
Are Anamorphisms Reasonable
Abstractions?

Bernhard Möller

Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany.
email: moeller@uni-augsburg.de

Abstract. In calculational derivations of pointer algorithms the con-
cept of a reasonable abstraction function has proved to be of central
importance. A function from pointer structures to some other domain is
called reasonable if it only depends on the reachable part of the store. For
reasonable functions we can reduce questions about invariance of certain
parts of objects to an analysis of (non-)reachability in the pointer struc-
ture. In this way we can prove a number of transformation laws once and
for all for all types of pointer structures. In the present paper we show
that all abstraction functions with an anamorphic recursive definition
are reasonable, so that our laws apply for them. The approach copes
also with cyclic strctures; among others, we give abstraction functions
for cyclic lists and threaded trees. By tuning the degree of abstraction
we can give simple specifications for routines that are to update pointer
structures in situ.

1 Introduction

Although pointer algorithms are very error-prone they lie at the very heart
of many implementations. Yet they have received surprisingly little attention
in work on formal derivation and verification of programs. If they are treated,
mostly formulas from predicate logic are used, which tend, however, to be very
complex and unwieldy. A more algebraic approach was presented in the work of
Berger et al. (1991) and Möller (1991–1993) and developed into more general
form by Möller (1997a,1997b).

A central concept there is that of a reasonable abstraction function. A func-
tion from pointer structures to some other domain is called reasonable if it only
depends on the reachable part of the store. For reasonable functions we can
reduce questions about invariance of certain parts of objects to an analysis of
(non-)reachability in the pointer structure. In this way we can prove a number
of transformation laws once and for all for all types of pointer structures. In the
present paper we show that all abstraction functions with an anamorphic recur-
sive definition are reasonable. This was already conjectured, but not proved, in
Möller (1997a).

The approach copes also with cyclic structures; among others, we give ab-
straction functions for cyclic lists, doubly-linked lists and infix-threaded binary
trees. By tuning the degree of abstraction we can give simple specifications for
routines that are to update pointer structures in situ.

2 Relational Notation

Our prominent mathematical tool are binary relations by which we model the
directed graph underlying a pointer structure and describe accessibility and shar-
ing. Given a set X we denote its power set by ℘(X). Now the set of all binary

relations between sets M and N is M ↔ N
def
= ℘(M × N). We use the no-

tations R ∈ M ↔ N and R : M ↔ N synonymously. By domR and ranR we
denote domain and range of relation R. The converse R˘ : N ↔ M of R is

given by R˘
def
= {(y, x) : (x, y) ∈ R}. The image of set L ⊆ M under R is

R(L)
def
= {y : ∃ x ∈ L : (x, y) ∈ R}.

Particularly for analyzing the reachable part of a pointer structure we shall

use the domain restriction of R to a subset L ⊆ M given by L 1 R
def
= R ∩

(L × N). The composition R ; S : M ↔ P of two relations R : M ↔ N and

S : N ↔ P is defined as R ; S
def
= {(x, z) : ∃ y ∈ N : (x, y) ∈ R ∧ (y, z) ∈ S}.

Left and right neutral elements for R w.r.t. this operation are provided by IM
and IN , where for a set P one defines the identity relation IP : P ↔ P by

IP
def
= {(x, x) : x ∈ P}. The index P will be omitted when P is clear from

the context. As usual, R+ and R∗ are the transitive and the reflexive-transitive
closures of relation R.

Relation R ⊆ M ×N is called a (partial) function if R˘;R ⊆ IN . We write
R : M ; N to indicate that R is a partial function. For further notions and
laws concerning relations consider e.g. Schmidt, Ströhlein (1993).

3 Stores and Pointer Structures

3.1 The Model

A pointer structure consists of a set of records connected by pointers. Let A
be a set of records (represented, say, by their initial addresses). We assume a
distinguished element 3 ∈ A which plays the role of nil in Pascal or NULL in C,
i.e., serves as a terminal pseudo-node for the underlying graph. The elements of
A\{3} are called proper records. Let, moreover, (Nj)j∈J be a family of sets of
node values, such as integers or Booleans.

Then a record scheme consists of a non-empty set K of selectors each with a
type A → A or A → Nj for some j ∈ J . Given such a record scheme, a store
is a family S = (Sk)k∈K of partial functions such that

1. Sk : A; A if k has type A → A,
2. Sk : A; Nj if k has type A → Nj and

3. 3 6∈ recs(S)
def
=

⋃
k∈K

domSk, the set of records allocated in S.

