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Characteristic Crossing Points in Specific Heat Curves of Correlated Systems

D. Vollhardt*

Institut fur Theoretische Physik C, Technische Hochschule Aachen, D-52056 Aachen, Germany
(Received 30 August 1996

Attention is drawn to the observation that in many correlated systems (&4g, heavy
fermion systems, and Hubbard models) the specific heat curves, when plotted for different values
of some thermodynamic variable (e.g., pressure, magnetic field, and interaction), cross almost
precisely at one or two temperatures. A quantitative explanation of this phenomenon, based
on the form and the temperature dependence of the associated generalized susceptibilities, is
presented. [S0031-9007(97)02432-0]

PACS numbers: 71.27.+a, 67.55.Cx, 71.28.+d

In 1959 Breweret al. [1] noticed that the specific heat specific heat of many correlated systems. Furthermore,
curvesC(T, P) of liquid *He measured at different pres- we discuss the origin of this phenomenon.
suresP all intersect at a temperatuf@, = 0.16 K, and To be able to discuss the problem in a sufficiently
that C(T, P) increaseswith increasing pressure below general framework we define a general free energy
T+. Greywall's high-precision measurements of the sped (T, X), where X can be any thermodynamic variable
cific heat at constant volunié provided striking evidence (here we choose intensive variables), e.g., pres&Rye
for the sharpness of the crossing pointfat = 160 mK  magnetic field(B), and on-site interactiofl/). The con-
[see Fig. 1(a)] [2]. At this temperature the specific heajugate extensive variable associated withs (T, X) =
is obviously independent of volume or pressure. It was-d®(7T,X)/0X. Pairs of variables(X,¢) are, for
unclear, however, whether special significance should bexample, (P, —V), (B,M), and (U,—D), with M as
attached to this finding [2,3]. Recently, Georges andhe magnetic moment, anB as the number of doubly
Krauth [4] observed the same conspicuous crossing pheccupied sites in Hubbard models. With the entropy
nomenon in quite a different system, namely, in the paras(7T,X) = —a® /9T one obtains the Maxwell relation
magnetic phase of the H.ub.be}rq mo_del, the simplest model aS(T.X)  9&(T,X)
of correlated electrons, in infinite dimensions. For small = . ()
to intermediate values of the local interactibnthe spe- X or
cific heat curve< (T, U), calculated by iterated perturba- A search of the literature reveals that there exists quite a
tion theory, were found to intersect almost at the sam&umber of systems, both in theory and experiment, where
temperaturel’; = 0.59r*, wherer* is the scaled hopping the specific heat curveS(7, X) = T9S(T, X)/dT versus
amplitude of the electrons (Fig. 2) [5]. Clearly the exis-7 When plotted for different, not too large valuesXfin-
tence of these peculiar points of intersection calls for afférsect at one or even two well-defined, nonzero tempera-
explanation. tures. Apart from normal-liquidHe it can be observed

In this Letter we illustrate that crossing points such agn heavy fermion systems with and without Fermi liquid
the ones described above can actually be observed in the

0.6

o

R X
« 3 0.08K =
S / 010K £
2 )
& / 012K ] ©
& C—
(&

L 016K

|——————————— 020K

[ 025K ] 0.0 . .

T 30K 0.0 0.5 1.0 1.5
5 10 15 20 25 30 T

TK P (bar) N ]
FIG. 2. Specific healC(T, U) of the paramagnetic phase of

FIG. 1. Specific heatC(T,P) of *He [2]: (a) C/T vs T, the Hubbard model i@ = « dimensions calculated by iterated
(b) C/T vs P. perturbation theory [5].
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behavior, for example, in CeA[6] [Fig. 3(a)] and UBg;  proaches a constant faf — . At high temperatures,
[7] upon change of, in UPt_,Pd, [8] and CePtSi_,Ge, T > U,C(T,U) « U/T, i.e., aC/oU > 0. Hence
[9] as x is varied, and in CeGu Au, (0.2 =x =0.5) dC/aU must become negative at intermediate tempera-
when eitherP [10] or B [11] [Fig. 3(b)] is varied. It tures, i.e., the specific heat curves must cross at least at
is also found in EplsSKysAs;, a semimetal with compet- one temperature, for the integral to vanish identically.
ing interactions, upon change & [12]. In particular, We note that this is a genuineorrelation effect origi-
all theoretical models of Fermi and Luttinger liquids in- nating from the existence df’> and higher terms in an
vestigated beyond the low-temperature regime show thiexpansion of the internal energy(T, U), and hence of
feature: the one-dimensionéd = 1) Hubbard model in C(T,U) = dE/aT, in powers ofU.
a magnetic field [13], thd /r Hubbard ind = 1 in the 2. Continuum systeméX = P).—Here Eq. (3) im-
metallic phase when the interactidin is changed [14], plies np = —1 since § approaches the ideal-gas value
and the Hubbard model iéh = < discussed above [4]. for T — . ApparentlydC/dP < 0 at most (especially

