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Abstract. Using only a simple transition relation one cannot model
commands that may or may not terminate in a given state. In a more
general approach commands are relations enriched with termination vec-
tors. We reconstruct this model in modal Kleene algebra. This links the
recursive definition of the do od loop with a combination of the Kleene
star and a convergence operator. Moreover, the standard wp operator
coincides with the wlp operator in the modal Kleene algebra of com-
mands. Therefore our earlier general soundness and relative complete-
ness proof for Hoare logic in modal Kleene algebra can be re-used for
wp. Although the definition of the loop semantics is motivated via the
standard Egli-Milner ordering, the actual construction does not depend
on Egli-Milner-isotonicity of the constructs involved.

1 Introduction

Total correctness has been extensively studied, a.o. using relational methods.
One line of research (see e.g. [3,8,9,12,21]) provides strongly demonic semantics
for regular programs. There, however, one cannot model commands that may or
may not terminate in a given state. A second line of research (e.g. [4,5,13,20,22])
provides a weakly demonic semantics that allows such more general termination
behaviour. We reconstruct the latter approach in modal Kleene algebra. This
provides a new connection between the recursive definition of the do od loop and
a combination of the Kleene star with convergence algebra. Moreover, it turns out
that the standard wp operator coincides with the wlp operator of a suitable modal
algebra of commands. Therefore the general soundness and relative completeness
proof for Hoare logic in modal Kleene algebra given in [19] can be re-used for
wp (where now, of course, expressiveness has to cover termination). Although
the definition of the loop semantics is motivated via the standard Egli-Milner
ordering, its actual construction does not depend on Egli-Milner-isotonicity of
the constructs involved.

2 Weak and Modal Semirings

A weak semiring is a quintuple (S, +, 0, ·, 1) such that (S, +, 0) is a commutative
monoid and (S, ·, 1) is a monoid such that · distributes over + and is left-strict,



i.e., 0 · a = 0. The weak semiring is idempotent if + is idempotent. In this case
the relation a ≤ b

def⇔ a + b = b is an order, called the natural order on S. It
has 0 as its least element. Moreover, · is isotone w.r.t. ≤. A semiring is a weak
semiring where · is also right-strict.

An important weak semiring (and semiring) is REL, the algebra of binary
relations under union and composition over a set. Other interesting examples
of weak semirings can be found within the set of endofunctions on an upper
semilattice (L,t,⊥) with least element ⊥, where addition is defined as (f +
g)(x) = f(x) t g(x) and multiplication by function composition. The set of
disjunctive functions (satisfying f(x t y) = f(x) t f(y)) forms a weak semiring.
The induced natural order is the pointwise ordering

f ≤ g ⇔ ∀ x ∈ L . f(x) ≤ g(x) .

The subclass of strict disjunctive functions (satisfying additionally f(⊥) = ⊥)
even forms a semiring. These types of semirings include predicate transformer
algebras and are at the centre of the algebraic approach of von Wright [24].

A (weak) test semiring is a pair (S, test(S)), where S is an idempotent (weak)
semiring and test(S) ⊆ [0, 1] is a Boolean subalgebra of the interval [0, 1] of S
such that 0, 1 ∈ test(S) and join and meet in test(S) coincide with + and ·. This
definition corresponds to the one in [16]. We use a, b, . . . for general semiring
elements and p, q, . . . for tests. By ¬p we denote the complement of p in test(S)
and set p → q = ¬p + q. Moreover, we sometimes write p ∧ q for p · q and p ∨ q
for p + q. We freely use the Boolean laws for tests.

A (weak) modal semiring is a pair (S, [ ]), where S is a (weak) test semiring
and the box [ ] : S → (test(S) → test(S)) satisfies

p ≤ [a]q ⇔ p · a · ¬q ≤ 0 , [(a · b)]p = [a]([b]p) .

The diamond ist the de Morgan dual of the box, i.e., 〈a〉p = ¬[a]¬p.
The box axioms are equivalent to the equational domain axioms of [10]. In

fact the domain of element a is pa
def= ¬[a]0. Conversely, [a]q = ¬p(a · ¬q). Most

of the consequences of the box axioms shown originally for full modal semirings
in [10] still hold for weak modal semirings (see [18]).

