Universitat Augsburg

Modal and Temporal Operators on
Partial Orders

Bernhard Moller

Report 1997-02 November 1997

b=

mformatlk

Institut fur Informatik
D-86135 AUGSBURG



Copyright (¢ Bernhard Moller
Institut fur Informatik
Universitat Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg. DE

— all rights reserved —



Modal and Temporal Operators on Partial Orders*
Bernhard Moller

Institut fiir Informatik
Universitat Augsburg
D-86135 Augsburg, Germany

e-mail: moeller@uni-augsburg.de

Abstract

We generalize the operators of classical linear time temporal logic to partial orders,
such as the ones used in domain theory. This relates denotaional semantics and
temporal logic. We put this into the general perspective of modal logic. O and
<& are viewed as standard modalities, which gives “half” of the standard axioms
of LTL. Moroever, we show that the next-time operator () can be defined as a
combination of two modalities. We show the role of the standard LTL axioms in
narrowing the underlying partial orders to linear ones generated by the immediate-
successor relation. We distinguish between modal and temporal validity of formulas
and investigate their relation.

1 Introduction

In [11] a stream has been identified with the set of its finite prefixes. Based on this, we
have used a special way of characterising sets of streams through sets of relevant finite
“snapshots”. Given a set P C A* where A is a set of atomic actions, states or data, we

define

strP &f {(CQ):Q C P directed} ,
where C is the prefix order and (C Q) e {z € A*:JyeQ:z C y}is the prefix
closure of ). So str P is the set of all streams “spanned” by directed subsets of P. The
str operator enjoys a number of distributivity and monotonicity laws which are the basis
for correct refinement of specifications into implementations. They are used in [14] in the
algebraic calculation of a bounded queue module.

The str operation has been generalized in [12] to arbitrary domains. There it was
conjectured that this operator has to do with the “infinitely often” operator O of linear
temporal logic (LTL). This was made precise in [13].

So order theory admits simple characterizations of temporal operators such as “always
eventually” and “always initially”. In [13] we have also investigated how the other classical
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temporal operators generalize to an order-theoretic setting. It was clarified which of the
classical axioms of LTL carry over to the general case; in this way also their role in the
standard complete axiomatisation of LTL became clearer.

In the present paper we put this into the more general perspective of modal logic. O
and < are viewed as standard modalities, which gives “half” of the standard axioms of
LTL. Moreover, we show that the next-time operator (O can be defined as a combination
of two modalities. Extending [13] further, we distinguish between modal and temporal
validity of formulas and investigate their relation. Also, the technical treatment is much
simpler than in [13], leading also to a quicker proof of the above O conjecture.

2 Property Transformers and Modal Algebras

In this section we recall some basic notions from the theory of modal logic. A good up-
to-date exposition of this topic is [16].

Modal logic can be seen as the theory of labelled transition system. It allows abbreviat-
ing quantifications about successors/predecessors of elements under a family of (labelled
transition) relations. Monomodal systems result in the case where only a single relation
is considered.

Let M, N be sets and R be a binary relation R C M x N. For P C M,Q C N we
denote the image of P under R by

def

PR = {yeN:JzeP:zRy}
and the inverse image of ) under R by
RQ déf{a:EM:ElyEQ:mRy}.

For singleton sets P, () we’ll omit the set braces.

In modal logic the relation R is assumed to be homogeneous, i.e., M and N have to
be equal. The forward modalities O and Cpg are universal and existential quantifiers,
respectively, about the successors of an element under relation R. A formula OgF holds
at a point « € M iff F holds at all points in z R. The formula OgF holds at z € M iff F
holds at some point in z R. Dually, the backward modalities Bz and $g quantify about
R-predecessors.

Frequently it is convenient to work with algebraic counterparts of the modal formulas
and quantifiers. To each formula F' one associates the set [F] C M of points where F
holds. We call such subsets properties. The properties T and F are given by

T € M
F < 0.

The propositional part of logic is reflected by

?

-P = T\P,
PAQ ¥ Pno,
PvQ ¥ Pug,
PsQ ¥ -Pvog.

As is well-known, — is the algebraic counterpart of the subset relation:



Lemma 2.1 For P,(Q C M wehave P C Qiff P —» @ = T.
Proof: (Only if) Assuming P C @, which is equivalent to -Q C —P, we get

T

= { boolean algebra [}
“Q Ve

C {| monotonicity [}
-PVQ

= { definition [}
P - Q.

