One-dimensional XXZ model for particles obeying fractional statistics

Luigi Amico
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
and Istituto di Fisica, Facoltà di Ingegneria, Università di Catania and INFM, viale Andrea Doria 6, I-95129 Catania, Italy

Andreas Osterloh and Ulrich Eckern
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
(Received 6 March 1998)

We define one-dimensional particles as non-Abelian representations of the symmetric group S_N. The exact solution of an XXZ type Hamiltonian built up with such particles is achieved using the coordinate Bethe ansatz. The Bethe equations show that fractional statistics effectively account for coupling an external gauge field to an integer statistics' system. [S0163-1829(98)52028-0]

The physical behavior of quantum systems is deeply affected by the statistics of the constituting effective degrees of freedom. Quasiparticles and quasiholes in condensed-matter physics may obey statistics interpolating between fermionic and bosonic behavior. Examples are the excitations of two-dimensional electron systems exhibiting the fractional quantum Hall effect. These excitations are called anyons. They have been a subject of intense study also in connection with superconductivity and superfluidity. Fractional statistics of such particles arise from the trajectory dependence of the particle exchange procedure in two-dimensional configuration space. This feature makes the concept of anyons purely two dimensional. The Fock space formulation of anyon operator algebras takes into account these characteristics. The creation and annihilation operators [introduced as Jordan-Wigner transforms of the usual fermions on a two-dimensional lattice or as unitary representations of the diffeomorphism group of \mathbb{R}^2 (Ref. 5)] obey deformed commutation relations if the exchange involves anyons at different spatial positions (see the Appendix). N-anyon states are Abelian representations of the braid group B_N (Ref. 6) (whereas bosons and fermions furnish, respectively, the identical and alternating Abelian representations of the symmetric group S_N). These features make anyons different from q oscillators, the latter providing a realization of the Gel’fand-Fairlie quantum group, which is a local deformation of the Weyl-Heisenberg (bosons) or Clifford algebra (fermions). The path dependence implies that the one-particle state is inextricably related to the complete state of the many-body configuration. This intrinsic nonlocality makes anyon physics very difficult. Even statistical properties of a free anyon gas are only partially established using the virial expansion.

Haldane formulated the notion of fractional statistics without any reference to the spatial dimension D. The generalized Pauli principle is expressed in terms of the reduction of the single-particle Hilbert space when particles are added to a many-body system keeping boundary conditions fixed. Another way to introduce dimensionality-independent fractional statistics has been formulated in Ref. 10, where quons have been introduced. Quons’ fractional statistics result from the ‘‘superposition’’ of statistical properties of bosons and fermions. In $D>2$, this is consistent with spin-statistics theorem. In $2D$, Haldane particles and quons capture the essential features of anyons.

Recently, a growing interest has been devoted to generalized statistics in one dimension. A specific way to introduce $D=1$ fractional statistics has been proposed in connection to the quantization of the solutions of the Calogero model. There, the potential $1/x^2$ is interpreted as ‘‘statistics interaction.’’ The same notion of fractional statistics applies also to anyons in a strong magnetic field that restricts the allowed energies to the lowest Landau level. The anyon gas, then, is described by an effective-field theory on a ring where the dynamics of particles is one dimensional. It is worthwhile noting that such one-dimensional particles obey fractional statistics, but they are not ‘‘true anyons’’ since in $D \neq 2$ trajectories in the particle configuration space have no meaningful braiding property. Instead, nonlocal ‘‘deformations’’ of the commutation relations furnish non-Abelian representations of the symmetric group S_N.

In this paper, we deal with particles in $D=1$ that preserve the intrinsic nonlocality of two-dimensional anyons, but which are still representations of S_N. This representation is no longer Abelian. The second quantized formalism and the Fock-space representation is developed. The XXZ model for such particles is formulated and solved exactly using coordinate Bethe ansatz (BA) in $D=1$.