The box generalises the notion of the weakest liberal precondition wlp to
arbitrary weak modal semirings. If we view a as the transition relation of a
command then the test [a]p characterises those states from which no transition
under a is possible or the execution of a is guaranteed to end up in a final
state that satisfies test p. Hence pa provides an abstract characterisation of the
starting states of a.

From the definitions it is immediate that

[a]1 = 1 , 〈a〉0 = 0 , (1)
[0]p = 1 , 〈0〉p = 0 , (2)

[a](p · q) = [a]p · [a]q , 〈a〉(p + q) = [a]p + [a]q , (3)
[a + b]p = [a]p · [b]p , 〈a + b〉p = 〈a〉p + 〈b〉p . (4)
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Hence [a] and 〈a〉 are isotone. Moreover, box is antitone and diamond is isotone
in its first argument. For a test p we get [p]q = p → q and 〈p〉q = p · q. Hence,
[1] = 〈1〉 is the identity function on tests. Moreover, 〈0〉p = 0 and [0]p = 1.

A weak modal semiring S is extensional if for all a, b ∈ S we have [a] ≤
[b] ⇒ b ≥ a. For example, REL is extensional. However, we can completely
avoid extensionality, which makes the results much more widely applicable.

3 Commands and Correctness

While the previous section showed how to model the wlp-semantics of partial
correctness in modal semirings, we now turn to total correctness. This requires
the integration of information about the states from which termination of a com-
mand can be guaranteed. The basic idea in [4,5,13,20,22] is to model a command
as a pair (a, p) consisting of a transition a between states and a set p of states
from which termination is guaranteed. Parnas [22] requires p to be contained
in the domain of a This allows distinguishing the “must-termination” given by
p from the “may-termination” given by the domain and excludes “miraculous”
commands that terminate without producing a result state. However, this en-
tails that there is no neutral element w.r.t. demonic choice, since the obvious
candidate fail with empty transition but full termination set does not satisfy Par-
nas’s restriction. So there is not even an additive monoid structure. Nelson [20]
dropped this restriction; we will base our treatment on his more liberal approach.

Assume a modal semiring S. Then the set of commands over is COM(S) def=
S×test(S). In a command (a, p) the element a ∈ S describes the state transition
behaviour and p ∈ test(S) characterises the states with guaranteed termination;
all states in ¬p have the looping “outcome” besides any proper states that may
be reached from them under a. In this view the weakest (liberal) precondition
can be defined as

wlp.(a, p).q def= [a]q , wp.(a, p).q def= p · wlp.(a, p).q . (5)

Then p = wp.(a, p).1, so that, for command k,

wp.k.q = wp.k.1 · wlp.k.q . (6)

This pairing condition is at the centre of Nelson’s approach.
An important auxiliary concept is the guard of a command:

grd.(a.p) def= ¬wp.(a, p).0 = p → pa . (7)

It characterises the set of states that, if non-diverging, allow a transition under
a. A command is called total if its guard equals one. The above formula links
Parnas’s condition on termination constraints with totality:

grd.(a.p) = 1 ⇔ p ≤ pa .

Nelson remarks that totality of command k is also equivalent to Dijkstra’s law
of the excluded miracle wp.k.0 = 0.
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We now define the non-iterative commands.

fail
def= (0, 1) ,

skip
def= (1, 1) ,

loop
def= (0, 0) ,

(a, p) dc(b, q) def= (a + b, p · q) ,

(a, p) ; (b, q) def= (a · b, p · [a]q) ,

p → (b, q) def= (p · b, p → q) ,

k d-c l
def= k dc(¬grd.k → l) .

We now show that the commands form a weak semiring. Note that it is
essential that the underlying semiring S is a full semiring.