(If) Assuming, conversely, T = P — @ = —-P V Q we get

P

= { boolean algebra [}
PAT

= { assumption }
P A(-PV Q)

= { boolean algebra [}
P AQ

and hence P C @. [ ]

The modal quantifiers are represented by property transformers. We’ll do this only for
the forward modalities, the backward ones being symmetric. To mirror Og we introduce

for R C M x M the operator [R] : P(M) — P(M) by setting, for properties P,Q C M,
P C[RQiff PR CQ.

By this definition, [R] is the upper adjoint of a Galois connection (see e.g. [3]) between
the complete lattice (P(M), C) and itself. Hence [R] is well-defined, since the lower
adjoint, the image operator for R, distributes through disjunction, i.e., preserves suprema.
According to the above definition one has

[0x F] = [RI[F] .
By the Galois connection, [R| distributes through arbitrary conjunctions,

[RI(A @Qx) = A [RIQ:,

kcK keK
and hence is upward strict, i.e., satisfies
[R]T =T,

and is monotonic w.r.t. C.
To prove the validity of some axiom schemes we need



Lemma 2.2 Assume a property transformer G : P(M) — P(M).

1. If G distributes through A we have for all P,QQ C M

G(P — Q) € G(P) = G(Q) .

2. If G distributes through A and is downward strict, i.e., satisfies G(F) = F, then
foral P C M
G(—-P) C -G(P) .

Proof: We use Lemma 2.1.

L. G(P — Q) — (G(P) = G(Q))

= { definitions [}
~G(~P v Q) v ~G(P) v G(Q)

= {| de Morgan [}
~(G(=P v @) A G(P)) V G(@)

= { A-distributivity of G [}
-G((—-P Vv Q) A P) V G(Q)

= { boolean algebra [}
~G(@ A P) v G(Q)

= { A-distributivity of G [}
~(6(Q) A G(P) V G(Q)

= {| de Morgan [}
~6(Q) v ~G(P) v G(Q)

= { boolean algebra [}
T.

2. G(-P) — -G(P)

= { definition — }
-G(—-P) vV -G(P)

= {| de Morgan [}
~(G(~P) A G(P)

= { A-distributivity of G [}
-G(—P A P))

= { boolean algebra [}
~G(F)

= { downward strictness [}
-F

= { boolean algebra [}
T.



Note that this generalizes to arbitrary boolean algebras. As an application of 2. we
note

PA(Qr— Q) C(PAQL — (PAQ).

The algebraic counterpart of Op is the property transformer (R) : P(M) — P(M),
defined by

(R)Q = -[RI(-Q) -
Then, for formula F,
[CrF] = (R)[F] .

Moreover, idempotence of — gives the duality properties
-[R]P = (R)=P, ~(R)P = [R]-P . (1)
One has
r € (R)Q < zRNQ # 0 iff z € RQ
1e.
(R)Q = RQ . (2)
By de Morgan’s law and A -distributivity of [R] we obtain V -distributivity of (R) (which

is also evident from the explicit representation (2)):

(R)(V Q) = V (R)Q& .

keK keK

Therefore (R) is also C-monotonic and downward strict, i.e., satisfies
(RYF = F .

Finally, by (2) and the definition of (R) we get the domain of R as (R)T and its comple-
ment as [R]F.

3 Relation Algebra

It is useful to investigate the behaviour of the [-] function w.r.t. the relation algebraic

operations. Let I be the identity relation on M, ie., I & {(z,z) : ¢ € M}, and

1 ¥ M x M the universal relation on M. The relational product is denoted by

juxtaposition: for relations R, S C M x M we have
e(RS)y iff 3z€ M:zRz A 25y .

Moreover, since relations are sets of pairs, union and intersection are defined as usual.

The proof principles of indirect inequality and indirect equality for properties
P,QQ C M are

PCQifVZ:Z2CP=2CQ,
PCQifvVZ:QCZ=PC7Z,
P=QifvVZ:ZCPifzCQ.



The following properties are easily checked using the Galois connection and indirect equal-
ity:

Q=@ ,
[RS]Q =[R]([S]Q) ,
[RUSIQ=[R]Q n [S]Q .
For the first equality we have

P C 1@
& { Galois [}

PI C Q
& { neutrality [}

P CQ.

