UNIVERSITAT AUGSBURG

Greedy-Like Algorithms
in Kleene Algebra

Bernhard Moller Georg Struth

Report 2003-11 August 2003
|nst|tut ;
mformatlk

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

Copyright (©) Bernhard Moéller Georg Struth
Institut fiir Informatik
Universitdt Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg. DE
— all rights reserved —

Greedy-Like Algorithms in Kleene Algebra*

Bernhard Moller Georg Struth

Institut fiir Informatik, Universitat Augsburg
Universitatsstr. 14, D-86135 Augsburg, Germany
moeller,struth@informatik.uni-augsburg.de

Abstract. This paper provides an algebraic background for the formal
derivation of greedy-like algorithms. Such derivations have previously
been done in various frameworks including relation algebra. We propose
Kleene algebra as a particularly simple alternative. Instead of converse
and residuation we use modal operators that are definable in a wide class
of algebras, based on domain/codomain or image/pre-image operations.
By abstracting from earlier approaches we arrive at a very general theo-
rem about the correctness of loops that covers particular forms of greedy
algorithms as special cases.

Keywords: Idempotent semiring, Kleene algebra, image and preimage
operation, modal operators, confluence, Geach formula, program devel-
opment and analysis.

1 Introduction

This study is concerned with algebraic derivations and correctness proofs of
greedy-like algorithms. These are algorithms that use a simple loop to calculate
a global optimum. We present a fairly general correctness criterion and give
sufficient criteria when iteration in a discrete partially ordered problem domain
correctly implements the general algorithm scheme. Proper greedy algorithms
are further specializions in which the loop steps are driven by an additional local
optimality criterion. Earlier work on this latter subject has been performed using
relation algebra (e.g. [1,2]) and other algebraic frameworks (e.g. [1]).

But why a re-development in Kleene algebra? The reason is that it allows a
particularly simple, elegant and more general treatment. It avoids the concepts
of converse and residual, as used in relation algebra, and exhibits the structure
of the derivations more clearly. In particular, in a number of subderivations
regular algebra instead of residual theory leads to more perspicuous and simple
calculations. It also becomes clear that the theory of greedy algorithms is mainly
about semi-commutation properties, e.g. that the local optimality criterion semi-
commutes with the loop to achieve global optimality.

These semi-commutation properties are of the same nature as confluence
properties in rewriting systems. To express them without converse we use modal

* Research partially sponsored by DFG Project InopSys — Interoperability of Calculi
for System Modelling

operators as in dynamic logic. These can be added to Kleene algebra in a simple
way. More generally, we use an algebra of predicate transformers (such as box
and diamond) over a Kleene algebra which shows a Kleene algebra structure
again. This algebra has many additional properties which should be useful for
other applications as well.

The remainder of this paper is organized as follows. In Section 2 we recollect
the notion of greediness and derive general conditions under which a greedy-like
loop implements the specification of a corresponding algorithm. In Section 3
some of these conditions are established once and for all for a family of loops,
among which there is a whole class of proper greedy algorithms. While so far
everything has been worked out in relational algebra, Section 4 prepares the
generalization to the converse-free framework of Kleene algebra by expressing
the central type of conditions using the modal operators diamond and box.
Section 5 then introduces Kleene algebra with domain and the abstract definition
of the modalities. In Section 6 these are embedded into algebras of predicate
transformers that allow a point-free treatment. Section 7 provides an algebraic
equivalence proof of the (converse-free) modal Geach formula and the relational
type of semi-commutation properties that are central to the correctness of our
greedy-like algorithms. In Section 8 we can now replay the derivation of Sections
2 and 3 in Kleene algebra. Section 9 then reconstructs Curtis’s classification of
greedy algorithms in this more abstract and general setting; moreover, we are
able to give completely point-free calculations. A brief Conclusion in Section 10
finishes the paper.

2 Looping for Optimality

Greedy algorithms are a special way of solving certain optimization problems.
Their characteristics are that they proceed in a stepwise fashion without back-
tracking. At each step there is a set of choices from which a greedy algorithm
always takes the one that seems best at the moment, i.e., it works locally with-
out lookahead to the global optimum that is to be achieved eventually. Instances
of this scheme are, e.g., shortest path and minimum spanning tree problems in
graphs, the construction of Huffman codes and scheduling problems.

