
Universität Augsburg

Characterizing Determinacy in
Kleene Algebras

Jules Desharnais and Bernhard Möller

Report 2001-3 April 2001

Institut für Informatik

D-86135 Augsburg

Copyright c© Jules Desharnais and Bernhard Möller

Institut für Informatik

Universität Augsburg

D–86135 Augsburg, Germany

http://www.Informatik.Uni-Augsburg.DE

— all rights reserved —

2

Characterizing Determinacy in Kleene

Algebras

Jules Desharnais 1

Département d’informatique, Université Laval, Québec QC G1K 7P4 Canada

Bernhard Möller

Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany

Abstract

Elements of Kleene algebras can be used, among others, as abstractions of the input-
output semantics of nondeterministic programs or as models for the association of
pointers with their target objects. In the first case, one seeks to distinguish the
subclass of elements that correspond to deterministic programs. In the second case
one is only interested in functional correspondences, since it does not make sense
for a pointer to point to two different objects.

We discuss several candidate notions of determinacy and clarify their relation-
ship. Some characterizations that are equivalent in the case where the underlying
Kleene algebra is an (abstract) relation algebra are not equivalent for general Kleene
algebras.

Key words: Keywords: semantics, determinacy, Kleene algebra, relational algebra.

1 Introduction

Elements of Kleene algebras can be used, among others, as abstractions of
the input-output semantics of nondeterministic programs [5] or as models for
the association of pointers with their target objects in the style of [12]. In the
first case, one seeks to distinguish the subclass of elements that correspond to
deterministic programs. In the second case, one is only interested in functional

Email addresses: Jules.Desharnais@ift.ulaval.ca (Jules Desharnais),
Bernhard.Moeller@informatik.uni-augsburg.de (Bernhard Möller).
1 This research is supported by NSERC (Natural Sciences and Engineering Re-
search Council of Canada).

3

correspondences, since it does not make sense for a pointer to point to two
different objects.

We discuss several candidate notions of determinacy and show several equiva-
lences. However, it also turns out that some characterizations that are equiva-
lent in the case where the underlying Kleene algebra is an (abstract) relation
algebra, are not equivalent for general Kleene algebras.

2 Kleene Algebras

In our definitions we follow [4], since we want to admit general recursive def-
initions, not just the Kleene star. We are well aware that there are different
definitions (see e.g. [9]).

Definition 1 A Kleene algebra (KA) is a sixtuple (K,≤, 0,>, ·, 1) satisfying
the following properties:

(a) (K,≤) is a complete lattice with least element 0 and greatest element >.
The supremum of a subset L ⊆ K is denoted by tL. The supremum of
two elements x, y ∈ K is denoted by x+ y.

(b) (K, ·, 1) is a monoid.
(c) The operation · is universally disjunctive (i.e. distributes through arbi-

trary suprema) in both arguments.

This kind of structure is also known as a quantale (see e.g. [3]).

Example 2 Consider an alphabet A. Then A∗ is the set of all finite words
over A, • denotes concatenation, extended pointwise to sets of words, and ε the
empty word. As customary in formal language theory, we identify a singleton
language with its only element. Then perhaps the best-known example of a
KA is LAN

def
= (P(A∗), ⊆ , ∅, A∗, • , ε), the algebra of formal languages. A

related KA is the algebra PAT of path sets in a directed graph under path
concatenation (see e.g. [11] for a precise definition).

Another important KA is REL
def
= (P(M × M), ⊆ , ∅, M × M, ; , I), the

algebra of homogeneous binary relations over some set M under relational
composition ; .

Definition 3 (a) A Boolean algebra is a distributive and complemented lat-
tice. The complement of an element x is denoted by x.

(b) A Boolean algebra is complete if its underlying lattice is complete.
(c) An atom of a lattice with least element 0 is a minimal element in the set

of elements different from 0. The set of all atoms of a lattice with 0 is
denoted by At. For an element x of such a lattice, At(x)

def
= {a ∈ At : a ≤

x} is the set of atoms of x.
(d) A lattice with 0 is atomic if for every element x we have x = tAt(x).

4

(e) A KA is called Boolean if its underlying lattice is a Boolean algebra (and
hence a complete Boolean algebra). It is called atomic if its underlying
lattice is atomic.

Example 4 More generally than the concrete relation algebra REL, every ab-
stract relation algebra is a KA. Such an abstract relation algebra (see e.g. [15])
is a tuple RA = (R,≤, , 0,>, ;, 1,)̆, where

(a) (R,≤, , 0,>) is a complete Boolean algebra with complement operation
, least element 0 and greatest element >;

(b) (R, ; , 1) is a monoid;
(c) Tarski’s rule x 6= 0 ⇒ > ; x ;> = > holds;
(d) ˘ : R→ R is a unary operation such that Dedekind’s rule

x ; y u z ≤ (x u z ; y̆) ; (y u x̆ ; z)

is satisfied. Equivalently to this one may postulate the Schröder rule

x ; y ≤ z ⇔ x̆ ; z ≤ y ⇔ z ; y̆ ≤ x .

The elements of R are called abstract relations ; the operation ˘ forms the
converse of a relation, whereas ; is called relational composition. It is cus-
tomary to use the convention that ; binds tighter than + and u . The reduct
(R,≤, 0,>, ;, 1) forms a Boolean KA.

3 Types

A central notion is that of types.

Definition 5 A type of a KA is an element t with t ≤ 1. We set TYP
def
=

{t ∈ K : t ≤ 1}.

Note that by monotonicity, TYP is closed under composition.

This definition is best illustrated in the KA REL. There, a type corresponds
to a subset T ⊆ M and can be represented as the partial identity relation
1T

def
= {(x, x) : x ∈ T}. Clearly, 1T is a subidentity, and so there is a one-to-one

correspondence between types and subidentities.

Now, restriction of a relation R ⊆ M ×M to arguments of type T , i.e. the
relation R ∩ T ×M , can also be described by composing R with 1T from the
left: R ∩ T ×M = 1T ;R. Similarly, co-restriction is modeled by composing
a partial identity from the right. Finally, consider types S, T ⊆ M and binary
relation R ⊆ M ×M . Then R ⊆ S × T ⇔ 1S ; R ; 1T = R. In other
words, the “default typing” M ×M of R can be narrowed down to S × T iff
restriction to S and co-restriction to T do not change R. These observations

5

are the basis for our view of types as subidentities and our algebraic treatment
of restriction and co-restriction. For a different, but related, approach see [9].

For the remainder of the paper, we assume KAs to be Boolean.

Definition 6 The negation of a type t ≤ 1 in a KA is ¬t def
= t u 1.

With this definition, (TYP,≤) forms again a complete Boolean algebra.

