UNIVERSITÄT AUGSBURG

Residuals and Detachments

Bernhard Möller

Report 2005-20 December 2005

INSTITUT FÜR INFORMATIK D-86135 AUGSBURG

Copyright © Bernhard Möller Institut für Informatik Universität Augsburg D–86135 Augsburg, Germany http://www.Informatik.Uni-Augsburg.DE — all rights reserved —

Residuals and Detachments

Bernhard Möller

Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany

Abstract. We give a compendium of algebraic calculation rules for the operations of residuation and detachment in semirings.

1 Introduction

Residuals [\[1](#page-23-0)[,2\]](#page-23-1) and detachments have many useful applications. This report serves as a compendium of laws for these operations, many of which are known from early residuation theory. However, there is also some new material relating residuals with tests and (pre)domain, in particular, a characterisation of locality of composition [\[7\]](#page-23-2) without recourse to the domain operation.

2 Definitions and Proof Principles

- **Definition 2.1** 1. A structure $(S, \leq, 0, \top, \cdot, 1)$ is called a *left (right)* quantale if $(S, \leq, 0, \top)$ is a complete lattice with least element 0 and greatest element \top such that $(S, \cdot, 1)$ is a monoid and \cdot preserves arbitrary suprema in its left (right) argument. The supremum of elements x and y is denoted by $x + y$. Any left (right) quantale satisfies $0 \cdot x = 0$ and $(x + y) \cdot z = x \cdot z + y \cdot z$ $(x \cdot 0 = 0$ and $x \cdot (y + z) = x \cdot y + x \cdot z$. S is called a *quantale* [\[8\]](#page-23-3) if it is both a left and right quantale. Quantales have been called standard Kleene algebras in $|3|$.
- 2. A (left or right) quantale is called Boolean if its underlying lattice is a completely distributive Boolean algebra.
- 3. In a left quantale, the left residual and right detachment operations are defined as usual:

$$
z \leq x/y \stackrel{\text{def}}{\Leftrightarrow} z \cdot y \leq x
$$
, $x \mid y \stackrel{\text{def}}{=} \overline{x/y}$. (GC)

By these definitions, the function $\lambda x \cdot x/y$ is the upper adjoint and the function $\lambda z \cdot z \cdot y$ the lower adjoint of a Galois connection.

Symmetric definitions and laws apply to the *right residual* \setminus and left detachment \vert in a right quantale.

A useful tool for working with elements of a poset are the rules of indirect inequality:

$$
x \leq y \Leftrightarrow (\forall z : z \leq x \Rightarrow z \leq y),
$$

$$
x \leq y \Leftrightarrow (\forall z : y \leq z \Rightarrow x \leq z).
$$

Moreover, we have the rules of indirect equality:

$$
x = y \Leftrightarrow (\forall z : z \leq x \Leftrightarrow z \leq y) \Leftrightarrow (\forall z : x \leq z \Leftrightarrow y \leq z).
$$

As special cases of this, we get

$$
x = \top \Leftrightarrow (\forall z : z \leq x \Leftrightarrow \text{TRUE}),
$$

$$
x = 0 \Leftrightarrow (\forall z : x \leq z \Leftrightarrow \text{TRUE}),
$$

A related principle is provided by the universal characterisations of infima and suprema:

$$
y \le \Box X \ (\forall \ x \in X : y \le x) \ ,
$$

$$
\Box X \le y \ (\forall \ x \in X : x \le y) \ .
$$
 (Inf/Sup)

We will use all these rules tacitly in the remainder.

Definition 2.2 1. The *dual* f^{\sharp} of an endofunction f on a Boolean algebra is defined by

$$
f^{\natural}(x) \stackrel{\text{def}}{=} \overline{f(\overline{x})} .
$$

2. Two functions f, g between Boolean algebras are called *conjugate* $[6]$ if they satisfy

$$
f(x) \le \overline{y} \iff g(y) \le \overline{x} . \quad (*)
$$

By straightforward Boolean algebra, the property that f and q are conjugate is equivalent to the Galois connection

$$
f(x) \le y \Leftrightarrow x \le g^{\natural}(y) .
$$

Lemma 2.3 Assume that f, g are conjugate.

- 1. $f\left(\overline{g(y)}\right) \leq \overline{y}$. 2. $g(f(x)) \leq \overline{x}$.
- 3. f and g preserve all suprema and hence are isotone and strict.

Proof. 1. Set $x = \overline{g(y)}$ in (*).

- 2. Set $y = \overline{f(x)}$ in $(*)$.
- 3. By the above remark, both f and g are lower adjoints in Galois connections.