Of course, the greedy approach only works for certain types of problems, as
is well-known from hiking in the mountains: always following the steepest path
will lead to a local optimum, viz. the closest summit, but rarely to the highest
summit of the whole area. The central principle that guarantees correctness of
the greedy scheme is that taking a local choice must not impair the possibility of
reaching the global optimum.

In this and the following section we derive, within the framework of relational
algebra, general conditions under which a loop satisfies this principle. It turns
out that local optimality is inessential; so we obtain a more general class of loops
that we call greedy-like.

We start with a specification relation T' that connects inputs to admissible
outputs and a relation C that compares outputs and is meant to capture the
notion of optimality. The derivation will exhibit our precise requirements on C'.

A relation R improves T w.r.t. C' if it always relates inputs to outputs that
are at least as good as those prescribed by T, in formulas

Va,y,z: 2Ty N zRz = y C z,

which is equivalent to
TR C C,

where ; denotes usual relational composition and 7™ is the converse of T'. Since
() trivially improves T', we are interested in the greatest improvement and define
it by the Galois connection

X ¢ GIMP(T,C) ¥ 17, x ¢ C. (1)
Using a residual, this could be expressed as GIMP(T,C) = T°\C. However, we

will not need any special properties of residuals.

We now want to calculate a sufficient criterion for a loop while P do S def

(P;S)*; =P to be such an improvement, i.e., to satisfy
while P do § C GIMP(T,C) .

Here the loop condition P is represented by a subidentity P C I, where [is
the identity relation.
Spelling out the definitions results in

T (P;9)* ;=P C C.
We abstract a bit and try to answer the question when
U;v;Q c C ()

where additionally Q C I is required.
Now, a standard result from regular algebra (see (14) in Section 5) is the
semi-commutation property

W:; X CY; Z=>W; X" CY*;Z.

Hence (2) can be established given the following two conditions:

since then

U;V*;Q € C*;U;Q € C*;C =C" .

If we now assume C' to be transitive, which is reasonable for a comparison rela-
tion, we have Ct C C and can draw the desired conclusion.

How can we, in turn, establish (3) and (4), at least in our special case?
Translating back we get the proof obligations

T P;S C C;T, (5)
T°;-P C C. (6)

Let us interpret these conditions. (5) means that every pass through the loop
body preserves the possibility of obtaining a solution that is at least as good as
all possible solutions before. (6) means that upon loop termination no possible
solution is better than the termination value.

An implementation of specification T that always produces optimal solutions
then is a relation that refines and improves T'. So we define

OPT(T,C) ¥ T n GIMP(T, C).

To achieve such an implementation we get the additional proof obligation
while Pdo S C T. (7)

We will see how to deal with these three obligations in a special case for 7.

3 Iterating Through the Problem Domain

We now want to decompose the specification relation 7" into elementary steps F
from one element of the problem domain to another. Whereas we may start with
arbitrary inputs as initial approximations, as outputs we admit only terminal
elements from which no further elementary step is possible. Therefore we assume
now that T has the special shape

T =repE = E*;-"E = while"E do F, (8)

where the domain of a relation R is, as usual, defined by
RYRIRNT. (9)
Such a problem structure is found e.g. in matroids and greedoids [6,7] where

it is additionally assumed that T is a discrete strict-order and that all terminal
(or maximal) elements, the bases, have the same height (also known as rank or
dimension) in the associated Hasse diagram.

We try to calculate an implementation that traverses the problem domain
without backtracking, i.e. using elementary steps only forward. This suggests
trying P;S C FE. Now, by monotonicity of the star operation, proof obligation
(7) can be fulfilled if additionally we can achieve =P C —=TF or, equivalently,
"E C P. Sufficient conditions for these properties are

P;S CE (P;S)="E. (10)

These are reasonable requirements, since they prevent that the iteration blocks
at a non-terminal element.
Next, we deal with proof obligation (6), assuming (10). We calculate

T ~E C C
< { converse [}
~E;T C C°
< {by®)1]
~E:E*;~E C C"
< { unfold star }
~E;(IUE;E*);~E C C"
& { distributivity, ="F ; E = () and idempotence of ="E [}
-E C C”
= {-"E C I and converse [}
I C C.

So we can establish (6) provided C is reflexive as well, i.e., a pre-order. This is
again a reasonable requirement.

