
Universität Augsburg

Characterizing Determinacy
in Kleene Algebras

Jules Desharnais and Bernhard Möller

Report 2000-5 Mai 2000

Institut für Informatik

D-86135 Augsburg

Copyright c© Jules Desharnais and Bernhard Möller

Institut für Informatik

Universität Augsburg

D–86135 Augsburg, Germany

http://www.Informatik.Uni-Augsburg.DE

— all rights reserved —

Characterizing Determinacy

in Kleene Algebras

Jules Desharnais 1

Département d’informatique, Université Laval, Québec QC G1K 7P4 Canada
Jules.Desharnais@ift.ulaval.ca

Bernhard Möller

Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany
Bernhard.Moeller@informatik.uni-augsburg.de

Abstract

Elements of Kleene algebras can be used, among others, as abstractions of the input-
output semantics of nondeterministic programs or as models for the association of
pointers with their target objects. In the first case, one seeks to distinguish the
subclass of elements that correspond to deterministic programs. In the second case
one is only interested in functional correspondences, since it does not make sense
for a pointer to point to two different objects.

We discuss several candidate notions of determinacy and clarify their relation-
ship. Some characterizations that are equivalent in the case where the underlying
Kleene algebra is an (abstract) relation algebra are not equivalent for general Kleene
algebras.

1 Introduction

Elements of Kleene algebras can be used, among others, as abstractions of
the input-output semantics of nondeterministic programs [3] or as models for
the association of pointers with their target objects in the style of [9]. In the
first case, one seeks to distinguish the subclass of elements that correspond to
deterministic programs. In the second case, one is only interested in functional

1 This research is supported by NSERC (Natural Sciences and Engineering Re-
search Council of Canada).

Preprint submitted to Elsevier Preprint 2 May 2000

correspondences, since it does not make sense for a pointer to point to two
different objects.

We discuss several candidate notions of determinacy and show several equiva-
lences. However, it also turns out that some characterizations that are equiva-
lent in the case where the underlying Kleene algebra is an (abstract) relation
algebra, are not equivalent for general Kleene algebras.

2 Kleene Algebras

2.1 Definition and Basic Laws

In our definitions we follow [2], since we want to admit general recursive def-
initions, not just the Kleene star. We are well aware that there are different
definitions (see e.g. [6]).

Definition 1 A Kleene algebra (KA) is a sixtuple (K,≤,>, ·, 0, 1) satisfying
the following properties:

(a) (K,≤) is a complete lattice with least element 0 and greatest element >.
The supremum of a subset L ⊆ K is denoted by tL.

(b) (K, ·, 1) is a monoid.
(c) The operation · is universally disjunctive (i.e. distributes through arbi-

trary suprema) in both arguments.

The supremum of two elements x, y ∈ K is given by x+ y
def
= t{x, y}.

Example 2 Perhaps the best-known example of a KA is

LAN
def
= (P(A∗), ⊆ , A∗, • , ∅, ε) ,

the algebra of formal languages over some alphabet A, where A∗ is the set
of all finite words over A, • denotes concatenation and ε the empty word (as
usual, we identify a singleton language with its only element). A related KA
is the algebra PAT of path sets in a directed graph under path concatenation
(see e.g. [8] for a precise definition).

Another important KA is

REL
def
= (P(M ×M), ⊆ ,M ×M, ; , ∅, I) ,

the algebra of homogeneous binary relations over some set M under relational

2

composition ;.

Definition 3 (a) A Boolean algebra is a distributive and complemented lat-
tice. The complement of an element x is denoted by x.

(b) A Boolean algebra is complete if its underlying lattice is complete.
(c) An atom of a lattice with least element 0 is a minimal element in the set

of elements different from 0. The set of all atoms of a lattice with 0 is
denoted by At. For an element x of such a lattice, At(x)

def
= {a ∈ At : a ≤

x} is the set of atoms of x.
(d) A lattice with 0 is atomic if for every element x we have x = tAt(x).
(e) A KA is called Boolean if its underlying lattice is a Boolean algebra (and

hence a complete Boolean algebra). It is called atomic if its underlying
lattice is atomic.

Example 4 More generally than the concrete relation algebra REL, every ab-
stract relation algebra is a KA. Such an abstract relation algebra (see e.g. [11])
is a tuple RA = (N,≤, ,>, ;, 0, 1,)̆, where

(a) (N,≤, , 0,>) is a complete Boolean algebra with complement operation
, least element 0 and greatest element >;

(b) (N, ; , 1) is a monoid;
(c) Tarski’s rule x 6= 0 ⇒ > ; x ;> = > holds;
(d) Dedekind’s rule x ; y u z ≤ (x u z ; y̆) ; (y u x̆ ; z) is satisfied.

The elements of N are called abstract relations ; the operation ˘ forms the
converse of a relation, whereas ; is called relational composition. It is cus-
tomary to use the convention that ; binds tighter than + and u . The reduct
(N,≤,>, ;, 0, 1) forms a Boolean KA.

Definition 5 A right ideal is an element of the form a · > with arbitrary a.

It is straightforward to show that b is a right ideal iff b = b · >.

2.2 Types

A central notion is that of types.

Definition 6 A type of a KA is an element t with t ≤ 1. We set TYP
def
=

{t ∈ K : t ≤ 1}.

This definition is best illustrated in the KA REL. There, a type corresponds
to a subset T ⊆ M and can be represented as the partial identity relation
1T

def
= {(x, x) : x ∈ T}. Clearly, 1T is a subidentity, and so there is a one-to-one

correspondence between types and subidentities.

3

Now, restriction of a relation R ⊆ M ×M to arguments of type T , i.e. the
relation R ∩ T ×M , can also be described by composing R with 1T from the
left: R ∩ T ×M = 1T ;R. Similarly, co-restriction is modeled by composing
a partial identity from the right. Finally, consider types S, T ⊆ M and binary
relation R ⊆ M ×M . Then R ⊆ S × T ⇔ 1S ; R ; 1T = R. In other
words, the “default typing” M ×M of R can be narrowed down to S × T iff
restriction to S and co-restriction to T do not change R.

These observations are the basis for our view of types as subidentities and
our algebraic treatment of restriction and co-restriction. For a different, but
related, approach see [6].

For the remainder of the paper, we assume KAs to be Boolean.

Definition 7 The negation of a type t ≤ 1 in a KA is ¬t def
= t u 1.

With this definition, (TYP,≤) forms again a complete Boolean algebra.

Lemma 8 Assume a Boolean KA. Then the following hold:

(a) All types are idempotent, i.e. t ≤ 1 ⇒ t · t = t.
(b) The infimum of two types is their product: s, t ≤ 1 ⇒ s · t = s u t. In

particular, all types commute under the · operation.
(c) s, t ≤ 1 ⇒ (s u t) · a = s · a u t · a.
(d) t ≤ 1 ⇒ t · > = ¬t · >.
(e) Restriction by a type is equivalent to intersection with a right ideal: t ≤

1 ⇒ t · a = a u t · >.
(f) For all families L of types, (uL) · > = u(L · >).