A store may be viewed as a labeled directed graph: the nodes are the records
and the selectors are the arc labels, where Sk is the set of arcs labeled by k.
We keep these sets separate to be able to model updating along a single selector

2

adequately. The requirement that the Sk be functions reflects the uniqueness
of selection in records. By the third requirement, in a store, 3 is not related
to anything and hence cannot be “dereferenced”. The relational operations are
extended componentwise to stores.

Our running examples of record schemes will be those for singly linked lists
and labelled binary trees. For both, assume a set N of node values.

In the case of lists we use two selectors head , tail of types head : A → N and
tail : A → A. Then a list store L consists of two partial functions Lhead : A; N
and Ltail : A; A, where Lhead returns the node value and Ltail gives the next
record in the list.

For binary trees, our selectors are l, r : A → A and v : A → N . Then a
binary tree store BT consists of functions BT l,BT r : A; A and BT v : A; N .

Frequently we want to abstract from the node values of the records and con-
sider just their interrelationship through the pointers. For a store S = (Sk)k∈K ,
this is modeled by the binary access relation [S] ⊆ A×A given by

[S]
def
=

⋃
k∈J

Sk ,

where J ⊆ K is the set of all selectors k of type A → A. In the graph view,
this operation “forgets” the arc labels and the arcs leading to the node values.

For instance, the access relation for a list store L is [L]
def
= Ltail .

Let now P denote the set of all stores for a given record scheme. The set
of entries to pointer structures is A+, the set of all non-empty finite lists of
elements of A. We choose lists rather than sets or bags of entries, since in pointer
algorithms both order and multiplicity of entries may be relevant.

Now a pointer structure is an element of P def
= A+ × P . For convenience we

introduce the functions ptr : P → A+, sto : P → P and recs : P → ℘(A) by

ptr(s, S)
def
= s , sto(s, S)

def
= S , recs(s, S)

def
= recs(S) .

In denoting lists of entries we separate the elements by commas. So a pointer
structure will be written in the form x1, . . . , xn, S with entries xi and store S.

For abbreviation we set [(s, S)]
def
= [S].

Finally, we define the selection operation . : P ×K ; (A ∪
⋃
j∈K
Nj) by

(n, S).k
def
= (Sk(n), S) if k has type A → A and Sk(n) is defined,

(n, S).k
def
= Sk(n) if k has type A → Nj .

Otherwise, (n, S).k is undefined.

3.2 Reachability

In a pointer structure (s, S) ∈ P we can follow the pointers from the entries s
to other records. This is modeled by the function reach : P → ℘(A) with

reach(s, S)
def
= [S]∗(set s) .

3

Here set s is the set of elements occurring in s ∈ A+. From this definition it is
straightforward that

reach(n1, . . . , nn, S) = reach(n1, S) ∪ · · · ∪ reach(nn, S) . (1)

The reachable set abstracts too much from the actual contents of the store
in a pointer structure. Therefore we characterize additionally that part of store
S that is reachable from the entries s by the restriction

from(s, S)
def
= (s, reach(s, S) 1 S) ,

i.e., the substructure in which only the contents of records reachable from the
entries s are kept. The restriction is again taken componentwise, i.e., for all
k ∈ K.

We have the following properties (for the proofs see the Appendix):

Lemma 31 from(p) = from(q) ⇒ ∀ U ⊆ reach(p) : [p]∗(U) = [q]∗(U).

Corollary 32 If si has type A → A then from(p) = from(q) ⇒ from(p.si) =
from(q.si).

Corollary 33 from(p) = from(q) ⇒ ∀ n ∈ reach(p) : from(n, sto(p)) =
from(n, sto(q)).

4 Reasonable Abstraction Functions

4.1 Definition

We now consider implementations of abstract objects of some set O by pointer
structures in such a way that each object is represented by a pointer structure
(n, S) ∈ P with a single entry n ∈ A. As usual (see e.g. Hoare (1972)), the rela-
tion between abstract and concrete levels is established by a partial abstraction
function F : A × P ; O such that F is surjective. To allow representations of
tuples of abstract objects, we extend F to a partial function F : P ; O+ on ar-

bitrary pointer structures by setting F (n1, . . . , nk, S)
def
= F (n1, S) · · ·F (nk, S).

Consider now an arbitrary partial function f : P ; M for some set M . As
usual, f induces an equivalence relation ∼f on P by

p ∼f q
def⇔ f(p) = f(q) .