Lemma 7 Assume a Boolean KA. Then the following hold:

(a) All types are idempotent, i.e. t ≤ 1 ⇒ t · t = t.
(b) The infimum of two types is their product: s, t ≤ 1 ⇒ s · t = s u t. In

particular, all types commute under the · operation.
(c) s, t ≤ 1 ⇒ (s u t) · a = s · a u t · a.
(d) t ≤ 1 ⇒ t · > = ¬t · >.
(e) Restriction by a type can also be expressed as a meet: t ≤ 1 ⇒ t · a =

a u t · >.
(f) Restriction by a type distributes through meet and can be shifted between

meet partners: t ≤ 1 ⇒ t · (a u b) = t · a u t · b = t · a u b = a u t · b.
(g) For all families L of types, (uL) · > = u(L · >).

PROOF. We first note that by monotonicity and neutrality, for s, t ≤ 1 we
have that s · t ≤ s · 1 = s and, symmetrically, s · t ≤ t, so that s · t ≤ s u t.

(a) t
= {[neutrality]}

1 · t
= {[Boolean algebra]}

(t+ ¬t) · t
= {[disjunctivity]}

t · t+ ¬t · t
≤ {[above]}

t · t+ ¬t u t
= {[Boolean algebra]}

t · t
≤ {[by t ≤ 1 and monotonicity]}

1 · t
= {[neutrality]}

t .
(b) We have already shown that s · t is a lower bound for s and t. Using (a)

and monotonicity, we also have s u t = (s u t) · (s u t) ≤ s · t. Hence
s · t = s u t.

(c) (s u t) · a
≤ {[monotonicity]}

s · a u t · a

6

= {[neutrality and Boolean algebra]}
(s+ ¬s) · (s · a u t · a)

= {[disjunctivity]}
s · (s · a u t · a) + ¬s · (s · a u t · a)

≤ {[monotonicity and associativity]}
s · t · a+ ¬s · s · a

= {[by strictness, since ¬s · s = ¬s u s = 0]}
s · t · a

= {[by (b)]}
(s u t) · a .

(d) First, by (c), t ·>u¬t ·> = (tu¬t) ·> = 0 ·> = 0. Second, t ·>+¬t ·> =
(t+ ¬t) · > = 1 · > = >.

(e) t · > u a
= {[Boolean algebra]}

t · (a+ a) u a
= {[disjunctivity]}

(t · a+ t · a) u a
= {[distributivity]}

(t · a u a) + (t · a u a)
= {[Boolean algebra, since t · a ≤ a by monotonicity and neutrality]}

(t · a u a) + 0
= {[Boolean algebra, since t · a ≤ a by monotonicity and neutrality]}

t · a .
(f) By (e) we have t ·(aub) = aubut ·>, from which the claim is immediate

by commutativity, associativity and idempotence of u as well as (e) again.
(g) We show (L) · > = (L · >).

(L · >)
= {[de Morgan]}
t {t · > : t ∈ L}

= {[by (d)]}
t {¬t · > : t ∈ L}

= {[disjunctivity]}
(t{¬t : t ∈ L}) · >

= {[de Morgan]}
(¬ {t : t ∈ L}) · >

= {[by (d)]}
(L) · > .

Concerning property (a), idempotence is also characteristic of so-called re-
tractions and used centrally in Scott’s classical paper [16] for the definition of
data types: each such type is viewed as the range or, equivalently, the set of
fixpoints of a retraction.

7

4 Domain and Codomain

Definition 8 In a KA (K,≤,>, ·, 0, 1), we can define, for a ∈ K, the domain

pa via the Galois connection ∀ t : t ≤ 1 ⇒ (pa ≤ t
def⇔ a ≤ t · >).

This is well-defined because of Lemma 7(g) [1,2]. Hence the operation p is
universally disjunctive and therefore monotonic and strict. Moreover the def-
inition implies a ≤ pa · >. The co-domain aq is defined symmetrically by the
Galois connection aq ≤ t

def⇔ a ≤ > · t.

By the Galois connection, the partial orders (TYP,≤) and ({t · > : t ∈
TYP},≤) are isomorphic. Hence we have, for t ∈ TYP, that p(t · >) = t
(which also follows from properties (e) and (h) in Lemma 9 below).

We list a number of useful properties of the domain operation (see again also
[1] and consider [13] for the proofs); analogous ones hold for the co-domain
operation.

Lemma 9 Consider a KA (K,≤,>, ·, 0, 1) and a, b, c ∈ K.

(a) pa = u{t : t ≤ 1 ∧ t · a = a}.
(b) pa · a = a.
(c) t ≤ 1 ∧ t · a = a ⇒ pa ≤ t.
(d) p(a · b) ≤ pa.
(e) t ≤ 1 ⇔ pt = t.
(f) p> = 1.

(g) p(pa) = pa.
(h) p(a · >) = pa.
(i) a · > ≤ pa · >.
(j) p(a · b) ≤ p(a · pb).
(k) aq u pb = 0 ⇒ a · b = 0.
(l) pa = 0 ⇔ a = 0.

5 Locality of Composition

It should be noted that the converse inequation of Lemma 9(j) does not fol-
low from our axiomatization. A counterexample will be given in Section 8.2.
Its essence is that composition does not work “locally” in that only the “near
end”, i.e. the domain, of the right factor of a composition does decide “compos-
ability”. This observation is the motivation for the term “local composition”
defined below.

Definition 10 A KA has left-local composition if it satisfies

pb = pc ⇒ p(a · b) = p(a · c) .

Right-locality of composition is defined symmetrically. A KA has local com-
position if its composition is both left-local and right-local.

Lemma 11 (a) A KA has left-local composition iff it satisfies

p(a · b) = p(a · pb) (1)

8

(b) If a KA has left-local composition then p(pa · b) = pa · pb = pa u pb.

PROOF.

(a) (⇒) Immediate from the assumption, since by Lemma 9(g) p(pb) = pb.
(⇐) Assume pb = pc.

p(a · b)
= {[by (1)]}
p(a · pb)

= {[assumption]}
p(a · pc)

= {[by (1)]}
p(a · c) .

(b) p(pa · b)
= {[by (1)]}
p(pa · pb)

= {[by Lemma 9(e)]}
pa · pb

= {[by Lemma 7(b)]}
pa u pb .

Analogous properties hold for right-locality. In the sequel we only consider KAs
with local composition. All examples given in Section 2 satisfy that property.

We conclude this section by establishing a Galois connection between domain
and range. It will be useful in Section 6.3 about modal operators.

Lemma 12 If s, t ≤ 1, then p(a · t) ≤ ¬s ⇔ (s · a)q ≤ ¬t.

PROOF. By Boolean algebra and Lemma 7(b), the claim is equivalent to
s · p(a · t) = 0 ⇔ (s · a)q · t = 0. We calculate

s · p(a · t)
= {[by Lemma 9(e)]}
p(s · p(a · t))

= {[local composition]}
p(s · a · t) .

Symmetrically, (s · a)q · t = (s · a · t)q . Now the claim is immediate from
Lemma 9(l).

9

6 Candidate Characterizations of Determinacy

6.1 Candidates from Relation Algebra

In a relation algebra, an element R is called a (partial) function or a map or
deterministic iff it satisfies R̆ ;R ⊆ I. By the Schröder laws this is equivalent
to the requirement R ; I ⊆ R.