For $D=1$ we define a set of creation/annihilation operators $\{f^+_i, f_i\}$ for a spinless particle at site i. They obey the deformed relations

$$f^+_i f_k + q_{j,k} f_k f^+_i = \delta_{j,k},$$ \hspace{1cm} (1)

$$f_i f_k + q_{j,k}^{-1} f_k f^+_i = 0,$$ \hspace{1cm} (2)

where $q_{j,k}^{-1} = (q_{j,k})^{-1}$. Since the operators are path independent in $D \neq 2$ (compare with the Appendix), Eqs. (1) and (2) have to constitute a representation of S_N, and not of B_N. This is ensured by the ‘‘consistency relations’’

$$q_{j,k} = q_{k,j}^{-1} = q_{j,k}^-,$$ \hspace{1cm} (3)

$$[f^+_i f^+_j, q_{j,k}] = 0.$$ \hspace{1cm} (4)
Such a representation is non-Abelian. For $j = k$, Eq. (3) gives $q_{j,k} = \pm 1$. Hence Eqs. (1) and (2) are an extension of anyon commutation relations\(^\text{15}\) to $D \neq 2$. In contrast to the true anyonic case (see Appendix), $q_{j,k}$ has no relation with the configuration space geometry, but is a free “external” parameter.

Relations (1) and (2) are formally analog to quon commutation rules.\(^\text{11}\) Note that the deformation parameter here depends on two indices (j, k), whereas it does not in quon commutation rules. Without this index dependence, relation (3) directly implies $q^2 = 1$. As a consequence, quons obey integer statistics in 1D if q is a C number\(^\text{11}\) (as an operator, it has eigenvalues ± 1). If $q_{j,k} = \pm 1 \forall (j, k)$, then Eqs. (1) and (2) describe spinless fermions or bosons, respectively. However, for application we choose $q_{j,k}$ being C numbers and $q_{j,j} = 1$, see Eq. (9), which implies the Pauli exclusion principle, as for spinless electrons or hard-core bosons.

Relations (3) and (4) hold if $q_{j,k}$ is an operator commuting or anticommuting with both f_j and f_k^\dagger. For this reason we add this as a postulate\(^\text{16}\)

$$[f_k^\dagger, q_{j,k}] = [f_j, q_{j,k}] = 0.$$ \(5\)

The introduction of two indices for the deformation parameter allows the construction of consistent commutation relations even for $q_{j,k}$ being C numbers. We make use of this possibility in Eq. (9).

To develop a Fock representation of the algebra (1) and (2), we take $v_j := f_j f_j^\dagger$ as number operators. Relations (3)–(5) yield commutators of v_j and f_j^\dagger, f_j being unaffected by the deformation parameter $q_{j,k}$:

$$[v_j, v_k] = 0, \quad [v_j, f_k^\dagger] = \delta_{j,k} f_k^\dagger, \quad [v_j, f_k] = -\delta_{j,k} f_k.$$ \(6\)

Moreover, the property $q_{j,j}$ implies that number operators are idempotent: $(v_j)^2 = v_j$. Because of Eq. (6) the one-particle Fock representation of the algebra (1) and (2) is unaffected by $q_{j,k}$. Instead, the action of $f_j^\dagger f_j^\dagger$, v_j on the N-particle state $|n_1, \ldots, n_N\rangle$ is deformed according to

$$f_j |n_1, \ldots, n_N\rangle = (-1)^{n_j} \delta_{n_j, 1} \prod_{k=1}^{n_{j-1}} q_{k,l}^* |n_1, \ldots, n_{j-1}, 1, \ldots, n_N\rangle,$$

$$f_j^\dagger |n_1, \ldots, n_N\rangle = (-1)^{n_j} \delta_{n_j, 1} \prod_{k=1}^{n_{j-1}} q_{k,l}^* |n_1, \ldots, n_{j-1}, 1, \ldots, n_N\rangle,$$

$$v_j |n_1, \ldots, n_N\rangle = n_j |n_1, \ldots, n_N\rangle,$$

where $n_j \in \{0, 1\}$. Equations (7) generalize the corresponding relations fulfilled by integer statistics particles\(^\text{17}\) characterized by $\prod_{k=1}^{n_{j-1}} q_{k,l}^* = (\pm 1)^{n_j}$ (for fermions/bosons). An explicit realization of the operators f_j in terms of spinless fermionic operators a_j is $f_j = a_j \exp(-i\Omega_0 p_j)$, where Φ_j are Hermitian operators commuting with fermionic degrees of freedom. By direct calculation, relations (1) and (2) are obtained by setting $q_{j,k} = \exp(i\Phi_j - \Phi_k)$. This realization has been suggested in Ref. 15 where $\Phi_j = p_k$, p_k being momenta of a phononic bath coupled to fermionic degrees of freedom.