PROOF. We first note that by monotonicity and neutrality, for s, t ≤ 1 we
have that s · t ≤ s · 1 = s and, symmetrically, s · t ≤ t, so that s · t ≤ s u t.

(a) t
= {[neutrality]}

1 · t
= {[Boolean algebra]}

(t+ ¬t) · t
= {[disjunctivity]}

t · t+ ¬t · t
≤ {[above]}

t · t+ ¬t u t
= {[Boolean algebra]}

t · t
≤ {[by t ≤ 1 and monotonicity]}

1 · t

4

= {[neutrality]}
t .

(b) We have already shown that s · t is a lower bound for s and t. Using (a)
and monotonicity, we also have s u t = (s u t) · (s u t) ≤ s · t. Hence
s · t = s u t.

(c) (s u t) · a
≤ {[monotonicity]}

s · a u t · a
= {[neutrality and Boolean algebra]}

(s+ ¬s) · (s · a u t · a)
= {[disjunctivity]}

s · (s · a u t · a) + ¬s · (s · a u t · a)
≤ {[monotonicity and associativity]}

s · t · a+ ¬s · s · a
= {[by strictness, since ¬s · s = ¬s u s = 0, and Boolean algebra]}

s · t · a
= {[by (b)]}

(s u t) · a .
(d) First, by (c),

t · > u ¬t · > = (t u ¬t) · > = 0 · > = 0 .

Second,

t · >+ ¬t · > = (t+ ¬t) · > = 1 · > = > .

(e) t · > u a
= {[Boolean algebra]}

t · (a+ a) u a
= {[disjunctivity]}

(t · a+ t · a) u a
= {[distributivity]}

(t · a u a) + (t · a u a)
= {[Boolean algebra, since t · a ≤ a by monotonicity and neutrality]}

t · a u a+ 0
= {[Boolean algebra, since t · a ≤ a by monotonicity and neutrality]}

t · a .
(f) We show (L) · > = (L · >).

(L · >)
= {[de Morgan]}
t {t · > : t ∈ L}

= {[by (d)]}
t {¬t · > : t ∈ L}

= {[disjunctivity]}
(t{¬t : t ∈ L}) · >

5

= {[de Morgan]}
(¬ {t : t ∈ L}) · >

= {[by (d)]}
(L) · > .

2.3 Domain and Codomain

Definition 9 In a KA (K,≤,>, ·, 0, 1), we can define, for a ∈ K, the domain
pa via the Galois connection

∀ t : t ≤ 1 ⇒ (pa ≤ t
def⇔ a ≤ t · >) .

(This is well-defined because of Lemma 8(f), see also [1].) Hence the operation
p is universally disjunctive and therefore monotonic and strict. Moreover the
definition implies a ≤ pa · >. The co-domain aq is defined symmetrically by
the Galois connection: aq ≤ t

def⇔ a ≤ > · t.

By the Galois connection, the partial orders (TYP,≤) and ({t · > : t ∈
TYP},≤) are isomorphic. Hence we have, for t ∈ TYP, that p(t · >) = t
(which also follows from properties (e) and (h) in Lemma 10 below).

We list a number of useful properties of the domain operation (see again also
[1]); analogous ones hold for the co-domain operation.

Lemma 10 Consider a KA (K,≤,>, ·, 0, 1) and a, b, c ∈ K.

(a) pa = min{t : t ≤ 1 ∧ t · a = a}.
(b) pa · a = a.
(c) t ≤ 1 ∧ t · a = a ⇒ pa ≤ t.
(d) p(a · b) ≤ pa.
(e) t ≤ 1 ⇔ pt = t.
(f) p> = 1.

(g) p(pa) = pa.
(h) p(a · >) = pa.
(i) a · > ≤ pa · >.
(j) p(a · b) ≤ p(a · pb).
(k) aq u pb = 0 ⇒ a · b = 0.
(l) pa = 0 ⇔ a = 0.

According to Lemma 10(l) the domain of an element also decides about its
“definedness” if we identify 0 with ⊥ as used in denotational semantics.

2.4 Locality of Composition

It should be noted that the converse inequation of Lemma 10(j) does not fol-
low from our axiomatization. A counterexample will be given in Section 5.2.
Its essence is that composition does not work “locally” in that only the “near

6

end”, i.e. the domain, of the right factor of a composition does decide “compos-
ability”. This observation is the motivation for the term “local composition”
defined below.

Definition 11 A KA has left-local composition if it satisfies

pb = pc ⇒ p(a · b) = p(a · c) .

To check this property, by strictness of · it suffices to consider a 6= 0 and, by
Lemma 10(l), only b, c with pb = pc 6= 0.

The right-locality of composition is defined by the symmetrical property

aq = bq ⇒ (a · c)q = (b · c)q .

A KA has local composition if its composition is both left-local and right-local.

Lemma 12 (a) A KA has left-local composition iff it satisfies

p(a · b) = p(a · pb) (1)

(b) If a KA has left-local composition then p(pa · b) = pa u pb = pa · pb.
(c) If a KA has left-local composition then pb ≤ pc ⇒ p(a · b) ≤ p(a · c).

PROOF.

(a) (⇒) Immediate from the assumption, since by Lemma 10(g) p(pb) = pb.
(⇐) Assume pb = pc.

p(a · b)
= {[by (1)]}
p(a · pb)

= {[assumption]}
p(a · pc)

= {[by (1)]}
p(a · c) .

(b) p(pa · b)
= {[by (1)]}
p(pa · pb)

= {[by Lemma 8(b)]}
p(pa u pb)

= {[by Lemma 10(e)]}
pa u pb

= {[by Lemma 8(b)]}
pa · pb .

7

(c) p(a · b)
= {[by (1)]}
p(a · pb)

≤ {[assumption and monotonicity]}
p(a · pc)

= {[by (1)]}
p(a · c) .

Analogous properties hold for right-locality.

In the sequel we only consider KAs with local composition. All examples given
in Section 2.1 satisfy that property.

We conclude this section by establishing a Galois connection between domain
and range. It will be useful in Section 3.3 about modal operators.

Lemma 13 If s, t ≤ 1, then p(a · t) ≤ ¬s ⇔ (s · a)q ≤ ¬t.

PROOF. By Boolean algebra and Lemma 8(b), the claim is equivalent to

s · p(a · t) = 0 ⇔ (s · a)q · t = 0 .

We calculate

s · p(a · t)
= {[by Lemma 10(e)]}
p(s · p(a · t))

= {[local composition]}
p(s · a · t) .

Symmetrically, (s · a)q · t = (s · a · t)q . Hence

s · p(a · t) = 0
⇔ {[by the above]}
p(s · a · t) = 0

⇔ {[by Lemma 10(l)]}
s · a · t = 0

⇔ {[by Lemma 10(l)]}
(s · a · t)q = 0

⇔ {[by the above]}
(s · a)q · t = 0 .