It is well known that functions are left-distributive through intersection: First,
R ; (S ∩ T) ⊆ R ; S ∩ R ; T by monotonicity. For the reverse inclusion we
have

R ; S ∩ R ; T
⊆ {[Dedekind]}

(R ∩ R ; T ; S)̆ ; (S ∩ R̆ ;R ; T)
⊆ {[monotonicity]}

R ; (S ∩ R̆ ;R ; T)
⊆ {[R̆ ;R ⊆ I, neutrality and monotonicity]}

R ; (S ∩ T) .

It is less well known, though, that this property in fact is equivalent to the
property of being a function. We give a quick proof of this (see also [15]).
Assume that R is left-distributive through intersection. Then

R ; I ∩ R
= {[neutrality]}

R ; I ∩ R ; I
= {[left-distributivity of R]}

R ; (I ∩ I)
= {[Boolean algebra]}

R ; 0
= {[strictness]}

0 ,

so that R ; I ⊆ R follows by Boolean algebra.

However, the equivalence is not Kleene valid, as we shall show in Section 8.3,
and so the use of (some form of) Dedekind’s rule is essential for that. In
Kleene algebras, left-distributivity is only equivalent to a stronger property
that results by generalizing the constant I in the inclusion R ; I ⊆ R to a
variable (after making it visible in the right hand side, see the definition of
SC below). These observations lead to our first three candidates for charac-
terizations of determinate objects (the formula involving converse not being
usable in Kleene algebras). We attach names to the characterizing predicates

10

for easier reference.

LD(a)
def⇔ ∀ b, c : a · (b u c) = a · b u a · c (left-distributivity)

SC(a)
def⇔ ∀ b : a · b ≤ a · b (subsumption of complement)

SC1(a)
def⇔ a · 1 ≤ a (subsumption of complement of 1)

Concerning the relations between these notions, we first state

Lemma 13 LD(a) ⇔ SC(a).

PROOF. (⇒) 0 = a · 0 = a · (c u c) = a · c u a · c by LD(a).
(⇐)

a · b u a · c
= {[Boolean algebra]}

a · ((b u c) + (b u c)) u a · c
= {[distributivities]}

(a · (b u c) u a · c) + (a · (b u c) u a · c)
= {[lattice algebra]}

a · (b u c) + (a · (b u c) u a · c)
= {[since a · (b u c) u a · c ≤ a · c u a · c = 0 by SC(a)]}

a · (b u c) .

Moreover, we clearly have SC(a) ⇒ SC1(a) (set b = 1).

In Section 8.3, we show that the reverse implication is not valid in all Kleene
algebras. However, it holds in LAN, PAT and RA. To understand this, let us
elaborate on the case of the Kleene algebra LAN of formal languages over an
alphabet A. There we have 1 = A+, and so for U ⊆ A∗ we get SC1(U) ⇔
U • A+ ⊆ U . In other words, a proper extension of a word in U must not lie
in U again. This is equivalent to U being a prefix-free language (i.e. none of
the strings of U is a proper prefix of another; in coding theory, this is known
as the Fano condition; in process algebra, sets with this property are called
prefix-free or prefix antichains). The same applies to the algebra PAT of sets
of paths in a graph, modeled as sets of strings of nodes.

Assume now SC1(U) and x ∈ U •V ∩U •W for V,W ⊆ A∗, say x = u1 • v =
u2 • w for some u1, u2 ∈ U , v ∈ V and w ∈ W . By local linearity of the
prefix relation we obtain that u1 must be a prefix of u2 or the other way
around. By prefix-freeness of U this means u1 = u2 and cancellativity of •
shows v = w ∈ V ∩W . Therefore also x ∈ U • (V ∩W), i.e. LD(U) holds. But
this is equivalent to SC(U) as stated in the above lemma.

11

6.2 Domain-Oriented Characterizations

In view of the previous section it appears that LD, SC and SC1 are not appro-
priate characterizations of (partial) functions, since in a prefix-free set of paths
still different paths may emanate from the same starting node. Therefore, a
function should rather be characterized in a domain-oriented way: every point
in the domain should have a unique “extension”.

Now, in PAT, a node starts a unique path in a path set a iff removal of this
path removes that node from the domain of a. This can be captured in a
purely order-theoretic way by the property

DD(a)
def⇔ ∀ b : b < a ⇒ pb < pa (decrease of domain).

Here, < is the strict-order associated with the order ≤ underlying the KA
under consideration, i.e. c < d

def⇔ c ≤ d ∧ c 6= d. Note that all atoms satisfy
DD.

This property is easily shown to be equivalent to

ED(a)
def⇔ ∀ b : b ≤ a ∧ pb = pa ⇒ b = a (equality of domain).

Another candidate is

CD(a)
def⇔ ∀b : b ≤ a ⇒ b = pb · a (characterization by domain).

Lemma 14 DD(a) ⇔ CD(a) .

PROOF. We prove ED(a) ⇔ CD(a).

(⇐) Suppose b ≤ a and pb = pa. Then by CD(a) and Lemma 9(b) we get
b = pb · a = pa · a = a.

(⇒) b ≤ a
⇒ {[monotonicity]}
pb · b ≤ pb · a ∧ pb ≤ pa

⇔ {[by Lemma 9(b)]}
b ≤ pb · a ∧ pb = pb u pa

⇔ {[by Lemma 11(b)]}
b ≤ pb · a ∧ pb = p(pb · a)

⇒ {[by ED(a)]}
b = pb · a .

However, CD and DD are not equivalent to LD. In LAN an element a satisfies
DD(a) iff it contains at most one word, whereas LD(a) is equivalent to prefix-
freeness of a. So in LAN the properties CD and DD imply LD, but not the

12

other way around. We show in section 8.3 that the implication does not hold
for arbitrary Kleene algebras.

In REL the properties CD and DD are equivalent to the other characterizations
of deterministic relations. However, in the case of an abstract relation algebra
in RA, DD does not imply LD, as will be shown in Section 8.4.

Lemma 15 LD implies DD in RA.

PROOF. Assume LD(a), which is equivalent to ă ; a ≤ 1 in RA, and b ≤ a.
We show CD(a). Since b = pb ; b ≤ pb ; a, we only need to prove pb ; a ≤ b.

pb ; a
= {[relational algebra]}

b ;> u a
≤ {[Dedekind]}

(b u a ; >̆) ; (> u b̆ ; a)
= {[Boolean algebra, since b ≤ a ≤ a ; >̆]}

b ; b̆ ; a
≤ {[monotonicity]}

b ; ă ; a
≤ {[assumption ă ; a ≤ 1]}

b.