Theorem 3.1 The structure COM(S) def= (COM(S), dc, fail, ;, skip) is an idem-
potent weak semiring, the command semiring over S. However, it is not a semi-
ring. The associated natural order on COM(S) is

(a, p) ≤ (b, q) ⇔ a ≤ b ∧ p ≥ q . (8)

Proof. Commutativity, associativity and idempotence of dc as well as neutrality
of fail w.r.t. dc are immediate from the properties of the underlying test semiring.

Next we show associativity of ;.

(a, p) ; ((b, q) ; (c, r))

= {[ definition ]}

(a, p) ; (b · c, q · [b]r)

= {[ definition ]}

(a · (b · c), p · [a](q · [b]r))

= {[ associativity of ·, conjunctivity of [a] ]}

((a · b) · c, p · [a]q · [a][b]r))

= {[ modality ]}

((a · b) · c, p · [a]q · [a · b]r))

= {[ definition ]}

((a, p) ; (b, q)) ; (c, r)

Neutrality of skip is obvious. Now we show left-distributivity of ; over dc.

((a, p) dc(b, q)) ; (c, r)

= {[ definition ]}

(a + b, p · q) ; (c, r)

= {[ definition ]}
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((a + b) · c, p · q · [a + b]r)

= {[ distributivity of ·, antidisjunctivity of [ ] ]}

(a · c + b · c, p · q · [a]r · [b]r)

= {[ associativity and commutativity of · on tests, definition ]}

(a · c, p · [a]r) dc(b · c, q · [b]r)

= {[ definition ]}

((a, p) ; (c, r)) dc((b, q) ; (c, r))

Next we show right-distributivity of ; over dc.

(a, p) ; ((b, q)) dc(c, r))

= {[ definition ]}

(a, p) ; (b + c, q · r)

= {[ definition ]}

(a · (b + c), p · [a](q · r))

= {[ distributivity of ·, conjunctivity of [a] ]}

(a · b + a · c, p · [a]q · [a]r)

= {[ idempotence, associativity and commutativity
of · on tests, definition ]}

(a · b, p · [a]q) dc(a · c, p · [a]r)

= {[ definition ]}

((a, p) ; (b, q)) dc((a, p) ; (c, r))

Finally, we calculate the behaviour of fail and loop under ;. First,

fail ; (a, p)

= {[ definitions ]}

(0 · a, 1 · [0]p)

= {[ [0]p = 1 and semiring properties ]}

(0, 1)

= {[ definition ]}

fail

so that fail is a left zero. Second,

(a, p) ; fail

= {[ definitions ]}
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(a · 0, p · [a]1)

= {[ [a]1 = 1 and semiring properties ]}

(0, p)

so that fail is not a right zero. Third,

loop ; (a, p)

= {[ definitions ]}

(0 · a, 0 · [0]p)

= {[ semiring properties ]}

(0, 0)

= {[ definition ]}

loop

so that loop is a left zero. Fourth,

(a, p) ; loop

= {[ definitions ]}

(a · 0, p · [a]0)

= {[ [a]0 = ¬pa and semiring properties ]}

(0, p · ¬pa)

so that loop is not a right zero. ut

By antitonicity of box we obtain for commands k, l

k ≤ l ⇒ wlp.k ≥ wlp.l ∧ wp.k ≥ wp.l , (9)

where ≥ is the pointwise order between test transformers. The second conjunct
is the converse of the usual refinement relation. If the underlying semiring is
extensional then the converse implication holds as well.

By standard order theory, if S is a complete lattice then COM(S) is a com-
plete lattice again with

t {(ai, pi) | i ∈ I} = (t {ai | i ∈ I},u {ai | i ∈ I}).

Likewise, if S has a greatest element > then chaos
def= (>, 0) is the greatest ele-

ment of COM(S), whereas havoc
def= (>, 1) represents the most nondeterministic

everywhere terminating command.
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4 Modalities for Commands

We now want to make COM(S) into a weak modal semiring as well. From (8)
and p ≤ 1 it is immediate that (a, p) ≤ skip ⇔ a ≤ 1 ∧ p = 1. It is easy to check
that the elements of this shape are closed under ; and dc. Therefore it seems
straightforward to use the test commands p

def= (p, 1) and to choose

test(COM(S)) def= {p | p ∈ test(S)} .