In the following we consider the 1D anisotropic Heisenberg model (XXZ model) of spinless fermions

$$H_{\text{XXZ}} = -i \sum_i (f_j f_{j+1}^\dagger + f_j^\dagger f_{j+1}) + U \sum_i n_i n_{i+1}. \quad \text{(8)}$$

The operators f_j obey relations (1) and (2) with $q_{j,k}$ defined in close analogy with anyonic relations (see the Appendix)

$$q_{j,k} = \begin{cases} q, & j > k, \\ 1, & j = k, \\ q^{-1}, & j < k. \end{cases} \quad \text{(9)}$$

We point out that postulate (5) is fulfilled since $q_{j,k}$ is a C number for arbitrary, fixed (j, k). Relations (3) and (9) imply that q is on the unit circle, i.e., $|q| = 1$. Additionally, periodic boundary conditions (PBC) $f_j+L = f_j$ are chosen, where L denotes the period. The parameters t and U are the hopping amplitude and the Coulomb interaction strength, respectively.

It is worthwhile mentioning that Eq. (9) implies fixing an order on the infinite periodic chain. This order can only be defined locally on the manifold S^1, which needs two charts for its description. We choose two “charts” $C_1 := \{j_1, \ldots, j_N\}$ and $C_2 := \{j_{N-1}, \ldots, j_1\}$ on the ring thought as a discrete subset of S^1. On each chart, the given order is well defined by interpreting them as ordered sets. The intersections between C_1 and C_2 are $\{j_{N-1}, \ldots, j_1\}$ and $\{j_1, \ldots, j_{N-1}\}$. In such sets, the orders defined on C_1, C_2 are identical. Now, in $D = 1$, only nearest neighbor (n.n.) exchanges can take place. Thus $q_{j,k}$ is connected to the n.n. exchange $j_k \leftrightarrow j_1$. On the chart C_1, where $j_1 < j_N$, the exchange $j_N \leftrightarrow j_1$ is not a n.n. exchange. To allow for n.n. hopping $j_N \leftrightarrow j_1$, we must use C_2 on which $j_N < j_1$. This implies $q_{j_N,j_1} = q^{-1}$. The picture depicted above is equivalent to fixing a period $P_0 := \{j_1, \ldots, j_1 + L\}$ on the infinite periodic chain. Consistency of the PBC with this induced order is given if the results are independent of P_0. In the following, it will be seen that this condition is fulfilled.

The correspondence between Eq. (8) and the deformed anisotropic Heisenberg model can be established by $S_j^{(\pm)} := f_j^\dagger f_j$, and $S_j^{(\pm)} := 1/2 - v_j$. On site, the operators $S_j^{(\pm)}$ generate the fundamental representation (spin $s = 1/2$) of $su(2)$, but for $j \neq k$

$$[S_j^{(+)} S_k^{(-)}] = (1 + q_{j,k}) S_j^{(+) S_k^{(-)}} - \delta_{j,k},$$

$$[S_j^{(-)} S_k^{(+)}] = (1 + q_{j,k}) S_k^{(-) S_j^{(+)}} - \delta_{j,k},$$

$$[S_j^{(\pm)} S_k^{(\pm)}] = 0.$$ \(10\)

We now show that the XXZ model (8) is exactly solvable by means of the coordinate BA. The general N-particle state on a chain with L sites can be written as

$$|\Psi\rangle = \sum_{1 \leq j_1 < \cdots < j_N \leq L} \psi(j_1, j_2, \ldots, j_N) f_{j_1}^\dagger f_{j_2}^\dagger \cdots f_{j_N}^\dagger |0\rangle.$$ \(11\)