For the second one we calculate

P C [RS]Q

& { Galois |}
P(RS) C @

& { relations [}
(PR)S C Q

& { Galois [}
PR C [S]Q

& { Galois [}
P C [R]([S]Q) -

For the third one we have

P C [RUSIQ
& { Galois [}
P(RUS) C Q@
& { relations [}
PRUPS C Q
< { boolean algebra [}
PRCQAPSCQ
& { Galois [}
P C[RIQ AP CI[S]Q
< { boolean algebra [}
P CIRIQNISIQ.

This latter equality implies that [-] is antitonic w.r.t. C in the following sense. Lift the
relation C to P(M) — P(M) by

FCGifVQC M:FQ C GQ.



Then
R C S = [S] CI[R].

The converse of this holds also. To see this we first calculate

z Ry

& { definition of the image set [}
y C zR

< { indirect inequality [}
VZ:2RC Z =y C Z

& { definition of [-] }
VZ:z€[RZ = y€Z.

So R can be reconstructed from [R]. Based on this one easily shows
[S]C[Rl= RCS.

What about the dual (R) of [R]? Here, de Morgan’s laws and idempotence of — do all
the work for us:

(He=@,
(RS)Q=(R)({5)Q) ,
(RUS)Q=(R)Q U (5)Q .

Moreover, we get

R C S iff (R) C (S).
Altogether, (-) is covariant w.r.t. all operations and hence easier to work with.
For the universal relation we obtain
P c 1@
& { Galois [}
P1C Q
& { relations [}
P=FvQ@=T

and hence

[1]Q = if @ = TthenTelseF .

From this we get

e
= { definition [}

1@
= { by the above }

if =Q) = Tthen—T else -F
= { boolean algebra [}

if @ = FthenFelseT .



Another important relational operation is forming the converse R of R:
v def
R"= {(y,2): (z,y) € R} .

The converse can be used to define the “backward” modal operators:

4 Correspondences and Partial Orders

Relation R is called

reflexive iff T C R,
coreflexive iff RCI,
transitive if RR C R,
dense if R C RR,

antisymmetric iff RN R C I.

The first four of these properties of relations are reflected in their associated modal oper-
ators as follows (see e.g. [16]): relation R is

reflexive iff VP C M :[R|P C P,
coreflexive iff VP C M : P C [R]P,
transitive iff VP C M :[R|P C [R]([R]P),
dense iff VP C M:[R|([R]P) C [R|P

The proofs are immediate from the relation algebraic characterizations and the above
properties of [-]. Moreover, using coreflexivity, we obtain that R is

antisymmetric iff VP C M : P C [RN R’|P. (3)

A binary relation is a preorder iff it is reflexive and transitive. It is a partial order iff
it is an antisymmetric preorder.
We have just seen modal characterizations of reflexivity and transitivity. Together we
get
R is a preorder iff VP C M :[R|P C P N [R|([R]P) .

For partial orders we get in addition (3).

5 Modal Validity

A property P C M is modally valid, denoted =, P, iff P holds for all elements of M,
ie,iff P = M = T. Following LTL we define the abbreviation

P=Q¥[R(P Q).
From these definitions we obtain the following properties of validity:

Lemma 5.1 1. =, P - Q iff P C Q.



2. Em P implies |, [R]P.
In particular, |, P — @ implies =, P = Q.

3. Em [R|P implies |=,, P iff R is surjective.
4. For reflexive R we have =, [R]P — P.

5. FEm
Proof:

R|(P — Q) — ([RIP — [R]Q).
1s immediate from Lemma 2.1.
is just upward strictness of [R)].

We note first that by the Galois connection

w =

RIP = Tif TC[RPiff TRC P
Now

V P :|=p, [R]P implies |, P
< {by (4]

VP: TR C P implies T C P
< { by indirect inequality [}

TCTR
& { relations [}

R surjective .

4. is a direct consequence of 2. and the modal correspondences.

5. is immediate from Lemma 2.2.1.

In particular,

[RI(P — Q) C [RIP — [R]Q .

A somewhat surprising property is

(R)(P = Q) = [RIP — (R)Q,
shown by
(R)(P — @)
= { definition — }
(R)(-=P V Q)
= { distributivity [}
(R)~P Vv (R)Q
= { duality |}
-[R]P V (R)Q
= { definition — }
[R]P — (R)Q .