Clearly, this yields a Boolean algebra with ¬ p = ¬p, 0 = fail and 1 = skip.
Using this, we can also express guarded statements as

p → k = p ; k , (10)

as is shown by the calculation

(p, 1) ; (b, q) = (p · b, 1 · [p]q) = (p · b, p → q) = p → (b, q) .

Let us now check the first axiom for the box. We calculate, using the defini-
tions and [a]1 = 1,

(p, 1) ; (c, r) ; ¬(q, 1) = (p · c, p → r) ; (¬q, 1) = (p · c · ¬q, p → r) ,

so that, by (8) and shunting,

(p, 1) ; (c, r) ; ¬(q, 1) ≤ (0, 1) ⇔ p · c · ¬q ≤ 0 ∧ p → r ≥ 1
⇔ p ≤ [c]q ∧ p ≤ r ⇔ p ≤ wp.(c, r).q .

For the second box axiom we calculate, using the definitions, the second box
axiom, conjunctivity of [a] and the definitions again,

wp.((a, p) ; (b, q)).r = p · [a]q · [a · b]r = p · [a]q · [a]([b]r)
= p · [a](q · [b]r) = wp.(a, p).(wp(b, q).r) .

Altogether, we have shown

Theorem 4.1 COM(S) becomes a weak modal semiring by setting [k]q = wp.k.q.

Hence the general definitions for modal semirings tie in nicely with the wp
semantics. This equation explains the title of our paper: wp is nothing but wlp
in the weak modal semiring of commands.

Now the usual properties of wlp and wlp come for free, since both are box
operators in right-distributive modal semirings:

w(l)p.fail.r = 1 ,
w(l)p.skip.r = r ,

w(l)p.(k dc l).r = w(l)p.k.r ∧ w(l)p.l.r ,
w(l)p.(p → l).r = p → w(l)p.l.r ,

w(l)p.(p d-c l).r = w(l)p.k.r ∧ ¬grd.k → w(l)p.l.r .
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The only command that does not have an abstract counterpart in all modal
semirings is loop. For it the box operators behave asymmetrically:

wlp.loop.r = 1 , wp.loop.r = 0 . (11)

Theorem 4.1 implies, moreover, that for k ∈ COM(S) we have pk = grd.k,
another pleasing connection with the general theory of weak modal semirings.
From this observation we obtain the usual guard laws for free:

grd.fail = 0 ,
grd.skip = 1 ,

grd.(k dc l) = grd.k + grd.l ,
grd.(k ; l) = ¬wp.k.¬grd.l ,

grd.(p → k) = p · grd.k .

Additionally,
grd.loop = 1 .

Finally, d-c is the overwrite operation in COM(S); in weak modal semirings it
is defined as

a|b def= a + ¬pa · b .

A corresponding operator is used in B [1] and Z [23], but also in calculating with
pointer and object structures [14,17]. This operation satisfies a number of useful
laws. From these we get the following properties for free:

k d-c fail = k = fail d-c k ,
k d-c(l d-cm) = (k d-c l) d-cm ,

grd.(k d-c l) = grd.s + grd.l .

To ease reading we will simply write p instead of p in the sequel; the context
will make clear where the lifting would have to be filled in.

5 The Egli-Milner Order and Loops

So far we have not dealt with repetition. We show now that the semantics of Dijk-
stra’s do od loop can be defined in closed terms if we assume that the underlying
modal semiring S is a convergence algebra, that is, has additional operations ∗

of finite iteration and 4 that yields termination information.
Let us give the necessary definitions. A left Kleene algebra is a structure

(S,∗ ) such that S is an idempotent weak semiring and the star ∗ satisfies, for
a, b, c ∈ S, the left unfold and left induction axioms

1 + a · a∗ ≤ a∗ , b + a · c ≤ c ⇒ a∗ · b ≤ c .