The action of H_{XXZ} on $|\Psi\rangle$, i.e., the eigenvalue equation, then reads
The choice of the functional form of the right-hand side of Eq. \(\Delta \) is crucial because configuration dependence of the twisting factor would destroy the solvability of the model, since it modifies the structure of the exponential functions in imposing PBC on the BA wave function. The energy and the two-body scattering matrix \(S(k,k') = \exp\left[-i \theta(k,k') \right] \) for the “deformed” model are identical with the known terms occurring in the usual XXZ model.\(^{18}\) Imposing PBC, however, yields

\[
\psi(j_1, \ldots, j_N) = \sum_{\pi \in S_N} A(\pi) \exp\left(\sum_{m=1}^{N} j_m k_{\pi(m)} \right) \tag{14}
\]

Equation (15) shows that the fractional statistics produces a twist in the PBC that modifies the periodicity of the Bethe wave function.

Since the twisting factor \(q^{N-1} \) does not depend on \(j_1 \), the starting point of the chosen period \(P(\pi) \), the boundary condition is consistent with our choice of \(q_{j,k} \). The twist \(q^{N-1} \) does not depend on the particles’ configuration, but on the number of particles only. This is crucial because configuration dependence of the twisting factor would destroy the solvability of the model, since it modifies the structure of the exponential functions in imposing PBC on the BA wave function [making it impossible to extract from Eq. (15) a relation for the amplitudes \(A(\pi) \)]. So, the coordinate BA solvability of the model (with PBC) demands a careful choice of the functional form of \(q_{j,k} \). The choice \(q_{j,k} = \exp[\imath \theta(j,k)] \) for the XXZ model, for instance, leads to the same structure of the \(S \) matrix, but produces incompatible boundary conditions.

Since \(|q| = 1 \), \(q = \exp[\imath \arg(q)] \). So a phase shift by multiples of \(\arg(q) \) occurs in the BA wave function on the right-hand side of Eq. (15). The Bethe equations (BE) are obtained as

\[
k_j L = \arg((-q)^{N-1}) + 2 \pi I_j - \sum_{m=1}^{N} \theta(k_j,k_m),
\]

where \(I_j \in \mathbb{Z} \). In the fermionic case, one obtains \(k_j L = 2 \pi I_j + (N-1)/2 - \sum_{m=1}^{N} \theta(k_j,k_m) \), whereas the hardcore bosonic case yields \(k_j L = 2 \pi I_j - \sum_{m=1}^{N} \theta(k_j,k_m) \). In all cases, \(I_j \in \mathbb{Z} \). Equation (16) differs from the BE for the ordinary XXZ model in the additive term \(\arg((-q)^{N-1}) \). This term has its origin in the fractional statistics of the particles, and vanishes for integer statistics. Equation (16) was obtained for the 1D XXZ model on a ring threaded by an external magnetic flux.\(^{19,20}\) We recover the BE of Ref. 20 identifying \(\Phi = \alpha = \arg((-q)^{N-1}) \), \(\Phi \) being the magnetic flux in units of \(h/c \).

The limit \(k_N \rightarrow \pi - \mu \), where \(\cos(\mu) = U/2t \) for \(|U| \leq 2|t| \), in the \(N \)th equation of Eq. (16) relates the statistics with the ratio \(U/2t \) for the ground state,

\[
\alpha = \pi(L-N-2) + \mu(L-N+2). \tag{17}
\]

At half filling \(\left[N/L = 1/2, I_N = (N-1)/2 \right] \) the energy and the total momentum \(P = \sum_{m=1}^{N} k_m/L \) of the ground state are affected by the statistics’ factor \(\alpha \) (Refs. 20 and 18) as follows:

\[
E_0(\alpha) - E_0(0) = \frac{\pi \sin(\mu)}{4 \mu(\pi - \mu)} L^2, \tag{18}
\]

