
Universität Augsburg

ROMUNGSHO0
The Linear Algebra of UTP

Bernhard Möller

Report 2005-14 September 2005

Institut für Informatik

D-86135 Augsburg

Copyright c© Bernhard Möller
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

The Linear Algebra of UTP

Bernhard Möller

Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany

moeller@informatik.uni-augsburg.de

Abstract. We show that the well-known algebra of matrices over semir-

ings can be used to reason conveniently about predicates and designs as

used in the Unifying Theories of Programming of Hoare and He.

1 A Matrix View of UTP

The Unifying Theories of Programming (UTP) developed in [1] model the termi-
nation behaviour of programs using two special variables ok and ok ′ that express
whether a program has been started and has terminated, respectively. Programs
are identified with predicates relating the initial values v of variables with their
final values v′; moreover, ok and ok ′ may occur freely in predicates.

However, the set of all such predicates is too general for a number of reasons
not to be discussed here. Therefore, Hoare and He introduce a special class of
predicates, called designs, of the form

P ⊢ Q
def
⇔ ok ∧ P ⇒ ok ′ ∧ Q ,

where ok and ok ′ are not allowed to occur in P or Q. The informal meaning is:
if the design has been started and satisfies the precondition satisfying P it will
eventually terminate and satisfy the postcondition Q.

The aim of the present paper is to present a calculationally more workable
form of the theory of predicates and designs that does no longer mention the
“unobservable” variables ok and ok ′; in fact it is even completely variable-free
and hence, in particular, does not need to work with substitutions.

Because of the special role of ok and ok ′ we can first look at the possible
values of these two variables and for each combination obtain a residual predicate
depending only on the proper program variables. To emphasize this view we use
the notation R(ok , ok ′). The basic idea of our calculus is to record the residual
predicates defined by R in a 2×2-matrix. The rows are indexed by the values of
ok and the columns by those of ok ′; the entries are predicates in which ok and
ok ′ do not occur.

This may seem as a complication at first. But let us look at sequential com-
position of predicates, defined as

R ; S
def
⇔ ∃ ok0, v0 : R[ok0, v0/ok

′, v′] ∧ S[ok0, v0/ok , v] ,

where v stands for the list of all proper program variables. In the matrix view
this works out to

(R ; S)(ok , ok ′)
def
⇔ ∃ ok0 : ∃ v0 : R(ok , ok0)[v0/v′] ∧ S(ok0, ok

′)[v0/v]
⇔ ∃ ok0 : R(ok , ok0) ; S(ok0, ok

′) .

Now, as in graph algorithms such as Warshall’s, we can view ∃ ok0 as summation
over all possible values of ok0 and ∧ as multiplication. With this interpretation
the above formula gives just the entries for the product of the matrices R and
S, i.e., R ; S = R · S.

The advantage of this view is that composition can now be treated in a
completely component-free manner and existential quantification and substitu-
tion disappear. Moreover, the pseudo-variables ok and ok ′ need no longer be
mentioned explicitly at all.

Moreover, also the other Boolean operations are supported by the matrix
algebra: negation, conjunction and disjunction all are defined componentwise.
With the usual definition

R ⇒ S
def
⇔ R ∨ S = S

we see that also implication works componentwise.
Let us now see what designs look like in this view. The first and second

matrix rows contain the entries for ok = false and ok = true, respectively, and
the analogous order is used for the rows. Then

P ⊢ Q =

(

true true

P P ∨ Q

)

. (1)

If for some reason we want to talk about ok and ok ′ explicitly, we can represent
them as

ok =

(

false false
true true

)

, ok ′ =

(

false true
false true

)

,

while a predicate P not depending on ok and ok ′ corresponds to the constant
matrix

(

P P
P P

)

.

As a first calculation, let us derive the above representation of designs:

ok ∧ P ⇒ ok ′ ∧ Q

= ok ∨ P ∨ (ok ′ ∧ Q)

=

(

false false
true true

)

∨

(

P P
P P

)

∨ (

(

false true
false true

)

∧

(

Q Q
Q Q

)

)

=

(

true true
false false

)

∨

(

P P
P P

)

∨ (

(

false true
false true

)

∧

(

Q Q
Q Q

)

)

=

(

true true
P P

)

∨

(

false Q
false Q

)

=

(

true true
P P ∨ Q

)

2

We defer further calculations till we obtain a more compact notation in the
next section.

2 Abstracting to Semirings

Again, as in certain graph algorithms, it is useful to base the treatment not
on the concrete model of matrices over predicates but on matrices over semir-
ings. Semirings provide the basic operations of choice and sequential composition
under the notations + and · as well as a basic set of algebraic laws for these.

A semiring is a structure (S, +, 0, ·, 1) such that

– (S, +, 0) is a commutative monoid,
– (S, ·, 1) is a monoid,
– operation · distributes over + in both arguments
– and 0 is a left and right annihilator, i.e., 0 · x = 0 = x · 0.

