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Residuals and Detachments

Bernhard Moller

Institut fiir Informatik, Universitiat Augsburg, D-86135 Augsburg, Germany

Abstract. We give a compendium of algebraic calculation rules for the
operations of residuation and detachment in semirings.

Introduction

Residuals [1,2] and detachments have many useful applications. This
report serves as a compendium of laws for these operations, many of
which are known from early residuation theory. However, there is also
some new material relating residuals with tests and (pre)domain, in
particular, a characterisation of locality of composition [7] without
recourse to the domain operation.

2 Definitions and Proof Principles

Definition 2.1 1. A structure (S, <,0,T,-, 1) is called a left (right)

quantale if (S, <,0,T) is a complete lattice with least element 0
and greatest element T such that (S,-,1) is a monoid and - pre-
serves arbitrary suprema in its left (right) argument. The supre-
mum of elements x and y is denoted by x + y. Any left (right)
quantale satisfies 0-z =0and (z4+y)-z2=2x-2+y-2(x-0=0
and z- (y+2) =z-y+x-z). S is called a quantale [3] if it is both
a left and right quantale. Quantales have been called standard
Kleene algebras in [3].

A (left or right) quantale is called Boolean if its underlying lattice
is a completely distributive Boolean algebra.

. In a left quantale, the left residual and right detachment opera-

tions are defined as usual:

def def

z<zly & z-y<uw, oy = T/y . (GC)



By these definitions, the function Az.z/y is the upper adjoint
and the function Az .z -y the lower adjoint of a Galois connection.

Symmetric definitions and laws apply to the right residual \ and
left detachment | in a right quantale.

A useful tool for working with elements of a poset are the rules
of indirect inequality:

r<y<e Vz:z<z = 2<y),
r<y<e Vz:iy<z=uzx<z2).

Moreover, we have the rules of indirect equality:
r=y & Vz:z<zr e 2<y) & Vz:z<zey<z2).
As special cases of this, we get

r=T & (Vz:2<z < TRUE) ,
r=0 & (Vz:2<z < TRUE),

A related principle is provided by the universal characterisations of
infima and suprema:

y<MNXNVzeX:y<z),
X <y(VzeX:z<y). (Inf/Sup)
We will use all these rules tacitly in the remainder.

Definition 2.2 1. The dual f° of an endofunction f on a Boolean
algebra is defined by

def 7=

filx) = f@).

2. Two functions f, g between Boolean algebras are called conju-
gate [0] if they satisfy

f) <7 & gly) <T. (*)

By straightforward Boolean algebra, the property that f and g
are conjugate is equivalent to the Galois connection

flx) <y & < g(®y) .



Lemma 2.3 Assume that f,g are conjugate.

1. f(9(y) <7.
2. g(f(z)) <=.

3. f and g preserve all suprema and hence are isotone and strict.

Proof. 1. Set x = g(y) in (x).

2. Set y = f(x) in (x).

3. By the above remark, both f and g are lower adjoints in Galois
connections.

Lemma 2.4 (Modularity; Dedekind) For conjugate f and g,
fl@)y < f(zng(y)) -

Proof. f(z)My
= { Boolean algebra [}

f((xmg(y)) U (zMgy) Ny
= { f preserves suprema [}

(fl@Mg(y) L f(zNgly) Ny
< { definition of M and isotony of f [}

(f(xMg(y) U flg(y) Ny
< { by Lemma 2.3.1 [}

(fzMgly))Uy) Ny
= {l Boolean algebra [}

fxMg(y)) Ny
< { definition of M [}

flxmg(y)) -

As our final proof tool in Boolean algebras we mention

rMNy<ze r<ylUz. (Shunting)



3 Laws for Residuals

Law 3.1 (Left-Conjunctivity) (MX)/y =T1(X/y).
Proof: Upper adjoints preserve all infima.

Law 3.2 T/y=T.
Proof: Set X = () in the previous law.

Law 3.3 u<v = u/y <wv/y.
Proof: Immediate from left-conjunctivity.