Therefore, a∗ · b is the least pre-fixpoint and the least fixpoint of the function
λx . a · x + b. As a consequence, star is ≤-isotone. A left modal Kleene algebra
is a left Kleene algebra in which the underlying weak semiring is modal. For all
p ∈ test(S) we have p∗ = 1. Moreover, as in [10] one can prove the induction law

q ≤ p · [a]q ⇒ q ≤ [a∗]p . (12)
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Lemma 5.1 The command semiring COM(S) over a left Kleene algebra S can
be made into a left Kleene algebra by setting (a, p)∗ def= (a∗, [a∗]p).

Proof. For the left unfold axiom we calculate, using the definitions, the second
box axiom, (4) and the left unfold axiom for S,

(1, 1) dc(a, p) ; (a∗, [a∗]p) = (1 + a · a∗, p · [a]([a∗]p)
= (1 + a · a∗, [1 + a · a∗]p) = (a∗, [a∗]p) .

For the left induction axiom assume (b, q) dc(a, p) ; (c, r) ≤ (c, r), i.e., b + a · c ≤
c ∧ q · p · [a]r ≥ r, which by left star induction for S and (12) implies

a∗ · b ≤ c ∧ [a∗](q · p) ≥ r . (13)

Now we calculate, using the definitions, conjunctivity of [a∗] and (13),

(a∗, [a∗]p) ; (b, q) = (a∗ · b, [a∗]p · [a∗]q) = (a∗ · b, [a∗](p · q)) ≤ (c, r) . ut

Symmetrically, one can define a right Kleene algebra over a weak semiring
by requiring the right unfold and right induction axioms

1 + a∗ · a ≤ a∗ , b + c · a ≤ c ⇒ b · a∗ ≤ c .

Analogously to above one shows that under the same definition of star the com-
mand semiring over a right Kleene algebra is a right Kleene algebra again.

A weak Kleene algebra is a structure that is both a left and a right Kleene
algebra over a weak semiring S; it is a Kleene algebra if S is actually a full
semiring. The notion of a (weak) modal Kleene algebra is defined analogously.
Summarizing the above remarks we have

Lemma 5.2 The command semiring over a (weak)(modal) Kleene algebra can
again be made into a (weak)(modal) Kleene algebra by the above definition.

Let us now look at the semantics x of the loop do k od. It is supposed to
satisfy the recursion equation (cf. [20])

x = (k ; x) dc ¬grd.k → skip . (14)

Given the Kleene algebra structures of commands it is tempting to define the
semantics of the loop do k od as the ≤-least solution, viz. by the standard expres-
sion k∗ ; ¬grd.k. However, for k = skip we obtain k∗ ; ¬grd.k = skip ; fail = fail,
whereas the semantics of do skip od should be loop.

So ≤ is not the adequate approximation order for recursions such as the
one for loops; it is in a sense “too angelic”. Instead, one uses the Egli-Milner
approximation relation v over COM(S), given by (see [20])

k v l ⇔ wp.k ≤ wp.l ∧ wlp.l ≤ wlp.k .

It is an order iff S is extensional. Equivalently, k v l ⇔ wp.k.1 ≤ wp.l.1∧wp.k ≤
wlp.l ∧ wlp.l ≤ wlp.k. Thus, to allow S to be non-extensional, we define

(a, p) v (b, q) def= p ≤ q ∧ wp.(a, p) ≤ wlp.(b, q) ∧ a ≤ b .
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Lemma 5.3 The relation v is an order with least element loop.

Proof. Antisymmetry follows from that of ≤, while reflexivity is immediate from
that of ≤ and wp.k ≤ wlp.k.
For transitivity, assume (a, p) v (b, q) and (b, q) v (c, r). From transitivity of ≤
we get a ≤ c and p ≤ r. Moreover, for all s,

wp.(a, p).s

= {[ definitions ]}

p · [a]s

= {[ p ≤ q by (a, p) v (b, q) ]}

p · q · [a]s

≤ {[ isotonicity of · and p · [a]s ≤ [b]s by (a, p) v (b, q) ]}

q · [b]s

≤ {[ q · [b]s ≤ [c]s by (b, q) v (c, r) ]}

[c]s

= {[ definitions ]}

wlp.(c, r).s .

