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Abstract

In this paper we model (discrete) reactive systems that may interact with each
other by Petri net modules which are classical Petri nets together with a distinguished
subset of interface places. We consider then an asynchronous composition operation
of modules and, closely related to it, a decomposition operation. We show that any
process (concurrent execution) of a composition of two modules can be decomposed into
processes of “shifted” components for which a p-composition function exists, and vice
versa. Based on this result, a compositional semantics of modules is then defined. The
concurrent execution of a module inside a system is called a process sample/fragment of
the system w.r.t. that module. We show that, in some circumstances, all the process
samples of a system can be generated by e-modules which abstract from some parts of
the behaviour by collapsing many consecutive steps into a single one. Some applications
of process decomposition to replacement techniques of Petri nets, in proving correctness
of Petri net structural transformations, and in validation of Petri net models, are further
discussed. The last section takes into consideration the model checking problem for Petri
net modules. A simulation preoder on Kripke structures with Biichi fairness constraints is
considered, which is shown to preserve the delayed version of VCT L* formulas. Then, the
results are transferred to Petri net modules, and discussions on step fairness constraints
are provided.

1 Introduction and Preliminaries

In spite of the impressive progress in the development of methods for system design and
verification, many realistic systems are still too large to be handled. Thus, it is important
to find techniques that can be used in conjunction with the symbolic methods to extend
the size of the systems that can be verified. Two such techniques, generally recognized as
the only methods can ever scale up to handle industrial-size design and verification, are the
abstraction and modularization which break the task of verifying a large system into several
smaller tasks of verifying simpler systems. Modularization exploits the modular structure
of a complex system composed of multiple processes running in parallel. In such systems it
is essential to study and analyse each process as a reactive system (which is a collection of
variables that, over time, change their values in a sequence of rounds). That is because, from
the point of view of each process, the rest of the system can be viewed as an environment that
continuously interacts with the process. Then, an obvious strategy is to derive properties

!This work was carried out while the first author was visiting Katholische Universitiit Eichstitt by a grant
from DAAD (Germany), and Universitat Augsburg by a grant from Deutschen Akademnien der Wissenschaften
(Germany).



(proofs) of the whole system from partial (local) properties involving (abstractions of) its
modules (components). Generally speaking, modular design and verification requires:

— an ability to describe and compose modules with different synchrony assumptions, and
at different level of abstraction;

— an ability to decompose verification tasks into subtasks of lower complexity.

For details and significant work in this direction the reader is referred, for example, to [38],
9], [15], [22], [41], [14], [39], [1], [2], [17], [20].

In this paper we model (discrete) reactive systems that may interact with each other by
Petri nets modules which are classical Petri nets together with a distinguished subset of
places (modelling the set of interface/shared variables). We consider then an asynchronous
composition operation of modules that allows us to build systems from components and,
closely related to it, a decomposition operation of systems in smaller parts (components).
We show that every process (concurrent execution) of a system which is a composition of
two modules can be decomposed into processes of its “shifted” components and, moreover,
these processes can be related each other by means of a p-composition function. Conversely,
composition of processes of shifted components, which are related by some p-composition
function, are processes of the system. These two results lead naturally to a compositional
semantics of modules, which is then defined. The concurrent execution of a module inside
a system is called a process sample/fragment of the system w.r.t. that module. We show
that, in some circumstancies, all the process samples of a system can be generated by e-
modules which abstracts from some parts of the behaviour by collapsing many steps into
a single one. It is shown further that, in some cases, e-modules are process equivalent to
modules (the equivalence notion is suitable chosen but less restrictive). Then we point out
some applications of process decomposition. First we take into consideration the replacement
operation. One of the main problem is to find two equivalence relations =, and ~9 such that
from 7 &1 2 one can infer y x9 y[y1 < 72], where 7, is a subnet of y and y[y; < 2] denotes
the result of the replacement of v; by 7, (inside ). We give two pairs of such equivalences,
(=mp,~p) and (Ry,pw,~pw), and some properties of them are proved. The replacement
operation we consider suggests a proof technology to be used reasoning about Petri net
transformations. We exemplify it by giving shorter and elegant proofs of correctness to some
transformations known from literature (compare, for instance, the proof of Theorem 4.2.1
with the proof of a similar theorem in [24]). The last application proposes a methodology
for validation of Petri net models. Finally, we take into consideration the model checking
problem for Petri net modules. For generality, the results are developed first on fair Kripke
structures. Thus, we introduce a simulation preorder which preserves some versions of
VCT L* formulas and offers abstraction facilities. Then we consider the asynchronous parallel
composition of such structures and we show that every composed system is smaller in the
simulation preorder than its “augmented” individual components. The connection to Petri
net modules is then made by associating to each module a (fair) Kripke structure. The
paper ends with a detailed discussion on related work, and references.