Finally, we give another domain-oriented characterization, that is easily shown
equivalent to CD:

SO(a)
def⇔ p : {b : b ≤ a} → {t : t ≤ pa} is an order-isomorphism

(subobject lattice)

6.3 A Modal Characterization

The modal operators diamond and box are quantifiers about the successor
states of a state in a transition system. But they can also be viewed as asser-
tion transformers dealing with sets of states. The (forward) diamond operator
assigns to a set of states t the set s of all those states that have a successor in
t. The (forward) box operator is the dual of the diamond operator; it assigns
to a set of states t the set s of all those states for which all successors lie in t.
The backward modal operators are defined symmetrically.

In the setting of Kleene algebras, the role of assertions or sets of states is played
by types. Hence we can define the modal operators as type transformers. The

13

operators of dynamic logic are obtained by setting

〈a〉t def
= p(a · t) , [a]t

def
= ¬〈a〉¬t .

We note that [a]t = a → t, where a → b
def
= ¬p(a · ¬pb) is called type

implication, an operation which is useful for dealing with assertions in de-
monic semantics and which enjoys many useful properties, see [5]. Moreover,
in relational semantics of imperative programs, [a]t = wlp.a.t [2,6].

We now carry over the well-known modal characterization of deterministic
relations (see e.g. [14]) to elements of Kleene algebras and call an element a
modally deterministic iff MD(a) holds, where

MD(a)
def⇔ ∀ t : 〈a〉t ≤ [a]t . (2)

Note that by Boolean algebra MD(a) is equivalent to

∀ t : p(a · t) u p(a · ¬t) = 0 . (3)

The following properties are easily checked:

Corollary 16 (a) 〈a〉0 = 0.
(b) 〈a〉1 = pa.
(c) [a]0 = ¬pa.
(d) [a]1 = 1.
(e) In particular, 〈a〉0 ≤ [a]0 and 〈a〉1 ≤ [a]1.
(f) Suppose that the only types are 0 and 1 (such as e.g. in the algebra LAN

of formal languages). Then MD(a) holds for all a.
(g) 〈 〉 is monotonic and [] is antitonic, i.e. for a ≤ b and t ≤ 1 we have
〈a〉t ≤ 〈b〉t and [b]t ≤ [a]t.

The modal characterization links to the domain-oriented characterizations as
follows (for the relationship with our other characterizations see Section 8.7):

Lemma 17 We have CD(a) ⇒ MD(a). The reverse implication is not valid.

PROOF. Assume CD(a) and consider a type t. We set d
def
= p(a · t)u p(a · ¬t)

and calculate

d · a
= {[definition of d, distributivity of type restriction (Lemma 7(c))]}
p(a · t) · a u p(a · ¬t) · a

= {[by CD(a) and a · t ≤ a and a · ¬t ≤ a]}
a · t u a · ¬t

14

= {[distributivity of type restriction (Lemma 7(c))]}
a · (t u ¬t)

= {[Boolean algebra and strictness]}
0 .

Therefore, d = p(d · pa) = p(d · a) = p0 = 0, which shows 〈a〉t ≤ [a]t.

To see that the reverse implication fails, consider a Kleene algebra in which
the only types are 0 and 1. Then we have DD(a) and hence, by Lemma 14,
CD(a) iff a is an atom. However, by Corollary 16(f), MD(a) is always true.

7 Closure Properties

7.1 Downward Closure

A natural property of functions is that a subobject of a determinate object is
determinate again. Here we can show

Lemma 18 The properties SC, SC1, CD and MD are closed under subobjects.

PROOF. For SC and SC1 this is immediate from monotonicity, since we can
restate these properties as ∀ b : a · b u a · b = 0 and a · 1 u a = 0, respectively.
For CD, suppose b ≤ a and c ≤ b. Then also c ≤ a, hence

c = pc · a = (pc u pb) · a = pc · pb · a = pc · b .

Finally, for MD, the assertion is immediate from Corollary 16(g).

7.2 All Types are Determinate

Based on our original relational motivation, we would like to have that all
types are determinate. By the previous section, to ensure this we only need to
check that the largest type 1 satisfies all our characterizations. Fortunately,
this indeed holds, as the following lemma shows.

Lemma 19 LD(1) ∧ SC1(1) ∧ CD(1) ∧ MD(1).

PROOF. LD(1) and SC1(1) are trivial. For the third assertion, assume t ≤ 1.
Then by Lemma 9(e) we have t = t · 1 = pt · 1. Finally, for types s, t we have,
again by Lemma 9(e), that[1]t = t = 〈1〉t.

15

7.3 Closure Under Compatible Join

In this section we show that all our characterizations are closed under join of
pairwise compatible elements. Here, we call a, b compatible if they agree on
the intersection of their domains, ie. if pb · a = pa · b. This is trivially satisfied
if pa ·pb = 0. Moreover, every element is compatible with itself. A set L ⊆ M
is compatible if the elements of L are pairwise compatible.

As an auxiliary result we need the following lemma.

Lemma 20 Let a, b be compatible.

(a) pa · b = a u b = pb · a.
(b) If LD(a) then a · c u b · d = pb · a · (c u d).
(c) If SC1(a) then a · 1 u b = 0.
(d) If CD(a) and c ≤ a then c and b are compatible as well.
(e) If MD(a) and t ≤ 1 then p(a · t) u p(b · ¬t) = 0.

PROOF.

(a) By Lemma 7(f) we get a u b = a u pa · b = a u pb · a = pb · a.
(b) a · c u b · d

= {[by a = pa · a and Lemma 7(f)]}
a · c u pa · b · d

= {[compatibility]}
a · c u pb · a · d

= {[by Lemma 7(f)]}
pb · a · c u pb · a · d

= {[by LD(a) and downward closure of LD]}
pb · a · (c u d) .

(c) a · 1 u b
= {[by Lemma 7(f)]}

a · 1 u pa · b
= {[compatibility]}

a · 1 u pb · a
≤ {[monotonicity]}

a · 1 u a
= {[by SC1(a)]}

0 .
(d) pc · b

= {[by CD(a)]}
p(pc · a) · b

= {[local composition]}
pc · pa · b

= {[compatibility]}

16

pc · pb · a
= {[types commute and CD(a)]}
pb · c .

(e) p(a · t) u p(b · ¬t)
= {[by a · t ≤ a and monotonicity]}
pa · p(a · t) u p(b · ¬t)

= {[by Lemma 7(f)]}
p(a · t) u pa · p(b · ¬t)

= {[by Lemma 11(b)]}
p(a · t) u p(pa · b · ¬t)

= {[compatibility]}
p(a · t) u p(pb · a · ¬t)

≤ {[monotonicity]}
p(a · t) u p(a · ¬t)

= {[by MD(a)]}
0 .

Lemma 21 Let P range over LD, SC, SC1,DD,ED,CD, SO,MD. Let more-
over L ⊆ K be a compatible set. Then (∀ a ∈ L : P(a)) ⇒ P(tL).

PROOF. Due to the equivalences between some of the properties, it suffices
to prove the lemma for LD, SC1,CD and MD.