A semiring is idempotent if + is idempotent, i.e., x + x = x. In this case the

relation a ≤ b
def
⇔ a + b = b is a partial order, called the natural order on S. It

has 0 as its least element. Moreover, + and · are isotone w.r.t. ≤ and x + y is
the least upper bound or join of x and y w.r.t. ≤.

An idempotent semiring is Boolean if it also has a greatest lower-bound
or meet operation ⊓, such that + and ⊓ distribute over each other, and an
operation that satisfies de Morgan’s laws as well as x ⊓ x = 0 and x + x = ⊤
where ⊤ = 0 is the greatest element. In other words, a Boolean semiring is a
Boolean algebra with a sequential composition operation. To save parentheses
we use the convention that ⊓ binds tighter than + but equally tight as · does.

In the previous section we have already used the Boolean semiring of predi-
cates with ; as composition. Another important semiring is REL(M), the algebra
of binary relations under union and composition over a set M , of which the pred-
icates form a special instance.

Many other examples exist but will not be used here except for the ma-
trix semiring. Let (S, +, 0, ·, 1) be a semiring and M be a finite set. Then
the set SM×M of functions from M × M to S can be viewed as the set of
|M | × |M | matrices with indices in M and elements in S. Consider the struc-
ture MAT(M, S) = (SM×M , +,0, ·,1) where + and · are the usual operations of
matrix addition and multiplication, and 0 and 1 are the zero and unit matrices.
Then MAT(M, S) again forms a semiring, the matrix semiring over M and S.
MAT(M, S) is idempotent if S is. In this case, the natural order is the componen-
twise order. If S is a Boolean semiring, so is MAT(M, S), with componentwise
meet.

Taking S to be the two-element Boolean semiring of truth values yields the
usual Boolean matrix representation of REL(M) as MAT(M, S) in terms of
adjacency matrices.

For abstractly representing predicates that depend on two Boolean variables
ok and ok ′ we use elements from a Boolean semiring S as matrix entries and
the elements 0 and ⊤ as indices, standing for false and true, respectively. The

3

element 1 represents the predicate skip
def
⇔ v = v′. We will use the identifiers

false , skip and true instead of 0, 1 and ⊤ when appropriate.
Finally we note that

⊤ · ⊤ = ⊤ . (2)

The direction (≤) is trivial, since ⊤ is the greatest element. The converse direc-
tion follows by neutrality and isotonicity:

⊤ = ⊤ · 1 ≤ ⊤ · ⊤ .

3 The Algebra of Designs

Generalizing the definition in (1) we set for elements a, b ∈ S of a Boolean
semiring S

a ⊢ b =

(

⊤ ⊤
a a + b

)

. (3)

We want to calculate the behaviour of designs under + and ·.
First,

(a ⊢ b) + (c ⊢ d)

=

(

⊤ ⊤
a a + b

)

+

(

⊤ ⊤
c c + d

)

=

(

⊤ ⊤
a + c a + b + c + d

)

=

(

⊤ ⊤

(a ⊓ c) (a ⊓ c) + b + d

)

= (a ⊓ c) ⊢ (b + d) .

In particular, within the set of designs ⊤ ⊢ 0 = ok is a neutral element w.r.t. +.
Moreover, we obtain

(a ⊢ b) ≤ (c ⊢ d) ⇔ (a ⊢ b) + (c ⊢ d) = (c ⊢ d) ⇔ c ≤ a ∧ b ⊓ c ≤ d

and

(a ⊢ b) = (c ⊢ d) ⇔ a = c ∧ a + b = c + d ⇔ a = c ∧ a ⊓ b = c ⊓ d . (4)

For composition we obtain, using (2),

(a ⊢ b) ; (c ⊢ d)

=

(

⊤ ⊤
a a + b

)

·

(

⊤ ⊤
c c + d

)

=

(

⊤ · ⊤ + ⊤ · c ⊤ · ⊤ + ⊤ · (c + d)
a · ⊤ + (a + b) · c a · ⊤ + (a + b) · (c + d)

)

=

(

⊤ ⊤
a · ⊤ + a · c + b · c a · ⊤ + a · (c + d) + b · c + b · d

)

=

(

⊤ ⊤
a · ⊤ + b · c a · ⊤ + b · c + b · d

)

4

=

(

⊤ ⊤

a · ⊤ ⊓ b · c a · ⊤ ⊓ b · c + b · d

)

= (a · ⊤ ⊓ b · c) ⊢ (b · d) .

In particular, within the set of designs both

ok = ⊤ ⊢ 0 and true

are left zeros and
II

def
= ⊤ ⊢ 1

is a left-neutral element w.r.t. composition.
Let us finally look at the conditional. For elements a, p, b ∈ S of a Boolean

semiring S we define

a ⊳ p ⊲ b
def
= p ⊓ a + p ⊓ b .