6 A Next-Time Operator

The next-time operator we define is a combination of the [-] and (-) operations. It asserts
that a sucessor element exists and that a certain property holds for all successors. So we
set

(R)P = (R)T A [R]P .
By A-distributivity of [R] we get the same distributivity for ((R)):

(RD(A @) = A\ (R)@ -

keK keK

Hence ((R)) is upward strict, i.e., satisfies
(R)T = (R)T,
and is monotonic w.r.t. C. Moreover, ((R)) is downward strict:
(R))F
= { definition [}
(R)T A [RJF
= { duality (1) }
-[R]F A [R]F
= { boolean algebra [}
F.

From this we get one half of each of two standard axioms:

Lemma 6.1 . Em (R)(P = Q) = ((R)P — (R)Q).
2. Em ((R))-P — =((R)P.

Proof: This is immediate from Lemma 2.2. ]

7 Temporal Operators

We will now concentrate on special relations R that are supposed to model temporal
succession of certain events. To find suitable requirements on R C M x M, we introduce
a central notion for studying timed systems: the interval between z,y € M is

[z, y] L 2R N Ry .
A reasonable assumption is that [z,y] # 0 iff z Ry. However, only in the case of a transitive
R we can infer z < y from [z,y] # (. On the other hand, only for reflexive R we can
infer z,y € [z,y] from z < y. This suggests that having a reflexive and transitive R, i.e., a
preorder, is a minimum requirement for working reasonably with intervals. Antisymmetry,
on the other hand is not strictly necessary, although it seems a reasonable assumption for
time points.

10



For the special case where R is a preorder < we simply write [1 and < instead of
[<] and (<). We will only define the “forward” temporal operators, the “backward” ones
being symmetric. The basic operator is the until-operator ¢/ . In LTL the formula P U @)
is satisfied in a state if there is a future state where @) holds and P V @ holds for all
intermediate states. We now generalize this idea by mirroring the notions “future” and
“intermediate” order-theoretically: P U () holds for a point z iff there is a later point y
for which @ holds and P V @) holds for all intermediate points. “Later” of course means
¢ < y and the intermediate points are the z € [z,y]. This is precisely reflected in the
definition below:

cePUQ f JyeQ:z<yAfz,y) CPVQ.

From this it is immediate that ¢/ is monotonic in both arguments. Note, however, that A -
distributivity in the left argument and V -distributivity in the right one fail for arbitrary
pre-orders.

If < is not linear then U is “angelic” in the sense that a suitable successor y on one
continuation of the computation path leading to z is sufficient to ensure z € P U (). We
have chosen this particular definition, since it most directly corresponds to the informal
requirement used in LTL.

We have
CR=TUQ=<q. (5)

Moreover,
OPAOQ C PUQ, (6)
PUF = F. (7)

The definition of the while operator is copied verbatim from LTL:
pwo¥OrPvPUuQ.

From this we get

P =PWF.
We have the following further properties of modal validity:
Lemma 7.1 1. |, P - PW Q.
2. Em PUQ & PWQ A Q.
3. Em Q = PUQ.

Proof: 1. is straightforward from the definition.
2. We have
PwWQAQ
= { definition W [}
(AP v PUQ)AQ
= { distributivity [}

11



(AP A Q) V(PUQ A LQ)

- ()]
(OPAOQV(PUQATU Q)

= {| monotonicity of & and boolean algebra }
(OPAOQYVPUQ

= { by (6) and boolean algebra [}
PUQ.

3. is immediate from reflexivity of <.
|

Note that verification of 3. is the only place where reflexivity of < is used. Transitivity
and antisymmetry aren’t used at all.
Let now < be the strict part of <, i.e., assume

e<yiff e<yAnN-y<ez.
Then the set of maximal elements of N C M is
max N & N\(<N),
whereas the set of minimal elements is
min N & N\(N<).

The LTL next-time operator can be viewed as the instantiation of our generalized one by
the immediate successor relation on M, which is defined by

zsucy iff y € min(z <) .

Now we set

OP % ((suc))P .