(LD)

(
⊔
a∈L

a) · c u (
⊔
a∈L

a) · d

= {[distributivity of · over t]}
(
⊔
a∈L

a · c) u (
⊔
a∈L

a · d)

= {[distributivity of u over t and renaming]}⊔
a∈L

⊔
b∈L

a · c u b · d

= {[by ∀ a ∈ L : LD(a) and Lemma 20(b)]}⊔
a∈L

⊔
b∈L
pb · a · (c u d)

= {[distributivity of · over t]}
(
⊔
a∈L

⊔
b∈L
pb · a) · (c u d)

= {[by ∀ a, b ∈ L : pb · a ≤ a ∧ pa · a = a]}
(
⊔
a∈L

a) · (c u d) .

(SC1)

(
⊔
a∈L

a) · 1 u (
⊔
a∈L

a)

= {[distributivity of · over t]}

17

(
⊔
a∈L

a · 1) u (
⊔
a∈L

a)

= {[distributivity of u over t and renaming]}⊔
a∈L

⊔
b∈L

a · 1 u b

= {[by ∀ a ∈ L : SC1(a) and Lemma 20(c)]}
0 .

(CD) Assume c ≤ tL. We first show that c is compatible with all b ∈ L:

pc · b
= {[lattice algebra]}
p(c u tL) · b

= {[distributivities]}⊔
a∈L
p(c u a) · b

= {[Lemma 20(d)]}⊔
a∈L
pb · (c u a)

= {[distributivities]}
pb · (c u (

⊔
a∈L

a))

= {[lattice algebra]}
pb · c .

Now

pc · (
⊔
b∈L

b)

= {[distributivity]}⊔
b∈L
pc · b

= {[compatibility (result above)]}⊔
b∈L
pb · c

= {[distributivity]}
(
⊔
b∈L
pb) · c

= {[by Lemma 9(a), since
⊔
b∈L
pb ≥ pc by monotonicity]}

c .

(MD) We use variant (3) of MD.

p((
⊔
a∈L

a) · t) u p((
⊔
a∈L

a) · ¬t)

= {[distributivity of · and p over t]}
(
⊔
a∈L
p(a · t)) u (

⊔
a∈L
p(a · ¬t))

18

= {[distributivity of u over t and renaming]}⊔
a∈L

⊔
b∈L
p(a · t) u p(b · ¬t)

= {[by ∀ a ∈ L : MD(a) and Lemma 20(e)]}
0 .

For the case of CD we also have the reverse implication:

Lemma 22 If CD(tL) then ∀ a ∈ L : CD(a) and L is compatible.

PROOF. The first part of the claim is immediate by downward closure of
CD. For the second part, let a, b ∈ L. Note that by Lemma 11(b), p(pa · b) =
pa · pb = pb · pa = p(pb ·a). Moreover, pa · b ≤ a+ b, pb ·a ≤ a+ b and CD(a+ b)
by a + b ≤ tL and downward closure of CD. Hence, using Lemma 11(b),
distributivity and Lemma 9(b),

pa · b = p(pa · b) · (a+ b) = pa · b+ pb · a = p(pb · a) · (a+ b) = pb · a .

Note that the corresponding property for SC1,LD and MD does not hold.
Indeed, L

def
= {a, b} in LAN

def
= (P({a, b}∗), ⊆ , ∅, {a, b}∗, • , ε) can be used

as a counterexample for all three cases.

7.4 Closure under Composition

Another natural property of determinate objects is that they are closed un-
der composition. In this section we investigate which of our candidates for
characterization imply this closure.

First, it is straightforward that LD (and hence SC) is closed under composi-
tion. Moreover, we have

Lemma 23 MD is closed under composition.

PROOF. We first calculate

〈a · b〉t
= {[definition of 〈 〉]}
p(a · b · t)

= {[local composition]}
p(a · p(b · t))

= {[definition of 〈 〉]}
〈a〉(〈b〉t)

from which by duality we also get [a·b]t = [a]([b]t). Now the claim is immediate
by monotonicity of 〈a〉, which follows directly from its definition.

19

Properties SC1 and DD are not closed under composition as will be shown in
Sections 8.5 and 8.6. However, we can show closure of DD under additional
assumptions. To formulate these, we need an auxiliary notion.

Definition 24 Suppose that the Boolean algebra underlying our KA is atomic
with atom set At. Analogously to the set of subidentities we define the set of
subatoms as SAt

def
= At ∪ {0}, i.e. as the set of elements that lie below some

atom. Moreover, we set SAt(a)
def
= At(a) ∪ {0}.

Note that all subatoms satisfy DD. Now we can show the following lemma.

Lemma 25 (a) If a is an atom, then pa and aq are atoms as well.
(b) DD(a) ⇔ (∀ t ∈ At(1) : t · a ∈ SAt(a)) ⇔ (∀ t ∈ At(pa) : t · a ∈ At(a)).
(c) DD is closed under composition iff the set of subatoms is closed under

composition.

PROOF.

(a) We show this for pa (the case of aq is symmetric). By Lemma 9(l), pa 6=
0. Assume t < pa. Then t · a ≤ a by t ≤ 1 and monotonicity. But
t ·a = a is not possible, because by Lemma 9(a) that would imply pa ≤ t,
a contradiction. Since a is an atom, this implies t · a = 0, hence 0 =
p(t · a) = t · pa = t u pa = t.

(b) We prove the first equivalence only, the second one being trivial.
(⇒) Suppose DD(a) and let t ∈ At(1). Assume t · a 6= 0 and let b < t · a.

By Lemmas 14 and 18, DD(t ·a) holds, so that pb < p(t ·a) ≤ pt, whence
pb = 0 since t ∈ At(1). By Lemma 9(l), b = 0, so that t · a ∈ At(a).

(⇐) By 1 = tAt(1) and distributivity we have c = t{t · c : t ∈ At(1)}
for all c. Hence, if c ≤ d then

c < d ⇔ ∃ t ∈ At(1) : t · c < t · d . (∗)

Suppose b < a. By (∗) there must be a t ∈ At(1) such that t · b < t · a.
In particular, t · a 6= 0. But since t · a ∈ SAt(a), we must have t · b = 0.
By Lemma 9(l), p(t · b) = 0; however, p(t · a) 6= 0, since t · a 6= 0. Hence,
t · pb = p(t · b) < p(t · a) = t · pa, from which pb < pa follows again by (∗).

(c) (⇒) Let a, b be atoms. Then DD(a) and DD(b), whence DD(a · b), by
assumption. If a · b 6= 0, there exists c < a · b. By DD(a · b), pc <
p(a · b) ≤ pa, whence pc = 0, since pa is an atom, by part (a). By
Lemma 9(l), c = 0, so that a · b is an atom.

(⇐) Suppose DD(a) and DD(b). For any t ∈ At(1), t · a is a subatom,
by part (b) and DD(a). By part (a), (t · a)q is a subatom. Hence, by
part (b) and DD(b), (t·a)q·b is a subatom. Now, t·a·b = (t·a)·((t·a)q·b)
and thus, by assumption, t · a · b is a subatom, being a composition of
two subatoms. Because t is arbitrary, part (b) implies DD(a · b).