Finally, v-leastness of loop follows from ≤-leastness of 0 and (11). ut

The meaning of a recursive command then is the v-least fixpoint of the
associated function (provided it exists; v need not induce a cpo in general). A
treatment of full recursion will be the subject of a later paper. To actually find
a convenient representation of the v-least solution of (14) we need an additional
concept that captures termination information.

A convergence algebra [11] is a pair (S,4) where S is a left modal Kleene
algebra and the convergence operation 4 : S → test(S) satisfies, for all a ∈ S
and p, q ∈ test(S), the unfold and coinduction laws

[a](4a) ≤ 4a, [a]p · q ≤ p ⇒ 4a · [a∗]q ≤ p . (15)

This axiomatises 4a · [a∗]q as the least pre-fixpoint and least fixpoint of the
function λp . [a]p · q; in particular, 4a least pre-fixpoint and the least fixpoint of
[a]. Hence, if test(S) is complete then 4 is guaranteed to exist.

For the pre-fixpoints of [a] we have

[a]p ≤ p ⇔ ¬p ≤ 〈a〉¬p .

Since q ≤ 〈a〉q means that every state in q has a successor in q, the complements
of the pre-fixpoints consist of states with the possibility of nontermination under
iterated execution of a. Hence the least pre-fixpoint 4a characterises the states
from which a cannot diverge. It corresponds to the halting predicate of the modal
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µ-calculus [15]). Hence we call an element a Noetherian if4a = 1. For p ∈ test(S)
we have 4p = ¬p.

For our treatment of loops we now assume a convergence algebra as the un-
derlying semiring. First we extend the convergence operation to commands and
define a particular command that captures termination information by setting,
for a ∈ S, p ∈ test(S) and k ∈ COM(S),

4(a.p) def= 4a , trm.k
def= (0,4k) .

We define command k to be Noetherian, in signs NOE(k), if 4k = 1.

Lemma 5.4 1. trm.(a, p) is the v-least solution of the equation x = (a, 1) ; x.
2. trm.(a, p) is a left zero w.r.t. composition (as are all commands of the form

(0, q)).

Proof. First, trm.(a, p) is a solution, since by the semiring and convergence ax-
ioms

(a, 1) ; (0,4a) = (a · 0, [a](4a)) = (0,4a) .

Assume now that (b, q) is another solution, i.e., b = a · b and [a]q = q. Then
by the convergence axioms 4a ≤ q. Since 0 ≤ b is trivial, it remains to show
wp.(0,4a) ≤ wlp.(b, q). Now, by the definitions, for all s,

wp.(0,4a).s = 4a · [0]s = 4a

by (2). On the other hand, for all s, by the assumption and the second box
axiom,

wlp.(b, q).s = [b]s = [a · b]s = [a]([b]s) ,

so that [b]s is a fixpoint of [a]. but then 4a ≤ [b]s, which shows the claim.
Finally,

(0, q) ; (c, r) = (0 · c, q · [0]r) = (0, q)

by the semiring axioms and (2). ut

Now we can tackle the semantics of the loop do k od. We investigate a slight
generalisation and define the command do k exit l od as the v-least solution of
the recursion equation

x = (k ; x) dc ¬grd.k → l . (16)

Let us calculate conditions for such a solution (y, t). Assume

(y, t) = ((a, p) ; (y, t)) dc ¬g → (b, q)

where g
def= grd.(a, p). Plugging in the definitions, we have to satisfy the equa-

tions
y = a · y + ¬g · b , t = [a]t · p · (¬g → q) .
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Since we are looking for an v-least solution (y, t), we have to use the ≤-least
solutions of these equations. By the left star induction axiom and the convergence
induction axiom these are

y = a∗ · ¬g · b , t = 4a · [a∗](p · ¬g → q) .