Proof obligation (5) cannot be simplified in such a general fashion; it is a
generic condition that has to be considered individually in each case.

Our derivation can be summed up as follows.

Theorem 3.1 Suppose that C is a pre-order and T = rep E. If (5) and (10)
hold then
while "E do S C OPT(T,C) .

So far we still have a general scheme that does not specifically mention greed-
iness. But we can refine S further to choose in every step a locally optimal
element. To this end we need yet another pre-order L and stipulate

S C GIMP(E,L) . (11)

This now provides a truly greedy algorithm, the correctness of which is already
shown by Theorem 3.1. It corresponds to Curtis’s “Best-Global” algorithm [2].

4 From Converses to Modalities

The central step in the above derivation, viz. exhibiting conditions (5) and (6),
uses only regular algebra. Hence it is an interesting question whether the deriva-
tion as a whole can be ported to Kleene algebra by eliminating the converse
operation in some way. This would generalize the result to a much wider class
of algebras.

In the above formulas the converse is used only in a very restricted way that
reminds one of the relational formulation property of a general diamond (or
confluence) property:

R:;S C T:;U". (12)

To bring (6) into this form, just compose the right hand side with I

This observation is the key to success if one also remembers modal correspon-
dence theory (see e.g. [12]), according to which the above formula is equivalent
to both of the modal Geach formulas

(R)[TIP = [SU)P, (S)UP = [RKT)P . (13)

Now we are in good shape, since the modal operators (_) and [] can be defined
as predicate transformers in Kleene algebra, cf. [3].

We shall use many instances of these formulas. Since one can easily confuse
the roles of the relations involved in the modal formulation, we shall illustrate
these formulas by the following type of diagram:

When read as a confluence-type diagram, the solid arrows and their end points
symbolize given elements and relations between them, whereas the dotted ones
stand for a quantifier stipulating existence of a further element and appropriate
relations to given elements. If one of the arrows is an identity, the diagram
shrinks to a triangle.

5 Abstracting to Kleene Algebra

We now abstract from the relational setting and move into the more general
framework of modal Kleene algebra.

First, a Kleene algebra (KA) [8] is a structure (K,+,-,*,0,1) such that
(K,+,-,0,1) is an idempotent semiring and * is a unary operation axiomatized
by the equations and Horn sentences

1+ aa* <a*, (x-1)
1+a%a < a”, (%-2)
b+ac<c=a*b<c, (%-3)
b+ca<c=ba* <c, (%-4)

for all a,b,c € K. Here, < denotes the natural ordering on K defined by a < b
iff @ +b = b. An important property that follows from these axioms is the

semi-commutation law
ab<cd = ab* <c*d. (14)

A special case of this establishes (2).
A KA is *-continuous if for all a, b, c we have

ab*c = Z abic .

i€IN

A Kleene algebra with tests (KAT) is a KA with a Boolean subalgebra
test(K) C K in which 1 is the greatest element, 0 is the least element and
- coincides with the meet operation. In a KAT we can again define the while loop
as . def *

while p do a = (pa)*—p .

Finally, a Kleene algebra with domain (KAD) (see [3]) is a Kleene algebra with
tests and an additional operation ™ : K — test(K) such that for all a,b € K
and p, q € test(K),

a<a)a, (d1)
"(pa) <p, (d2)
T(ab) = "(a'd) . (d3)

Let us explain these axioms. As in the algebra of relations, multiplication with
a test from the left or right means domain or range restriction, resp. Now first,
since (a) < 1 by T(a) € test(K), monotonicity of multiplication shows that
(d1) can be strengthened to an equality expressing that domain restriction to
the full domain is no restriction at all. (d2) means that after restriction the
remaining domain must satisfy the restricting test. The axiom (d3) serves to
make the modal operators below well-behaved w.r.t. composition. An important
consequence of the axioms is that "_ preserves arbitrary existing suprema [11].

Examples of KADs are the algebra of concrete relations, where "_ coincides
with the operation defined in (9), the algebra of path sets in a directed graph
(see e.g. [10]) and Kleene’s original algebra of formal languages.

In a KAD, the (forward) modal operators diamond and box can be defined
by

(@p = Tap) . lalp = ~(a)p.