8

3 Candidate Characterizations of Determinacy

3.1 Candidates from Relation Algebra

In an abstract relation algebra, an element R is called a (partial) function or
a map or deterministic iff it satisfies R̆ ;R ⊆ I. By the Schröder laws this is
equivalent to the requirement R ; I ⊆ R. It is well known that functions are
left-distributive through intersection. It is less well known, though, that this
property in fact is equivalent to the property of being a function. We give a
quick proof of this (see also [11]). Assume that R is left-distributive through
intersection. Then

R ; I ∩ R
= {[neutrality]}

R ; I ∩ R ; I
= {[left-distributivity of R]}

R ; (I ∩ I)
= {[Boolean algebra]}

R ; 0
= {[strictness]}

0 ,

so that R ; I ⊆ R follows by Boolean algebra. While this proof also carries
over to Kleene algebras, the reverse implication is not Kleene valid, as we shall
show in Section 5.3. In Kleene algebras left-distributivity is only equivalent to
a stronger property that results by generalizing the constant I in the above
inclusion to a variable (after making it visible in the right hand side). These
observations lead to our first three candidates for characterizations of deter-
minate objects (the formula involving converse not being usable in Kleene
algebras). We attach names to the characterizing predicates for easier refer-
ence.

LD(a)
def⇔ ∀ b, c : a · (b u c) = a · b u a · c (left-distributivity)

SC(a)
def⇔ ∀ b : a · b ≤ a · b (subsumption of complement)

SC1(a)
def⇔ a · 1 ≤ a (subsumption of complement of 1)

We have

SC(a) ⇒ SC1(a) (2)

(set b = 1). In Section 5.3 we show that the reverse implication is not valid in
all Kleene algebras. However, it holds in LAN, PAT and RA.

9

To understand this, let us elaborate on the case of the Kleene algebra LAN
of formal languages over an alphabet A. There we have 1 = A+, and so for
U ⊆ A∗ we get SC1(U) ⇔ U •A+ ⊆ U . In other words, a proper extension of
a word in U must not lie in U again. This is equivalent to U being a prefix-free
language (i.e. none of the strings of U is a proper prefix of another; in coding
theory this is known as the Fano condition). The same applies to the algebra
PAT of sets of paths in a graph, modeled as sets of strings of nodes. Assume
now SC1(U) and x ∈ U •V ∩U •W for V,W ⊆ A∗, say x = u1 •v = u2 •w for
some u1, u2 ∈ U , v ∈ V and w ∈ W . By local linearity of the prefix relation
we obtain that u1 must be a prefix of u2 or the other way around. By prefix-
freeness of U this means u1 = u2 and cancellativity of • shows v = w ∈ V ∩W .
Therefore also x ∈ U • (V ∩W), i.e. LD(U) holds. But this is equivalent to
SC(U) as stated in the following lemma.

Lemma 14 LD(a) ⇔ SC(a).

PROOF.

∀ b, c : a · b u a · c = a · (b u c)
⇔ {[Boolean algebra]}
∀ b, c : a · ((b u c) + (b u c)) u a · ((b u c) + (b u c)) = a · (b u c)

⇔ {[distributivity, Boolean algebra]}
∀ b, c : a · (b u c) + (a · (b u c) u a · (b u c)) = a · (b u c)

⇔ {[Boolean algebra]}
∀ b, c : a · (b u c) u a · (b u c) ≤ a · (b u c)

⇔ {[for proving ⇒ , take c
def
= b; the direction ⇐ is trivial]}

∀ b : a · b u a · b ≤ 0

3.2 Domain-Oriented Characterizations

In view of the previous section it appears that LD, SC and SC1 are not
appropriate characterizations of (partial) functions. Rather, a function should
be characterized in a domain-oriented way: every point in the domain should
have a unique “extension”. In LAN and PAT this is not guaranteed by SC1 and
the equivalent properties SC and LD (recall Lemma 14), since that property
there is equivalent to prefix-freeness. So e.g. in PAT, an element might contain
both the paths xy and xz starting from graph node x.

Now, in PAT, a node starts a unique path in a path set a iff removal of this
path removes that node from the domain of a. This can be captured in a
purely order-theoretic way by the property

DD(a)
def⇔ ∀ b : b < a ⇒ pb < pa (decrease of domain).

10

Here, < is the strict-order associated with the order ≤ underlying the KA
under consideration, i.e. c < d

def⇔ c ≤ d ∧ c 6= d. Note that all atoms satisfy
DD.

This property is equivalent to

ED(a)
def⇔ ∀ b : b ≤ a ∧ pb = pa ⇒ b = a (equality of domain).

PROOF.

b < a ⇒ pb < pa
⇔ {[definition of ⇒]}

b 6< a ∨ pb < pa
⇔ {[definition of < and Boolean algebra]}
pb < pa ∨ b 6≤ a ∨ b = a

⇔ {[Boolean algebra and definition of ⇒]}
pb 6< pa ∧ b ≤ a ⇒ b = a

⇔ {[definition of < and Boolean algebra]}
(pb 6≤ pa ∨ pb = pa) ∧ b ≤ a ⇒ b = a

⇔ {[distributivity]}
(pb 6≤ pa ∧ b ≤ a) ∨ (pb = pa ∧ b ≤ a) ⇒ b = a

⇔ {[monotonicity]}
FALSE ∨ (pb = pa ∧ b ≤ a) ⇒ b = a

⇔ {[propositional logic]}
pb = pa ∧ b ≤ a ⇒ b = a .

Another candidate is

CD(a)
def⇔ ∀b : b ≤ a ⇒ b = pb · a (characterization by domain).

Lemma 15 DD(a) ⇔ CD(a) .

PROOF. We prove ED(a) ⇔ CD(a). Assume b ≤ a.

(⇐) Suppose pb = pa. Then by CD(a) and Lemma 10(b) we get b = pb · a =
pa · a = a.

(⇒) Let c
def
= b+ ¬pb · a. Because b ≤ a and by monotonicity, c ≤ a. Also,

pc = p(b+ ¬pb · a) = pb+ (¬pb u pa) = pb+ pa = pa ,

where disjunctivity of p, Lemma 12(b), monotonicity of p with the assump-
tion b ≤ a, and Boolean algebra have been used. Then c = a follows from
ED(a), whence

pb · a = pb · c = pb · (b+ ¬pb · a) = pb · b+ pb · ¬pb · a = b .

11

However, CD and DD are not equivalent to LD. In LAN an element a satisfies
DD(a) iff it contains at most one word, whereas LD(a) is equivalent to prefix-
freeness of a. So in LAN the properties CD and DD imply LD, but not the
other way around. We show in section 5.3 that the implication does not hold
for arbitrary Kleene algebras.

In REL the properties CD and DD are equivalent to the other characterizations
of deterministic relations. However, in the case of an abstract relation algebra
in RA, DD does not imply LD, as will be shown in Section 5.4.