Law 3.4 (Right-Antidisjunctivity) «/(UY) =11(z/Y).
Proof: z<z/(UY)
& Aby (GO ]
z-UY <z
& { disjunctivity of - [}
U(z-Y)<uz
< { lattice algebra J}
VyeY:z-y<z
< Aby (GO ]
VyeY:z<uz/y
& { lattice algebra J}
z<Mz/Y .

Law 3.5 z/0=TT.
Proof: Set Y = () in the previous law.

Law 3.6 u <v = x/u > x/v.
Proof: Immediate from right-antidisjunctivity.

Law 3.7 1 < x/x.
Proof: Immediate from (GC) and neutrality of 1.
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Law 3.8 (z/y) -y < .
Proof: Set z = x/y in (GC).

Law 3.9 (z/y) - y=ov < Jz:x=2-y.

Proof: The implication (=) is trivial. For (<) assume z-y = x. Then
z -y < x and hence by (GC) we get z < x/y. Since also x < z -y we
obtain from this by isotony x < (z/y) - y. The reverse inequality is
given by Law 3.8.

Law 3.10 (z/z) -z = x.
Proof: Use Law 3.9 and set x =y and z = 1.

Law 3.11 z/1 = z.
Proof: Use Law 3.9 and set y = 1 and z = .

Law 3.12 (0/y) -y = 0.
Proof: For (<) set x =0 in Law 3.8. (>) is trivial.

Law 3.13 z/(y-2) = (x/2)/y.
Proof: u<z/(y-2)
& {by (GO}
u-y-z<x
& {by (GO)
u-y<ax/z
< A{lby (GO}
u<(x/2)/y .

Law 3.14 (“Euclid” for Residual) z - (y/2) < (z-y)/=.
Proof: x-(y/z) < (x-y)/z
& { by (GO) [
v-(y/z)-z<x-y
<  { by Law 3.8 and isotony [}
TRUE .



Law 3.15 = < (z-y)/y.
Proof: Immediate by (GC) and reflexivity of <.

Law 3.16 (z-y)/y=2 < Jz:2=2z/y.
Proof: (=) is trivial. For (<) assume = = z/y. Then

(z-y)/y
= { assumption [}

((z/y)-9)/y
< {{ by Law 3.8 and left-isotony of / [}

2y
= { assumption [}

X

The reverse inequality is given by Law 3.15.

Law 3.17 (T -y)/y=T.
Proof: For (>) set x = T in Law 3.15. (<) is trivial.

Law 3.18 -y = ((z-y)/y) - v.
Proof: By GC and standard Galois theory.

Law 3.19 z/y = ((z/y) - y)/y-
Proof: By GC and standard Galois theory.

Law 3.20 1/x <y/(x-y).
Proof: 1/x
< { by Law 3.7 and left-isotony of / [}

(v/y)/z
=  {{ by Law 3.13 |}

y/(v-y) .



Law 3.21 (z/y) - (y/2) < z/=z.
Proof: (@/y)-(y/z) < w/z
& {by (GO)
(@/y)-(y/z)-z2<=x
<  { by Law 3.8 and isotony of - [}
(x/y)-y <
<  { by Law 38 ]}
TRUE .

Law 3.22 x/x is a preorder.
Proof: Immediate from Law 3.7 and Law 3.21.

Law 3.23 z/y < (z/2)/(y/2).
Proof:  u< (2/2)/(y/2)
& {by (GO) [
u-(y/2) <wfz
& {by (GO}
u-(y/z)-z <
<  { by Law 3.8 and isotony [}
u-y <z
& {lby (GC) |
u<z/y.

4 Interaction Between Residuals

Law 4.1 (z\y)/z = x\(y/2).
Proof: u< (z\y)/z
& by (GC) [
u-z<zx\y



< {by (GO}
r-u-2<y
< Al by (GO) [
r-u<y/z
& { by (GO}
u<az\(y/z) .