To explain the origin of the crossing points we separatéigh) temperatures [15].
the problem into two questions: (i) Why do specific heat In the Fermi liquid phase ofHe [1,2] and in the para-
curves cross at all? (i) How wide is the region where themagnetic phase of the Hubbard model at low temperatures
curves cross? Turning to the first question, we note tha#,13] the entropy is known tincreasewith X(= P, U),

any crossing of specific heat curv€s¢T, X) implies i.e.,0C/dX > 0. At sufficiently lowT, whenS(T,X) =
aC(T,X) _ 7 (X)azf(T,X) _ o 2 C(T,X) = yT, this impliesdy/dX > 0. This may be
0x n(x)_ + oT2 NX)_ - (@ attributed to the excitation of low-energy (spin) degrees

Thus crossing occurs wheré(T,X) versus T has a of fret_edom in the correlated system [16]. Hence, the
turning point. In general the crossing temperatfiréX) specific heat curves will cross at some onv temperature
still depends orX. Only if T, is independenof X for ~ 7+(X). (In °He T practically coincides with the tem-

some range o values do the curves intersect at onePerature above which Fermi liquid theory breaks down

point. Crossing of specific heat curves may be inferred17].) Equation (3) then implies that in the Hubbard
from a sum rule for the change of the entrof{T, X) model the specific heat curves will cross twice altogether

with respect toX in the limit 7 — o (Fig. 2). These two systems only consist of a single
L, dS(T.X) X (™ dT' oC(T',X) species of particles. By contrast, heavy fermion systems
Nx = kg }'Lnoo “oinx E o T ox are basically two-component systems consisting of con-

duction and localized electrons which may hybridize. The

(3)  strength of the hybridization is determined by an am-

1. Lattice models X = U).—Equation (3) implies plitude V4, (P) which increases with pressure. By hy-
ny = 0 for any kind of Hubbard model sincé ap- bridizing, the electrons may gain an eneigyTx, where
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FIG. 3. Specific heat (al’(T, P)/T of CeAl; [6] (for T > 8 K we took the running average of the data points to reduce the
scatter), (b)C(T, B) of CeCusAugs [11].
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Tx(P) = exp(—consy Vi) is a different (“Kondo”) low-
energy scale. BelowWx the specific heat is linear, the
coefficient being given byy(P) « 1/Tx, where now

dy/dP < 0. Hence at low temperatures the specific hea(Nith y (X)) = 97y /oX"
This is also the case at '

decreaseswith pressure [18].
higher temperatures when crystal field excitations [19
or phonons become important. In the interval betwee
these temperatures the specific heat must therdfere
creasewith pressure for the entropy to be conserved. Thi
implies that the specific heat curves will crosdvad tem-
peraturesTy andT’,. This is precisely what is seen in
several heavy fermion systems, e.g., in Cef] [T+ =
5K, T, =17 K; see Fig. 3(a)] and UBe [7] (T+ =
2.5 K, T, = 9 K). Yet another reason for specific heat
curves to cross is the vicinity of a second-order phas
transition where the discontinuity i6(7T, X) is changed
with X as in CeCy-.Au, [11] with X as the magnetic
field.

We now turn to the question concerning the width of
the crossing region. We expar@T, X) in an (asymp-
totic) series inX — X, with X, chosen at convenience,

(:)2
CT,X) = C(T,Xo) + (X — X7 =5
aT? lx,
1 9% 9¢&
+— (X — X)) T— — ., (4
5 ( 0) 9T 0X |x, (4)

where we used Eg. (2). AT+(Xy) Eq.(4) implies
C(T+,X) = C(T+,Xo) [1 + Wx,(X)] where the (relative)
(1)

width of the crossing region|Wy, (X)| = |Ax, (X) +
AE?U)(X) + ...], is determined by the numbers

