
Universität Augsburg

Lazy Kleene Algebra

Bernhard Möller

Report 2003-17 Dezember 2003

Institut für Informatik
D-86135 Augsburg

Copyright c© Bernhard Möller
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Lazy Kleene Algebra

Bernhard Möller

Institut für Informatik, Universität Augsburg
Universitätsstr. 14, D-86135 Augsburg, Germany

moeller@informatik.uni-augsburg.de

Abstract. We propose a relaxation of Kleene algebra by giving up
strictness and right-distributivity of composition. This allows the sub-
sumption of Dijkstra’s computation calculus, Cohen’s omega algebra
and von Wright’s demonic refinement algebra. Moreover, by adding do-
main and codomain operators we can also incorporate modal operators.
Finally, it is shown that the predicate transformers form lazy Kleene
algebras again, the disjunctive and conjunctive ones even lazy Kleene
algebras with an omega operation.

1 Introduction

Kleene algebra (KAs) provides a convenient and powerful algebraic axiomati-
zation of the basic control constructs composition, choice and iteration. In its
standard version composition is required to distribute over choice in both argu-
ments; also, 0 is required to be both a left and right annihilator. Algebraically
this is captured by the notion of an idempotent semiring or briefly i-semiring.

Models include formal languages under concatenation, relations under stan-
dard composition and sets of graph paths under path concatenation.

The idempotent semiring addition induces a partial order that can be thought
of as the approximation order or as (angelic) refinement. Addition then coincides
with the binary supremum operator, i.e., every semiring is also an upper semilat-
tice. Moreover, 0 is the least element and thus plays the rôle of ⊥ in denotational
semantics.

If the semilattice is even a complete lattice, the least and greatest fixpoint
operators allow definitions of the finite and infinite iteration operators ∗ and ω,
resp. However, to be less restrictive, we do not assume completeness and rather
add, as is customary, ∗ and ω as operators of their own with particular axioms.

The requirement that 0 be an annihilator on both sides of composition makes
the algebra strict. This prohibits a natural treatment of lazy computation sys-
tems in which e.g. infinite sequences of states may occur. Therefore we study a
“one-sided” variant of KAs in which composition is strict in one argument only.
This treatment fits well with systems such as the calculus of finite and infinite
streams which is also used in J. Lukkien’s operational semantics for the guarded
command language [13] or R. Dijkstra’s computation calculus [8]. Inspired by
[8] we get a very handy algebraic characterization of finite and infinite elements
which also appears already in early work on so-called quemirings by Elgot [9]. We

also integrate the theory with Cohen’s ω-algebra [4] and von Wright’s demonic
refinement algebra [18].

There is some choice in what to postulate for the right argument of compo-
sition. Whereas the above-mentioned authors stipulate binary or even general
positive disjunctivity, we investigate how far one gets if only isotonicity is re-
quired. This allows general predicate transformer algebras as models.

Fortunately, our lazy KAs are still powerful enough to admit the incorpo-
ration of domain and codomain operators and hence an algebraic treatment of
modal logic. Of course, the possibility of nontrivial infinite computations leads
to additional terms in the corresponding assertion logic; these terms disappear
when only finite elements are considered.

Hence we obtain a quite lean framework that unites assertion logic with
algebraic reasoning while admitting infinite computations. The axiomatization
is simpler and more general than that of von Karger’s sequential calculus [10].

2 Left Semirings

Definition 2.1 A left (or lazy) semiring, briefly an l-semiring, is a quintuple
(K, +, 0, ·, 1) with the following properties:

1. (K, +, 0) is a commutative monoid.
2. (K, ·, 1) is a monoid.
3. The · operation distributes over + in its left argument and is left-strict:

(a + b) · c = a · c + b · c , 0 · a = 0 .

Definition 2.2 An idempotent left semiring, or briefly IL-semiring is an l-
semiring (K, +, 0, ·, 1) with idempotent addition in which · is right-isotone:

a + a = a ∧ b ≤ c ⇒ a · b ≤ a · c ,

where the natural order ≤ on K is given by a ≤ b
def⇔ a + b = b.

Note that left-isotonicity of · follows from its left-distributivity. Moreover, 0 is
the least element w.r.t. the natural order. The left semiring structure without the
requirement of right-isotonicity is also at the core of process algebra frameworks
(see e.g. [2,3]) where δ (inaction) plays the rôle of 0. Since, however, we will
make essential use of right-isotonicity, only few of our results will carry over to
that setting.

By isotonicity · is universally superdisjunctive and universally subconjunctive
in both arguments; we state these properties for the right argument:

a ·tL ≥ t {a · l : l ∈ L} a ·uL ≤ u {a · l : l ∈ L} .

Analogous properties hold for the left argument.
From this we can conclude a weak form of right distributivity for the left

hand side of inequations:

2

Lemma 2.3 For a, b, c, d ∈ K we have

b + c ≤ d ⇒ a · b + a · c ≤ a · d . (1)

Proof. By isotonicity and superdisjunctivity we get

b + c ≤ d ⇒ a · (b + c) ≤ a · d ⇒ a · b + a · c ≤ a · d .

ut

Definition 2.4 An IL-semiring (K, +, 0, ·, 1) is bounded if K has a greatest
element > w.r.t. the natural order. It is complete if the semilattice (K,≤) is a
complete lattice and · is universally disjunctive in its left argument. Finally, it
is Boolean, if it is complete and (K,≤) is a Boolean algebra.

Now we look at the composition from the other end.

Definition 2.5 For a binary operation · : K × K → K we define its mirror
operation ·̆ : K×K → K by x ·̆y = y ·x. We call (K, +, 0, ·, 1) an (idempotent)
right semiring (briefly (I)R-semiring) if (K, +, 0, ·̆, 1) is an (I)L-semiring. The
notions of a complete and Boolean (I)R-semiring are defined analogously. If
K is both an (I)L-semiring and an (I)R-semiring it is called an (I-)semiring.
The notions of a complete and Boolean (I-)semiring are defined analogously. A
complete I-semiring is also called a standard Kleene algebra (cf. [5]) or a quantale
(cf. [16]).

Note, however, that in (I-)semirings composition is also right-strict; hence
these structures are not very interesting if one wants to model lazy computation
systems. Prominent I-semirings are the algebra of binary relations under rela-
tional composition and the algebra of formal languages under concatenation or
join (fusion product).