In the remainder of this section we recall the basic definitions and notations in Petri net
theory (for further details the reader is referred to [5], [10], [25], [26]).

The empty set is denoted by (), and |A| denotes the cardinality of the finite set A. A C B
denotes the inclusion of the set A into the set B, and P(A) is the set of all subsets (the



powerset) of A. The set of integers is Z, and the set of nonnegative integers is N. For a
binary relation R, Dom(R) and Cod(R) denote the domain and the codomain, respectively,
of R, R(z) is the image of z under R, R (R*) is the transitive (reflexive and transitive)
closure of R.

If fi : A; — Z are functions, ¢ = 1,2, f1 4+ fo is the function from A; U Ay into Z given
by (f1 + f2)(a) = fi(a) for all a € A1 — As, (f1 + f2)(a) = fa(a) for all a € Ay — Ay, and
(f1 + f2)(a) = fi(a) + f2(a) for all a € A; N Az. In a similar way is defined f; — fo. The
restriction of a function f : A — B to the set C' C A is denoted by f|c; f ! is the function
from B into the powerset of A given by f~1(b) = {a € A|f(a) = b} for all b € B.

A (finite) Petri net (or net, for short) is a 4-tuple ¥ = (S, 7, F,W), where S and T are
two finite sets (of places and transitions, respectively), SNT =0, F C (S xT) U (T x S)
is the flow relation, and W : (S x T') U (T x S) — N is the weight function of ¥ verifying
W(z,y) = 0 iff (z,y) ¢ F. In our paper we shall suppose that all the nets we consider do
not have isolated transitions (but they may have isolated places). When W (z,y) < 1 for all
(x,y) € F, we may (and will) simplify the 4-tuples (S, T, F, W) to the 3-tuple (S, T, F).

A marking of a net ¥ is any function M : S — N (when S is empty, M is the empty
function); it will sometimes be identified with a vector M € NI¥/. The operations and
relations on vectors are componentwise defined. For x € S UT we set

*z={yl(y,z) € F'}, 2*={yl(z,y) € F}, °z*=°zUz®,

and extend usually these notations to subsets X C SUT.

A marked net is a pair v = (X, My), where X is a net and My, the initial marking of -,
is a marking of X. A labelled marked net is a 3-tuple v = (X, My, (), where the first two
components form a marked net and [, the labelling function of -y, assigns to each transition
either a letter or the empty word A. In the sequel we shall often use the term “Petri net”
or “net” whenever we refer to a structure v as defined above. In all the definitions above
Y. is called the underlying net of y. A marking (place, transition, arc, weight) of a net -y is
any marking (place, transition, arc, weight) of the underlying net of .

Pictorially, a net y is represented by a graph. Then the places are denoted by circles and
transitions by boxes; the flow relation is represented by arcs. The arc f € F' is labelled by
W (f) whenever W(f) > 1. The initial marking M, is presented by putting M(s) tokens
into the circle representing the place s and the labelling function is denoted by placing letters
into the boxes representing transitions (when some boxes are empty we will understand that
the corresponding transitions are labelled by themselves).