The pointer representation of an abstract object should be essentially deter-
mined by the entries to the structure. Therefore, generalizing from the case of
an abstraction function, we say that a function f : P ;M on pointer structures
is reasonable if

∀ p, q ∈ P : from(p) = from(q) ⇒ p ∼f q .

4

Relationally this amounts to

from ; from˘ ⊆ ∼f .

This seemingly simple concept is the key idea that makes our treatment work
uniformly and independently of particular data structures such as lists or trees.
It allows us to reduce questions about the changes a selective updating effects
to a much simpler analysis of the changes in reachability. In particular, we can
use the well-established relational calculus for that analysis.

4.2 Anamorphisms Are Reasonable Abstractions

We give now a general criterion for reasonableness of recursively defined abstrac-
tion functions. The recursion pattern considered is typical of an unfold operation
or anamorphism (see Meijer et al. (1991), Bird (1996)).

Lemma 41 Assume a function F with the recursive definition

F (x, p) = if Q(x, p)
thenE(x, p)
else C(F (f1(x, p), p.s1), . . . , F (fk(x, p), p.sk), p.v1, . . . , p.vm)

where for all x the residual functions Q(x,), E(x,), f1(x,), . . . fk(x,) are rea-
sonable. Then for all x the residual function F (x,) is reasonable as well.

Proof. We use fixpoint induction on the recursive definition of F and the con-
tinuous predicate

PP(h)
def⇔ ∀ x, p, q : from(p) = from(q) ⇒ h(x, p) = h(x, q) .

The functional τ associated with the recursive definition of F is

τ(h) =
if Q(x, p)

thenE(x, p)
else C(h(f1(x, p), p.s1), . . . , h(fk(x, p), p.sk), p.v1, . . . , p.vm)

The induction basis PP(∅) is trivial. Assume now PP(h). First, we observe that
from(p) = from(q) implies by Corollary 32

ptr(p) = ptr(q) ,
p.vj = q.vj for all selectors vj of type A → N ,
from(p.si) = from(q.si) for all selectors si of type A → A .

(∗)

Hence

5

τ(h)(x, p)

= {[definition of τ]}

if Q(x, p)
thenE(x, p)
else C(h(f1(x, p), p.s1), . . . h(fk(x, p), p.sk), p.v1, . . . , p.vm)

= {[by (∗) and PP(h)]}

if Q(x, p)
thenE(x, p)
else C(h(f1(x, p), q.s1), . . . h(fk(x, p), q.sk), q.v1, . . . , q.vm)

= {[by from(p) = from(q) and reasonableness
of Q(x,), E(x,) and the fk(x,)]}

if Q(x, p)
thenE(x, p)
else C(h(f1(x, q), q.s1), . . . h(fk(x, q), q.sk), q.v1, . . . , q.vm)

= {[definition of τ]}

τ(h)(x, q) .
ut

5 Examples

5.1 Acyclic Lists

Consider again the record scheme for lists with selectors head : A → N and
tail : A → A for a set N of node values.

The set L of singly linked lists with elements of N as nodes is defined induc-
tively as the least set X with

ε ∪ N × X ⊆ X ,

where ε denotes the empty list. A non-empty list, i.e., an element of N ×L, will
be denoted as a pair 〈x, l〉 with head x ∈ N and tail l ∈ L.

A suitable abstraction function is

list(p) = if ptr(p) = 3 then ε
else 〈p.head , list(p.tail)〉

It constructs the list reachable from a record in a store.
In the case where a cycle is reachable from n in L, this recursion is non-

terminating. In a strict underlying semantics this means that the value of list(n,L)
is undefined, whereas in a non-strict setting the value of list(n,L) is an infinite
list corresponding to an unwinding of the subgraph reachable from n in L. Since
we are working in a relational setting, the strict interpretation is relevant here.

6

According to our general criterion this abstraction function is reasonable, since
its recursion is anamorphic (to match the pattern of Lemma 41 exactly, introduce
an additional parameter x which is passed unchanged to the recursive call).

5.2 Cyclic Lists

We now treat the case of cyclic lists. We say that a pointer structure (m,L)
represents the list which is obtained by following the links until an already visited
record is reached. The corresponding abstraction function is clist : P ; L. For
m ∈ A with m = 3 or cyclic (m,L) we set

clist(p) = if ptr(p) = 3 then ε
else 〈p.head , clis({ptr(p)}, p.tail)〉

clis(V, p) = if ptr(p) ∈ V then ε
else 〈p.head , clis(V ∪ {ptr(p)}, p.tail)〉

Termination is now forced by the additional argument V of clis which remembers
the set of already visited records. Again the recursion is anamorphic, so that
clis(V,) and clist are reasonable.