3 Particular IL-Semirings

We now introduce our two main models of the notion of IL-semiring. Both of
them are based on finite and infinite strings over an alphabet A. Next to their
classical interpretation as characters, the elements of A may e.g. be thought of
as states in a computation system, or, in connection with graph algorithms, as
graph nodes. Then, as usual, A∗ is the set of all finite words over A; the empty
word is denoted by ε. Moreover, Aω is the set of all infinite words over A. We
set A∞

def= A∗ ∪ Aω. The length of word s is denoted by |s|. By • we denote
concatenation, where s• t

def= s if |s| = ∞. A language over A is a subset of A∞.
As usual, we identify a singleton language with its only element. For language
S ⊆ A∞ we define its infinite and finite parts by

inf S
def= {s ∈ S : |s| = ∞} ,

finS
def= S − inf S .

3

Definition 3.1 The algebra WOR = (P(A∞),∪, ∅, •, ε) is obtained by extend-
ing • to languages in the following way:

S • T
def= inf S ∪ {s • t : s ∈ finS ∧ t ∈ T} .

Note that in general S • T 6= {s • t : s ∈ S ∧ t ∈ T}; using the set on
the right hand side as the definition of S • T one would obtain a right-strict
operation. With the definition given, we have S • ∅ = inf S and hence S • ∅ = ∅
iff inf S = ∅. It is straightforward to show that WOR is an IL-semiring. The
algebra is well-known from the classical theory of ω-languages (see e.g. [17] for
a recent survey).

Next to this model we will use a second one that has a more refined view of
composition and hence allows more interesting modal operators.

Definition 3.2 For words s, t ∈ A∞ we define their join or fusion product s 1 t
as a set-valued operation:

s 1 t
def=

{
s if |s| = ∞ ,
init(s) • (last(s) ∩ head(t)) • tail(t) otherwise ,

where init(ε) = last(ε) = ε = head(ε) = last(ε).

The definition entails ε 1 ε = ε. Moreover, a non-empty finite word s can
be joined with a non-empty word t iff the last letter of s coincides with the first
one of t; only one copy of that letter is kept in the joined word. Since we view
the infinite words as streams of computations, we call the model based on this
composition operation STR.

Definition 3.3 The algebra STR def= (P((A∞)),∪, ∅,1, A ∪ ε) is given by ex-
tending 1 to languages in the following way:

S 1 T
def= inf S ∪ {s 1 t : s ∈ finS ∧ t ∈ T , }

Analogously to above, we have S 1 ∅ = inf S and hence S 1 ∅ = ∅ iff
inf S = ∅. It is straightforward to show that STR is an IL-semiring. Its subalgebra
(P((A∞ − ε)),∪, ∅,1, A) of nonempty words is at the heart of the papers by
Lukkien and Dijkstra [13,8].

Both WOR and STR are even Boolean IL-semirings. Further IL-semirings
are provided by predicate transformer algebras (see below).

4 Terminating and Non-Terminating Elements

As stated, we want to model computation systems in such a way that the op-
erator · represents sequential composition and 0 stands for the totally useless
system abort which does not make any progress and hence may also be viewed
as never terminating.

4

As we are interested in uniformly treating finite and infinite computations
we need to characterize these notions algebraically. This will be achieved using
the above properties of the finite and infinite parts of a language.

Operationally, an infinite, non-terminating computation a cannot be followed
by any further computation. Algebraically this means that if we compose a with
any other element on the “infinite side” this has no effect, i.e., just a results
again. We write temporal succession from left to right, i.e., a · b means “first
perform computation a and then b”. Therefore we give the following

Definition 4.1 Consider an IL-semiring (K, +, 0, ·, 1). An element a ∈ K is
called non-terminating or infinite if it is a left zero w.r.t. composition, i.e., if

∀ b ∈ K : a · b = a .

The set of all non-terminating elements is denoted by N.

From the left-strictness of · we immediately get 0 ∈ N. Moreover, we have
the following characterization of non-terminating elements:

Lemma 4.2 a ∈ N ⇔ a · 0 = a.

Proof. (⇒) Choose b = 0 in the definition of N.
(⇐) Using the assumption, associativity, left strictness and the assumption
again, we calculate a · b = a · 0 · b = a · 0 = a. ut

By this characterization N coincides with the set of fixpoints of the isotone
function λz . z · 0. Hence, if K is even a complete lattice, by Tarski’s fixpoint
theorem N is again a complete lattice.

Next we state two closure properties of N.

Lemma 4.3 Denote by · also the pointwise extension of · to subsets of K.

1. An arbitrary computation followed by a non-terminating one is non-termi-
nating, i.e., K · N ⊆ N (and hence K · N = N).

2. If · is universally left-disjunctive then N is closed under t .

Proof. 1. Consider a ∈ K and b ∈ N. Then (a · b) · 0 = a · (b · 0) = a · b.
2. Consider L ⊆ N such that tL exists. Then, by the assumptions, (tL) ·0 =
t (L · 0) = tL. ut

So the supremum in N coincides with the one in the overall algebra K.
Now we relate the notions of right-strictness and termination.

Lemma 4.4 The following properties are equivalent:

1. The · operation is right-strict.
2. |N| = 1.
3. > · 0 = 0 (provided K is bounded).

5

Proof. (1 ⇒ 2) It follows that N = {0}.
(2 ⇒ 3) Since 0 ∈ N and > · 0 ∈ N we get > · 0 = 0.
(3 ⇒ 1) For arbitrary a ∈ K we have, by isotonicity, a · 0 ≤ > · 0 = 0. ut

Next we show

Lemma 4.5 1. N = {a · 0 : a ∈ K}.
2. b · 0 is the greatest element of N(b) def= {a ∈ N : a ≤ b}.
3. If K is bounded then > · 0 is the greatest element of N. In particular, > · 0 =
tN.

4. If N is downward closed and > ∈ N then 1 = 0 and hence |K| = 1.
5. Assume a ∈ N ∧ b ∈ F. Then a + b ∈ N ⇔ b ≤ a. Hence if N is downward

closed, a + b ∈ N ⇔ b = 0.

Proof. 1. (⊆) Immediate from the definition of N.
(⊇) Assume z = a · 0. Then z · 0 = a · 0 · 0 = a · 0 = z.

2. First, assume a ∈ N ∧ a ≤ b. Then by right-isotonicity of · we have a =
a · 0 ≤ b · 0. So b · 0 is an upper bound of N(b).
Second, by 1. we have b · 0 ∈ N. By right-neutrality of 1 and isotonicity we
get b · 0 ≤ b · 1 = b, i.e., b · 0 ∈ N(b), which shows the claim.