This definition is adequate, since it makes the diamond coincide with the inverse
image operator. Axiom (d3) implies

(ab)p = {a)(b)p . (15)
The modal operators for a test g are given by

def
(@)p = qp , lgdlp =q¢—p = ~q+p. (16)

For the above-mentioned connection between confluence-type formulas and
the Geach formula we introduce the following notion. A KAD with converse
is a KAD K with an additional operation _”: K — K that is an involution,
distributes over +, is the identity on tests and is contravariant over -, i.e., satisfies
(ab)”"= ba”

One can show (see again [3]) that over a KAD with converse the axioms (d1)
and (d2) imply the Galois connection

(a)p<qep<dq. (17)

It follows that all predicate transformers Ap . (a)p are universally disjunctive, i.e.,
preserve arbitrary existing suprema. The latter results generalizes to KADs that
also provide a codomain operation, since there one can also define the backward
modal operators and replace (a”) by the backward diamond of a.

Moreover, from (16) we get, for predicates p,q,r, even in KADs without
converse,

p<lrlg & (Np<gq. (18)

6 Predicate Transformers

Our previous relation-algebraic derivation can now be mimicked more abstractly
at the level of predicate transformers over an arbitrary KAD. In particular, we
do not need the carrier of the algebra to be a complete Boolean algebra as in
the case of relation algebra; also, residuals and converse can be avoided.

Assume a t-semiring (K, +,-,0,1). By a predicate transformer we mean a
function f : test(K) — test(K). It is disjunctive if f(p+¢q) = f(p) + f(q) and
conjunctive if f(p-q) = f(p)- f(q). It is strict if f(0) = 0. Finally, id is the
identity transformer and o denotes function composition.

Let P be the set of all predicate transformers, M the set of monotonic and

D the set of strict and disjunctive ones. Under the pointwise ordering f < g &f

Vp.f(p) <g(p), P forms a lattice where the supremum f® g and infimum fGOg
of f and g are the pointwise liftings of + and -, resp.:

def def

(fe 9w = flp)+9), (fo g = flp)- 9.

The least element of P (and D) is the constant 0-valued function 0(p).

The structure (P, @, o,,4d) is an idempotent left semiring which means that
0 is only a left annihilator and multiplication is distributive over addition in
its left argument only. In fact, in its left argument o even preserves arbitrary
existing suprema, as the following calculation shows:

(Zfi)eg)(x) = (Xfi)(g(x)) = Xfilg(x)) = Z(fiog)(z) .

The substructure (D, @, 0,0, id) is an idempotent semiring. The modal op-
erator (_) provides a left-semiring homomorphism.

If test(K) is a complete Boolean algebra then P is a complete lattice with D
as a complete sublattice. Hence we can extend P and D by two star operations
using the standard least fixpoint definitions:

x def . o def .
f©" = pg.id®gof f = pg.id® fog,

where p is the least-fixpoint operator. Under *-continuity one has

= F (19)

i€IN

and hence
fr<*f, (20)

since an easy induction shows a® <* f for all i € IN.

The converse inequation does not hold in P, but in D it does, since D is a
KA. Hence both operators coincide in D. In P, the right star f* is more pleasant
to work with because of the asymmetry in distributivity. A further property is

h universally disjunctive A ho f < foh = ho f* < f*oh. (21)

The structure (D, @®,0,0,id,*) is a KA, the predicate transformer algebra.
However, we will work in the encompassing (P, @®,0,0,id,*) which might be
called a left KA.

7 Properties of Modal Operators

We now concentrate on the modal predicate transformers (_) and [_]. Since they
are functions, they satisfy the principle of extensional inequality, i.e., for a,b € K,

(a) <(b) & Vp.(a)p < (b)p .

For the rest of the paper we will work as much as possible at this point-free level
of operator algebras. To smoothen the notation, we will denote composition of
predicate transformers by mere juxtaposition.

First, we note that in a KAD with converse the predicate-level Galois con-
nection (17) implies the predicate-transformer-level cancellation laws

(a9)a] < (1) <lal(a”) . (22)
Moreover, (17) lifts to a Galois connection between predicate transformers:

f<ldg & (a)f<g. (23)
Next, we note

Lemma 7.1 If the underlying KA is *-continuous, then

Hence, in this case (_) is a homomorphism between left KAs.
Proof. We calculate

(a*)p ="((Za')p) = (Za'p) = Z(a’p)
=X(a")p = X{(a)'p = (X(a)")p = (a)"Pp .
We have used, in this order, the definition of (_), *-continuity twice, that ™

preserves arbitrary existing suprema, the definition of (), that () distributes
through - (equation (15)), the definition of suprema in P and (19). O

We will now give an abstract proof of equivalence of the Geach formula (13)
and the confluence property (12). We do this in KADs that are extensional (or
separable as they are called in dynamic algebra), i.e., satisfy

a<b & (a) <(b). (25)

Note that only the direction from right to left must be required, the other one
holds in KAD by monotonicity.