20

7.5 Determinacy of Loops

In this section we apply our previous results to the semantics of while loops.
Classically, a loop of the form while G do B od with guard G and body B is
modeled in Kleene algebra as follows (see e.g. [9]). The guard is represented by
a type g characterizing all states that satisfy G. The semantics of the body B
is given by an element b of the underlying KA. Then the loop itself is described
by the semantical value

(g · b)∗ · ¬g .

This represents the informal view that the loop repeats the body B as long as
the guard G stays true and terminates as soon as a state is reached in which
G becomes false.

We want to show now that the semantics of a loop with determinate body is
determinate again. We perform this using the predicates MD and CD:

Lemma 26 (a) If MD(b) holds then the elements (g · b)i · ¬g (i ∈ IN) have
pairwise disjoint domains.

(b) MD(b) ⇒ MD((g · b)∗ · ¬g).
(c) Assume that in the KA under consideration CD is closed under compo-

sition. Then CD(b) ⇒ CD((g · b)∗ · ¬g).

PROOF.

(a) An easy induction shows MD((g · b)i) and MD((g · b)i · t) for all i ∈ IN and
all t ≤ 1. Now consider two elements (g · b)i · ¬g and (g · b)j · ¬g where,
without loss of generality, j > i.

p((g · b)i · ¬g) u p((g · b)j · ¬g)
= {[arithmetic]}
p((g · b)i · ¬g) u p((g · b)i · g · b · (g · b)j−i−1 · ¬g)

= {[local composition]}
p((g · b)i · ¬g) u p((g · b)i · p(g · b · (g · b)j−i−1 · ¬g))

≤ {[by Lemma 9(d) and 9(e)]}
p((g · b)i · ¬g) u p((g · b)i · g)

= {[by MD((g · b)i)]}
0 .

(b) The claim follows from (a) and Lemma 21 together with the fact that

(g · b)∗ · ¬g = t{(g · b)i · ¬g : i ∈ IN} .

(c) By Lemma 17, CD implies MD, and the claim follows analogously to (b).

21

8 Counterexamples

8.1 A Technique for Constructing Kleene Algebras

In this section, various finite Kleene algebras are constructed in the following
way. We head for algebras in which the underlying lattice is an atomic Boolean
algebra. In each case we list the set At of atoms; the other elements are then
given by all possible joins of atoms (including the empty join). If there are n
atoms, the algebra thus has 2n elements. The Boolean operations are defined
via the atom sets of the resulting elements:

At(p+ q)
def
= At(p) ∪ At(q) , At(p u q) def

= At(p) ∩ At(q) ,

At(p)
def
= At\At(p) , At(0)

def
= ∅ , At(>)

def
= At .

The meet of two atoms is of course 0. Obviously, this defines an atomic Boolean
algebra.

Composition · is given by a table for the atoms only. Composition of the
other elements is obtained through disjunctivity, thus satisfying this axiom by
construction. E.g., for atoms a, b, c, d we set

(a+ b) · (c+ d)
def
= a · c+ a · d+ b · c+ b · d .

If the composition of atoms is associative, by disjunctivity this propagates to
sums of atoms, i.e. to the other elements. In the same way, neutrality of 1
propagates from atoms to sums of atoms.

8.2 Concerning Local Composition

Here we present a KA that does not have local composition. It has two atoms
1 and a (and thus four elements). Its composition table is shown in Fig. 1.

· 1 a

1 1 a

a a 0

Fig. 1. An algebra without local composition

There are only two types, viz. 0 and 1. Hence by Lemma 9(l) we have pa = 1.
Now, p(a · a) = p0 = 0, but p(a · pa) = p(a · 1) = pa = 1.

This algebra is a special case of a whole class of algebras similar to LAN, but
with words of bounded length. Specifically, let A be any set and, for i ∈ IN,

22

define Sn
def
= {w ∈ A∗ : |w| ≤ n}, where |w| is the length of word w. For

U, V ⊆ Sn, define bounded concatenation by U � V def
= {u • v : u ∈ U ∧ v ∈

V ∧ |u•v| ≤ n}. Then LANn
def
= (P(Sn), ⊆ , Sn, � , ∅, ε) is a Kleene algebra

in which locality of composition does not hold. The example given above is
obtained by starting from a set A with a single element and setting n = 1.

8.3 Concerning SC1, SC and DD

In this section we show that SC1(a) 6 ⇒ SC(a) and that DD does not imply
either of SC1 and SC. The counter-example consists of a finite Kleene algebra
with three atoms 1, a, b and the composition table shown in Fig. 2 (which
obviously is associative and satisfies locality of composition). This algebra is

· 1 a b

1 1 a b

a a b b

b b b b

Fig. 2. SC1(a) does not imply SC(a)

isomorphic to the algebra generated by the following concrete relations under
relational composition: a = {(0, 1), (1, 2), (2, 2)}, b = {(0, 2), (1, 2), (2, 2)} and
1 = {(0, 0), (1, 1), (2, 2)}. In this algebra we have SC1(a) and DD(a), but not
SC(a) (and hence not LD(a)). Moreover, DD(b) holds (since b is an atom),
but SC1(b) does not.

8.4 Concerning DD and LD

We show that DD does not imply LD, even for RAs. The counterexample
is McKenzie’s non-representable 16-element RA [10] (see also Appendix A
in [15] 2).

The algebra has four atoms 1, a, b, c (and thus sixteen elements). The compo-
sition table of the atoms is shown in Fig. 3. Since a is an atom, it satisfies DD.
Now, a ; (b u c) = 0, but a ; b u a ; c = (a+ b) u > = a+ b.

8.5 Non-Closure of SC1 under Composition

Consider again the algebra of Section 8.3. There, SC1 is not closed under
composition, since a satisfies SC1, but the composition b = a · a does not.

Let us mention that the algebras from Sections 8.2 and 8.6 below cannot be
used as counterexamples. There, all atoms satisfy SC1. Moreover, in the latter

2 The entry for c · b in Fig. A.2.3 of [15] should be changed to z.

23

; 1 a b c

1 1 a b c

a a a a+ b >

b b a+ b b b+ c

c c > b+ c c

Fig. 3. DD does not imply LD

we have for all x ∈ {b, c, d, e, f} that x · 1 = 0 which makes SC1 closed under
composition in that algebra.

8.6 Non-Closure of DD under Composition

To show that DD (and hence CD) is not closed under composition we use a
KA with nine atoms, a, b, c, d, e, f , i, j, k. Composition of the atoms is given
by the table in Fig. 4. The identity of composition is given by 1

def
= i+ j + k.