3. Immediate from 2.
4. By downward closure, 1 ∈ N, hence 1 = 1 · 0 = 0 by neutrality of 1.
5. First we note that, by the assumption,

(a + b) · 0 = a · 0 + b · 0 = a + 0 = a . (∗)

(⇒) If (a + b) · 0 = a + b then by (∗) a = a + b, i.e., b ≤ a.
(⇐) If b ≤ a then a = a + b and hence a + b = a = (a + b) · 0 by (∗). ut

Property 3 of this lemma says that > · 0 is an adequate algebraic representa-
tion of the collection of all non-terminating elements of a bounded IL-semiring
(which is used extensively in [8], where > · 0 is called the eternal part of K).
However, we want to manage without the assumption of completeness or bound-
edness and therefore prefer to work with the set N rather than with its greatest
element.

By property 3 we may call b · 0 the non-terminating part or infinite part of
b. This leads to the following

Definition 4.6 We call an element a finite if its infinite part is trivial, i.e., if
a · 0 = 0. The set of all finite elements is denoted by F. By this definition 0 ∈ F.
To mirror our operational understanding we call an element a terminating if a

is finite and a 6= 0. We set T
def= F− {0}.

A number of properties of F and T is collected in

Lemma 4.7 1. F is downward closed.
2. 1 ∈ F. If 1 6= 0 then 1 ∈ T (skip is terminating).

6

3. S ⊆ F ⇔ S · 0 = 0.
4. K · F = K = F ·K.
5. F + F ⊆ F and T + T ⊆ T (finite and terminating computations are closed

under choice). Since + is idempotent we have even equality in both cases. If
· is universally left-disjunctive then F is closed under arbitrary joins and T
under non-empty ones.

6. F · F ⊆ F (finite computations are closed under composition). By neutrality
of 1 we have even equality. T need not be closed under composition.

Proof. 1. Immediate from isotonicity.
2. Immediate from left-neutrality of 1.
3. Immediate from the definition of F.
4. By left-neutrality of 1

K = 1 ·K ⊆ F ·K .

Similarly, by right-neutrality K ⊆ K · F. The reverse inclusions are trivial.
5. Immediate from distributivity/disjunctivity.
6. By 2. we have F · F · 0 = F · 0 = 0. Now the claim follows again by 2. ut

Although we do not assume a general meet operation u, we will sometimes
use the formula yuz = 0; it is an abbreviation for ∀ u . u ≤ y ∧ u ≤ z ⇒ u = 0.

With its help we can describe the interaction between F and N.

Lemma 4.8 1. N ∩ F = {0}.
2. If N is downward closed, then for x ∈ N and y ∈ F we have x u y = 0.

Proof. 1. If x ∈ N ∩ F then x = x · 0 = 0.
2. Suppose z ≤ x ∧ z ≤ y for some z ∈ K. Then the assumption and

Lemma 4.7.1 imply z ∈ N ∩ F, hence z = 0 by 1. ut

5 Separated IL-Semirings

5.1 Motivation

Although our definitions of finite and nonterminating elements have led to quite
a number of useful properties, we are not fully satisfied, since the axiomatization
does not lead to full symmetry of the two notions, whereas in actual computation
systems they behave much more symmetrically. Moreover, a number of other
desirable properties do not follow from the current axiomatization either. We
list the desiderata:

- While a·0 gives us the nonterminating part inf a of a, we have no correspond-
ing operator fin that yields the finite part of a. Next, inf is disjunctive; by
symmetry we would expect that for fin as well.

- The set F of finite elements is downward closed, whereas we cannot guarantee
that for the set N of nonterminating elements. However, since a ≤ b means
that a has at most as many choices as b one would expect a to be nonter-
minating if b is: removing choices between infinite computations should not
produce finite computations. Then, except for 0, the finite and nonterminat-
ing elements would lie completely separately.

7

- Every element should be decomposable into its finite and nonterminating
part.

The task is now to achieve this without using a too strong restriction on the
semiring (such as requiring it to be a distributive or even a Boolean lattice).

5.2 Kernel Operations

To prepare the treatment we first state a few properties of kernel operations that
will be useful both for partitioning functions and in connection with tests in the
next section.

Definition 5.1 A kernel operation is an isotone, contractive and idempotent
function f : K → K from some partial order (K,≤) into itself. The latter two
properties spell out to f(x) ≤ x and f(f(x)) = f(x) for all x ∈ K.

It is well-known that the image f(K) of a kernel operation f consists exactly
of the fixpoints of f .

Lemma 5.2 Let f : K → K be a kernel operation.

1. f(x) = t {y ∈ f(K) : y ≤ x}.
2. If K has a least element 0 then f(0) = 0.
3. If K is an upper semilattice with join operation + then f(f(x) + f(y)) =

f(x + y), i.e., f(K) is closed under +.

Proof. 1. By isotonicity, f(x) is an upper bound of S
def= {y ∈ f(K) : y ≤ x}.

But f(x) ∈ S since f(x) ≤ x, and so f(x) is the supremum of S.
2. Immediate from contractivity of f .
3. (≤) follows by contractivity of f .

(≥) By isotonicity and idempotence of f ,

f(f(x) + f(y)) ≥ f(f(x)) + f(f(y)) = f(x) + f(y)

ut

Lemma 5.3 For a kernel operation f : K → K the following two statements
are equivalent:

1. f(K) is downward closed.
2. For all a, b ∈ K such that a u b exists we have f(a u b) = f(a) u b =

f(a) u f(b).

Proof. First we show that the first equation in 2. implies the second one. Assume
f(a u b) = f(a) u b for all a, b such that a u b exists. Then by idempotence of f
we get, using this assumption twice,

f(a u b) = f(f(a u b)) = f(f(a) u b) = f(a) u f(b) .

8

(1. ⇒ 2.) By isotonicity and contractivity of f we have f(a u b) ≤ f(b) ≤ b and
f(aub) ≤ f(a). Consider now an arbitrary lower bound c for f(a) and b. Then by
downward closure of f(K) also c ∈ f(K), i.e., c = f(c). Moreover, c ≤ f(a) ≤ a
by contractivity of f . Therefore c ≤ a u b and hence c = f(c) ≤ f(a u b) by
isotonicity of f .