Moreover, we use an extension of KAT by a converse operation _”that is an
involution, distributes through + and is contravariant over -, i.e., satisfies

. . o
and preserves predicates, i.e., p”’= p.
Now we can show

Theorem 7.2 In an extensional KAD with converse,
ab < ed” & (B)[d] < [a)(c). (26)

Proof. (=) We calculate

The first step uses (25), the second step locality, the third step (17), the fourth
step monotonicity, the fifth step (22).
(<) Let (b)[d] < [a]{c). Then
(b) < (b)[d){d") < [al(c)(d") .
Then the proof continues like for (=), read upside down. a

A special case of the Geach formula deals with the domain operator. Its
relational definition (9) implies "R C R ; R, admitting a certain relaxation of
domain constraints in our derivations. Using the Geach formula this translates
into the modal Kleene formula

(a)la] <(a) , (27)

which can even be shown to hold in all KADs, not only in extensional KADs
with converse.

10

8 Looping for Optimality in Kleene Algebra

Using the Geach formula we can now replay our previous derivation in the more
abstract setting of KAs. Specifications and implementations are now simply el-
ements of a KA.

A difference to the relational setting is that we cannot carry over GIMP
directly, since in general KAs residuals need not exist.

But for our derivation there is no need to internalize the concept of greatest
improvement; rather we use a characterizing predicate in which the right hand
side of (1) is replaced by the corresponding modal formula and ¢ now plays the
role of C:

IMP(z,t,c) & (z) < [){c). (28)

Now we need to find a sufficient criterion for IMP(while p do s,t,¢) which
spells out to ((ps)—p) < [t]{c). As in Section 2, we abstract and want to achieve
(v*¢q) < [t]{c) which by (24) is equivalent to (v)*(g) < [t](c). Since by (20)
(v)* < Xw), it suffices to show *(v){(q) < [t]{c). By the least-fixpoint property of
the left star this is implied by (¢) @ (v)[t]{c) < [t]{c), equivalently

(@) <[tle) A ()[t]{e) < [t]{c) . (29)
The second conjunct, in turn, is implied by
(0)[t] < [t]{c) (30)

provided cc < c.
The full specification of our task in KA reads, analogously to Section 2,

KAOPT(z,t,¢) & 2 <t A IMP(x,t, c).

This yields the additional proof obligation
while p do s < t. (31)

Assume now, as in (8), that t = repe = e*; =e.
With the same derivation as in Section 3 we can show that the following
property is sufficient for (31):
ps<e A "(ps) ="Te. (32)
Next we note that (30) and the first conjunct of (29) spell out to

(ps)[t] < [t){c), (33)
(=p) < [t){c). (34)
Again, (34) is implied by (32) if ¢ is reflexive.
Summing up, we have the following KA variant of Theorem 3.1:

Theorem 8.1 Suppose that ¢ is a pre-order and t = repe. If (32) and (33)
hold then
KAOPT (while Te do s,t,c) .

11

9 Classifying Greedy Algorithms

In the present section we demonstrate that the modal approach does indeed
provide a convenient tool for many further applications. We demonstrate this in
an abstract reconstruction of Curtis’s classification of Greedy algorithms in [2]
to which we also refer the reader for concrete examples of the various types of
algorithms. The modal operators again lead to considerably more concise proofs
than the original relational ones.

Throughout this section we assume the following. First, t is the specification
and c and [are pre-orders that model global and local comparison, respectively.
Second, t = repe is the specification that completes initial approximative solu-
tions to terminal ones using elementary steps e. Third, g < e is supposed to be
a greedy step that satisfies, analogously to (10) and (11),

g =Te, (35)
IMP(g,e,l), ie., (g) <[eJ{l) (& eg<l). (36)

In the following theorems we will always list the conditions both in modal nota-
tion as obtained by the Geach formula (26) and in the one of KADs with converse
and illustrate them by diagrams.