· a b c d e f i j k

a 0 d+ e d+ f 0 0 0 0 a 0

b 0 0 0 0 0 0 0 0 b

c 0 0 0 0 0 0 0 0 c

d 0 0 0 0 0 0 0 0 d

e 0 0 0 0 0 0 0 0 e

f 0 0 0 0 0 0 0 0 f

i a 0 0 d e f i 0 0

j 0 b c 0 0 0 0 j 0

k 0 0 0 0 0 0 0 0 k

Fig. 4. Non-closure of DD under composition

It is slightly tedious to verify that composition is associative, although this is
facilitated by the fact that most entries of the composition table are 0. An-
other manner to verify associativity is through the following relational model
on the set {0, 1, 2, 3, 4}, for which standard relational composition gives the
above table (in fact, we started from this concrete model rather than from the
abstract one). Associativity follows from the fact that relational composition

24

is associative.

a = {(0, 1)} d = {(0, 2)} i = {(0, 0)}

b = {(1, 2), (1, 3)} e = {(0, 3)} j = {(1, 1)}

c = {(1, 2), (1, 4)} f = {(0, 4)} k = {(2, 2), (3, 3), (4, 4)}

From the composition table and the definition of domain, one obtains

pa = pd = pe = pf = pi = i , pb = pc = pj = j , pk = k ,

iq = i , aq = jq = j , bq = cq = dq = eq = fq = kq = k .

It is then easy to check that locality of composition is satisfied.

Now the question is: if ∀ c : c < a ⇒ pc < pa and ∀ c : c < b ⇒ pc < pb, do
we have ∀ c : c < a · b ⇒ pc < p(a · b)? Because a and b are atoms, they satisfy
DD. Also, a · b = d+ e, so that d < a · b. But pd = p(a · b) = i.

The same algebra is another counterexample to the implication SC1(a) ⇒
SC(a), since

a · 1 = a · (a+ b+ c+ d+ e+ f)

= d+ e+ f ≤ b+ c+ d+ e+ f + 1 = a ,

while a · b = a · (a + c + d + e + f + 1) = a + d + f and a · b = d+ e =
a + b + c + f + 1. By Lemma 13, the implication SC1(a) ⇒ SC(a) is also
violated; this is illustrated by a · (b u c) 6= a · b u a · c.

Another counter-example to SC1(a) ⇒ SC(a) is obtained from the above one
by replacing the three atomic subidentities i, j, k by a single atomic identity
1. However, the resulting algebra does not satisfy locality of composition.

The same algebra can be used to give a counterexample showing that DD (or
CD) does not imply LD. The element a is an atom and thus satisfies DD.
However, a · (b u c) = a · 0 = 0 6= d = (d+ e) u (d+ f) = a · b u a · c.

8.7 Concerning SC, SC1 and MD

First we note that MD does not imply SC, since otherwise, by Lemmas 14
and 17, and transitivity of implication, we would obtain that DD implies SC,
in contradiction to Section 8.4 and Lemma 13.

25

Second, MD does not imply SC1 either. The algebra in Section 8.3 has 0 and 1
as its only types. Hence, by Corollary 16(f), we have MD(b), but SC1(b) does
not hold.

Concerning the reverse implications, let us first see the informal meaning of
MD in the KA PAT. Consider a graph node y, viewed as an atomic type, and
a set of paths a. Then 〈a〉y is the set of all nodes from which some path in a
leads to y, whereas a node x is in [a]y iff all paths in a that start in x end in
y. So MD(a) holds iff all paths in a that start in the same node also end in
the same node. However, a may contain several different paths between two
nodes.

Now, as we have seen in Section 6.1, in PAT the properties SC(a) and SC1(a)
are equivalent to prefix-freeness of a. Hence for different nodes x, y, z the set
a = {xy, xz} of paths satisfies SC(a) and SC1(a) but not MD(a). Therefore
neither SC nor SC1 implies MD.

A consequence of the last paragraph is that SC1 does not imply CD; indeed, if
this were the case, we would have that SC1 implies MD, because of Lemma 17.
By Lemma 14, SC1 does not imply DD either.

9 Linking the Views

It turns out that in the case of an atomic KA K, we can set up a homomor-
phism from K into a concrete KA of type REL. This will allow us to link the
domain-oriented and the relational characterizations of functions.

Definition 27 Consider an atomic KA K. For element a ∈ K, we define a
relation [[a]] between atomic types by setting for s, t ∈ At(1)

s [[a]] t
def⇔ s · a · t 6= 0 .

Lemma 28 If u ∈ At(1), then u · a 6= 0 ⇔ u = p(u · a) ⇔ u ≤ pa.

PROOF.

u · a 6= 0
⇔ {[by Lemma 9(l)]}
p(u · a) 6= 0

⇔ {[by Lemmas 9(d) and 9(e), p(u · a) ≤ pu = u]}
p(u · a) 6= 0 ∧ p(u · a) ≤ u

⇔ {[u is an atom]}
u = p(u · a)

⇔ {[locality of composition, Lemma 9(e) and Lemma 11(b)]}
u = u · pa

⇔ {[by Lemma 7(b), Boolean algebra]}

26

u ≤ pa

Lemma 29 The mapping [[]] is a universally disjunctive monoid homomor-
phism from the (·, 1) reduct of K to the (;, I) reduct of REL.

PROOF.

(a) s [[t{aj : j ∈ J}]] t
⇔ {[definition of [[]], distributivity]}
t {s · aj · t : j ∈ J} 6= 0

⇔ {[Boolean algebra]}
∃ j ∈ J : s · aj · t 6= 0

⇔ {[definition of [[]]]}
∃ j ∈ J : s[[aj]]t

⇔ {[definition of union]}
s (
⋃
j∈J

[[aj]]) t .

Hence [[t{aj : j ∈ J}]] =
⋃
j∈J

[[aj]].

(b) s [[1]] t
⇔ {[definition of [[]], neutrality]}

s · t 6= 0
⇔ {[since s, t are atoms]}

s = t .
Hence [[1]] = I.

(c) We first show [[a · b]] ⊆ [[a]] ; [[b]].
s [[a · b]] t

⇔ {[definition of [[]], Lemma 9(b)]}
s · a · aq · pb · b · t 6= 0

⇔ {[aq · pb = t{u : u ∈ At(aq · pb)}, distributivity]}
(t{s · a · u · b · t : u ∈ At(aq · pb)} 6= 0

⇔ {[Boolean algebra]}
∃ u ∈ At(aq · pb) : s · a · u · b · t 6= 0

⇒ {[strictness]}
∃ u ∈ At(aq · pb) : s · a · u 6= 0 ∧ u · b · t 6= 0

⇔ {[definition of [[]]]}
∃ u ∈ At(aq · pb) : s [[a]]u ∧ u [[b]] t

⇒ {[the atoms of a type are atomic types]}
s ([[a]] ; [[b]]) t .

Now we show the reverse inclusion. Assume s ([[a]] ; [[b]]) t, say s · a ·u 6= 0
and u ·b · t 6= 0 for some atomic type u. Then by strictness aq ·u 6= 0 and
u · pb 6= 0. Since u is an atom, we get u ≤ aq and u ≤ pb by Lemma 28.
Therefore u ≤ aq · pb, and hence

s · a · b · t = s · a · aq · pb · b · t ≥ s · a · u · b · t .