(n) (X = X0 Ty 9_2 ()
A0 = e xg a2 X X0 ] - G)
with y(T,X) = a"&/ax". For [AY(X)| < 1 the

C(T, X) curves will intersect at a well-defined point. The

heavy-electron liquids we can estimax&])(P) atT.(P)
from the linear specific heat coefficient(P) (a zero
temperature quantity). Using?y™/aT? = vy (P),
we obtain Af&’o)(P) =[(1 -
/Po)" ! /(n + DIIPG "y "D (Py)/y(Po)].  For *He
2] (with Py = 15 bar, Py @ (Py)/y(Py) = 5 X 1072)
we find |W(P)| < 0.03 for 0 = P < 30 bar; i.e., on the
scale of Fig. 1(a) the crossing regionZat = 160 mK is

Indeed essentially confined to a point. Similarly, for the

crossing atf'. = 5 K in CeAl; [6] [with Py = 4.8 kbar,
Piy@(Py)/y(Py) = 0.4] we obtain|W(P)| < 0.2 for P
between0.4-8.2 kbar, implying a rather narrow crossing
region [Fig. 3(a)].

(i) Linear X dependence ofy"): The situation is

%articularly clearcut if ¢ is a linear function ofX,

i.e., £&(T,X) = x(T)X, as in linear-response theory.
Then the crossing condition, Eq. (2), takes the form
d’x(T+)/dT?* = 0, whereT = T.(Xy, = 0). This im-
plies thatAg)") vanishes identically fom = 1. In this
caseall specific heat curves intersect exactly at one point.
The width |[Wy(X)| becomes finite only throughonlin-
ear terms in &(T,X) = y(T)X + 3 xP (DX + ...,
where y"(T) = y")(T,X = 0). The lowest-order con-
tribution to the width is given byAff)(X). For small
enoughX (this depends on the system), i.e., in the lin-
ear regime, the specific heat curves must therefee
essarily cross at a well-defined point. This is seen to
be the case in the specific heat curve&r', B) of the

d = 1 Hubbard model atU = const [13] whereB is
rather small, as well as in CegQu.Au, [12,21] where
the crossing region is only sharp f8r< 3 T [Fig. 3(b)].
The same arguments apply &7, U) of the paramag-
netic phase of Hubbard models [4,14] where we now
choose = D(T,U) = % — D(T, U) at half filling such
that D(T,0) = 0. To a good approximatio® (7T, U) is
linear in U for not too largeU at all temperatures [22].

width is seen to be determined by the curvature (withWe find |W(U)| < 0.05 for U < 2.5t in the d = «©

respect tdl') of the linear(n = 1) and nonlineakn > 1)
susceptibilitiesy (T, X) at T, andX,. There are two
particularly relevant sufficient conditions under which the
A™ are small.

() Weak T dependence of : ForX = P,& = —V
the susceptibilityy) = —aV/aP = k;V is essentially
the isothermal compressibility of the system. In the
strongly correlated, high-density quantum liquidHe
the volume V(T,P) and the change of volume with
pressurey (T, P) depend only very weakly on tem-
perature forall T < 2.5 K [20]. The Maxwell relation
(1) then implies that the curvature of(7, P)/T vs P,
o2[C(T, P)/T]/oP* = 9*xV/aT?, is also small for all
T; Fig. 1(b) C = 0.3 K) shows that this is indeed the
case.

Hubbard model [23].

In Hubbard models the intersection 61T, U)/kg =
f(T/t,U/t) curves is sharp only dtightemperatures. At
low temperatures the generation of low-energy excitations
leads to a renormalized energy scale> f.sf < t. Hence
a perturbation expansion @f(T, U) or C(T, U) to second
order in U will be valid only for a small range ot/
values, implying a wide crossing regiofW (U)| ~ 1, at
low temperatures.

In summary, we showed that the remarkable crossing
of specific heat curve€ (T, X) vs T for different ther-
modynamic variable¥, first observed infHe [2] and the
Hubbard model [4], is not accidental but can be found
in many correlated systems. The width of the crossing

It is the small curvature and its change of sigmegion is found to give explicit information about the tem-

from negative to positive (Fermi gas behavior) togetheperature dependence of the generalized susceptibilities as-

with the change of the slope af(T,P)/T vs P from
positive atT < T+ to negative atl > T, that is the
origin of the pointlike crossing region &.. For3He and

sociated withX. A related observation, that for Hubbard
models the value of the specific heat at the crossing point
is almost universal, will be discussed elsewhere [24].
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