤ x

⇔ {[ by shunting and (CR) ]}
x ≤ q · >

⇔ {[ definition of domain ]}
px ≤ q .

Law 9.4 px ≤ p ⇔ x = p · x.

Proof: px ≤ p

⇔ {[ definition of domain ]}
x ≤ p · >

⇔ {[ lattice algebra ]}
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x = x u p · >
⇔ {[ by (RE ]}

x = p · x .

Law 9.5 px ≤ p ⇔ x ≤ p · x.
Proof: By p ≤ 1 the inclusion p · x ≤ x of the previous law is trivial.

Law 9.6 px ≤ p ⇔ ¬p · x = 0.

Proof: px ≤ p

⇔ {[ previous law ]}
x ≤ p · x

⇔ {[ shunting ]}
x u p · x = 0

⇔ {[ by (CR) ]}
x u (¬p · x + x) = 0

⇔ {[ ¬p · x ≤ x and Boolean algebra ]}
¬p · x = 0 .

Law 9.7 px = xb x u 1.

Proof: xb x u 1 ≤ p

⇔ {[ shunting ]}
xb x ≤ 1 t p

⇔ {[ definition of ¬p and Boolean algebra ]}
xb x ≤ ¬p

⇔ {[ exchange ]}
¬p · x ≤ x

⇔ {[ Boolean algebra ]}
¬p · x u x = 0

⇔ {[ by p ≤ 1 and lattice algebra ]}
¬p · x = 0
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⇔ {[ by Law 9.6 ]}
px ≤ p .

The next law provides a calculationally more pleasing expression
for the domain, since the variable x is not repeated on the right hand
side.

Law 9.8 px = >b x u 1.

Proof: px ≤ p

⇔ {[ by Law 9.6 ]}
¬p · x = 0

⇔ {[ by (GC) ]}
¬p ≤ 0/x

⇔ {[ Boolean algebra ]}
0/x ≤ ¬p

⇔ {[ definition and Boolean algebra ]}
>b x ≤ p + 1

⇔ {[ shunting ]}
>b x u 1 ≤ p .

Law 9.9 ¬px = 0/x u 1.

Proof: ¬px

= {[ definition ]}
px u 1

= {[ previous law ]}
>b x u 1 u 1

= {[ de Morgan ]}
(>b x + 1) u 1

= {[ Boolean algebra ]}
>b x u 1

= {[ definition and Boolean algebra ]}
0/x u 1 .
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Finally, using the dual of Law 8.4, we can give a different form

of the overwrite operation x | y def
= x + ¬px · y.

Law 9.10 x | y = (x + y) u px\x.

Proof: x | y
= {[ definition ]}

x + ¬px · y
= {[ by Law 8.4 ]}

x + (y u px\0)

= {[ distributivity ]}
(x + y) u (x + px\0)

= {[ by Law 8.3 ]}
(x + y) u px\x .

10 About Locality of Composition

The aim of this section is to give a characterisation of locality of
composition without using the domain operation.

We first show

Lemma 10.1 A Boolean left quantale satisfies left-locality of com-
position iff for all x

>b x = >bpx .

Proof. (⇒)

>b x ≤ y

⇔ {[ exchange ]}
y · x ≤ 0

⇔ {[ strictness of predomain ]}
p(y · x) ≤ 0

⇔ {[ left-locality of composition ]}
p(y · px) ≤ 0

⇔ {[ strictness of predomain ]}
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y · px ≤ 0

⇔ {[ exchange ]}
>bpx ≤ y .

(⇐) By the defining Galois connection for predomain, the lattice of
subidentities is isomorphic to the lattice of ideals {p · > | p ≤ 1}. So
to show p(a · b) = p(a · pb) it suffices to show > · p(a · b) = > · p(a · pb).
By Law 8.5 this is equivalent to >bp(a · b) = >bp(a · pb).

>bp(a · pb)
= {[ assumption ]}

>b(a · pb)
= {[ by Law 5.12 ]}

(>bpb)b a

= {[ assumption ]}
(>b b)b a

= {[ by Law 5.12 ]}
>b(a · b)

= {[ assumption ]}
>bp(a · b) .