Lemma 2.4 (Modularity; Dedekind) For conjugate f and g ,

$$
f(x) \sqcap y \le f(x \sqcap g(y)) \ .
$$

Proof. $f(x) \sqcap y$ $=$ {[Boolean algebra]} $f((x \sqcap q(y)) \sqcup (x \sqcap \overline{q(y)})) \sqcap y$ $=$ {[f preserves suprema]} $(f(x\sqcap g(y))\sqcup f(x\sqcap \overline{g(y)}))\sqcap y$ \leq { definition of \sqcap and isotony of f }} $(f(x \sqcap g(y)) \sqcup f(\overline{g(y)})) \sqcap y$ \leq {[by Lemma [2.3.](#page-3-0)[1](#page-4-0) }} $(f(x\sqcap g(y))\sqcup \overline{y})\sqcap y$ $=$ {[Boolean algebra]} $f(x \sqcap q(y)) \sqcap y$ \leq { definition of \Box } $f(x \sqcap g(y))$.

As our final proof tool in Boolean algebras we mention

$$
x \sqcap y \le z \iff x \le \overline{y} \sqcup z .
$$
 (Shunting)

3 Laws for Residuals

Law 3.1 (Left-Conjunctivity) $(\Box X)/y = \Box (X/y)$. Proof: Upper adjoints preserve all infima.

Law 3.2 $\top/y = \top$. *Proof:* Set $X = \emptyset$ in the previous law.

Law 3.3 $u \leq v \Rightarrow u/y \leq v/y$. Proof: Immediate from left-conjunctivity.

Law 3.4 (Right-Antidisjunctivity) $x/(\Box Y) = \Box (x/Y)$.

Proof:
\n
$$
z \leq x/(\sqcup Y)
$$
\n
$$
\Leftrightarrow \{ [\text{ by } (\text{GC})] \}
$$
\n
$$
z \cdot \sqcup Y \leq x
$$
\n
$$
\Leftrightarrow \{ [\text{ disjunctivity of } \cdot] \}
$$
\n
$$
\sqcup (z \cdot Y) \leq x
$$
\n
$$
\Leftrightarrow \{ [\text{ lattice algebra }] \}
$$
\n
$$
\forall y \in Y : z \cdot y \leq x
$$
\n
$$
\Leftrightarrow \{ [\text{ by } (\text{GC})] \}
$$
\n
$$
\forall y \in Y : z \leq x/y
$$
\n
$$
\Leftrightarrow \{ [\text{ lattice algebra }] \}
$$
\n
$$
z \leq \sqcap x/Y.
$$

Law 3.5 $x/0 = \top$. *Proof:* Set $Y = \emptyset$ in the previous law.

Law 3.6 $u \le v \Rightarrow x/u \ge x/v$. Proof: Immediate from right-antidisjunctivity.

Law 3.7 $1 \leq x/x$. Proof: Immediate from (GC) and neutrality of 1. Law 3.8 $(x/y) \cdot y \leq x$. *Proof:* Set $z = x/y$ in [\(GC\)](#page-2-0).

Law 3.9 $(x/y) \cdot y = x \Leftrightarrow \exists z : x = z \cdot y$.

Proof: The implication (\Rightarrow) is trivial. For (\Leftarrow) assume $z \cdot y = x$. Then $z \cdot y \leq x$ and hence by [\(GC\)](#page-2-0) we get $z \leq x/y$. Since also $x \leq z \cdot y$ we obtain from this by isotony $x \leq (x/y) \cdot y$. The reverse inequality is given by Law [3.8.](#page-6-0)

Law 3.10 $(x/x) \cdot x = x$. *Proof:* Use Law [3.9](#page-6-1) and set $x = y$ and $z = 1$.

Law 3.11 $x/1 = x$. *Proof:* Use Law [3.9](#page-6-1) and set $y = 1$ and $z = x$.

Law 3.12 $(0/y) \cdot y = 0$. *Proof:* For (\leq) set $x = 0$ in Law [3.8.](#page-6-0) (\geq) is trivial.

Law 3.13 $x/(y \cdot z) = (x/z)/y$.

Proof:
\n
$$
u \leq x/(y \cdot z)
$$
\n
$$
\Leftrightarrow \{ [\text{ by } (\text{GC})] \}
$$
\n
$$
u \cdot y \cdot z \leq x
$$
\n
$$
\Leftrightarrow \{ [\text{ by } (\text{GC})] \}
$$
\n
$$
u \cdot y \leq x/z
$$
\n
$$
\Leftrightarrow \{ [\text{ by } (\text{GC})] \}
$$
\n
$$
u \leq (x/z)/y .
$$

Law 3.14 ("Euclid" for Residual) $x \cdot (y/z) \le (x \cdot y)/z$.

Proof:
\n
$$
x \cdot (y/z) \le (x \cdot y)/z
$$
\n
$$
\Leftrightarrow \{ [\text{ by } (\text{GC})] \}
$$
\n
$$
x \cdot (y/z) \cdot z \le x \cdot y
$$
\n
$$
\Leftrightarrow \{ [\text{ by Law 3.8 and isotony }] \}
$$
\nTRUE.

Law 3.15 $x \leq (x \cdot y)/y$. *Proof:* Immediate by [\(GC\)](#page-2-0) and reflexivity of \leq .