where \(E_0(0) \) denotes the ground-state energy of the undeformed XXZ model. The same structure of BE has been obtained in Refs. 21 and 22. In Ref. 22, the two species of particles, up-spin (\(\sigma = + \)) and down-spin (\(\sigma = - \)), have dynamics governed by two distinct XXZ(\(\sigma \)) Hamiltonians coupled only via a local gauge field, included in XXZ(\(\sigma \)) by a Peierls-like substitution \(\tau \rightarrow \tau W_{m}^{(\sigma)} \), where \(W_{m}^{(\sigma)} = \exp[\imath \alpha_{\sigma} S_{m}^{(\sigma)} \alpha_{m+1}^{(\sigma)}] \) (determined by the position of all particles of opposite species); \(\alpha_{\sigma} \in \mathbb{R} \), \(\alpha_{m+1} = \alpha_m \). A comparison of the BE in Ref. 22 with Eq. (16) shows that our deformation parameter \(q \) can be interpreted as the “global” coupling constant of the gauge potential by setting \(\alpha = \sum_{m=1}^{N} \alpha_{m-1} \). Vice versa, such an interaction produces statistics transmutation. In this sense, our deformed XXZ model belongs to the same class of integrable models introduced in Ref. 22.

In conclusion, we have given a formulation of fractional statistics in one dimension realized by an anyonic-type deformation of the second quantized commutation rules. Coordinate BA solvability of the deformed XXZ model demands a proper choice of the functional form of \(q_{j,k} \). The statistics we have chosen in the present paper preserves the Yang-Baxter equation as well as the BA solvability of the undeformed model. The resulting BE are, however, modified. They show that fractional statistics plays the same role as a gauge field coupled to the undeformed model. Systematic investigations of fractional statistics seem interesting for at least two reasons. First, fractional statistics may be an alternative approach to handle complicated interactions between particles obeying integer statistics. Such interactions could be modeled deforming the particles’ statistics. Second, the study of “compatible statistics” could be relevant in order to find integrable Hamiltonians characterized by “braided” Yang–Baxter equations (YBE).\(^{23}\) Such a feature of the YBE could be closely related to actual braiding of particles in two dimensions.

A further development of the present approach is to take spin into account. A preliminary analysis of the “deformed” Hubbard model\(^{15}\) shows that fractional statistics modify the
S matrix; the R matrix obeys a braided YBE. We will report on this subject in a forthcoming paper.

We thank M. Rasetti for suggesting this line of research as well as for many discussions. We thank D. Bormann, R. Fazio, G. Falci, G. Giaquinta, P. Schwab, and M. Takahashi for fruitful discussions. L.A. acknowledges financial support by the “Fondazione A. della Riccia,” and EU TMR Programme (Contract No. FMRX CT 960042). The authors thank the German Science Foundation (DFG) and the State of Bavaria for financial support through the Graduiertenkolleg GRK 283.

APPENDIX

Here we summarize the commutation properties of two-dimensional anyons. The creation/annihilation operators obey

$$b^\dagger(x_C)b(y_C) + q(x_C,y_C)b^\dagger(y_C)b(x_C) = \delta_{x_C,y_C},$$

$$b(x_C)b(y_C) + q^{-1}(x_C,y_C)b(y_C)b(x_C) = 0.$$ \hspace{1cm} (A1)

The operators $b^\dagger(x_C) [b(x_C)]$ create (annihilate) an anyon at site $x_C = (x_1, x_2)$. C denotes the path running from $+\infty$ to x_C keeping x_2 constant. The relations above hold if $x_C > y_C$; in the case $x_C < y_C$, they are satisfied substituting $q \rightarrow q^{-1}$. Note that $x_C > y_C \Leftrightarrow \{x_2 > y_2 \lor x_1 > y_1 \}$ (if $x_2 = y_2$). The function $q(x_C,y_C) = q(\{x_C - y_C\})$ can be simplified (see, e.g., Ref. 4) to $q = e^{i\pi\nu}$ ($\nu \in \mathbb{R}$), where ν denotes the statistics. If two anyons are at the same position $x_C = y_C$, then $q = 1$. Otherwise, the standard bosonic or fermionic algebras are deformed by the parameter q.

14. We note that relation (5) is sufficient but not necessary for relation (4), but it is crucial to obtain Eq. (6).