8 Ideals as a Temporal Base

We now study particular partial orders as used in denotational semantics as a way of
talking about temporal succession. We recall that usually algebraic cpos are used as
semantic domains. In such a domain each element is the supremum of a directed set of
compact elements and can be identified with the ideal of all compact elements below it.

We view the compact elements as stations in computations that approximate a (possi-
bly non-compact) element of the domain. The approximation order is used as the temporal
order, since it reflects progress in information. Our generalized temporal setting serves to
characterize sets of stations of computation by temporal formulae.

12



8.1 Basic Definitions

Assume a partially ordered set (M,<) and N C M. A subset N C M is directed if
every finite subset of N has an upper bound in N. Equivalently, N is directed if N #
and any two elements in N have a common upper bound in N. For P C M we set

dirP = {D C P : D directed} .

An ideal of (M, <) is a directed and downward closed subset, i.e., a @ € dir M with
(< Q) € Q. A principal ideal is an ideal of the form (<z) for some z € M. By I(M)
we denote the set of all ideals of M.

An element 2z € M is compact iff for every D € dir M with < UD we have also
¢ < z for some z € D. Equivalently, z is compact iff for every I € I(M) with 2 < UJ
we have z € I. (M, <) is algebraic iff every element of M is the supremum of a directed
set of compact elements. A non-compact element of M is then called a limit point or an
infinite element.

The partial order (M, <) is called a complete or a cpo iff every set D € dir M has a
least upper bound LID. With these notions one has (see e.g. [1, 3])

Theorem 8.1 Let (M, <) be an ordered set.

1. Theset (I(M), C) ordered by set inclusion is an algebraic cpo, the compact elements
being the principal ideals (< z) for # € M. The mapping ¢ : z — (< z) is an
embedding of M into I(M). In particular, z <y iff (<z) C (<y).

2. For every monotonic mapping h: M — P into a dir-complete set (P, <) there is a
unique continuous mapping h : I(M) — P extending h, i.e., with h(< z) = h(z).
h is given by h(I) = U h([I) for I € I(M); hence h(< D) = U h(D) for D € dir M.

The order (I(M), C) is called the ideal completion of (M, <).

Let us give another characterization of infinite ideals. Since an ideal with maximal
element z is by directedness the principal ideal (< ), an infinite (i.e., non-compact)
ideal cannot have a maximal element. It is easy to show that we also have the reverse
implication. So, an ideal J is infinite iff maxJ = 0.

8.2 Streams as Ideals

We now briefly show the above notions at work in the particular partial order of streams.
Assume an alphabet A. As usual, A* is the set of all finite words over A. By ¢ we denote
the empty word, whereas concatenation is denoted by e. A subset of A* is called a formal
language.

A word u is a prefix of a word v, written v T v, iff there is a word w such that
u e w = v. The partial order C is even well-founded. Moreover, ¢ is the least element in
this order. The corresponding strict-order is denoted by .

An ideal of (A*, C) is then a prefix-closed language. Note that every ideal contains €.

In (A* C), directedness has a special property:

Lemma 8.2 D C A* is directed w.r.t. C iff D is totally ordered by C.

13



Thus, by prefix-closedness, an ideal is a set of words of increasing length “growing at
the right end”. This set may be finite or infinite. A simple example is, for a € A, the
infinite ideal

a* = {e, a, aea, aeaea aeaeaea, ...}.

For the special case of words under the prefix ordering, we therefore call the elements of
I(A*) streams over A. The compact elements of I(A*) correspond to the elements of A*,
whereas the non-compact elements are precisely the (cardinally) infinite ideals. Hence, for
countable A, the set (I(A), C) has a countable basis of compact elements and therefore
is countably algebraic.

The non-compact elements correspond to infinite sequences over A and hence we set

A° € LT e I(A) : maxJ = F}.

9 A Generalized Temporal Setting and Temporal
Validity

Recall the usual setting of LTL (see. e.g. [9, 10]): the underlying structure is £¢ x IN
where ¥ is a set of states and X¢ is the set of all infinite sequences of states. A pair (o,n)
denotes a particular point in the computation history given by o € X“.

To move towards an order-theoretic setting we want to get rid of the explicit recourse
to IN here. This can be achieved by replacing the time point n by the initial segment
09, ...,0n_1; the time n can be retrieved as the length of that initial segment. Now we
employ our view of streams, in particular of elements of X, as ideals within A*. Then a
finite prefix of some stream in ¥* simply is an element of that stream. Hence an equivalent
representation of the LTL structure is the set

{(0,8):0€X,s€X :s5€0}.