Immediately from Theorem 8.1 we obtain the following description of the
first class of greedy algorithms:

Theorem 9.1 (Best-Global) KAOPT(repg,t,c) follows from
(D] < [tlle) (& tg<cat?). (37)

7™

c .- st

.X/.

The next class is characterized by

Theorem 9.2 (Better-Global) KAOPT(repg,t,c) follows from
W < 1)) (& 1<), (39)

A

This condition says that for any pair of local choices the locally better one has
a completion at least as good as any completion of the locally worse one.

12

Proof. We show that the assumptions imply condition (37) of Theorem 9.1. We

calculate
(9)t] < [el(D[E] < [e][t]{e) = [Te][t]{c) -

The first step uses (36), the second one (38) and the third one the definition of
t = repe. But by (18) and (35) this is equivalent to the claim. O

The third class of greedy algorithms has a more elaborate set of preconditions.

Theorem 9.3 (Best-Local) If we assume *-continuity, KAOPT(rep g, t, ¢) fol-
lows from

VnelN: (¢g") <[e"|{) (& VnelN:(e")g"<I), (39)
(OH(="e) < [e]{l) (& e'l=fe<]), (40)
O] < [Hel(e) (& el <ct) . (41)

c . t
x% X%’e . el o,
"

Here the local choice is made depending on the history of choices before. The
first of these conditions says that each step produces an approximation to the
final optimum that is optimal among the approximations that can be obtained
with he same number of steps. The other two conditions state that once the
sequence of greedy steps finishes, completions of other approximations cannot
improve the result any more.

Proof. First we note that, by an easy induction using idempotence of tests, in
particular (="e) = (="e)(—e), condition (40) generalizes to

R0 = ()-e) < [- (42)
The proof proper is performed by showing that the assumptions imply condition
(37) of Theorem 9.1, i.e., (9)[t] < [t]{c).

Using *-continuity and [a + b] = [a] © [b] this reduces to
VnelN: (g)[t] < [e"][-"e]{c) .
For n = 0, we use idempotence of predicates and (18) to see that
()t] < [Fel{e) & (FTe)(g)[t] < [el(c) -
Now we calculate, using (35),
(="e)(g)lt] = ("g))lt] = (~Tgg)[t] = (O)[t] = (0) ,

and the claim is shown.
For fixed n > 0 we split the greedy step g into the part g (¢"~!) that admits at
least n—1 further greedy steps, and its relative complement g —="(g" 1), and show

13

separately (9"(g"~))[t] < r and (g="(g"))[t] < r, where r = [e"][~1e)(c).
For the first part we calculate

(g (g™ =N < (g ("~ NIg"IE < {g) (g™ DI < [N DI < [e"][=Tel(c) -

The first step uses g" 1t < t and antitonicity of [_]. The second step follows by
(27). The third step joins powers and uses (39). The final step employs (41).

For the second part we want to use again (27) and so have to replace =" (g" 1)
by a positive domain expression. We calculate, for arbitrary 4,

=g") = (9" "9) + (9" ="9)) = (9" "9)~"(9" ~T9) = ~"(¢")~"(g' "g) -
Using only the > half of this equality and shunting we obtain
=g < ="(g") + (9" ~9) .

and an easy induction shows ="(g") < X;.,"(¢* ="g). By disjunctivity of (_) our
claim is thus established if (g)(7(¢g™ —"g))[t] < r for all m < n. We calculate

(g) (g™ ="g))[t]
{ g™ —"gt <t and antitonicity of [] [}
(g)("(g™ =Tg)) g™ —"g]lt]
< {by@n]
{9){g™ —"g)[t]
{ powers and (35) |}
(g™ (=Te)t]
< { by condition (39) |}
e (D (="e)[t]
< { by (42) and n >m+1}
e+ [en =]
{ joining powers and using condition (41) [}

[e"][="e]{l) -

IN

IN

The final class of algorithms is given by

Theorem 9.4 (Better-Local) Under *-continuity KAOPT(rep g, t,c) follows

from
((Te)le] < [e]{l) (& elle<le), (43)
((="e) < [e](l) (& el-Te<]), (44)
O[] < [Helle) (& el <ct?). (45)

14

A
' 7N

< !
o .
X/Je el o
€ e

This essentially says that for any two local choices and any one-step extension
of the locally worse one there is a locally better one-step extension of the locally
better one.