27

Now, by local composition, again Lemma 28 and Lemma 9(l),

p(s · a · u · b · t) = p(s · a · p(u · b · t)) = p(s · a · u) 6= 0 .

Therefore, by Lemma 9(l), also s · a · u · b · t 6= 0 and by monotonicity,
since u ≤ 1, also s · a · b · t 6= 0, i.e. s ([[a · b]]) t.

By universal disjunctivity we get from this also

Corollary 30 [[a∗]] = [[a]]∗ and [[a+]] = [[a]]+.

The link between the views is now established by

Lemma 31 In an atomic KA K, MD(a) ⇔ [[a]]̆ ; [[a]] ⊆ I .

PROOF. In this derivation, s, t, u ∈ At(1).

[[a]]̆ ; [[a]] ⊆ I
⇔ {[definition of [[]], I = [[1]] by Lemma 29]}
∀ s, t : (∃ u : u[[a]]s ∧ u[[a]]t) ⇒ s[[1]]t

⇔ {[definition of [[]]]}
∀ s, t : (∃ u : u · a · s 6= 0 ∧ u · a · t 6= 0) ⇒ s · 1 · t 6= 0

⇔ {[Lemma 28]}
∀ s, t : (∃ u : u ≤ p(a · s) ∧ u ≤ p(a · t)) ⇒ s · t 6= 0

⇔ {[Boolean algebra]}
∀ s, t : (∃ u : u ≤ p(a · s) u p(a · t)) ⇒ s · t 6= 0

⇔ {[u ∈ At(1), Lemma 7(b)]}
∀ s, t : p(a · s) u p(a · t) 6= 0 ⇒ s u t 6= 0

⇔ {[contrapositive]}
∀ s, t : s u t = 0 ⇒ p(a · s) u p(a · t) = 0

⇔ {[Boolean algebra]}
∀ s, t : t ≤ ¬s ⇒ p(a · s) u p(a · t) = 0

⇔ {[for proving ⇒ , take t
def
= ¬s;

the direction ⇐ is trivial by monotonicity]}
∀ s : p(a · s) u p(a · ¬s) = 0

⇔ {[definition of MD, 〈 〉 and []]}
MD(a)

10 Summary of the Results

To give the reader a survey of what has been achieved in this paper, we sum-
marize our results in a table of mutual (non-)implications and (non-)closure
properties (see Figure 5). Equivalent properties are in the same line/column.
When there is a ⇒ or a ⇐ , the reverse implication does not hold. When an

28

ED closed
SO closed closed under

SC CD under under compatible
SC1 LD DD MD subobjects composition join

SC1 ⇔ ⇐ yes no yes

SC,LD ⇒ ⇔ yes yes yes

ED,SO,CD,DD ⇔ ⇒ yes cond. yes

MD ⇐ ⇔ yes yes yes

Fig. 5. Relationship between properties

entry is blank, it means that no implication holds. The entry “cond.” means
“conditionally valid”; see Lemma 25 for the precise result.

11 Conclusion

The theory of Kleene algebras offers surprising new views on the notion of a
function. Characterizations that are equivalent in relation algebras [15] differ
in this generalized setting.

However, the second author has shown that the characterization CD is suffi-
cient to reprove (in a simpler fashion!) all properties of overwriting that were
shown relationally in [12]. So it seems that the generalized setting indeed has
its merits.

Acknowledgements

We are grateful to T. Ehm, B. von Karger, O. de Moor and J. van der Woude
for helpful hints and comments.

References

[1] C.J. Aarts, Galois connections presented calculationally (Eindhoven University
of Technology, Dept. of Mathematics and Computer Science, July 1992).

[2] R. C. Backhouse and J. van der Woude, Demonic operators and monotype
factors, Mathematical Structures in Comput. Sci. 3, 4 (1993) 417–433. Also:
Computing Science Note 92/11 (Department of Mathematics and Computer
Science, Eindhoven University of Technology, The Netherlands, 1992).

[3] C. Brown and D. Gurr, A representation theorem for quantales, J. Pure and
Applied Algebra 85 (1993) 27–42.

[4] J. H. Conway, Regular Algebra and Finite Machines (Chapman and Hall,
London, 1971).

29

[5] J. Desharnais, B. Möller, and F. Tchier, Kleene under a demonic star, in: T.
Rus (ed.), Proceedings AMAST 2000, Lect. Notes in Comp. Sci. 1816 (Springer,
2000) 355–370.

[6] H. Doornbos, Reductivity arguments and program construction, Ph.D. Thesis
(Eindhoven University of Technology, The Netherlands, 1996).

[7] B. Jónsson and A. Tarski, Boolean algebras with operators, Part I, Amer. J.
Math. 73 (1951) 891–939.

[8] B. Jónsson and A. Tarski, Boolean algebras with operators, Part II, Amer. J.
Math. 74 (1952) 127–167.

[9] D. Kozen, Kleene algebras with tests, ACM Trans. Prog. Lang. Syst. 19 (1997)
427–443.

[10] R. McKenzie, The representation of integral relation algebras. Michigan Math.
J. 17 (1970) 279–287.

[11] B. Möller, Derivation of graph and pointer algorithms, in: B. Möller, H. A.
Partsch, S. A. Schuman (eds.), Formal Program Development, Lect. Notes in
Comput. Sci. 755, (Springer-Verlag, Berlin, 1993) 123–160.

[12] B. Möller, Towards pointer algebra, Sci. Comput. Progr. 21 (1993) 57–90.

[13] B. Möller, Typed Kleene algebras, Research report 1999-8 (Institut für
Informatik, Universität Augsburg, Germany, 1999), http://www.informatik.
uni-augsburg.de/forschung/techBerichte/reports/1999-8.pdf.

[14] S. Popkorn, First Steps in Modal Logic (Cambridge University Press, 1994).

[15] G. Schmidt and T. Ströhlein, Relations and Graphs, EATCS Monographs in
Computer Science (Springer-Verlag, Berlin, 1993).

[16] D. Scott, Data types as lattices, SIAM J. Comput. 5 (1976) 522–587.

30

http://www.informatik.uni-augsburg.de/forschung/techBerichte/reports/1999-8.pdf
http://www.informatik.uni-augsburg.de/forschung/techBerichte/reports/1999-8.pdf

	Introduction
	Kleene Algebras
	Types
	Domain and Codomain
	Locality of Composition
	Candidate Characterizations of Determinacy
	Candidates from Relation Algebra
	Domain-Oriented Characterizations
	A Modal Characterization

	Closure Properties
	Downward Closure
	All Types are Determinate
	Closure Under Compatible Join
	Closure under Composition
	Determinacy of Loops

	Counterexamples
	A Technique for Constructing Kleene Algebras
	Concerning Local Composition
	Concerning SC1, SC and DD
	Concerning DD and LD
	Non-Closure of SC1 under Composition
	Non-Closure of DD under Composition
	Concerning SC, SC1 and MD

	Linking the Views
	Summary of the Results
	Conclusion
	Acknowledgements
	References