Law 3.16 $(x \cdot y)/y = x \Leftrightarrow \exists z : x = z/y$. *Proof:* (\Rightarrow) is trivial. For (\Leftarrow) assume $x = z/y$. Then

$$
(x \cdot y)/y
$$

= { $\text{asumption } }$ }
 $((z/y) \cdot y)/y$
 \leq { $\text{by Law } 3.8 \text{ and left-isotony of } / }$ }
 z/y
= { $\text{assumption } }$ }

The reverse inequality is given by Law [3.15.](#page-7-0)

Law 3.17 $(\top \cdot y)/y = \top$. *Proof:* For (\geq) set $x = \top$ in Law [3.15.](#page-7-0) (\leq) is trivial.

Law 3.18 $x \cdot y = ((x \cdot y)/y) \cdot y$. Proof: By [GC](#page-2-0) and standard Galois theory.

Law 3.19 $x/y = ((x/y) \cdot y)/y$. Proof: By [GC](#page-2-0) and standard Galois theory.

Law 3.20 $1/x \le y/(x \cdot y)$.

Proof:
\n
$$
\leq \{ \text{ by Law 3.7 and left-isotony of } / \}
$$
\n
$$
= \{ \text{ by Law 3.13 } \}
$$
\n
$$
y/(x \cdot y) .
$$

Law 3.21 $(x/y) \cdot (y/z) \le x/z$. Proof: $(x/y) \cdot (y/z) \leq x/z$ \Leftrightarrow {[by [\(GC\)](#page-2-0)]} $(x/y) \cdot (y/z) \cdot z \leq x$ \Leftarrow {[by Law [3.8](#page-6-0) and isotony of \cdot }} $(x/y) \cdot y \leq x$ \Leftrightarrow {[by Law [3.8](#page-6-0)]} TRUE .

Law 3.22 x/x is a preorder. Proof: Immediate from Law [3.7](#page-5-0) and Law [3.21.](#page-7-1)

Law 3.23
$$
x/y \le (x/z)/(y/z)
$$
.
\nProof:
\n $u \le (x/z)/(y/z)$
\n $\Leftrightarrow \quad \{ \text{ by } (\text{GC}) \}$
\n $u \cdot (y/z) \le x/z$
\n $\Leftrightarrow \quad \{ \text{ by } (\text{GC}) \}$
\n $u \cdot (y/z) \cdot z \le x$
\n $\Leftrightarrow \quad \{ \text{ by Law 3.8 and isotony } \}$
\n $u \cdot y \le x$
\n $\Leftrightarrow \quad \{ \text{ by } (\text{GC}) \}$
\n $u \le x/y$.

4 Interaction Between Residuals

Law 4.1 $(x \y)/z = x \y/z$. Proof: $u \leq (x \backslash y)/z$ \Leftrightarrow {[by [\(GC\)](#page-2-0)]} $u \cdot z \leq x \backslash y$

$$
\Leftrightarrow \{ [\text{ by } (\text{GC}) \}]
$$

$$
x \cdot u \cdot z \leq y
$$

$$
\Leftrightarrow \{ [\text{ by } (\text{GC}) \}]
$$

$$
x \cdot u \leq y/z
$$

$$
\Leftrightarrow \{ [\text{ by } (\text{GC}) \}]
$$

$$
u \leq x \setminus (y/z) .
$$

5 Laws for Detachments

Law 5.1 (Exchange; Schröder) $x \cdot y \leq z \Leftrightarrow \overline{z} \lfloor y \leq \overline{x}$.

Proof:
\n
$$
x \cdot y \leq z
$$

\n $\Leftrightarrow \{ [\text{ by } (\text{GC})] \}$
\n $x \leq z/y$
\n $\Leftrightarrow \{ [\text{Boolean algebra }] \}$
\n $\Leftrightarrow \{ [\text{Boolean algebra and definition }] \}$
\n $\Leftrightarrow \{ [\text{Boolean algebra and definition }] \}$
\n $\Leftrightarrow \overline{z} | y \leq \overline{x} .$

By this law the functions $\lambda x \cdot x \cdot y$ and $\lambda z \cdot z \cdot y$ are conjugates:

Law 5.2 $x \cdot y \cap z = 0 \Leftrightarrow z \mid y \cap x = 0.$ *Proof:* Immediate from exchange by shunting (substitute \overline{z} for z).

Law 5.3 (Dedekind)

 $x \sqcap y \cdot z \leq (x \lfloor z \sqcap y) \cdot z$ and $x \sqcap y \lfloor z \leq (x \cdot z \sqcap y) \lfloor z$. *Proof:* Set $f(z) \stackrel{\text{def}}{=} a \cdot z$ and $g(z) \stackrel{\text{def}}{=} a | z$ in Lemma [2.4.](#page-4-1)

Law 5.4 (Left-Disjunctivity) $(\Box X)[y = \Box (X[y])$. Proof: Conjugates preserve suprema (Lemma [2.3](#page-3-0)[.3\)](#page-4-2).