(2. ⇒ 1.) Consider an a ∈ f(K) and b ≤ a, i.e., b = aub. Then by assumption
f(b) = f(a u b) = f(a) u b = a u b = b and hence b ∈ f(K) as well. ut

Corollary 5.4 Suppose that f : K → K is a kernel operation and f(K) is
downward closed.

1. If a, b ∈ K with b ≤ a then f(b) = f(a) u b.
2. If K is bounded then f(a) = a u f(>) for all a ∈ K.

5.3 Partitions

We now study the decomposition of elements into well-separated parts. For this,
we assume a partial order (K,≤) that is an upper semilattice with join operation
+ and a least element 0. By xuy = 0 we abbreviate the formula ∀ z . z ≤ x ∧ z ≤
y ⇒ z = 0. Note that we do not require general meets to exist.

Definition 5.5 Consider a pair of isotone functions f1, f2 : K → K. Let f

range over f1, f2 and set f̃1
def= f2, f̃2

def= f1. Note that ˜̃
f = f . The pair is said

to weakly partition K if for all a ∈ K we have

f(a) + f̃(a) = a (WP1) f̃(f(a)) = 0 (WP2)

Of course, the concept could easily be generalized to systems consisting of
more than two functions. Let us prove a few useful consequences of this definition.
Note that by our notational convention also f(f̃(a)) = 0.

Lemma 5.6 1. f is a kernel operation.
2. x ∈ f(K) ⇔ x = f(x) ⇔ f̃(x) = 0.
3. The image set f(K) is downward closed.
4. f(K) ∩ f̃(K) = {0}.
5. For y ∈ f(K) and z ∈ f̃(K) we have yuz = 0. In particular, f(x)u f̃(x) = 0

for all x ∈ K.

Proof. 1. By assumption f is isotone. Moreover, by (WP1) we have f(a) ≤ a.
Idempotence is shown by

f(a) =
(WP1)

f(f(a)) + f̃(f(a)) =
(WP2)

f(f(a)) + 0 = f(f(a))

2. The first equivalence holds, since by 1. f is a kernel operation. For the second
one we calculate

x = f(y) for some y ∈ K ⇒
(WP2)

f̃(x) = f̃(f(y)) = 0 ⇒
(WP1)

x = f(x) + f̃(x) = f(x) ⇒
logic

x = f(y) for some y ∈ K

9

3. Assume z ≤ f(y) for some y ∈ K. By isotonicity of f̃ and 2. then f̃(z) ≤
f̃(y) ≤ 0 and hence, again by 2., b ∈ f(K) as well.

4. Assume x ∈ f(K) ∩ f̃(K). By 2. then x = f(x) and f(x) = 0 which shows
the claim.

5. For a lower bound z of x ∈ f(K) and y ∈ f̃(K) we get by 3. z ∈ f(K) ∩
f̃(K) = {0}. ut

The last property means that the fi decompose every element into two parts
that have only a trivial overlap; in other words f1(a) and f2(a) have to be relative
pseudocomplements of each other.

Although weak partitions already enjoy quite a number of useful properties
they do not guarantee uniqueness of the decomposition. Hence we need the
following stronger notion.

Definition 5.7 A pair of functions f1, f2 : K → K is said to strongly partition
K if they weakly partition K and are additive, i.e., satisfy fi(a+b) = fi(a)+fi(b).

Lemma 5.8 Let f1, f2 : K → K strongly partition K.

1. f is uniquely determined by f̃ , i.e.

a = x + f̃(a) ∧ x ∈ f(K) ⇒ x = f(a)

2. f(f̃(a) + b) = f(b), i.e., f̃-parts of elements are ignored by f .

Proof. 1. Using the assumption, then (P2) and then x ∈ f1(K) for kernel op-
eration f1 we get f1(a) = f1(x + f2(a)) = f1(x) = x.

2. By additivity and (WP2), f(f̃(a)+b) = f(f̃(a))+f(b) = 0+f(b) = f(b). ut

Property 2. is equivalent to additivity in this context: by (WP1) twice, then
2. twice and then Lemma 5.2.3 we obtain

f1(a + b) = f1(f1(a) + f2(a) + f1(b) + f2(b)) =
f1(f1(a) + f1(b)) = f1(a) + f1(b)

5.4 Separating Finite and Infinite Elements

Definition 5.9 A semiring K is called separated if there is a function fin :
K → K that together with the function inf : K → K defined by inf x

def= x · 0
strongly partitions K, such that finK = F.

Example 5.10 In [9] the related notion of quemiring is studied, although no
motivation in terms of finite and infinite elements is given. A quemiring is ax-
iomatized as a left semiring in which each element a has a unique decomposition
a = a¶ + a · 0 such that ¶ distributes over + and multiplication by an image
under ¶ also is right-distributive. So ¶ corresponds to our fin -operator. However,
the calculation

a · (b + c) = (a¶+ a · 0) · (b + c) = a¶ · (b + c) + a · 0 · (b + c) =
a¶ · b + a¶ · c + a · 0 = a¶ · b + a¶ · c + a · 0 · b + a · 0 · c =
(a¶+ a · 0) · b + (a¶+ a · 0) · c = a · b + a · c

10

shows that a quemiring actually is a semiring and hence not too interesting from
the perspective of the present paper. ut

Example 5.11 Every Boolean IL-semiring K is separated. To see this, we first
observe that for arbitrary b ∈ K the functions

f1(x) def= x u b , f2(x) def= x u b ,

strongly partition K, as is easily checked. In particular, by Lemma 5.6 they are
kernel operations and hence satisfy fi(x) = x u fi(>) by Corollary 5.4.2.

Choosing now b = >·0 we obtain inf x = xuT ·0. Therefore we define finx
def=

x u > · 0. Then finK = F follows from Lemma 5.6 and x ∈ F ⇔ inf x = 0.
It follows that for Boolean K we have

x ∈ N ⇔ x ≤ > · 0 , x ∈ F ⇔ x ≤ > · 0 .

This was used extensively in [8].
For Boolean K we have also

inf > = inf (1 + 1) = inf 1 + inf 1 = inf 1 .

ut

Example 5.12 Now we give an example of an IL-semiring that is not separable.
The carrier set is K = {0, 1, 2} with natural ordering 0 ≤ 1 ≤ 2. Composition is
given by the equations

0 · x = 0 , 1 · x = x , 2 · x = 2 .