This form now generalizes directly to arbitrary partial orders.

Assume a partial order (M, <). The elements of M are thought of as finite approx-
imations of elements of some domain isomorphic to the ideal completion (I(M), C) of
(M,<). A stage (of computation) is an element of the set

STAGE & {(J,2): J e (M) Az € J} .
This corresponds to the usual definition of state in modal logic (see e.g. [2, 16]).

We note that by working with generalized stages (J, [z,y]) for z,y € J with z < y
one obtains an analogous generalization of interval temporal logic (see e.g. [15]). This is
beyond the scope of the present paper, though.

It is convenient to extend the order < to a relation between stages: we set

(Jl,ml) S (Jg,mg) iff Jl = JZ A L1 S Lo .

One checks immediately that this defines again a partial order. This relation allows a
much simpler definition of the relevant notions than in [13], since it keeps the ideal part
fixed and hence implies a relativization of the order to stages within the same ideal.

14



A property now is a set of stages, i.e., an element of P(STAGE). For the partial order
(STAGE, <) all our definitions of the generalized temporal operators apply.

Following classical temporal logic, we define a different notion of validity for this setting.
We assume that the underlying partial order (M, <) has a least element L. Note that then
every ideal contains 1.

We call a property P C STAGE temporally valid on an ideal J, in signs J =; P,
if P holds in the initial stage of J, i.e. if (J, L) € P. We have

J E: OP iff Lft(J) C P (8)
where
lift(J) € {(J,2) 2 € T},
since lift(J) = (J, L) <.
General temporal validity is defined by
Of course we have
Em P implies =, P .

A useful property is
P> Qi PCQ,

shown by

= P = Q
& { definitions [}
VJ:J | OP = Q)
o by ()]
VJ:Uft(J) C P — Q
& { definitions [}
VJ:Veeld:(J,e)g PV (J,z) €Q
< { boolean algebra [}
PCQ.

10 Temporal Validity and the Nexttime Operator

The nexttime operator ) is a lot more tricky w.r.t. validity than the other modal and

temporal operators.
First we note that from the definition of () it is clear that

J E: UOT implies maxJ = 0 .

This means that J is non-compact in (/(M), C).
We have already seen that one half each of two standard axioms of LTL are even
modally valid. The converses are qualified:

15



e VP:JE -OP = O-P iff
Veeld:|JNesuc|=1.

eVP:J = (OP - OQ) = O(P —» Q) iff
Veeld:|JNesuc|=1.

So these converses hold only for linear orders with a total successor relation.
For the induction axiom we get

eVP:J | (P= QOP)— (P=01P) iff
Veed:JN(z<)=J N z suc*

This means that the axiom holds only in partial orders in which the upper cones are
reachable, i.e., generated by suc.
The weirdest beast, however, is the while axiom. We have

VP I (QV(PAOPWQ)) « PWQ iff
Veed: JNezsuce #DAJ N (<) = JNesuc

So this holds only for partial orders which have no maximal elements and in which the
order is generated by suc. For the converse we get

e VP:J = (QV(PANOPWAQ)) = PWAQ iff
Veed: Jn(z<) = {3u | Jn(y<).
yeJ Nz suc
Note that this condition is not equivalent to reachability. It is satisfied e.g. in the partial
order

where the limit point oo is not reachable.

11 Behaviours and Refinement

11.1 Basic Definitions

We apply ideals to describe runs of systems. To model non-determinacy, we define a
behaviour to be a set of ideals. An example of a partial order (M, <) more general than
the one of finite words under the prefix order is the set of all finite sets of partially ordered
events under the initial-segment order.

It should be noted that using sets of ideals as behaviours allows only “trace-like”
semantics in which there is no distinction between internal and external non-determinacy.
Still our generalization of the temporal operators applies.

16



As our refinement relation between behaviours we choose inclusion, i.e., behaviour T
refines behaviour S if 7 C S. To allow correct local refinements one therefore has to
ensure monotonicity of all operations w.r.t. inclusion.

The infinite ideals of a behaviour are selected by

infB < {JeB:maxJ = 0} .