5 Laws for Detachments

Law 5.1 (Exchange; Schréoder) z -y <z < Z|y <7.
Proof: r-y<z
& {by (GO) ]
x < zfy
< { Boolean algebra [}
2fy<T
< { Boolean algebra and definition | [}
Zly<T.

By this law the functions Az .z -y and Az .z| y are conjugates:

Law 5.2 z-yMz=0 < z|yMNaz =0.
Proof: Immediate from exchange by shunting (substitute z for z).

Law 5.3 (Dedekind)

xNy-z2<(z|2zMy) -z and zNy|z < (x-zMy)|z.
Proof: Set f(z) 4.z and g(2) o a| z in Lemma 2.4.

Law 5.4 (Left-Disjunctivity) (LX) y =U(X|y).
Proof: Conjugates preserve suprema (Lemma 2.3.3).

Law 5.5 0|y = 0.
Proof: Set X = () in the previous law.
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Law 5.6 u <v = ul|y <wvlv.
Proof: Immediate from left-disjunctivity.

Law 5.7 (Right-Disjunctivity) «|(LY) =U(z| Y).
Proof: z[(UY)
= { definition [}
NG
= {{Law 34}
nz/Y
=  { de Morgan [}
Uz/Y
= { definition [}
Uz|Y .

Law 5.8 z[ 0 =0.
Proof: Set Y = () in the previous law.

Law 5.9 u <v = z|u <z|wv.
Proof: Immediate from right-disjunctivity.

Law 5.10 z| 1 = z.
Proof: z[1<u
= { exchange and neutrality of 1 [}
u<zT
= { shunting [}

r<u.

Law 5.11 T[T =T.
Proof: Immediate from the previous law, 1 < T and isotony.



Law 5.12 z|(y - z) = (z]| 2)| v

Proof: z|(y-2)

= { definition [}
T/(y - 2)

=  { by Law 3.13 |}

(T/2)/y

= { involution [}
(T/2)/y

= { definitions [}

(@[ 2)y -

6 Interaction Between Detachments

Law 6.1 (z |y)| z =z [(y] 2).

Proof: (zJy) 2
= { definitions [}

2\J/z
= { involution [}

(2\y)/2
=  {{by Law 4.1 |}

2\(y/2)

= { involution [}
2\y/z

= { definitions [}

z J(yl2) -

7 Residuals and Detachment in Particular

Quantales

For a completely distributive Boolean algebra (M, <), the structure

def

B(M) = (M,<,0,T,M,T) is a Boolean quantale.
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Law 7.1 In B(M) one has z/y =y — =.
Proof: z<zx/y
&  {lby (GC) |
2Ny <z
< { shunting [}
z<yUxz.

Law 7.2 In B(M) one has z|y =z My.
Proof: x|y
= { definition [}

z/y
= { previous law [}

yUzx
=  { de Morgan [}
zlly .

Dually, (M,>,T,0,U,0) is again a Boolean quantale with anal-
ogous laws.

8 Interaction with Subidentities

In this section we deal with subidentities p < 1 in a Boolean quantale

and their relative complements —p def p 1. As auxiliary properties
we note the complement rules

p-T=-p-T, T-p=T-=p, (CR)
and the restriction law
p-x=xMp-T (RE)

(see e.g. [1]). In the remainder we assume p,q < 1.
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Law 8.1 z/p=xz+ T - —p.
Proof: z<uz/p
<  {by (GO)}
z-p<zx
< { by (RE) }
x0T -p<uw
< { shunting [}
z<T-p+zx
<  {by(CR)]}
z<T-—p+x.

Law 8.2 0/p=T - —p.
Proof: Set x = 0 in the previous law.

Law 8.3 z/p=x+0/p.
Proof: Immediate from the previous two laws.

Law 8.4 z-p=2xM0/-p.

Proof: x-p
= { by (RE) }
xT-p
= { by Law 8.2 |}
xM0/—p.

Law 8.5 z|[p=x-p.
Proof: x| p
= { definition [}
T/p
=  {{ by Law 8.1 |}
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T

= { de Morgan [}
e T -—p

= {by (CR) |
xMT-p

= {by RE) ]}

T-p.