Then N = {0, 2} and F = {0, 1}, so that N is not downward closed as it would
need to be by Lemma 5.6 if K were (weakly) separable. ut

In the presence of a right residual we can give a closed definition of fin .

Lemma 5.13 Assume an IL-semiring K with a right residuation operation /
satisfying the Galois connection

y ≤ x/z ⇔ y · z ≤ x .

If K is separated then finx = x u 0/0.

Proof. By separation and Lemma 5.2.1, finx = t {y ∈ F : y ≤ x}. Therefore, by
downward closure of F

y ≤ finx ⇔ y ∈ F ∧ y ≤ x ⇔ y · 0 ≤ 0 ∧ y ≤ x ⇔ y ≤ 0/0 ∧ y ≤ x .

Now the claim follows by the universal characterization of meet. ut

We conclude this section by listing a few properties concerning the behaviour
of inf and fin w.r.t. composition.

11

Lemma 5.14 Assume a separated IL-semiring K.

1. a · b = inf a + fin a · b.
2. inf (a · b) = inf a + fin a · inf b.
3. fin (a · b) = fin (fin a · b) ≥ fin a · fin b. If K is right-distributive, the latter

inequation can be strengthened to an equality.

The straightforward proofs are omitted.

6 Iteration — Lazy Kleene algebras

The central operation that moves a semiring to a Kleene algebra (KA) [5] is the
star that models arbitrary but finite iteration. Fortunately, we can re-use the
conventional definition [11] for our setting of IL-semirings. In connection with
laziness, the second essential operation is the infinite iteration of an element.
This has been studied intensively in the theory of ω-languages [17]. A recent al-
gebraic account is provided by Cohen’s ω-algebras [4] and von Wright’s demonic
refinement calculus [18]. However, both assume right-distributivity, Cohen even
right-strictness of composition.

Definition 6.1 A left or lazy Kleene algebra (LKA) is a structure (K,∗) such
that K is an IL-semiring and the star ∗ satisfies, for a, b, c ∈ K, the unfold and
induction laws

1 + a · a∗ ≤ a∗ , (2) b + a · c ≤ c ⇒ a∗ · b ≤ c . (3)

An LKA is strong if it also satisfies the symmetrical star induction law

b + c · a ≤ c ⇒ ba∗ ≤ c . (4)

Therefore, a∗ is the least pre-fixpoint and the least fixpoint of the function
λx.a · x + b. Star is isotone with respect to the natural ordering. Even the weak
star axioms suffice to prove the following laws:

a∗ · a∗ = a∗ , (idempotence)
(a + b)∗ = a∗ · (a · b∗)∗ , (decomposition)
a · c ≤ c · b ⇒ a∗ · c ≤ c · b∗ . (semicommutation)

In a strong LKA the star also satisfies the symmetrical star unfold axiom

1 + a∗ · a ≤ a∗ . (5)

Next we note the behaviour of finite elements under the star:

Lemma 6.2 a ∈ F ⇒ a∗ ∈ F.

Proof. By neutrality of 0 we get a · 0 ≤ 0 ⇔ a · 0+0 ≤ 0, so that star induction
(3) shows a∗ · 0 ≤ 0. ut

12

We now turn to infinite iteration.

Definition 6.3 An ω-LKA) is a structure (K,ω) such that K is an LKA and
the omega operation ω satisfies, for a, b, c ∈ K, the unfold and coinduction laws

aω = a · aω, (6) c ≤ a · c + b ⇒ c ≤ aω + a∗ · b . (7)

One may wonder why we did not formulate omega unfold as aω ≤ a · aω.
The reason is that in absence of right-strictness we cannot show the reverse
inequation. By the coinduction law the greatest (post-)fixpoint of λx . a · x is
aω + a∗ · 0 and a∗ · 0 need not vanish in the non-strict setting. This may seem
paradoxical now. But by star induction we can easily show a∗ · 0 ≤ aω using
a · aω ≤ a, so that indeed aω coincides with the greatest (post-)fixpoint of
λx . a · x. Hence omega is isotone with respect to the natural ordering. The
inequation a∗ · 0 ≤ aω seems natural, since by an easy induction one can show
ai · 0 ≤ aω for all i ∈ IN anyway.

For ease of comparison we note that von Wright’s aω corresponds to a∗+ aω

in our setting.
Some further consequences of the axioms are the following.

Lemma 6.4 Consider an ω-LKA K and an element a ∈ K.

1. K has a greatest element > def= 1ω. a∗ · aω = aω.
2. aω is a right ideal, i.e., aω · > = >.

Proof. 1. This follows from neutrality of 1 and omega coinduction (7).
2. Immediate from isotonicity of the fixed point operators.
3. The inequation a∗ · aω ≤ aω is immediate from the star induction law (3).

The reverse inequation follows from 1 ≤ a∗ and isotonicity.
4. First, by the fixpoint property of aω we get aω · > = a · aω · >. Hence

aω · > ≤ aω. The reverse inequation is immediate from neutrality of 1 and
isotonicity. ut

We note that in a separated ω-LKA the set F has the greatest element fin>;
this element is sometimes termed “havoc”, since it represents the most nonde-
terministic but always terminating program.

Further laws together with applications to termination analysis can be found
in [7]. We conclude this section with some decomposition properties for star and
omega.

Lemma 6.5 Assume a separated ω-LKA K.

1. a∗ = (fin a)∗ · (1 + inf a).
2. inf a∗ = (fin a)∗ · inf a.
3. a · (fin a)∗ · inf a = (fin a)∗ · inf a.
4. aω = (fin a)∗ · inf a + (fin a)ω.

13

Proof.
1. a∗ = (fin a + inf a)∗ = (fin a)∗ · (inf a · (fin a)∗)∗ =

(fin a)∗ · (inf a)∗ = (fin a)∗ · (1 + inf a · (inf a)∗) = (fin a)∗ · (1 + inf a) .
2. Using 1. we get

a∗ · 0 = (fin a)∗ · (1 + inf a) · 0 =
(fin a)∗ · (1 · 0 + inf a · 0) = (fin a)∗ · inf a .

3. a · (fin a)∗ · inf a = (fin a + inf a) · (fin a)∗ · inf a =
fin a · (fin a)∗ · inf a + inf a · (fin a)∗ · inf a = fin a · (fin a)∗ · inf a + inf a =
(fin a · (fin a)∗ + 1) · inf a = (fin a)∗ · inf a .