Proof. We show that condition (38) of Theorem 9.2 is satisfied. First, using
antitonicity of [] and distributivity, we obtain

(43) A (44) & <>(<“€>[e]@<ﬂre>[1])é[€]<l> =
O("e)e+ 1@ (He)le+1]) <[e]{l) < (Dle+1] < [e](]) .

Now dualization of (14) together with the equivalence in (13) allows us to infer
De*] = D[(e + 1)*] < [e*]{l), from which by condition (45) we get (I)[t] =
Dler][t] < e](Dft] < [e][Fel(e) = [t{c)- O

Curtis’s classification is completed by showing the following relationship be-
tween the algorithm classes:

Best-Global

/

Better-Global Best-Local

S

Better-Local

g/

Except for the relation between Better-Local and Best-Local this was was es-
tablished by the proofs of the previous Theorems. So we add

Theorem 9.5 The Better-Local conditions imply the Best-Local conditions.

Proof. Tt suffices to show (39). This is done by induction on n. For n = 0 the
claim follows from 1 < [. For the induction step we calculate

(g"™) < [e"N(g) < [e"1(D){Tg){g) <
")) ") el1) < [e"[el(D) () < [e" (D) -

The first step splits a power and uses the induction hypothesis. The second step
uses a domain law. The third step employs (36). The fourth step uses (35) and
(43). The last step joins powers and uses transitivity of I. a

10 Conclusion

We have shown that a concise algebraic derivation of a general greedy-like algo-
rithm can be obtained in the framework of Kleene algebra. The more pristine

15

framework avoids detours through residuals and leads to a simpler correctness
proof than in [2,4].

The treatment has exhibited an interesting relation with semi-commutation
properties as known from rewriting and allegories [5]. The connection to KA has
already been explored in [13].

Doing away with converse has led us into the interesting and very well-
behaved algebra of predicate transformers. In it we can express properties such as
(a*) = (a)* that cannot even be formulated in dynamic logic. We are therefore
convinced that this algebra will have many further applications.

Acknowledgement We are grateful to S. Curtis for an enlightening discussion
on greedy algorithms. Helpful remarks were provided by R. Backhouse and T.
Ehm.

References

1. R.S. Bird, O de Moor: Algebra of programming. Prentice Hall 1997

2. S.A. Curtis: A relational approach to optimization problems. D.Phil. Thesis. Tech-
nical Monograph PRG-122, Oxford University Computing Laboratory 1996

3. J. Desharnais, B. Mdéller, and G. Struth: Kleene algebra with domain. Technical
Report 2003-07, Universitdt Augsburg, Institut fiir Informatik, 2003

4. J.E. Durdn: Transformational derivation of greedy network algorithms from de-
scriptive specifications. In: E.A. Boiten, B. Méller (eds.): Mathematics of program
construction. Lecture Notes in Computer Science 2386. Springer 2002, 4067

5. P. Freyd, A. Scedrov: Categories, allegories. North-Holland 1990

6. P. Helman, B.M.E. Moret, H.D. Shapiro: An Exact Characterization of Greedy
Structures. SIAM Journal on Discrete Mathematics 6, 274-283 (1993)

7. B. Korte, L. Lovész, R. Schrader: Greedoids. Heidelberg: Springer 1991

8. D. Kozen:A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110, 366-390 (1994)

9. D. Kozen: Kleene algebra with tests. Transactions on Programming Languages and
Systems 19, 427-443 (1997)

10. B. Moller: Derivation of graph and pointer algorithms. In: B. Méller, H.A. Partsch,
S.A. Schuman (eds.): Formal program development. Lecture Notes in computer
science 755. Springer 1993, 123-160

11. B. Moller and G. Struth: Modal Kleene algebra and partial correctness. Technical
Report 2003-08, Universitdt Augsburg, Institut fiir Informatik, 2003

12. S. Popkorn: First steps in modal logic. Cambridge University Press 1994

13. G. Struth: Calculating Church-Rosser proofs in Kleene algebra. In: H.C.M. de
Swart (ed.): Relational Methods in Computer Science, 6th International Confer-
ence. Lecture Notes in Computer Science 2561. Springer 2002, 276-290

16

	Greedy-Like Algorithms in Kleene Algebra