However, we can show that LD implies DD in RA. Assume LD(a), which is
equivalent to ă ; a ≤ 1 in RA, and b ≤ a. Since b = pb ; b ≤ pb ; a, we only need
to prove pb ; a ≤ b.

pb ; a
= {[relational algebra]}

b ;> u a
≤ {[Dedekind]}

(b u a ; >̆) ; (> u b̆ ; a)
= {[Boolean algebra, since b ≤ a ≤ a ; >̆]}

b ; b̆ ; a
≤ {[monotonicity]}

b ; ă ; a
≤ {[assumption ă ; a ≤ 1]}

b.

Finally, we give another equivalent domain-oriented characterization:

SO(a)
def⇔ p : {b : b ≤ a} → {t : t ≤ pa} is an order-isomorphism

(subobject lattice)

Lemma 16 CD(a) ⇔ SO(a).

PROOF. (⇒) We already know that p is monotonic. It is surjective, since
for t ≤ pa we have

p(t · a) = t · pa = t u pa = t .

Finally, if for b1, b2 ≤ a we have pb1 = pb2, then by CD(a) we get b1 = pb1 · a =
pb2 · a = b2, so that p is injective as well.
(⇐) Consider b ≤ a and c

def
= pb · a. We have pc = pb · pa = pb u pa = pb by

monotonicity. Therefore, by injectivity of pwe get b = c.

12

3.3 A Modal Characterization

The modal operators diamond and box are quantifiers about the successor
states of a state in a transition system. But they can also be viewed as asser-
tion transformers dealing with sets of states. The (forward) diamond operator
assigns to a set of states t the set s of all those states that have a successor in
t. The (forward) box operator is the dual of the diamond operator; it assigns
to a set of states t the set s of all those states for which all successors lie in t.
The backward modal operators are defined symmetrically.

In the setting of Kleene algebras the role of assertions or sets of states is played
by types. Hence we can define the modal operators as type transformers. The
forward operators of dynamic logic are obtained by setting

〈a〉t def
= p(a · t) ,

[a]t
def
= ¬〈a〉¬t .

We note that

[a]t = a→ t

where

a→ b
def
= ¬p(a · ¬pb)

is called type implication, an operation which is useful for dealing with asser-
tions in demonic semantics and which enjoys many useful properties, see [3].

Moreover, we can use the Galois connection from Lemma 13 to relate the
forward and backward modal operators:

Corollary 17 For s, t ≤ 1,

s ≤ [a]t ⇔ 〈a〉−s ≤ t ,

s ≤ 〈a〉t ⇔ [a]−s ≤ t ,

where

〈a〉−s def
= (s · a)q

[a]−s
def
= ¬〈a〉−¬s .

13

PROOF.

s ≤ [a]t
⇔ {[definitions, Boolean algebra]}
p(a · ¬t) ≤ ¬s

⇔ {[by Lemma 13]}
(s · a)q ≤ t

⇔ {[definitions]}
〈a〉−s ≤ t

The second assertion is proved symmetrically.

We now carry over the well-known modal characterization of deterministic
relations (see e.g. [10]) to elements of Kleene algebras and call an element a
modally deterministic iff MD(a) holds, where

MD(a)
def⇔ ∀ t : 〈a〉t ≤ [a]t . (3)

Note that by Boolean algebra MD(a) is equivalent to

∀ t : p(a · t) u p(a · ¬t) = 0 .

The following properties are easily checked:

Corollary 18 (a) 〈a〉0 = 0.
(b) 〈a〉1 = pa.
(c) [a]0 = ¬pa.
(d) [a]1 = 1.
(e) In particular, 〈a〉0 ≤ [a]0 and 〈a〉1 ≤ [a]1.
(f) Suppose that the only types are 0 and 1 (such as e.g. in the algebra LAN

of formal languages). Then MD(a) holds for all a.
(g) 〈 〉 is monotonic and [] is antitonic, i.e. for a ≤ b and t ≤ 1 we have

〈a〉t ≤ 〈b〉t ,

[b]t ≤ [a]t .

The modal characterization links to the domain-oriented characterizations as
follows:

Lemma 19 We have CD(a) ⇒ MD(a). The reverse implication is not valid.

14

PROOF. Assume CD(a) and consider a type t. We set d
def
= p(a · t)u p(a · ¬t)

and calculate

d · a
= {[definition of d, distributivity of type restriction (Lemma 8(c))]}
p(a · t) · a u p(a · ¬t) · a

= {[by CD(a) and a · t ≤ a and a · ¬t ≤ a]}
a · t u a · ¬t

= {[distributivity of type restriction (Lemma 8(c))]}
a · (t u ¬t)

= {[Boolean algebra and strictness]}
0 .

Therefore, d = p(d · pa) = p(d · a) = p0 = 0, which shows 〈a〉t ≤ [a]t.

To see that the reverse implication fails, consider a Kleene algebra in which
the only types are 0 and 1. Then we have DD(a) and hence, by Lemma 15,
CD(a) iff a is an atom. However, by Corollary 18(f), MD(a) is always true.

For the relationship with our other characterizations, see Section 5.7.

4 Closure Properties

4.1 Downward Closure

A natural property of functions is that a subobject of a determinate object is
determinate again. Here we can show

Lemma 20 The properties SC, SC1, CD and MD are closed under subobjects.

PROOF. For SC and SC1 this is immediate from monotonicity, since we can
restate these properties as ∀ b : a · b u a · b = 0 and a · 1 u a = 0, respectively.
For CD, suppose b ≤ a and c ≤ b. Then also c ≤ a, hence

c = pc · a = (pc u pb) · a = pc · pb · a = pc · b .

Finally, for MD, the assertion is immediate from Corollary 18(g).

15

4.2 All Types are Determinate

Based on our original relational motivation, we would like to have that all
types are determinate. By the previous section, to ensure this we only need to
check that the largest type 1 satisfies all our characterizations. Fortunately,
this indeed holds, as the following lemma shows.

Lemma 21 LD(1) ∧ SC1(1) ∧ CD(1) ∧ MD(1).

PROOF. LD(1) and SC1(1) are trivial. For the third assertion, assume t ≤ 1.
Then by Lemma 10(e)

t = t · 1 = pt · 1 .

Finally, for types s, t we have, again by Lemma 10(e),

[1]t = t = 〈1〉t .

4.3 Closure Under Disjoint Choice

In this section we show that all our characterizations are closed under choice
(i.e. join) of determinate objects with pairwise disjoint domains. As an auxil-
iary result we need the following lemma.

Lemma 22 Assume pa u pb = 0. Then, for all c, d, we have a · c u b · d = 0.

PROOF.

p(a · c u b · d)
≤ {[monotonicity]}
p(a · c) u p(b · d)

≤ {[by Lemma 10(d)]}
pa u pb

= {[assumption]}
0 .

Now the claim follows by Lemma 10(l).