4. The inequation ≥ holds by isotonicity and 3. The reverse inequation reduces
by omega coinduction to

aω ≤ (fin a) · aω + inf a ⇔ aω ≤ (fin a) · aω + (inf a) · aω ⇔
aω ≤ (fin a + inf a) · aω ⇔ aω ≤ a · aω ⇔ TRUE . ut

7 Tests, Domain and Codomain

Definition 7.1 1. A Boolean algebra is a complemented distributive lattice.
By overloading, we usually write + and · also for the Boolean join and
meet operation and use 0 and 1 for the least and greatest elements of the
lattice. The symbol ¬ denotes the operation of complementation. We will
consistently use the letters a, b, c . . . for semiring elements and p, q, r, . . . for
Boolean elements.

2. A left test semiring is a two-sorted structure (K, B), where K is an IL-
semiring and B ⊆ K is a Boolean algebra embedded into K such that the
B operations coincide with the restrictions of the K operations to B. In
particular, p ≤ 1 for all p ∈ B. But in general, B is only a subalgebra of the
subalgebra of all elements below 1 in K. We call elements of B tests and
write test(K) instead of B for the algebra of tests. We will also use relative
complement p − q = p u ¬q and implication p → q = ¬p + q with their
standard laws.

3. A lazy Kleene algebra with tests is a left test semiring (K, B) such that K is
a lazy KA. For all p ∈ test(K) we have that p∗ = 1 and pω = p · >.

This definition generalizes the one in [12]. If the overall IL-semiring K is a
Boolean lattice one can always choose test(K) = {p | p ≤ 1} as the set of tests
and define ¬p

def= p u 1, where a is the complement of element a in the overall
algebra. Note that by Lemma 4.7.1 all tests are finite.

Lemma 7.2 Assume a left test semiring K. Then the following hold for all
a, b, c ∈ K and all p, q ∈ test(K).

1. If a u b exists then p · (a u b) = p · a u b = p · a u p · b.
2. (p u q) · a = p · a u q · a.
3. p u q = 0 ⇒ p · a u q · a = 0.
4. p · b = b u p · a.

In particular, if K is bounded then p · b = b u p · >.

14

Proof. We first note that for any test p ∈ test(K) the function fp(a) def= p ·a is a
kernel operation by p ≤ 1, isotonicity of · in both arguments and multiplicative
idempotence of tests. Next we want to show that fp(K) is downward closed.
Suppose b ≤ p · a. Then by isotonicity, ¬p · b ≤ ¬p · p · a = 0 and hence

b = 1 · b = (p + ¬p) · b = p · b + ¬p · b = p · b ,

i.e., b = fp(b) ∈ fp(K), too.
Now the claims other than 2. follow immediately from Lemma 5.3 and Corol-

lary 5.4. For 2. set b = a and use 1 twice together with p u q = p · q. ut

Let now semiring element a describe an action or abstract program and a
test p a proposition or assertion on its states. Then p · a describes a restricted
program that acts like a when the initial state satisfies p and aborts otherwise.
Symmetrically, a · p describes a restriction of a in its possible final states.

To show the interplay of tests with infinite iteration we prove a simple in-
variance property:

Lemma 7.3 p · a = p · a · p ⇒ p · aω = (p · a)ω. This means that an invariant
of a will hold throughout the infinite iteration of a.

Proof. (≥) We do not even need the assumption:
(p · a)ω = p · a · (p · a)ω = p · p · a · (p · a)ω =
p · (p · a)ω ≤ p · aω .

(≤) By the fixpoint property of omega and the assumption,

p · aω = p · a · aω = p · a · p · aω ,

which means that p · aω is a fixpoint of λx . p · a · x and hence below its greatest
fixpoint (p · a)ω. ut

We now introduce an abstract domain operator p that assigns to a the test
that describes precisely its starting states.

Definition 7.4 A semiring with domain [6] (a p-semiring) is a structure (K, p),
where K is an idempotent semiring and the domain operation p: K → test(K)
satisfies for all a, b ∈ K and p ∈ test(K)

a ≤ pa · a, (d1) p(p · a) ≤ p, (d2) p(a · pb) ≤ p(a · b). (d3)

If K is an LKA, we speak of an LKA with domain, briefly p-LKA.

These axioms can be understood as follows. (d1), which by isotonicity can
be strengthened to an equality, means that restriction to all all starting states
is no actual restriction, whereas (d2) means that after restriction the remaining
starting states should satisfy the restricting test. (d3) states that the domain of
a · b is not determined by the inner structure or the final states of b; information
about pb in interaction with a suffices.

To further explain (d1) and (d2) we note that their conjunction is equivalent
to each of

15

pa ≤ p ⇔ a ≤ p · a , (llp) pa ≤ p ⇔ ¬p · a ≤ 0 . (gla)

(llp) says that pa is the least left preserver of a. (gla) says that ¬pa is the greatest
left annihilator of a. By Boolean algebra (gla) is equivalent to

p · pa ≤ 0 ⇔ p · a ≤ 0 .

Because of (llp), domain is uniquely characterized by the axioms. Moreover, if
test(K) is complete then domain always exists. If test(K) is not complete, this
need not be the case.

Although the axioms are the same as in [6], one has to check whether their
consequences in KA can still be proved in LKA. Fortunately, this is the case.
Right-distributivity was used in [6] only for the proofs of additivity and the
import/export law p(pa) = ppa. But this follows from (d3) and stability pp = p
(which, in turn, follows from (llp) and idempotence of tests). Additivity is a
special case of

Lemma 7.5 Domain preserves all existing suprema. In particular, p0 = 0.

The proof has been given in [15]; it only uses (llp) and isotonicity of domain.
But the latter follows easily from (gla).

From (d1) and left strictness of composition we also get pa = 0 ⇒ a = 0.
Two other useful properties are

Lemma 7.6 1. p(a · b) ≤ pa.
2. If K is bounded then p(a · >) = pa.

Proof. 1. Using (llp) we get

pa ≤ p ⇔ a ≤ p · a ⇒ a · b ≤ p · a · b ⇔ p(a · >) ≤ p ,

and the claim follows by indirect inequality.
2. The inequation ≤ follows from 1., whereas ≥ follows from 1 ≤ > and iso-

tonicity. ut

Finally, the induction law p(ap) ≤ p ⇒ p(a∗p) ≤ p can be proved as in [6]
(the LKA does not even need to be strong).