Law 5.5 $0 \mid y = 0$. *Proof:* Set $X = \emptyset$ in the previous law. Law 5.6 $u \leq v \Rightarrow u \mid y \leq v \mid y$. Proof: Immediate from left-disjunctivity.

Law 5.7 (Right-Disjunctivity) $x[(\Box Y) = \Box (x|Y)$.

Proof:
\n
$$
= \frac{\{\text{definition }\}}{\overline{x}/\square Y}
$$
\n
$$
= \frac{\{\text{Law 3.4 }\}}{\square \overline{x}/Y}
$$
\n
$$
= \frac{\{\text{Law 3.4 }\}}{\square \overline{x}/Y}
$$
\n
$$
= \frac{\{\text{de Morgan }\}}{\square \overline{x}/Y}
$$
\n
$$
= \frac{\{\text{definition }\}}{\square x/Y}
$$
\n
$$
= \frac{\{\text{definition }\}}{\square x/Y}.
$$

Law 5.8 $x | 0 = 0$. *Proof:* Set $Y = \emptyset$ in the previous law.

Law 5.9 $u \leq v \Rightarrow x \mid u \leq x \mid v$. Proof: Immediate from right-disjunctivity.

Law 5.10 $x | 1 = x$.

Proof: $x | 1 \le u$ $\quad \ \ = \quad \ \, \left\{ \right.$
 (exchange and neutrality of 1 $\left. \right\}$ $\overline{u} \leq \overline{x}$ $=$ {[shunting]} $x \leq u$.

Law 5.11 \top \top = \top . *Proof:* Immediate from the previous law, $1\leq \top$ and isotony. Law 5.12 $x\lfloor (y \cdot z) = (x \lfloor z) \lfloor y$. Proof: $x\lfloor(y \cdot z)\rfloor$ $=$ \quad $\{$ definition $\}$ $\overline{\overline{x}/(y \cdot z)}$ = $\{$ by Law [3.13](#page-6-2) $\}$ $\overline{(\overline{x}/z)/y}$ $=$ { $\{$ involution $\}$ $(\overline{x}/z)/y$ $=$ { $[$ definitions $]$ } $(x|z)|y$.

6 Interaction Between Detachments

Law 6.1
$$
(x \mid y) \mid z = x \mid (y \mid z)
$$
.
\n*Proof:* $(x \mid y) \mid z$
\n $= \frac{\{\text{definitions}\}}{\frac{1}{x \cdot \overline{y}}/z}$
\n $= \frac{\{\text{involution}\}}{\frac{x \cdot \overline{y}}/z}$
\n $= \frac{\{\text{by Law 4.1}\}}{\frac{x}{\sqrt{y}/z}}$
\n $= \frac{\{\text{involution}\}}{\frac{x \cdot \overline{y}}{z}}$
\n $= \frac{\{\text{dipivolution}\}}{\frac{x \cdot \overline{y}}{z}}$
\n $= \frac{\{\text{definitions}\}}{\frac{x \cdot \overline{y}}{z}}$.

7 Residuals and Detachment in Particular Quantales

For a completely distributive Boolean algebra (M, \leq) , the structure $B(M) \stackrel{\text{def}}{=} (M, \leq, 0, \top, \top, \top)$ is a Boolean quantale.

Law 7.1 In $B(M)$ one has $x/y = y \rightarrow x$.

Proof:
\n
$$
z \leq x/y
$$

\n $\Leftrightarrow \quad \{ \text{ by } (\text{GC}) \}$
\n $z \sqcap y \leq x$
\n $\Leftrightarrow \quad \{ \text{shunting } \}$
\n $z \leq \overline{y} \sqcup x$.

Law 7.2 In $B(M)$ one has $x | y = x \sqcap y$.

Proof:
\n
$$
= \frac{\{\text{definition }\}}{\overline{x}/y}
$$
\n
$$
= \frac{\{\text{previous law }\}}{\overline{y} \sqcup \overline{x}}
$$
\n
$$
= \frac{\{\text{previous law }\}}{\text{d} \text{e Morgan}}
$$

Dually, $(M, \geq, \top, 0, \sqcup, 0)$ is again a Boolean quantale with analogous laws.

8 Interaction with Subidentities

In this section we deal with subidentities $p \leq 1$ in a Boolean quantale and their relative complements $\neg p \stackrel{\text{def}}{=} \overline{p} \sqcap 1$. As auxiliary properties we note the complement rules

$$
\overline{p \cdot \top} = \neg p \cdot \top , \qquad \overline{\top \cdot p} = \top \cdot \neg p , \qquad (CR)
$$

and the restriction law

$$
p \cdot x = x \sqcap p \cdot \top \tag{RE}
$$

(see e.g. [\[4\]](#page-23-6)). In the remainder we assume $p, q \leq 1$.