Lemma 23 Let P range over LD, SC, SC1,DD,ED,CD, SO,MD. Let more-
over L ⊆ K be a set such that ∀ a, b ∈ L : a 6= b ⇒ pa u pb = 0. Then

(∀ a ∈ L : P(a)) ⇒ P(tL) .

16

PROOF. (LD)

(
⊔
a∈L

a) · c u (
⊔
b∈L

b) · d

= {[distributivity of · over t]}
(
⊔
a∈L

a · c) u (
⊔
b∈L

b · d)

= {[distributivity of u over t]}⊔
a∈L

⊔
b∈L

a · c u b · d

= {[by assumption and Lemma 22]}⊔
a∈L

a · c u a · d

= {[by ∀ a ∈ L : LD(a)]}⊔
a∈L

a · (c u d)

= {[distributivity of · over t]}
(
⊔
a∈L

a) · (c u d) .

(SC1)

(
⊔
a∈L

a) · 1 u (
⊔
b∈L

b)

= {[distributivity of · over t]}
(
⊔
a∈L

a · 1) u (
⊔
b∈L

b)

= {[distributivity of u over t]}⊔
a∈L

⊔
b∈L

a · 1 u b

= {[by assumption and Lemma22]}⊔
a∈L

a · 1 u a

= {[by ∀ a ∈ L : SC1(a)]}⊔
a∈L

0

= {[lattice algebra]}
0 .

(CD) Assume c ≤ tL.

pc · (
⊔
b∈L

b)

= {[lattice algebra]}
p(c u

⊔
a∈L

a) · (
⊔
b∈L

b)

= {[distributivity of u and p over t]}
(
⊔
a∈L
p(c u a)) · (

⊔
b∈L

b)

= {[distributivity of · over t]}

17

⊔
a∈L

⊔
b∈L
p(c u a) · b

= {[by assumption and p(c u a) ≤ pa]}⊔
a∈L
p(c u a) · a

= {[by ∀ a ∈ L : CD(a)]}⊔
a∈L

c u a

= {[distributivity of u over t]}
c u

⊔
a∈L

a

= {[lattice algebra]}
c .

(MD)

p((
⊔
a∈L

a) · t) u p((
⊔
b∈L

b) · ¬t)

= {[distributivity of · and p over t]}
(
⊔
a∈L
p(a · t)) u (

⊔
b∈L
p(b · ¬t))

= {[distributivity of u over t]}⊔
a∈L

⊔
b∈L
p(a · t) u p(b · ¬t)

= {[by assumption and p(a · t) u p(b · ¬t) ≤ pa u pb]}⊔
a∈L
p(a · t) u p(a · ¬t)

= {[by ∀ a ∈ L : MD(a)]}⊔
a∈L

0

= {[lattice algebra]}
0 .

4.4 Closure under Composition

Another natural property of determinate objects is that they are closed un-
der composition. In this section we investigate which of our candidates for
characterization imply this closure.

First, it is straightforward that LD (and hence SC) is closed under composi-
tion. Moreover, we have

Lemma 24 MD is closed under composition.

18

PROOF. We first calculate

〈a · b〉t
= {[definition of 〈 〉]}
p(a · b · t)

= {[local composition]}
p(a · p(b · t))

= {[definition of 〈 〉]}
〈a〉(〈b〉t)

from which we also get by duality

[a · b]t = [a]([b]t) .

Now the claim is immediate by monotonicity (Corollary 18(g)).

Properties SC1 and DD are not closed under composition as will be shown in
Sections 5.5 and 5.6. However, we can show closure of DD under additional
assumptions. To formulate these, we need an auxiliary notion.

Definition 25 Analogously to the set of subidentities we define the set of
subatoms as

SAt
def
= At ∪ {0} ,

i.e. as the set of elements that lie below some atom.

Note that all subatoms satisfy DD. Now we can show the following lemma.

Lemma 26 Suppose that the Boolean algebra underlying our KA is atomic.
Denote the set of atoms of an element a by At(a) and set SAt(a)

def
= At(a) ∪

{0}.

(a) If a is an atom, then pa and aq both are atoms.
(b) DD(a) ⇔ (∀ t ∈ At(1) : t · a ∈ SAt(a)) ⇔ (∀ t ∈ At(pa) : t · a ∈ At(a)).
(c) DD is closed under composition iff the set of subatoms is closed under

composition.

PROOF.

(a) We show this for pa (the case of aq is symmetric). By Lemma 10(l), pa 6= 0.
Assume t < pa. Then t · a ≤ a by t ≤ 1 and monotonicity. But t · a = a is
not possible, because that would imply pa ≤ t, a contradiction. It follows
that t · a = 0, hence 0 = p(t · a) = t · pa = t u pa = t.

19

(b) We prove the first equivalence only, the second one being trivial.
(⇒) Suppose DD(a) and let t ∈ At(1). Assume t · a 6= 0 and let b < t · a.

By Lemmas 15 and 20, DD(t ·a) holds, so that pb < p(t ·a) ≤ pt, whence
pb = 0 since t ∈ At(1). By Lemma 10(l), b = 0, so that t · a ∈ At(a).

(⇐) We first note that in an atomic KA, all elements c are such that
c = t{t · c : t ∈ At(1)} (∗). Suppose b < a. By (∗) there must be
a t ∈ At(1) such that t · b < t · a. But since t · a ∈ At(a), we must
have t · b = 0. By Lemma 10(l), p(t · b) = 0; however, p(t · a) 6= 0, since
t · a ∈ At(a). Hence, t · pb = p(t · b) < p(t · a) = t · pa, from which pb < pa
follows again by (∗).

(c) (⇒) Let a, b be atoms. Then DD(a) and DD(b), whence DD(a · b), by
assumption. If a · b 6= 0, there exists c < a · b. By DD(a · b), pc <
p(a · b) ≤ pa, whence pc = 0, since pa is an atom, by part (a). By
Lemma 10(l), c = 0, so that a · b is an atom.

(⇐) Suppose DD(a) and DD(b). For any t ∈ At(1), t · a is a subatom,
by part (b) and DD(a). By part (a), (t · a)q is a subatom. Hence, by
part (b) and DD(b), (t·a)q·b is a subatom. Now, t·a·b = (t·a)·((t·a)q·b)
and thus, by assumption, t · a · b is a subatom, being a composition of
two subatoms. Because t is arbitrary, part (b) implies DD(a · b).

4.5 Determinacy of Loops

In this section we apply our previous results to the semantics of while loops.
Classically, a loop of the form

while G do B od

with guard G and body B is modeled in Kleene algebra as follows (see e.g.
[6]). The guard is represented by a type g characterizing all states that satisfy
G. The semantics of the body B is given by an element b of the underlying
KA. Then the loop itself is described by the semantical value

(g · b)∗ · ¬g .

This represents the informal view that the loop repeats the body B as long as
the guard G stays true and terminates as soon as a state is reached in which
G becomes false.