We now turn to the dual case of the codomain operation. In the KA case
where we have also right-distributivity, a codomain operation q can easily be de-
fined as a domain operation in the opposite semiring where, as usual in algebra,
opposition just swaps the order of composition. But by lack of right distribu-
tivity this does not work in the LKA setting; we additionally have to postulate
isotonicity of codomain (in the form of superdisjunctivity to have a purely equa-
tional axiom).

16

Definition 7.7 A left semiring with codomain (a q-semiring) is a structure
(K, q), where K is a left test semiring and the codomain operation q : K →
test(K) satisfies for all a, b ∈ K and p ∈ test(K)

a ≤ a · aq , (cd1) (a · p)q ≤ p , (cd2)
(aq · b)q ≤ (ab)q , (cd3) (a + b)q ≥ aq + bq . (cd4)

If K is an LKA, we speak of an LKA with codomain, briefly q-LKA.

As for domain, the conjunction of (cd1) and (cd2) is equivalent to

pa ≤ p ⇒ a ≤ ap , (rlp)

i.e., aq is the least right preserver of a. However, by lack of right-strictness, ¬pq
is not the greatest right annihilator of a; (lrp) only implies

aq ≤ p ⇔ a · ¬p ≤ a · 0 . (wgra)

The reverse implication (wgra) ⇒ (lrp) holds in presence of weak right-distrib-
utivity

a = a · p + a · ¬p (wrd)

and provided a is finite. Note that (wrd) holds automatically for all a ∈ N.
Moreover, (wrd) is equivalent to full right-distributivity over sums of tests:

a · (p + q) = a · (p + q) · p + a · (p + q) · ¬p =
a · (p · p + q · p) + a · (p · ¬p + q · ¬p) =
a · p + a · q · ¬p ≤ a · p + a · q .

The reverse inequation follows from monotonicity and superdisjunctivity. We
will not assume (wrd) in the sequel, though.

In an LKA, the symmetry between domain and codomain is broken also in
other respects. Codomain is not fully strict; rather we have

Lemma 7.8 aq = 0 ⇔ a ∈ N. In particular, 0q = 0.

Proof. Recall that a ∈ N ⇔ a = a · 0. Now, by (cd1), aq = 0 implies a = a · 0,
whereas the reverse implication is shown by (cd2).

However, since for domain the proof of preservation of suprema only involves
isotonicity and (llp), we can carry it over to domain and obtain

Lemma 7.9 Codomain preserves arbitrary existing suprema and hence, in par-
ticular, is additive and strict.

Also, the proof of stability of domain uses only (llp) and hence carries over
to the codomain case, so that pq = p for all p ∈ test(K). The import/export law
(a · p)q = aq · p follows from (cd3). Finally,

Lemma 7.10 In a domain/codomain LKA, aq · pb = 0 ⇒ a · b = a · 0.

Further properties of domain and codomain can be found in [6].

17

8 Modal LKAs

Definition 8.1 A modal left semiring is a left test semiring K with domain and
codomain. If K in addition is an LKA, we call it a modal LKA.

Let K be a modal left semiring. We introduce forward and backward diamond
operators via abstract preimage and image.

|a〉p = p(ap) , (8) 〈a|p = (pa)q , (9)

for all a ∈ K and p ∈ test(K). The box operators are, as usual, the de Morgan
duals of the diamonds:

|a]p = ¬|a〉¬p , (10) [a|p = ¬〈a|¬p . (11)

If a ∈ N then these definitions specialize to

|a〉p = pa , (12) 〈a|p = 0 , (13)

|a]p = ¬pa , (14) [a|p = 1 , (15)

since then also p · a ∈ N by Lemma 4.3.1.
In the KA case, diamonds and boxes satisfy an exchange law. Let us work

out the meaning of the two formulas involved in that law. Using the definitions,
Boolean algebra and (gla)/(wgra), we obtain

p ≤ |a]q ⇔ p ≤ ¬p(a · ¬q) ⇔ p(a · ¬q) ≤ ¬p ⇔ p · a · ¬q ≤ 0

and
〈a|p ≤ q ⇔ (pa)q ≤ q ⇔ p · a · ¬q ≤ a · 0 .

So for finite a we regain the Galois connection

p ≤ |a]q ⇔ 〈a|p ≤ q ,

which, however, does not hold for a ∈ N. By an analogous argument one can
show that also

p ≤ [a|q ⇔ |a〉p ≤ q

holds when a ∈ F.
The Galois connections have interesting consequences. In particular dia-

monds (boxes) of finite elements commute with all existing suprema (infima)
of the test algebra.

In the sequel, when the direction of diamonds and boxes does not matter,
we will use the notation 〈a〉 and [a]. For a test p the modal operators satisfy
〈p〉q = p · q and [p]q = p → q. Hence, 〈1〉 = [1] is the identity function on tests.
Moreover, 〈0〉p = 0 and [0]p = 1. Finally, in an LKA with converse ˘ we have
|ă 〉 = 〈a| and |ă] = [a|.

By left-distributivity, the forward modalities distribute over + in the follow-
ing way:

|a + b〉p = |a〉p + |b〉p , |a + b]p = (|a]p) · (|b〉p) .

18

Hence, in a separated test semiring we obtain

|a〉p = p(inf a) + |fin a〉p .

Using the forward box we can give another characterization of finite elements:

Lemma 8.2 a ∈ F ⇔ |a]1 = 1.

Proof. By the definitions, |a]1 = ¬p(a · 0. Now
a ∈ F ⇔ a · 0 = 0 ⇔ p(a · 0 = 0 ⇔ ¬p(a · 0 = 1 ⇔ |a]1 = 1.

Further applications of modal operators, notably for expressing Noethericity
and performing termination analysis, can be found in [7].

9 Predicate Transformer Algebras

Assume a left test semiring (K, +, ·, 0, 1). By a predicate transformer we mean a
function f : test(K) → test(K). It is disjunctive if f(p + q) = f(p) + f(q) and
conjunctive if f(p · q) = f(p) · f(q). It is strict if f(0) = 0. Finally, id is the
identity transformer and ◦ denotes function composition.

Let P be the set of all predicate transformers, M the set of isotone and D

the set of strict and disjunctive ones. Under the pointwise ordering f ≤ g
def⇔

∀ p . f(p) ≤ g(p), P forms a lattice where the supremum f⊕ g and infimum f�g
of f and g are the pointwise liftings of + and ·, resp.:

(f ⊕ g)(p) def= f(p) + g(p), (f � g)(p) def= f(p) · g(p).