Law 8.1 $x/p = x + \top \cdot \neg p$. Proof: $z \leq x/p$ \Leftrightarrow {[by [\(GC\)](#page-2-0)]} $z \cdot p \leq x$ \Leftrightarrow {[by [\(RE\)](#page-12-0)]} $z \sqcap \top \cdot p \leq x$ \Leftrightarrow {[shunting]} $z \leq \overline{\top\cdot p} + x$ \Leftrightarrow {[by [\(CR\)](#page-12-1) }} $z < \top \cdot \neg p + x$.

Law 8.2 $0/p = \top \cdot \neg p$. *Proof:* Set $x = 0$ in the previous law.

Law 8.3 $x/p = x + 0/p$. Proof: Immediate from the previous two laws.

Law 8.4 $x \cdot p = x \cap 0/\neg p$.

Proof:
\n
$$
= \{ \text{by (RE)} \}
$$
\n
$$
x \sqcap \top \cdot p
$$
\n
$$
= \{ \text{by Law 8.2} \}
$$
\n
$$
x \sqcap 0 / \neg p
$$

Law 8.5 $x | p = x \cdot p$.

Proof:

$$
= \frac{x \mid p}{\overline{x}/p}
$$

$$
= \{ \text{by Law 8.1} \}
$$

$$
\overline{x} + \overline{1 \cdot \neg p}
$$
\n
$$
= \{ \text{de Morgan } \}
$$
\n
$$
x \sqcap \overline{1 \cdot \neg p}
$$
\n
$$
= \{ \text{by (CR)} \}
$$
\n
$$
x \sqcap \sqcap \neg p
$$
\n
$$
= x \sqcap \sqcap \neg p
$$
\n
$$
= \{ \text{by (RE)} \}
$$
\n
$$
x \cdot p
$$

9 Interaction with Predomain and Precodomain

Definition 9.1 The *predomain* operation in a Boolean left quantale is defined by the following Galois connection $[7,5]$ $[7,5]$:

$$
\ulcorner a \leq p \Leftrightarrow a \leq p \cdot \top .
$$

It is called domain operation if additionally it satisfies the axiom of left locality of composition [\[7\]](#page-23-2)

$$
\Gamma(a \cdot b) = \Gamma(a \cdot \Gamma b) \ .
$$

The (pre)codomain operation in a Boolean right quantale is defined symmetrically.

This is well defined, since one can show that \cdot preserves arbitrary infima of subidentities [\[4\]](#page-23-6).

Law 9.2 $\lceil (p \cdot a) \rceil = p \cdot \lceil a$. *Proof:* $p \cdot \lceil a \leq q$ \Leftrightarrow {[by [\(GC\)](#page-2-0)]} $\lceil a \leq p \backslash q \rceil$ \Leftrightarrow { definition of domain }} $a \leq (p \setminus q) \cdot \top$ \Leftrightarrow {[dual of Law [8.1](#page-2-1)]} $a \leq (q + \neg p \cdot \top) \cdot \top$

$$
\Leftrightarrow \quad \{\text{distributivity and idempotence of } \top \}
$$
\n
$$
a \leq q \cdot \top + \neg p \cdot \top
$$
\n
$$
\Leftrightarrow \quad \{\text{dual of Law 8.1 }\}
$$
\n
$$
a \leq p \setminus (q \cdot \top)
$$
\n
$$
\Leftrightarrow \quad \{\text{by (GC)} \}
$$
\n
$$
p \cdot a \leq q \cdot \top
$$
\n
$$
\Leftrightarrow \quad \{\text{definition of domain } \}
$$
\n
$$
\ulcorner (p \cdot a) \leq q \ .
$$

Law 9.3 $\lceil x \rfloor y$ $\leq \lceil x \rfloor$.

Proof:
\n
$$
\begin{aligned}\n\lceil (x \lfloor y) \leq q \rceil \\
\Leftrightarrow \quad & \{\text{definition of domain } \} \\
x \lfloor y \leq q \cdot \top \\
\Leftrightarrow \quad & \{\text{exchange } \} \\
\overline{q \cdot \top} \cdot y \leq \overline{x} \\
\Leftrightarrow \quad & \{\text{by (CR)} \} \\
\lnot q \cdot \top \cdot y \leq \overline{x} \\
\Leftrightarrow \quad & \{\text{by } \top \cdot y \leq \top \text{ and isotony } \} \\
\lnot q \cdot \top \leq \overline{x} \\
\Leftrightarrow \quad & \{\text{by shunting and (CR)} \} \\
x \leq q \cdot \top \\
\Leftrightarrow \quad & \{\text{definition of domain } \} \\
\lnot x \leq q.\n\end{aligned}
$$

Law 9.4 $\lceil x \leq p \Leftrightarrow x = p \cdot x$.