We want to show now that the semantics of a loop with determinate body is
determinate again. We perform this using the predicates MD and CD:

Lemma 27 (a) If MD(b) holds then the elements (g · b)i · ¬g (i ∈ IN) have
pairwise disjoint domains.

20

(b) MD(b) ⇒ MD((g · b)∗ · ¬g).
(c) Assume that in the KA under consideration CD is closed under compo-

sition. Then CD(b) ⇒ CD((g · b)∗ · ¬g).

PROOF.

(a) An easy induction shows MD((g · b)i) and MD((g · b)i · t) for all i ∈ IN and
all t ≤ 1. Now consider two elements (g · b)i · ¬g and (g · b)j · ¬g where,
without loss of generality, j > i.

p((g · b)i · ¬g) u p((g · b)j · ¬g)
= {[arithmetic]}
p((g · b)i · ¬g) u p((g · b)i · g · b · (g · b)j−i−1 · ¬g)

= {[local composition]}
p((g · b)i · ¬g) u p((g · b)i · p(g · b · (g · b)j−i−1 · ¬g))

≤ {[by Lemma 10(d) and 10(e)]}
p((g · b)i · ¬g) u p((g · b)i · g)

= {[by MD((g · b)i)]}
0 .

(b) The claim follows from (a) and Lemma 23 together with the fact that

(g · b)∗ · ¬g = t{(g · b)i · ¬g : i ∈ IN} .

(c) By Lemma 19 CD implies MD. Now the claim follows analogously to (b).

5 Counterexamples

5.1 A Technique for Constructing Kleene Algebras

In this section, various finite Kleene algebras are constructed in the following
way. We head for algebras in which the underlying lattice is an atomic Boolean
algebra. In each case we list the set At of atoms; the other elements are then
given by all possible joins of atoms (including the empty join). If there are n
atoms, the algebra thus has 2n elements. The Boolean operations are defined
as follows:

p+ q
def
= t{x ∈ At : x ≤ p ∨ x ≤ q},

p u q def
= t{x ∈ At : x ≤ p ∧ x ≤ q},

p
def
= t{x ∈ At : x 6≤ p},

0
def
= t∅,

> def
= tAt.

21

The meet of two atoms is of course 0. Obviously, this defines an atomic Boolean
algebra.

Composition · is given by a table for the atoms only. Composition of the
other elements is obtained through disjunctivity, thus satisfying this axiom by
construction. E.g., for atoms a, b, c, d we set

(a+ b) · (c+ d)
def
= a · c+ a · d+ b · c+ b · d .

If the composition of atoms is associative, by disjunctivity this propagates to
sums of atoms, i.e. to the other elements. In the same way, neutrality of 1
propagates from atoms to sums of atoms.

5.2 Concerning Local Composition

Here we present a KA that does not have local composition. It has two atoms
1 and a (and thus four elements). Its composition table is

· 1 a

1 1 a

a a 0

This composition is associative. There are only two types, viz. 0 and 1. Hence
by Lemma 10(l) we have pa = 1.

Now, p(a · a) = p0 = 0, but p(a · pa) = p(a · 1) = pa = 1.

This algebra is a special case of a whole class of algebras similar to LAN, but
with words of bounded length. Specifically, let A be any set and, for i ∈ IN,
let

Sn
def
= {w ∈ A∗ : |w| ≤ n} ,

where |w| is the length of word w. For U, V ⊆ Sn, define bounded concatenation
by

U � V def
= {u • v : u ∈ U ∧ v ∈ V ∧ |u • v| ≤ n} .

Then,

LANn
def
= (P(Sn), ⊆ , Sn, � , ∅, ε)

22

is a Kleene algebra where locality of composition does not hold. The example
given above is obtained by starting from a set A with a single element and
setting n = 1.

5.3 Concerning SC1, SC and DD

In this section we show that it is not the case that

SC1(a) ⇒ SC(a) (4)

and that DD does not imply either of SC1 and SC.

The counter-example consists of a finite Kleene algebra with three atoms 1, a, b
and the following composition table (which obviously is associative and satis-
fies locality of composition):

· 1 a b

1 1 a b

a a b b

b b b b

This algebra is isomorphic to the algebra generated by the following concrete
relations under relational composition:

1 = {(0, 0), (1, 1), (2, 2)}

a = {(0, 1), (1, 2), (2, 2)}

b = {(0, 2), (1, 2), (2, 2)}

In this algebra we have SC1(a) and DD(a), but not SC(a) (and hence not
LD(a)). Moreover, DD(b) holds (since b is an atom), but SC1(b) does not.

5.4 Concerning DD and LD

We show that DD does not imply LD, even for RAs. The counterexample
is McKenzie’s non-representable 16-element RA [7] (see also Appendix A
in [11] 2).

2 The entry for c · b in Fig. A.2.3 of [11] should be changed to z.

23

The algebra has four atoms 1, a, b, c (and thus sixteen elements). The compo-
sition table of the atoms is

; 1 a b c

1 1 a b c

a a a a+ b >

b b a+ b b b+ c

c c > b+ c c

Since a is an atom, it satisfies DD. Now, a ; (b u c) = 0, but a ; b u a ; c =
(a+ b) u > = a+ b.

5.5 Non-Closure of SC1 under Composition

Consider again the algebra of Section 5.3. There, SC1 is not closed under
composition, since a satisfies SC1, but the composition b = a · a does not.

Let us mention that the algebras from Sections 5.2 and 5.6 below cannot be
used as counterexamples. There, all atoms satisfy SC1. Moreover, in the latter
we have for all x ∈ {b, c, d, e, f} that x · 1 = 0 which makes SC1 closed under
composition in that algebra.

5.6 Non-Closure of DD under Composition

To show that DD (and hence CD) is not closed under composition we use a
KA with nine atoms, a, b, c, d, e, f , i, j, k. Composition of the atoms is given

24

by the following table:

· a b c d e f i j k

a 0 d+ e d+ f 0 0 0 0 a 0

b 0 0 0 0 0 0 0 0 b

c 0 0 0 0 0 0 0 0 c

d 0 0 0 0 0 0 0 0 d

e 0 0 0 0 0 0 0 0 e

f 0 0 0 0 0 0 0 0 f

i a 0 0 d e f i 0 0

j 0 b c 0 0 0 0 j 0

k 0 0 0 0 0 0 0 0 k

The identity of composition is given by 1
def
= i+ j + k.

It is slightly tedious to verify that composition is associative, although this is
facilitated by the fact that most entries of the composition table are 0. An-
other manner to verify associativity is through the following relational model
on the set {0, 1, 2, 3, 4}, for which standard relational composition gives the
above table (in fact, we started from this concrete model rather than from the
abstract one). Associativity follows from the fact that relational composition
is associative.

a = {(0, 1)} d = {(0, 2)} i = {(0, 0)}

b = {(1, 2), (1, 3)} e = {(0, 3)} j = {(1, 1)}

c = {(1, 2), (1, 4)} f = {(0, 4)} k = {(2, 2), (3, 3), (4, 4)}

From the composition table and the definition of domain, one obtains

pa = pd = pe = pf = pi = i , pb = pc = pj = j , pk = k ,

iq = i , aq = jq = j , bq = cq = dq = eq = fq = kq = k .