The least element of P (and D) is the constant 0-valued function 0(p). The
structure (P,⊕, ◦, , id) is an IL-semiring. In fact, in its left argument ◦ even
preserves arbitrary existing suprema and infima, as the following calculation
and a dual one for infima show:

((tF ◦ g)(x) = (tF)(g(x)) = tF (g(x) = Σ(F ◦ g)(x) .

The modal operator | 〉 provides a left semiring homomorphism from K into P .
The substructure (D,⊕, ◦,0, id) is even an idempotent semiring.
If test(K) is a complete Boolean algebra then P is a complete lattice with D

as a complete sublattice. Hence we can extend P and D by a star operation via
a least fixpoint definition:

f∗
def= µg . id ⊕ f ◦ g ,

where µ is the least-fixpoint operator.
Using µ-subfusion (see below) one sees that by this definition P becomes an

LKA which, however, is not strong. Only the subalgebra of universally disjunc-
tive predicate transformers is strong.

19

Similarly, if test(K) is complete we can define the infinite iteration fω def=
νg . f ◦ g, where ν is the greatest-fixpoint operator. Whereas in P this does not
imply the omega coinduction law, it does so in D.

Combining these two observations we see that only the subalgebra of univer-
sally disjunctive predicate transformers can be made into an ω-LKA (which is
even strong).

By passing to the mirror ordering, we see that also the subalgebra of univer-
sally conjunctive predicate transformers can be made into a strong ω-LKA; this
is essentially the approach taken in [18].

As a sample proof we show that the omega coinduction law holds for dis-
junctive predicate transformers. First we briefly repeat the fixpoint fusion laws
(see e.g. [1] for further fixpoint properties). Let F,G, H : M → M be isotone
functions on a complete lattice (M,≤) with least element ⊥ and greatest element
>. Suppose that G is continuous, i.e., preserves suprema of nonempty chains,
and assume G(⊥) ≤ µH. Then

G ◦H ≤ F ◦G ⇒ G(µh) ≤ µF . (µ- subfusion)

Suppose now dually that G is cocontinuous, i.e., preserves infima of nonempty
chains, and assume G(>) ≥ µH. Then

G ◦H ≥ F ◦G ⇒ G(µh) ≥ µF . (ν- superfusion)

For the proof of omega coinduction we define F (x) def= f ◦ x ⊕ g,G(x) def=
x⊕ f∗ ◦ g = x⊕ µF and H(x) def= f ◦ x, where x ranges over D. Since we have
assumed test(K) to be complete, ⊕ is universally distributive in both arguments,
so that G is continuous. The coinduction law is implied by νF ≤ G(νH), which
by ν-superfusion reduces to G ◦H ≥ F ◦G. This is shown by

[t]G(H(x)) = f ◦ x⊕ µF = f ◦ x⊕ F (µF) =
f ◦ x⊕ f ◦ µF ⊕ g = f ◦ (x⊕ µF)⊕ gF (G(x)) .

Note that this calculation uses disjunctivity of f in an essential way.

10 Conclusion and Outlook

We have seen that it is possible to integrate non-strictness with the finite and
infinite iteration as well as with modal operators. This framework allows, for
instance, an abstract and more concise reworking of the stream applications
treated in [14]; this will be the subject of further papers. But hopefully the
framework will have many more applications.

Acknowledgements: I am grateful to J. Desharnais, T. Ehm and G. Struth for
valuable discussions and support and to Z. Esik for pointing out reference [9].

References

1. R. C. Backhouse et al. Fixed point calculus. Inform. Proc. Letters, 53:131–
136, 1995.

20

2. J.a. Bergstra, I. Bethke, A. Ponse: Process algebra with iteration. Report
P9314, Programming Research Group, University of Amsterdam, 1993

3. J.a. Bergstra, I. Bethke, A. Ponse: Process algebra with iteration and nesting.
The Computer Journal 37(4), 243–258, 1994

4. E. Cohen: Separation and reduction. In R. Backhouse and J.N. Oliveira
(eds.): Mathematics of Program Construction. Lecture Notes in Computer
Science 1837. Berlin: Springer 2000, 45–59

5. J.H. Conway: Regular algebra and finite machines. London: Chapman and
Hall 1971

6. J. Desharnais, B. Möller, G. Struth: Kleene algebra with domain. Technical
Report 2003-07, Universität Augsburg, Institut für Informatik, June 2003

7. J. Desharnais, B. Möller, G. Struth: Termination in modal Kleene algebra.
Technical Report 2004-04, Universität Augsburg, Institut für Informatik,
January 2004

8. R.M. Dijkstra: Computation calculus — bridging a formalization gap. In: J.
Jeuring (ed.): Proc. MPC 1998. LNCS 1422, 151–174

9. C.C. Elgot: Matricial theories. Journal of Algebra 42, 391–422 (1976)
10. B. von Karger, C.A.R. Hoare: Sequential calculus. Information Processing

Letters 53, 1995, 123–130
11. D. Kozen: A completeness theorem for Kleene algebras and the algebra of

regular events. Information and Computation 110:2, 366–390 (1994)
12. D. Kozen: Kleene algebras with tests. ACM TOPLAS 19:427–443, 1997.
13. J. Lukkien: An operational semantics for the guarded command language. In:

R.S. Bird, C.C. Morgan, J.C.P. Woodcock (eds.): Mathematics of Program
Construction. Lecture Notes in Computer Science 669. Berlin: Springer 1993,
233–249

14. B. Möller: Ideal stream algebra. In: B. M”oller, J.V. Tucker (eds.): Prospects
for hardware foundations. Lecture Notes in Computer Science 1546. Berlin:
Springer 1998, 69–116

15. B. Möller, G. Struth: Modal Kleene algebra and partial correctness. Tech-
nical Report 2003-08, Universität Augsburg, Institut für Informatik, May
2003

16. K.I. Rosenthal: Quantales and their applications. Pitman Research Notes in
Mathematics Series, Vol. 234. Longman Scientific & Technical 1990.

17. L. Staiger: Omega languages. In G. Rozenberg, A. Salomaa (eds.): Handbook
of formal languages, Vol. 3. Springer 1997, 339–387

18. J. von Wright. From Kleene algebra to refinement algebra. In E. Boiten,
B. Möller (eds.): Mathematics of Program Construction. Lecture Notes in
Computer Science 2386. Berlin: Springer 2002, 233– 262

21

	Lazy Kleene Algebra