Proof:
\n
$$
\begin{array}{rcl}\n\varphi & \downarrow & \downarrow \\
\Leftrightarrow & \downarrow & \downarrow \\
x \leq p \cdot \top & \\
\Leftrightarrow & \downarrow & \downarrow \\
x \leq p \cdot \top & \\
\Leftrightarrow & \downarrow & \downarrow\n\end{array}
$$
\n
$$
\begin{array}{rcl}\n\varphi & \downarrow & \downarrow \\
\Leftrightarrow & \downarrow & \downarrow \\
\Leftrightarrow & \downarrow & \downarrow\n\end{array}
$$

$$
x = x \sqcap p \cdot \top
$$

$$
\Leftrightarrow \{ [by (RE) \}
$$

$$
x = p \cdot x .
$$

Law 9.5 $\lceil x \leq p \Leftrightarrow x \leq p \cdot x$. *Proof:* By $p \leq 1$ the inclusion $p \cdot x \leq x$ of the previous law is trivial.

Law 9.6 $\lceil x \leq p \Leftrightarrow \lnot p \cdot x = 0.$ Proof: $\qquad \qquad \lceil x \leq p \rceil$ ⇔ {[previous law]} $x\leq p\cdot x$ ⇔ {[shunting]} $x \sqcap \overline{p \cdot x} = 0$ \Leftrightarrow {[by [\(CR\)](#page-12-1) }} $x \sqcap (\neg p \cdot x + \overline{x}) = 0$ $\Leftrightarrow \quad \{\neg p \cdot x \leq x \text{ and Boolean algebra }\}$ $\neg p \cdot x = 0$. Law 9.7 $\lceil x = x \lfloor x \sqcap 1$.

Proof:
\n
$$
x \mid x \sqcap 1 \leq p
$$
\n
$$
\Leftrightarrow \{ \text{ slunting } \}
$$
\n
$$
x \mid x \leq \overline{1} \sqcup p
$$
\n
$$
\Leftrightarrow \{ \text{definition of } \neg p \text{ and Boolean algebra } \}
$$
\n
$$
x \mid x \leq \overline{\neg p}
$$
\n
$$
\Leftrightarrow \{ \text{ exchange } \}
$$
\n
$$
\neg p \cdot x \leq \overline{x}
$$
\n
$$
\Leftrightarrow \{ \text{Boolean algebra } \}
$$
\n
$$
\neg p \cdot x \sqcap x = 0
$$
\n
$$
\Leftrightarrow \{ \text{ by } p \leq 1 \text{ and lattice algebra } \}
$$
\n
$$
\neg p \cdot x = 0
$$

$$
\Leftrightarrow \quad \{ \text{ by Law } 9.6 \}
$$

$$
\ulcorner x \leq p .
$$

The next law provides a calculationally more pleasing expression for the domain, since the variable x is not repeated on the right hand side.

Law 9.8
$$
\ulcorner x = \ulcorner \ulcorner x \urcorner 1
$$
.
\nProof: $\ulcorner x \leq p$
\n $\Leftrightarrow \ulcorner \llbracket \text{ by Law 9.6} \rrbracket$
\n $\lnot p \cdot x = 0$
\n $\Leftrightarrow \ulcorner \llbracket \text{ by (GC)} \rrbracket$
\n $\lnot p \leq 0/x$
\n $\Leftrightarrow \ulcorner \llbracket \text{ Boolean algebra} \rrbracket$
\n $\lnot \llbracket \text{ definition and Boolean algebra} \rrbracket$
\n $\lnot \llbracket x \leq p + \bar{1}$
\n $\Leftrightarrow \llbracket \text{ shunting } \rrbracket$
\n $\lnot \llbracket x \sqcap 1 \leq p$.

Law 9.9
$$
\neg \ulcorner x = 0/x \sqcap 1
$$
.
\nProof:
\n $\neg \ulcorner x$
\n $= \{\text{definition }\}$
\n $\overline{\ulcorner x} \sqcap 1$
\n $= \{\text{previous law }\}$
\n $\overline{\ulcorner \ulcorner x \sqcap 1} \sqcap 1$
\n $= \{\text{de Morgan }\}$
\n $(\overline{\ulcorner \ulcorner x} + \overline{1}) \sqcap 1$
\n $= \{\text{Boolean algebra }\}$
\n $\overline{\ulcorner \ulcorner x} \sqcap 1$
\n $= \{\text{definition and Boolean algebra }\}$
\n $0/x \sqcap 1$.

Finally, using the dual of Law [8.4,](#page-4-1) we can give a different form of the overwrite operation $x | y \stackrel{\text{def}}{=} x + \neg^{\sqcap} x \cdot y$.

Law 9.10 $x | y = (x + y) \sqcap \ulcorner x \backslash x$.