Corollary 10.2 A Boolean left quantale has left locality composition
iff for all x

0/x = 0/px .

Next we observe that, even without left locality of composition,
we have

Law 10.3 >b x ≤ > · px.

Proof: >b x ≤ > · px
⇔ {[ exchange ]}

> · px · x ≤ 0

⇔ {[ by (CR) ]}
> · ¬px · x ≤ 0

⇔ {[ domain law ]}
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> · 0 ≤ 0

⇔ {[ strictness ]}
TRUE .

Corollary 10.4 A Boolean left quantale has left locality of compo-
sition iff for all x

> · px ≤ >b x .

Dually, we have

Corollary 10.5 A Boolean left quantale has left locality of compo-
sition iff for all x

0/x ≤ > · ¬px .

With the expressions for predomain and its negation we get

Corollary 10.6 The following statements are equivalent:

1. A Boolean left quantale satisfies left-locality of composition.
2. ∀ x : > · (>b x u 1) ≤ >b x .
3. ∀ x : 0/x ≤ > · (0/x u 1) .

This admits a simple proof that Euclid’s law

x · (yb z) ≤ (x · y)b z

implies left-locality of composition:

> · (>b x u 1) ≤ >b x

⇐ {[ definition of u and isotony ]}
> · (>b x) ≤ >b x

⇔ {[ idempotence of > ]}
> · (>b x) ≤ (> · >)b x

⇔ {[ Euclid ]}
TRUE .
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11 Totality and Local Composition

Motivated by the previous section we define

x ∈ LLC
def⇔ 0/x ≤ > · ¬px .

So LLC is the set of elements x that satisfy >b x = >bpx. We have
chosen the above formulation, since it its handy for the proofs to
come.

Moreover, we introduce the set of left-total elements by

x ∈ LT
def⇔ ∀ y : y · x = 0 ⇒ y = 0 .

This is a relaxation of the property of overall indivisibility of 0.

Law 11.1 x ∈ LT ⇔ 0/x = 0.

Proof: ∀ y : y · x = 0 ⇒ y = 0

⇔ {[ leastness of 0 ]}
∀ y : y · x ≤ 0 ⇒ y ≤ 0

⇔ {[ by (GC) ]}
∀ y : y ≤ 0/x ⇒ y ≤ 0

⇔ {[ indirect inequality ]}
0/x ≤ 0

⇔ {[ leastness of 0 ]}
0/x = 0 .

By this law, 0/x is a good measure of the “left-definedness” of
x: the smaller 0/x, the more left-defined is x. This fits well with the
law 0/xu 1 = ¬px which shows that ¬px is a corresponding measure
of left-definedness of x at the level of tests.

Law 11.2 LT ⊆ LLC.
Proof: Immediate from the definition of LLC and Law 11.1.

Law 11.3 0 ∈ LT ⇔ 0 = >.
Proof: Immediate from Law 11.1 and Law 3.5.
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Law 11.4 0 ∈ LLC.
Proof: Immediate from the definition of LLC, Law 3.5, p0 = 0 and
Boolean algebra.

Law 11.5 x ∈ LT ⇒ px = 1.

Proof: ¬px

= {[ by Law 9.9 ]}
0/x u 1

= {[ by Law 11.1 ]}
0 u 1

= {[ lattice algebra ]}
0 .

Let now K be the set of elements of the underlying quantale. We
call the quantale left-total iff K = LT ∪ {0}.

Law 11.6 K = LT ∪ {0} ⇒ K = LLC.
Proof: Immediate by Law 11.2 and Law 11.4.

In other words, every total algebra satisfies left-locality of com-
position.

Law 11.7 K = LT ∪ {0} ∧ p ∈ {0, 1}.
Proof: Follows from Law 11.5 and p0 = 0.

In other words, a total algebra can only have a trivial subidentity
structure.

For these last two laws there are also proofs without the use of
residuals or detachment; however, they are a lot more cumbersome.

Acknowledgement: I am grateful to Peter Höfner for helpful dis-
cussions and remarks, notably for some simplifications of the proofs.
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