UTP restricts p to be a condition, i.e., a predicate that dos not depend on
output variables. We will discuss in a later section how this class of predicates
can be characterized abstractly. The law we are going to derive for conditional
choice between designs does not depend on p being a condition. We will use the
following easy consequence of the definition:

(a ⊳ p ⊲ b) = a ⊳ p ⊲ b . (5)

To ease notation we write just p instead of the constant matrix

(

p p
p p

)

.

Then we calculate

(a ⊢ b) ⊳ p ⊲ c ⊢ d

=

(

p p
p p

)

⊓

(

⊤ ⊤
a a + b

)

+

(

p p
p p

)

⊓

(

⊤ ⊤
c c + d

)

=

(

p p
p ⊓ a p ⊓ (a + b)

)

+

(

p p
p ⊓ c p ⊓ (c + d)

)

=

(

⊤ ⊤
a ⊳ p ⊲ c a ⊳ p ⊲ c + b ⊳ p ⊲ d

)

=

(

⊤ ⊤
a ⊳ p ⊲ c a ⊳ p ⊲ c + b ⊳ p ⊲ d

)

= (a ⊳ p ⊲ c) ⊢ (b ⊳ p ⊲ d)

4 Healthiness Conditions

In [1] the set of all predicates is classified according to certain healthiness con-

ditions. In matrix terminology, designs are characterized by two properties:
(H1) The first row must be constantly ⊤.
(H2) Both rows must be increasing w.r.t ≤. Clearly every design in the sense

of (3) satisfies (H1) and (H2). Conversely, if a ≤ b then
(

⊤ ⊤
a b

)

=

(

⊤ ⊤
a a + b

)

= a ⊢ b .

5

It is straightforward to see that Matrix A satisfies (H1) iff

A = A + ok = A +

(

⊤ ⊤

⊤ ⊤ + 0

)

.

This type of characterization by a fixpoint property is particularly useful if the
underlying Boolean semiring (and hence the matrix semiring over it) is even a
complete lattice, since Tarski’s fixpoint theorem then implies that the set of all
(H1) predicates forms a complete sublattice.

Next we show how the fixpoint characterization of (H2) given in Example
4.1.21(1) of [1] can be derived in a systematic way in our matrix calculus. First
we observe that
(

a b
c d

)

satisfies (H2) ⇔ a+ b = b ∧ c+d = d ⇔

(

a b
c d

)

=

(

a a + b
c c + d

)

.

So if we manage to generate the latter matrix from the original one by an isotone
function defined in terms of the algebra we are done.

In linear algebra this type of transformation is known as a shearing and can
be described by the multiplication

(

a a + b
c c + d

)

=

(

a b
c d

)

·

(

1 1
0 1

)

.

The shearing matrix can be decomposed as follows:
(

1 1
0 1

)

=

(

⊤ ⊤
0 ⊤

)

⊓

(

1 1
1 1

)

= (⊤ ⊢ ⊤) ⊓ 1 .

Therefore we have the following result.

Lemma 4.1 A satisfies (H2) iff A = A · B where

B = (true ⊢ true) ⊓ skip .

This is indeed a fixpoint characterization with isotone generating function,
and so the set of all (H2)-matrices forms a complete lattice (provided the un-
derlying semiring S is complete).

The further healthiness conditions (H3) and (H4) serve to characterize the
designs for which ⊤ ⊢ 0 and ⊤ ⊢ 1 are also a right zero and a right-neutral
element w.r.t. ;, respectively. They are directly given as algebraic conditions:

(H3) A ; II = A.
(H4) A ; true = true.
We only work these out for the case where A is a design. Here it is easier to

work directly with the matrices than going through the composition formula for
designs.

First,

(a ⊢ b) ; II =

(

⊤ ⊤
a a + b

)

·

(

⊤ ⊤
0 1

)

=

(

⊤ ⊤
a · ⊤ a · ⊤ + a + b

)

,

6

so that
a ⊢ b satisfies (H3) ⇔ a · ⊤ = a ⇔ a · ⊤ ≤ a .

This means that a has to be a right ideal (in UTP also known as a condition).
In the semiring REL of relations this is equivalent to a itself being a right ideal,
since by Schröder’s law

a · ⊤ ≤ a ⇔ a · ⊤̆ ≤ a ⇔ a · ⊤ ≤ a .

In general semirings this need not be the case.
Second,

(a ⊢ b) ; true =

(

⊤ ⊤
a a + b

)

·

(

⊤ ⊤
⊤ ⊤

)

=

(

⊤ ⊤
(a + b) · ⊤ (a + b) · ⊤

)

,

so that
a ⊢ b satisfies (H4) ⇔ (a + b) · ⊤ = ⊤ .

5 Conclusion and Outlook

It seems that the matrix calculus is a convenient vehicle for reasoning about
general predicates as well as designs. It remains to be seen whether a similar
approach can be followed when further observation variables are added.

Acknowledgements: I am grateful to W. Guttmann and P. Höfner for helpful
discussions and remarks.

References

1. C.A.R. Hoare, J. He: Unifying theories of programming. Prentice Hall 1998

7