Proof:
\n
$$
x | y
$$
\n
$$
= \{ \text{definition } \}
$$
\n
$$
x + \neg^{\Gamma} x \cdot y
$$
\n
$$
= \{ \text{ by Law 8.4 } \}
$$
\n
$$
x + (y \sqcap^{\Gamma} x \setminus 0)
$$
\n
$$
= \{ \text{distributivity } \}
$$
\n
$$
(x + y) \sqcap (x + \ulcorner x \setminus 0)
$$
\n
$$
= \{ \text{ by Law 8.3 } \}
$$
\n
$$
(x + y) \sqcap^{\Gamma} x \setminus x .
$$

10 About Locality of Composition

The aim of this section is to give a characterisation of locality of composition without using the domain operation.

We first show

Lemma 10.1 A Boolean left quantale satisfies left-locality of composition iff for all x

 $\top | x = \top | \tau_x$.

Proof. (\Rightarrow)

 $\top \lfloor x \leq y$ ⇔ {[exchange]} $\overline{y} \cdot x \leq 0$ ⇔ {[strictness of predomain]} $\lceil (\overline{y} \cdot x) \leq 0 \rceil$ ⇔ {[left-locality of composition]} $\ulcorner (\overline{y} \cdot \ulcorner x) \leq 0$ ⇔ {[strictness of predomain]}

$$
\overline{y} \cdot \overline{r}x \le 0
$$

$$
\Leftrightarrow \{ \text{exchange } \}
$$

$$
\top \lfloor \overline{r}x \le y \ .
$$

 (\Leftarrow) By the defining Galois connection for predomain, the lattice of subidentities is isomorphic to the lattice of ideals $\{p \cdot \top | p \leq 1\}$. So to show $\ulcorner (a \cdot b) = \ulcorner (a \cdot b)$ it suffices to show $\ulcorner \ulcorner \ulcorner (a \cdot b) = \ulcorner \ulcorner \ulcorner (a \cdot b)$. By Law [8.5](#page-5-2) this is equivalent to $\top[\ulcorner(a \cdot b) = \top[\ulcorner(a \cdot b)].$

$$
\top \lfloor \lceil (a \cdot \lceil b) \rceil
$$
\n
$$
= \{\text{ assumption } \}
$$
\n
$$
\top \lfloor (a \cdot \lceil b) \rceil
$$
\n
$$
= \{\text{ by Law 5.12 } \}
$$
\n
$$
= \{\text{ assumption } \}
$$
\n
$$
= \{\text{ assumption } \}
$$
\n
$$
\top \lfloor b \rfloor a
$$
\n
$$
= \{\text{ by Law 5.12 } \}
$$
\n
$$
\top \lfloor (a \cdot b) \rfloor
$$
\n
$$
= \{\text{ assumption } \}
$$
\n
$$
\top \lfloor \lceil (a \cdot b) \rceil
$$

Corollary 10.2 A Boolean left quantale has left locality composition iff for all x

$$
0/x=0/\sqrt{r}x.
$$

Next we observe that, even without left locality of composition, we have

Law 10.3 \top $x \leq \top$ · $\ulcorner x$.

Proof:
\n
$$
\begin{array}{ccc}\n\begin{array}{ccc}\n\forall & \text{if } x \leq \top \cdot \ulcorner x \\
\Leftrightarrow & \text{if } \text{exchange } \end{array} \\
\Leftrightarrow & \frac{\llcorner \text{if } \text{ix} \in \text{Range } \mathbb{R} \\
\Leftrightarrow & \text{if } \text{by } (\text{CR}) \end{array} \\
\Leftrightarrow & \frac{\llcorner \text{if } \text{ix} \in \text{Case 1}}{\llcorner \text{domain } \text{law } \mathbb{R}}\n\end{array}
$$

$$
\top \cdot 0 \leq 0
$$

$$
\Leftrightarrow \quad \{\text{strictness } \}
$$

TRUE.

Corollary 10.4 A Boolean left quantale has left locality of composition iff for all x

$$
\top \cdot \ulcorner x \leq \top \ulcorner x \ .
$$

Dually, we have

Corollary 10.5 A Boolean left quantale has left locality of composition iff for all x

$$
0/x \leq \top \cdot \neg \ulcorner x \ .
$$

With the expressions for predomain and its negation we get

Corollary 10.6 The following statements are equivalent:

1. A Boolean left quantale satisfies left-locality of composition. 2. $\forall x : \top \cdot (\top | x \sqcap 1) \leq \top | x$. 3. $\forall x: 0/x \leq \top \cdot (0/x \sqcap 1)$.

This admits a simple proof that Euclid's law

$$
x \cdot (y \, | \, z) \le (x \cdot y) \, | \, z
$$

implies left-locality of composition:

$$
\top \cdot (\top \lfloor x \sqcap 1) \leq \top \lfloor x
$$
\n
$$
\Leftarrow \quad \{\text{definition of } \sqcap \text{ and isotony } \}
$$
\n
$$
\top \cdot (\top \lfloor x) \leq \top \lfloor x
$$
\n
$$
\Leftrightarrow \quad \{\text{idempotence of } \top \}
$$
\n
$$
\top \cdot (\top \lfloor x) \leq (\top \cdot \top) \lfloor x
$$
\n
$$
\Leftrightarrow \quad \{\text{Euclid } \}
$$
\n
$$
\text{TRUE} \, .
$$

11 Totality and Local Composition

Motivated by the previous section we define

$$
x \in
$$
LLC $\stackrel{\text{def}}{\Leftrightarrow} 0/x \leq \top \cdot \neg \ulcorner x$.