It is then easy to check that locality of composition is satisfied.

Now the question is: if

∀ c : c < a ⇒ pc < pa and ∀ c : c < b ⇒ pc < pb ,

25

do we have

∀ c : c < a · b ⇒ pc < p(a · b) ?

Because a and b are atoms, they satisfy DD. Also, a ·b = d+e, so that d < a ·b.
But pd = p(a · b) = i.

The same algebra is another counterexample to implication (4), since

a · 1 = a · (a+ b+ c+ d+ e+ f)

= d+ e+ f ≤ b+ c+ d+ e+ f + 1 = a,

while

a · b = a · (a+ c+ d+ e+ f + 1) = a+ d+ f

and

a · b = d+ e = a+ b+ c+ f + 1,

so that implication (4) does not hold. By Lemma 14, this is also shown by the
fact that a · (b u c) 6= a · b u a · c.

Another counter-example to (4) is obtained from the above one by replacing
the three atomic subidentities i, j, k by a single atomic identity 1. However,
the resulting algebra does not satisfy locality of composition.

The following properties were useful in finding the counter-example. It is easy
to see that if implication (4) holds for every atom b, then it holds for every
element. Thus, it suffices to examine atoms. Moreover, implication (4) holds
if b ≤ 1 and also if b = 1. Thus, to find the counter-example, we had to look
for an atom b < 1. Also, using the technique of Jónsson and Tarski concerning
Boolean algebras with operators [4,5], it became apparent that we had to
invent two atoms whose intersection in the relational model is not empty.

The same algebra can be used to give a counterexample showing that DD (or
CD) does not imply LD. The element a is an atom and thus satisfies DD.
However,

a · (b u c) = a · 0 = 0 6= d = (d+ e) u (d+ f) = a · b u a · c.

26

5.7 Concerning SC, SC1 and MD

First we note that MD does not imply SC, since otherwise, by Lemmas 15
and 19, and transitivity of implication, we would obtain that DD implies SC,
in contradiction to Section 5.4 and Lemma 14.

Second, MD does not imply SC1 either. The algebra in Section 5.5 has 0 and 1
as its only types. Hence, by Corollary 18(f), we have MD(b), but SC1(b) does
not hold.

Concerning the reverse implications, let us first see the informal meaning of
MD in the KA PAT. Consider a graph node y, viewed as an atomic type, and
a set of paths a. Then 〈a〉y is the set of all nodes from which some path in a
leads to y, whereas a node x is in [a]y iff all paths in a that start in x end in
y. So MD(a) holds iff all paths in a that start in the same node also end in
the same node. However, a may contain several different paths between two
nodes.

Now, as we have seen in Section 3.1, in PAT the properties SC(a) and SC1(a)
are equivalent to prefix-freeness of a. Hence for different nodes x, y, z the set
a = {xy, xz} of paths satisfies SC(a) and SC1(a) but not MD(a). Therefore
neither SC nor SC1 implies MD.

A consequence of the last paragraph is that SC1 does not imply CD; indeed, if
this were the case, we would have that SC1 implies MD, because of Lemma 19.
By Lemma 15, SC1 does not imply DD either.

6 Linking the Views

It turns out that in the case of an atomic KA K, we can set up a homomor-
phism from K into a concrete KA of type REL. This will allow us to link the
domain-oriented and the relational characterizations of functions.

6.1 A Homomorphism

Consider an atomic KA K.

Definition 28 For element a ∈ K, we define a relation [[a]] between atomic
types by setting for s, t ∈ At(1)

s [[a]] t
def⇔ s · a · t 6= 0 .

27

Before we come to the main result of this section, we need an auxiliary prop-
erty:

Corollary 29 If u ∈ At(1), then u · a 6= 0 ⇔ u = p(u · a) ⇔ u ≤ pa.

PROOF.

u · a 6= 0
⇔ {[by Lemma 10(l)]}
p(u · a) 6= 0

⇔ {[by Lemmas 10(d) and 10(e), p(u · a) ≤ pu = u]}
p(u · a) 6= 0 ∧ p(u · a) ≤ u

⇔ {[u is an atom]}
u = p(u · a)

⇔ {[locality of composition and Lemma 10(e)]}
u = u · pa

⇔ {[by Lemma 8(b), Boolean algebra]}
u ≤ pa

Lemma 30 The mapping [[]] is a universally disjunctive homomorphism from
K to REL.

PROOF.

(a) By strictness, s [[0]] t ⇔ s · 0 · t 6= 0 ⇔ FALSE. Hence [[0]] = ∅.
(b) s [[1]] t

⇔ {[definition of [[]], neutrality]}
s · t 6= 0

⇔ {[since s, t are atoms]}
s = t .

Hence [[1]] = I.
(c) s [[t{aj : j ∈ J}]] t

⇔ {[definition of [[]], distributivity]}
t {s · aj · t : j ∈ J} 6= 0

⇔ {[Boolean algebra]}
∃ j ∈ J : s · aj · t 6= 0

⇔ {[definition of [[]]]}
∃ j ∈ J : s[[aj]]t

⇔ {[definition of union]}
s (
⋃
j∈J

[[aj]]) t .

Hence [[t{aj : j ∈ J}]] =
⋃
j∈J

[[aj]].

28

(d) We first show [[a · b]] ⊆ [[a]] ; [[b]].
s [[a · b]] t

⇔ {[definition of [[]], Lemma 10(b)]}
s · a · aq · pb · b · t 6= 0

⇔ {[aq · pb = t{u : u ∈ At(aq · pb)}, distributivity]}
(t{s · a · u · b · t : u ∈ At(aq · pb)} 6= 0

⇔ {[Boolean algebra]}
∃ u ∈ At(aq · pb) : s · a · u · b · t 6= 0

⇒ {[strictness]}
∃ u ∈ At(aq · pb) : s · a · u 6= 0 ∧ u · b · t 6= 0

⇔ {[definition of [[]]]}
∃ u ∈ At(aq · pb) : s [[a]]u ∧ u [[b]] t

⇒ {[the atoms of a type are atomic types]}
s ([[a]] ; [[b]]) t .

Now we show the reverse inclusion. Assume s ([[a]] ; [[b]]) t, say s · a ·u 6= 0
and u ·b · t 6= 0 for some atomic type u. Then by strictness aq ·u 6= 0 and
u · pb 6= 0. Since u is an atom, we get u ≤ aq and u ≤ pb by Corollary 29.
Therefore u ≤ aq · pb, and hence

s · a · b · t = s · a · aq · pb · b · t ≥ s · a · u · b · t .