We show that (y, t) is indeed the v-least solution of (16). Consider an arbitrary
solution (z, u). In remains to verify that wp.(y, t) ≤ wlp.(z, u). First we observe,
for arbitrary s, using the fixpoint property of (z, u), (4) and the second box
axiom

wlp.(z, u).s = [a · z + ¬g · b]s = [a]([z]s) · [¬g · b]s = [a](wlp.(z, u).s) · [¬g · b]s .

Hence by the convergence induction axiom we have

4a · [a∗]([¬g · b]s) ≤ wlp.(z, u).s .

On the other hand, by definition and the second box axiom,

wp.(y, t).s = t · [y]s = 4a · [a∗](p · ¬g → q) · [a∗ · ¬g · b]s
≤ 4a · [a∗ · ¬g · b]s = 4a · [a∗]([¬g · b]s) ,

and we are done.
Now we bring our least solution (y, t) into somewhat nicer form:

(a∗ · ¬g · b,4a · [a∗](p · ¬g → q)

= {[ definition of dc ]}

(a∗ · ¬g · b, [a∗](p · ¬g → q)) dc(0,4a)

= {[ conjunctivity of [a∗] ]}

(a∗ · ¬g · b, [a∗]p · [a∗](¬g → q)) dc(0,4a)

= {[ definition of ; ]}

((a∗, [a∗]p) ; (¬g · b,¬g → q)) dc(0,4a)

= {[ definition of star and → ]}

((a, p)∗ ; (¬g → (b, q)) dc(0,4a) .

Altogether we have shown

Theorem 5.5 do k exit l od = (k∗ ; ¬grd.k → l) dc trm.k.

Note that this theorem does not depend on completeness of the underlying
semiring nor on Egli-Milner-isotonicity of the command-building operations in-
volved. Moreover, the form of the expressions in the semantics has arisen directly
from the star and convergence axioms.

For l = skip we obtain the semantics

do k od = (k∗ ; ¬grd.k) dc trm.k . (17)

And now, indeed, do skip od = loop. We have the following connection.
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Lemma 5.6 do k exit l od = do k od ; l.

Proof. do k od ; l

= {[ by (17) ]}

((k∗ ; ¬grd.k) dc trm.k) ; l

= {[ left distributivity ]}

(k∗ ; ¬grd.k ; l) dc(trm.k ; l)

= {[ by Lemma 5.4.2 ]}

(k∗ ; ¬grd.k ; l) dc trm.k

= {[ by (10) ]}

(k∗ ; (¬grd.k → l)) dc trm.k .
ut

Moreover, we obtain the semantics of the if fi command which, according
to [20], should be the v-least solution of the equation x = k d-cx. Plugging in
the definition of d-c we can rewrite that into

x = (¬grd.k ; x) dc grd.k → k

and the above theorem and lemma yield

if k fi = do¬grd.k exit k od = do¬grd.k → skip od ; k .

In particular, if fail fi = loop.

6 Hoare Calculus for WP

Since we have seen that wp is wlp in an appropriate weak modal semiring, we
can use the general soundness and relative completeness proof for propositional
Hoare logic from [19]. This yields fairly quickly a sound and relatively complete
proof system for wp. In an arbitrary weak modal semiring, soundness of a Hoare
triple {p} a {q} with tests p, q is defined as p ≤ [a]q. The proof in [19], an
abstract representation of the standard proof (see e.g. [2]) shows that relative
completeness is achieved if the triple {[a]q} a {q} is derivable for every command
a and every test q (where one has to assume sufficient expressiveness, i.e., that
the assertion logic is rich enough to express all tests [a]q).

For the atomic commands this yields the axioms

{1} fail {q} {0} loop {q} {q} skip {q} {4k} trm.k {q}

An appropriate rule for demonic choice is

{p} k {r} {q} l {r}

{p · q} k dc l {r}

13



For the loop we observe that, except for the termination part, do k od behaves
like while grd.k do k (which also coincides with the exhaustive iteration exh k =
k∗ ; ¬grd.k in [11]). For that, the usual while rule

{q ∧ p} k {q}

{q} while pdo k {¬p ∧ q}
is sound and relatively complete. Combining this with the rule for choice we

obtain, after some simplification, the sound and relatively complete rule

{p} k {p}

{4k · p} do k od {p · ¬grd.k}

From that one can derive the rule

{p} k {p} NOE(k)

{p} do k od {p · ¬grd.k}

7 Extensions: Angelic Choice and Infinite Iteration

In this section we give two extensions of the basic language of commands.
First, in COM(S) an angelic choice operator can be defined as

(a, p) bc(b, q) def= (a + b, p + q) .