11.2 Describing Behaviours by Snapshots

Generalizing from the particular domain of streams we want to characterize the ideals in
a behaviour by certain sets of “relevant” or “admissible” approximations. For such a set

P C M we define by
ide P & {(< D): D € dir P}

the set of all ideals “spanned” by directed subsets of P. For the case of finite and infinite
sequences over some alphabet a related notion occurs in [4]. Note that ide is monotonic
w.r.t. inclusion. Further properties of ide are

Lemma 11.1 1. For J € I(M) and @ C M we have

JeideQ if JC(S(JNQ)) if J=(<(JNQ)).

2. Consider N, P C M. Then ide (N U P) = ide N U ide P.

For the proof see [12]. It should be noted, however, that ide only distributes through
finite unions and hence is not “continuous”. For an instance of this see Example 11.3.

In connection with safety issues one is interested in elements for which all finite ap-
proximations are admissible. The part of a snapshot set P C M that is closed under
finite approximations is

awP & {zeM:(<z) C P}.

Note that alw does not distribute through union.

11.3 Streams and Snapshots
The set of streams spanned by a subset P C A* is

strP % ide P .

Note that it would not be adequate to work with the set str ( C P) instead of str P. The
reason is that by prefix-closure infinite substreams may “sneak” into a cone although it
results from a language of mutually C -incomparable words which represent systems with
finite behaviour only.

Example 11.2 The language 0* o1 represents a behaviour with arbitrarily long but finite
sequences of Os terminated by the “explicit endmarker” 1. However, its prefix closure
(0* ® 1)E contains the infinite ideal 0* representing an infinite stream of Os. |
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Using Konig’s Lemma one can even show that for finite A every infinite cone contains
an infinite stream. The general definition of ide omits these undesired streams.

We want to show now that str (and hence ide) does not distribute through general
union:

Example 11.3 TakeU = 0*. Then U = |J 0°. However,strU = {0*}U{(0°)E : i € IN},
ieN
whereas | J str0' = {(0°)5:i € IN}. u
i€eN

*

Using the operations _* and str we can also define the infinite repetition of words. If

U C A* satisfies the Fano condition (or, equivalently, is prefix-free), i.e., the words in U
are mutually incomparable w.r.t. T, then we can define the behaviour U, i.e., the set of
streams which result from infinite repetition of words in U, as

U® = infstrU* .

Hence our order-theoretic definition of infinite repetition fits in well with concepts
known from the theory of languages with infinite words (see e.g. [17]). This, the original
characterization of the ide operation and the relation with [4] nurture

Feeling 1: ide corresponds to [1<> in LTL.

Moreover, the informal characterization of the alw operation nurtures

Feeling 2: alw corresponds to |i]in interval temporal logic [15]).
We can now convert these feelings into theorems.

11.4 From Feelings to Theorems

Consider again an arbitrary partial order (M, <). For a snapshot set N C M we define
the property
N Y {(Jz):Jel(M)Arzel}.

Feeling 1 is confirmed by

J |:t DQM
& { by (8) and definition of [ [}
Lft(J) € <N
& { definition of N [}
JC <(JNN)
< { by Lemma 11.1 }
IcideN .

Feeling 2 is confirmed analogously with the “backward” operator [1-.

18



12 Conclusion

All these properties together clearly indicate that the classical LTL axioms are complete
precisely for the set of linear partial orders that are freely generated by the successor
relation, i.e., for structures in which the domain is isomorphic to the set of countable
sequences over some basic set.

What we have achieved is a simple generalization of LTL. It is quite different, however,
from branching time logics such as CTL/CTL* which allow quantification over the paths
in the underlying graph.

It is more widely applicable than the embeddings of LTL into the sequential calculus
[8] or relational algebra [7], since it is not based on a sequential composition operator.
So it is directly usable for systems such as CSP or CCS which are not centered around a
composition operator but have domain and hence partial order semantics.

The framework should also easily generalize to categories as domains [18].

There remain plenty of open questions:

e Can various properties of subsets of an ordered set such as linearity, reachability
and infinity, be separated more cleanly by temporal formulas?

e What is a “good” class of domains for which a complete axiomatization analogous
to the standard LTL one can be given?

e What is the precise relation to CTL/CTL*, TLA (see e.g. [5]) and other temporal

logics as well as to general modal logic (see e.g. [2, 16])?
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