Now, by local composition, again Corollary 29 and Lemma 10(l),

p(s · a · u · b · t) = p(s · a · p(u · b · t)) = p(s · a · u) 6= 0 .

Therefore, by Lemma 10(l), also s · a · u · b · t 6= 0 and by monotonicity,
since u ≤ 1, also s · a · b · t 6= 0, i.e. s ([[a · b]]) t.

Corollary 31 [[a∗]] = [[a]]∗ and [[a+]] = [[a]]+.

PROOF.

[[a∗]]
= {[definition of ∗]}

[[t{ai : i ∈ IN}]]
= {[Lemma 30]}⋃

i∈IN

[[ai]]

= {[Lemma 30 and induction]}⋃
i∈IN

[[a]]i

= {[definition of ∗]}
[[a]]∗ .

29

6.2 The Link

We can now show the following lemma.

Lemma 32 In an atomic KA K, MD(a) ⇔ [[a]]̆ ; [[a]] ⊆ I .

PROOF. In this derivation, s, t, u ∈ At(1).

[[a]]̆ ; [[a]] ⊆ I
⇔ {[definition of [[]], definition of REL, I = [[1]] by Lemma 30]}
∀ s, t : (∃ u : u[[a]]s ∧ u[[a]]t) ⇒ s[[1]]t

⇔ {[definition of [[]]]}
∀ s, t : (∃ u : u · a · s 6= 0 ∧ u · a · t 6= 0) ⇒ s · 1 · t 6= 0

⇔ {[Corollary 29]}
∀ s, t : (∃ u : u ≤ p(a · s) ∧ u ≤ p(a · t)) ⇒ s · t 6= 0

⇔ {[Boolean algebra]}
∀ s, t : (∃ u : u ≤ p(a · s) u p(a · t)) ⇒ s · t 6= 0

⇔ {[u ∈ At(1), Lemma 8(b)]}
∀ s, t : p(a · s) u p(a · t) 6= 0 ⇒ s u t 6= 0

⇔ {[contrapositive]}
∀ s, t : s u t = 0 ⇒ p(a · s) u p(a · t) = 0

⇔ {[Boolean algebra]}
∀ s, t : t ≤ ¬s ⇒ p(a · s) u p(a · t) = 0

⇔ {[for proving ⇒ , take t
def
= ¬s;

the direction ⇐ is trivial by monotonicity]}
∀ s : p(a · s) u p(a · ¬s) = 0

⇔ {[definition of MD, 〈 〉 and []]}
MD(a)

This leaves us with the somewhat paradoxical situation that the modal char-
acterization MD is the only “really relational” one: since we have shown LD,
SC, SC1, CD and DD to be non-equivalent to MD, they cannot enjoy the
property of this lemma.

30

7 Summary of the Results

To give the reader a survey of what has been achieved in this paper, we first
recall the definitions of all characterizations that have been investigated:

LD(a) ⇔ ∀ b, c : a · (b u c) = a · b u a · c

SC(a) ⇔ ∀ b : a · b ≤ a · b

SC1(a) ⇔ a · 1 ≤ a

DD(a) ⇔ (∀ b : b < a ⇒ pb < pa)

CD(a) ⇔ (∀b : b ≤ a ⇒ b = pb · a)

SO(a) ⇔ p : {b : b ≤ a} → {t : t ≤ pa} is an order-isomorphism

MD(a) ⇔ ∀ t : 〈a〉t ≤ [a]t

The following table shows mutual (non-)implications as well as (non-)closure
properties.

SO closed closed closed
SC CD under under under

SC1 LD DD MD subobjects composition disjoint choice

SC1 ⇔ ⇐ yes no yes

SC,LD ⇒ ⇔ yes yes yes

SO,CD,DD ⇔ ⇒ yes no yes

MD ⇐ ⇔ yes yes yes

Equivalent properties are in the same line/column. When there is a ⇒ or a
⇐ , the reverse implication does not hold. When an entry is blank, it means
that no implication holds.

8 Conclusion

The theory of Kleene algebras offers surprising new views on the notion of a
function. Characterizations that are equivalent in relation algebras [11] differ
in this generalized setting.

However, the second author has shown that the characterization CD is suffi-
cient to reprove (in a simpler fashion!) all properties of overwriting that were

31

shown relationally in [9]. So it seems that the generalized setting indeed has
its merits.

Acknowledgements

We are grateful to T. Ehm, B. von Karger and O. de Moor for helpful hints
and comments.

References

[1] C.J. Aarts, Galois connections presented calculationally (Eindhoven University
of Technology, Dept. of Mathematics and Computer Science, July 1992).

[2] J.H. Conway, Regular Algebra and Finite Machines (Chapman and Hall,
London, 1971).

[3] J. Desharnais, B. Möller, and F. Tchier, Kleene under a demonic star (Institut
für Informatik, Universität Augsburg, Report Nr. 2000-3), revised version in: T.
Rus (ed.), Proc. AMAST 2000, Lecture Notes in Computer Science (Springer,
Berlin, 2000 (to appear)).

[4] B. Jónsson and A. Tarski, Boolean Algebras with Operators, Part I, Amer. J.
Math. 73 (1951) 891–939.

[5] B. Jónsson and A. Tarski, Boolean Algebras with Operators, Part II, Amer. J.
Math. 74 (1952) 127–167

[6] D. Kozen, Kleene algebras with tests, ACM Trans. Prog. Lang. Syst. 19 (1997)
427–443.

[7] R. McKenzie, The representation of integral relation algebras. Michigan Math.
J. 17 (1970) 279–287.

[8] B. Möller, Derivation of graph and pointer algorithms, in B. Möller, H.A.
Partsch, S.A. Schuman (eds.), Formal Program Development, Lecture Notes in
Computer Science 755, (Springer, Berlin, 1993) 123–160.

[9] B. Möller, Towards pointer algebra, Sci. Comput. Progr. 21 (1993) 57–90.

[10] S. Popkorn, First Steps in Modal Logic (Cambridge University Press, 1994).

[11] G. Schmidt and T. Ströhlein, Relations and Graphs, EATCS Monographs in
Computer Science (Springer-Verlag, Berlin, 1993).

32

	Introduction
	Kleene Algebras
	Definition and Basic Laws
	Types
	Domain and Codomain
	Locality of Composition

	Candidate Characterizations of Determinacy
	Candidates from Relation Algebra
	Domain-Oriented Characterizations
	A Modal Characterization

	Closure Properties
	Downward Closure
	All Types are Determinate
	Closure Under Disjoint Choice
	Closure under Composition
	Determinacy of Loops

	Counterexamples
	A Technique for Constructing Kleene Algebras
	Concerning Local Composition
	Concerning SC1, SC and DD
	Concerning DD and LD
	Non-Closure of SC1 under Composition
	Non-Closure of DD under Composition
	Concerning SC, SC1 and MD

	Linking the Views
	A Homomorphism
	The Link

	Summary of the Results
	Conclusion
	Acknowledgements
	References