It is clearly idempotent, associative and commutative.

Lemma 7.1 The operators bc and dc distribute over each other; in particular, bc
is ≤-isotone. Moreover, k dc l ≤ k bc l with wlp.(k bc l) = wlp.(k dc l) and

wp.(k bc l).r = wp.k.r · wlp.l.r + wp.l.r · wlp.k.r .

Proof. For distributivity of dc over bc we calculate, using the definitions and
semiring properties,

((a, p) bc(b, q)) dc(c, r) = (a + b + c, (p + q) · r)
= (a + c + b + c, p · r + q · r)
= ((a, p) dc(c, r)) bc((b, q) dc(c, r)) .

For distributivity of dc over bc we calculate, using the definitions and semiring
properties,

((a, p) dc(b, q)) bc(c, r) = (a + b + c, p · q + r)
= (a + c + b + c, (p + r) · (q + r))
= ((a, p) bc(c, r)) dc((b, q) bc(c, r)) .

Next we have, by distributivity and idempotence,

(k dc l) dc(k bc l) = (k dc l dc k) bc(k dc l dc l) = (k dc l) bc(k dc l) = (k dc l) ,
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which shows k dc l ≤ k bc l.
The statement about wlp is immediate from the definition. For wp we calcu-

late

wp.((a, p) bc(b, q)).r

= {[ definitions ]}

(p + q) · [a + b]r

= {[ distributivity and conjunctivity of [a] ]}

p · [a]r · [b]r + q · [a]r · [b]r

= {[ definitions ]}

wp.(a, b).r · wlp.(b, q).r + wp.(b, q).r · wlp.(a, b).r .
ut

The second extension concerns infinite iteration. A weak omega algebra [6,18]
is a structure (S, ω) consisting of a left Kleene algebra S and a unary omega
operation ω that satisfies, for a, b, c ∈ S, the unfold and coinduction laws

aω = a · aω , (18)
c ≤ a · c + b ⇒ c ≤ aω + a∗ · b . (19)

This axiomatises aω + a∗ · b as the greatest fixpoint of the function λx . a · x + b.
In particular, aω is the greatest fixpoint of λx . a · x. Every weak omega algebra
S has a greatest element > = 1ω. If S is also a weak test semiring then pω = p ·>
for all p ∈ test(S).

As in the case of Kleene algebras, we want to make the command semiring
COM(S) over a weak omega algebra into a weak omega algebra, too. Let us find
solutions to the recursion equation

(y, t) = ((a, p) ; (y, t)) dc(b, q) .

From the definitions we get the equations

y = a · y + b , t = p · [a]t · q .

To get a ≤-greatest solution in COM(S) we have to take the ≤-greatest solu-
tion for y and the ≤-least solution for t, which are, by omega coinduction and
convergence induction,

y = aω + a∗ · b , t = 4a · [a∗](p · q) .

Setting (b, q) = fail, we obtain

Lemma 7.2 Over a weak omega algebra S that is also a convergence algebra,
the semiring COM(S) can be made into a weak omega algebra by setting

(a, p)ω def= (aω,4a · [a∗]p) .
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8 Conclusion and Outlook

The modal view of the weakly demonic semantical model has led to a number of
new insights. In particular, the possibility of combining the “angelic” semantics
provided by the star operation with termination information through a demonic
choice to get the appropriate demonic semantics seems to be novel.

Future work will concern an analogous treatment of full recursion as well as
applications to deriving new refinement laws.

Acknowledgements: We are grateful to J. Desharnais and P. Höfner for helpful
discussions and remarks.
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