5.3 Binary Trees

The record scheme for labeled binary trees over set N of node values uses the
selectors l, r : A → A and v : A → N .

The set T of binary trees with elements of N as nodes is defined inductively
as the least set X with

ε ∪ X ×N ×X ⊆ X ,

where ε now also denotes the empty tree and × × is the ternary cartesian
product. A non-empty tree, i.e., an element of T × N × T , will be denoted as
triple 〈l, x, r〉 with left subtree l ∈ T , node x ∈ N and right subtree r ∈ T .

Analogously to the case of acyclic lists, the abstraction function tree : P → T
constructs the tree reachable from a record in a store:

tree(p) = if ptr(p) = 3 then ε
else 〈tree(p.l), p.v, tree(p.r)〉

For non-singleton sequences s and s = ∅ the function tree(s,B) is undefined.
Again this recursion doesn’t terminate when a cycle is reachable from n in B.
Note that this abstraction function “unshares” pointer representations that im-
plement common subtrees by shared pointers.

The proof of the reasonableness lemma does not use that E,C are functions.
So the same holds when one uses abstraction procedures like printing out all
nodes of a tree in infix order using indentation, such as the C routine

7

void print_btree (btree b, int indentation)

{ if (b)

{ print_btree(b->right, indentation+3) ;

printblanks(indentation) ;

printf("%d\n",b->node) ;

print_btree(b->left, indentation+3) ;

}

}

So our approach is directly usable for pointer programs in “real” programming
languages.

5.4 Doubly Linked Lists

As usual, the binary tree records can also be used for implementing doubly linked
lists. A suitable anamorphic and hence reasonable abstraction function is

dlist(p) = if ptr(p) = 3 then ε
else 〈p.v, dlist(p.r)〉

The fact that doubly linked lists form a cyclic data structure does not disturb
us here, since we only use the set of links to the right, which by itself is acyclic.
A similar phenomenon will occur with threaded trees.

In fact, dlist is isomorphic to list modulo the renaming of head into v and
tail into r.

5.5 Infix-Threaded Binary Trees

Threads are used to speed up, e.g., the infix order traversal of trees. To this end,
one replaces the 3 pointer in rightmost nodes by a pointer to the successor node
in infix order. To distinguish proper links to right subtrees from thread links we
need to extend our record scheme for binary threads by a selector isth of type
A → IB, where IB is the set of booleans.

Then a suitable anamorphic and hence reasonable abstraction function is

thtree(p) = if ptr(p) = 3

then ε
else if p.isth

then 〈thtree(p.l), p.v, ε〉
else 〈thtree(p.l), p.v, thtree(p.r)〉

8

5.6 Less Abstract Abstraction Functions

So far we have used the same set of node values at the abstract and concrete
levels. However, often we want to talk about some aspects of the representation,
like the order in which certain cells are linked together. This can be achieved by
considering e.g. lists or trees in which the node values are addresses rather than
primitive values.

For instance, the list of addresses that belong to a list structure is recorded
by

cells(p) = if ptr(p) = 3 then ε
else 〈ptr(p), cells(p.tail)〉

Then a specification of “in-situ-ness” of concatenation can use the conjunct

cells(pconc(x, y, S)) = cells(x, S) • cells(y, S) .

This approach was used in Möller (1991).
Similarly, well-threadedness can be expressed by stating that the infix order

of the tree addresses is the same as the threaded traversal order.
This has further applications. It is well-known that AVL-like tree rotations

preserve the infix traversal. From that and the above it follows that they also
preserve the correctness of threading.

6 Conclusion and Outlook

We have only given examples of reasonable abstraction functions, but not of
their use in actual calculations of pointer implementations of operations spec-
ified at the abstract level. Such examples can, however, be found in Möller
(1997a,1997b). In particular, these papers present a number of algebraic laws for
a selective updating operation that depend on the use of a reasonable abstrac-
tion function. The approach seems adequate, as the fairly concise derivations in
those papers show. It is encouraging that to a large extent the treatment is in-
dependent of the particular data structures involved. The extension to properly
cyclic structures has proved to be relatively simple and did not need additional
concepts.