So LLC is the set of elements x that satisfy $\top | x = \top | \tau x$. We have chosen the above formulation, since it its handy for the proofs to come.

Moreover, we introduce the set of left-total elements by

$$
x \in \text{LT} \stackrel{\text{def}}{\Leftrightarrow} \forall y : y \cdot x = 0 \Rightarrow y = 0.
$$

This is a relaxation of the property of overall indivisibility of 0.

Law 11.1 $x \in \text{LT} \Leftrightarrow 0/x = 0$.

Proof:
\n
$$
\forall y : y \cdot x = 0 \Rightarrow y = 0
$$
\n
$$
\Leftrightarrow \{ \text{ leastness of } 0 \}
$$
\n
$$
\forall y : y \cdot x \le 0 \Rightarrow y \le 0
$$
\n
$$
\Leftrightarrow \{ \text{ by } (\text{GC}) \}
$$
\n
$$
\forall y : y \le 0 \text{ as } y \le 0
$$
\n
$$
\Leftrightarrow \{ \text{ indirect inequality } \}
$$
\n
$$
0 \text{ as } y \le 0
$$
\n
$$
\Leftrightarrow \{ \text{ leastness of } 0 \}
$$
\n
$$
0 \text{ as } y \le 0
$$

By this law, $0/x$ is a good measure of the "left-definedness" of x: the smaller $0/x$, the more left-defined is x. This fits well with the law $0/x \Box 1 = \neg \Box x$ which shows that $\neg \Box x$ is a corresponding measure of left-definedness of x at the level of tests.

Law 11.2 LT \subseteq LLC. Proof: Immediate from the definition of LLC and Law [11.1.](#page-2-1)

Law 11.3 $0 \in LT \Leftrightarrow 0 = T$. Proof: Immediate from Law [11.1](#page-2-1) and Law [3.5.](#page-5-2)

Law 11.4 $0 \in$ LLC.

Proof: Immediate from the definition of LLC, Law [3.5,](#page-5-2) $\bar{0} = 0$ and Boolean algebra.

Law 11.5 $x \in \text{LT} \Rightarrow \tau x = 1$.

Proof:
\n
$$
= \begin{cases}\n\text{by Law 9.9 }\end{cases}
$$
\n
$$
= \begin{cases}\n0/x \sqcap 1 \\
\text{by Law 11.1 }\end{cases}
$$
\n
$$
= \begin{cases}\n\text{by Law 11.1 }\end{cases}
$$
\n
$$
= \begin{cases}\n\text{1attice algebra }\end{cases}
$$
\n
$$
= \begin{cases}\n0 \text{ .}\n\end{cases}
$$

Let now K be the set of elements of the underlying quantale. We call the quantale *left-total* iff $K = LT \cup \{0\}$.

Law 11.6 $K = LT \cup \{0\} \Rightarrow K = LLC$. Proof: Immediate by Law [11.2](#page-3-1) and Law [11.4.](#page-4-1)

In other words, every total algebra satisfies left-locality of composition.

Law 11.7 $K = LT \cup \{0\} \land p \in \{0, 1\}.$ *Proof:* Follows from Law [11.5](#page-5-2) and τ = 0.

In other words, a total algebra can only have a trivial subidentity structure.

For these last two laws there are also proofs without the use of residuals or detachment; however, they are a lot more cumbersome.

Acknowledgement: I am grateful to Peter Höfner for helpful discussions and remarks, notably for some simplifications of the proofs.

References

- 1. G. Birkhoff: Lattice Theory. Colloquium Publications, vol. 25, 3rd edition. American Mathematical Society 1967 (Reprint 1984)
- 2. T. Blyth, M. Janowitz: Residuation theory. Pergamon Press 1972
- 3. J. Conway: Regular algebra and finite machines. Chapman&Hall 1971
- 4. J. Desharnais, B. Möller: Characterizing determinacy in Kleene algebras. Information Sciences 139, 253–273 (2001)
- 5. J. Desharnais, B. Möller, G. Struth: Kleene algebra with domain. Technical Report 2003-07, Universität Augsburg, Institut für Informatik, June 2003. Revised version to appear in ACM Transactions on Computational Logic
- 6. B. Jónsson, A.Tarski: Boolean algebras with operators, Part I. American Journal of Mathematics 73, 891–939 (1951)
- 7. B. Möller: Typed Kleene algebras. Universität Augsburg, Institut für Informatik, Tech. Rep. 1999-08
- 8. C. Mulvey: &. Rend. Circ. Math. Palermo 2, 99–104 (1986)