9 Interaction with Predomain and Precodomain

Definition 9.1 The predomain operation in a Boolean left quantale
is defined by the following Galois connection [7,5]:

"a<p&sa<lp-T.

It is called domain operation if additionally it satisfies the axiom of
left locality of composition [7]

"(a-b) ="(a-"D) .

The (pre)codomain operation in a Boolean right quantale is defined
symmetrically.

This is well defined, since one can show that - preserves arbitrary
infima of subidentities [1].

Law 9.2 "(p-a) =p- "a.
Proof: p-Ta<gq
& {by (GO)
"o <p\q
< { definition of domain [}

a<(p\g)- T
< { dual of Law 8.1 [}
a<(g+-p-T)-T
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< { distributivity and idempotence of T [}
a<qg-T+-p-T
< { dual of Law 8.1 [}
a<p\(g-T)
& {by (GO) ]
pra<gq-T
& { definition of domain J}
p-a)<q.

Law 9.3 (z|y) < "z.

Proof:

(zly) <q

& { definition of domain [}
rly<q-T

< { exchange |}
¢ T-y<w

&  A{by(CR) }
-q-T-y<=x

< {by Ty <T and isotony [}
-q- T <=Z

< { by shunting and (CR) [}
r<q-T

< { definition of domain [}
r<gq.

Law 94 "z <p & x=p- .

Proof:

rx S p

& { definition of domain [}
x<p-T

< { lattice algebra [}
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r=xMp-T
& by RE}

r=p-x.

Law 9.5 'z <p & z<p-x.
Proof: By p <1 the inclusion p - x < x of the previous law is trivial.

Law 9.6 'z <p & —p-z2=0.
Proof: v <p
< { previous law [}
r<p-x
& { shunting [}
xMp-x=0
< {by (CR) }
zMN(—p-z+7)=0
<  { —p-z < x and Boolean algebra [}
p-x=0.

Law 9.7 Tz = x| 2 M 1.
Proof: rlzM1<p
< { shunting [}
vz <1Up
< { definition of —p and Boolean algebra [}
z|x <=p
< { exchange |}
p-x<T
< { Boolean algebra [}
-p-xNz=0
< { by p <1 and lattice algebra [}
-p-x=0
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<  { by Law 9.6 }
vt <p.
The next law provides a calculationally more pleasing expression

for the domain, since the variable x is not repeated on the right hand
side.

Law 9.8 "z = Tz M 1.

Proof: v <p

<  { by Law 9.6 |}
—p-xz=0

& {by (GO) ]
-p<0/x

< { Boolean algebra [}
0/x <=p

< { definition and Boolean algebra [}
Tlz<p+1

< { shunting [}
TlzN1<p.

Law 9.9 ="z =0/x M 1.
Proof: —Tx
= { definition [}
Tl
= { previous law [}
AN
= { de Morgan [}
(Tlz+T)N1
=  { Boolean algebra [}
Tlzn1
= {| definition and Boolean algebra [}
0/xm1.
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Finally, using the dual of Law 8.4, we can give a different form
. . def
of the overwrite operation z |y = =+ =z - y.

Law 9.10 z |y = (v +y) N z\z.
Proof: x|y
= { definition [}
x4+ -Tx-y
=  {{ by Law 84 |}
z+ (y M 2\0)
= { distributivity }
(x +y) M (x+"2\0)
=  { by Law 8.3 |}
(x+y)NTz\z .

10 About Locality of Composition

The aim of this section is to give a characterisation of locality of
composition without using the domain operation.