It remains to integrate the approach with the general theory of unfold op-
erations or anamorphisms and their duals, the catamorphisms (see Meijer et al.
(1991), Bird (1996) and Bird, de Moor (1996)). Many operations at the abstract
level can be specified as catamorphisms, i.e., standard traversals of recursive
data structures. So presumably one can develop a general fusion property for
catamorphisms and anamorphic abstraction functions. This conjecture is also
supported by the similarity of the derivations of in-situ concatenation and re-
versal for acyclic and cyclic lists in Möller (1997b). A proper treatment using
the categorical theory of data types is beyond the scope of the present paper,
though.

9

References

1. U. Berger, W. Meixner, B. Möller: Calculating a garbage collector. In: M. Broy,
M. Wirsing (eds.): Methods of programming. Lecture Notes in Computer Science
544. Berlin: Springer 1991, 137–192

2. R. Bird: Functional algorithm design. Science of Computer Programming 26, 15–
31 (1996)

3. R.S. Bird, O. de Moor: Algebra of programming. Prentice-Hall 1996
4. C.A.R. Hoare: Proofs of correctness of data representations. Acta Informatica 1,

271–281 (1972)
5. E.Meijer, M.Fokkinga, R. Paterson: Functional programming with bananas, lenses,

envelopes and barbed wire. In: J. Hughes (ed.): Functional programming and com-
puter architecture. Lecture Notes in Computer Science 523. Berlin: Springer 1991,
124–144

6. B. Möller: Formal derivation of pointer algorithms. In: M. Broy (Hrsg.): Informatik
und Mathematik. Berlin: Springer1991, 419–440

7. B. Möller: Development of graph and pointer algorithms. In: B. Möller, H.A.
Partsch, S.A. Schuman (eds.): Formal program development. Lecture Notes in
Computer Science 755. Berlin: Springer 1993, 123–160

8. B. Möller: Towards pointer algebra. Science of Computer Programming 21, 57–90
(1993)

9. B. Möller: Calculating with pointer structures. In: R. Bird, L. Meertens (eds.):
Algorithmic languages and calculi. Proc. IFIP TC2/WG2.1 Working Conference,
Le Bischenberg, Feb. 1997. Chapman&Hall 1997, 24–48

10. B. Möller: Linked lists calculated. Institut für Informatik, Universität Augsburg,
Report Nr. 1997-7, December 1997

11. G. Schmidt, T. Ströhlein: Relations and graphs. Discrete Mathematics for Com-
puter Scientists. EATCS Monographs on Theoretical Computer Science. Berlin:
Springer 1993

Appendix: Proofs for Section 3.2

Proof of Lemma 31:
We assume from(p) = from(q) and use fixpoint induction on the recursive
definition of [p]∗ with the continuous predicate

PP(X)
def⇔ ∀ V ⊆ [p]∗(U) : X(V) ⊆ [q]∗(V) .

The induction basis PP(∅) is trivial. The functional associated with the recursion
for [p]∗ is τ : (A ↔ A) → (A ↔ A) given by

τ(Y)
def
= I ∪ [p] ; Y .

Now for the induction step PP(X) ⇒ PP(τ(X)) we calculate

τ(X)(V)

10

= {[definition of τ]}

(I ∪ [p] ;X)(V)

= {[distributivity]}

V ∪ ([p] ;X)(V)

= {[image set]}

V ∪ X([p](V))

⊆ {[induction hypothesis PP(X), since [p](V) ⊆ [p]∗(U)]}

V ∪ [q]∗([p](V))

= {[since from(p) = from(q) and [p](V) ⊆ reach(p)]}

V ∪ [q]∗([q](V))

= {[distributivity]}

(I ∪ [q] ; [q]∗)(V)

= {[fixpoint property of [q]∗]}

[q]∗(V) .

This shows in particular [p]∗(U) ⊆ [q]∗(U). Switching p and q gives the reverse
inclusion.

Proof of Corollary 32:

Assume again from(p) = from(q). Then set n
def
= ptr(p) = ptr(q) and S

def
=

sto(p), T
def
= sto(q). We have Ssi(n) = Tsi(n) (∗) and calculate

from(p.si)

= {[definition of selection]}

from(Ssi(n), S)

= {[definition of from]}

(Ssi(n), reach(Ssi(n), S) 1 S)

= {[by (∗) and Lemma 31, since reach(Ssi(n), S) ⊆ reach(p)
and reach(Tsi(n), T) ⊆ reach(q)]}

(Tsi(n), reach(Tsi(n), T) 1 T)

= {[definition of from]}

from(Tsi(n), T)

= {[definition of selection]}

from(q.si)

11

Proof of Corollary 33:
A straightforward induction on the minimal i such that n ∈ [sto(p)]i(ptr(p)),
using Corollary 32.

12