We first show

Lemma 10.1 A Boolean left quantale satisfies left-locality of com-
position iff for all x

Tle=T|x.
Proof. (=)
Tlz<y
< { exchange [}
y-x <0
< { strictness of predomain [}
"W-xz) <0
< { left-locality of composition [}
'_(g '_:L’) <0

< { strictness of predomain [}
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y-Txr <0
< { exchange |}
Tz <y.
(<) By the defining Galois connection for predomain, the lattice of
subidentities is isomorphic to the lattice of ideals {p- T |p < 1}. So
to show "(a-b) = "(a- ") it suffices to show T -T(a-b) =T -(a- D).
By Law 8.5 this is equivalent to T | (a-b) = T[(a - D).
T|"(a- )
= { assumption [}
T|(a-"D)
=  { by Law 5.12 |}
(TL0)[a
= { assumption [}
(TLO)[a
=  { by Law 5.12 |}
T|(a-b)
= { assumption [}
T|a-b) .
Corollary 10.2 A Boolean left quantale has left locality composition

iff for all x
0/x=0/"z .

Next we observe that, even without left locality of composition,
we have

Law 10.3 Tz < T -z,
Proof: Tla<T -z
< { exchange [}
T-Tz-2<0
< {by(CR)}
T.-=Tz-2<0
< { domain law [}
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T-0<50
& | strictness |}
TRUE .

Corollary 10.4 A Boolean left quantale has left locality of compo-
sition iff for all x

T-2<T|lz.
Dually, we have

Corollary 10.5 A Boolean left quantale has left locality of compo-
sition iff for all x

0/x<T- -—"x.
With the expressions for predomain and its negation we get

Corollary 10.6 The following statements are equivalent:

1. A Boolean left quantale satisfies left-locality of composition.
2.¥z:T-(T|zN1)<T|x.
3. Vx:0/x<T-(0/xm1).

This admits a simple proof that Euclid’s law

z-(ylz) < (z-y)lz
implies left-locality of composition:

T-(Tlzn1)<Tlx
< { definition of M and isotony [}
T-(T|x)<T|=
< { idempotence of T [}
T (Tla)<(T-T)|x
< { Euclid }
TRUE .
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11 Totality and Local Composition

Motivated by the previous section we define

xGLLCgO/xST-—"—x.

So LLC is the set of elements = that satisfy T|x = T|"z. We have
chosen the above formulation, since it its handy for the proofs to
come.

Moreover, we introduce the set of left-total elements by

xELTd@ery:y~:z::0:>y:0.

This is a relaxation of the property of overall indivisibility of 0.

Law 11.1 z € LT < 0/z =0.
Proof: Vy:y-x2=0=y=0
< { leastness of 0 [}
Vy:y-z2<0=y<0
& { by (GO) [
Vy:y<0/z = y<0
< { indirect inequality [}
0/z <0
& { leastness of 0 [}
0/z=0.

By this law, 0/z is a good measure of the “left-definedness” of
x: the smaller 0/x, the more left-defined is x. This fits well with the
law 0/2 M1 = ="z which shows that ="z is a corresponding measure
of left-definedness of = at the level of tests.

Law 11.2 LT C LLC.
Proof: Immediate from the definition of LLC and Law 11.1.

Law 11.3 0 e LT & 0=TT.
Proof: Immediate from Law 11.1 and Law 3.5.
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Law 11.4 0 € LLC.
Proof: Immediate from the definition of LLC, Law 3.5, "0 = 0 and
Boolean algebra.

Law 11.5 2 € LT = "z = 1.

Proof: -z
= { by Law 9.9 |}
0/xmM1
=  {{ by Law 11.1 }}
0m1
= { lattice algebra [}

Let now K be the set of elements of the underlying quantale. We
call the quantale left-total iff K = LT U {0}.

Law 11.6 K =LTU{0} = K =LLC.
Proof: Immediate by Law 11.2 and Law 11.4.

In other words, every total algebra satisfies left-locality of com-
position.

Law 11.7 K =LTU{0} A p € {0,1}.
Proof: Follows from Law 11.5 and "0 = 0.

In other words, a total algebra can only have a trivial subidentity
structure.

For these last two laws there are also proofs without the use of
residuals or detachment; however, they are a lot more cumbersome.

Acknowledgement: I am grateful to Peter Hofner for helpful dis-
cussions and remarks, notably for some simplifications of the proofs.
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