Let v be a net and M a marking of it. The transition rule states that a transition ¢ is
enabled at M, denoted M|[t),, if M(s) > W(s,t) for all s € S. If ¢ is enabled at M then
t may occur yielding a new marking M’ given by M'(s) = M(s) — W (s,t) + W (t,s), for
all s € S; we abbreviate this by M[t),M'. The transition rule is extended to sequences
of transition w € T* in the usual way. If My[w),M then M is called reachable; [My).,
called the reachability set of -y, denotes the set of all reachable markings of v. When the
components of all reachable markings do not exceed some natural number n > 1, the net is
called n-safe (or safe, in general). For safe nets, the reachability set is finite. The notation
“[-)y” will be simplified to “[-)” whenever v is clear from context.

The concurrent behaviour of Petri nets is well-expressed by the notion of a process. Gener-
ally speaking, processes of Petri nets are obtained by running the nets and solving conflicts
in an arbitrary fashion as and when they arise. A process of a net is also a net; these nets



are called occurrence nets and they are classical nets N = (B, E, R) (B is the set of places,
E is the set of transitions, and R is the flow relation) satisfying:

(i) [*b] < 1 and [8*] < 1, for all b € B;
(ii) R* is acyclic, i.e. for all z,y € BUE, if (z,y) € R' then (y,z) € R*.

Usually the elements of B are called conditions whereas the elements of E are called events.
The partially ordered set induced by N is (BU E,<y), where <y= Rt. A B-cut of N is
any maximal subset C C B of incomparable elements according to the relation <. As we
will only use B-cuts we call them shortly cuts (see [5] for more details). The initial (final)
cutof N is °N = {b € B||*b| =0} (N° ={b e B||b*| =0}). A path in N from x to y is any
finite sequence of elements & = z1,...,z, = y such that for all 1 <i <mn, (x;,z;+1) € R. In
defining processes we need V -labelled occurrence nets which are couples m = (IV,p), where
N is a occurrence net and p is a total function from B U E into an alphabet V. The above
definitions (partial order, cut, initial and final cut) are transferred to labelled occurrence
nets w by means of N; the corresponding notations are obtained by changing “N” into “n”
(e.g. =g, °m, w°). Let ¥ = (S,T,F,W) be a Petri net, 7 = (N,p) an (S U T)-labelled
occurrence net such that p(B) C S and p(F) C T, and C a subset of conditions of 7. Define
the marking induced by C in ¥ as being Mc(s) = |p 1(s) N CJ, for all s € S. There are
two alternative definitions of a process, axiomatic and inductive, and it is well-known that
for Petri nets of finite synchronization they yields exactly the same objects ([5]). We adopt
here the axiomatic definition (the inductive one will be given in Section 3.2 as a particular
case of the inductive definition of processes of jumping nets). A process of v = (£, My) is
any (S UT)-labelled occurrence net m = (N, p) satisfying:

(i) p(B) C S, p(E) C T;
(i) Mo(s) =|p (s) N°N]| for all s € S;
(iii) W (s,p(e)) = |p (s) N®e| and W(p(e),s) = [p (s)Ne®| foralle € E and s € S.

Processes of labelled nets v = (X, My, () are obtained from processes 7 = (N, p') of (X, My)
by replacing the function p’ by p, where p(z) = p'(z) for all condition z, and p(x) = I(p'(x))
for all event x. That is, the events are labelled by [ o p’. From this reason we will use
sometimes [ o p' instead p (with the meaning above). The set of all processes of a net v is
denoted by II(y). A path in a process 7 is any path in its underlying occurrence net.

2 Petri Net Modules and their Asynchronous Composition

As we have said in the first section, we model discrete reactive systems that may interact
with each other by Petri net modules which are defined as follows.

Definition 2.1 A Petri net module (PN-module or module, for short) is a couple M =
(7v,S¢), where v = (X, Mo,l) is a net, called the underlying net of M, and S¢ is a subset of
places of v, called the set of interface or shared places of M.

For a module M, the set S = § — S¢ is called the set of internal places of M. When
S¢ = ) we say that M is closed; otherwise, it is called open. All the concepts referring to



nets (place, transition, marking, process etc.) are transferred to modules by means of their
underlying nets.

The interface places are used by a module to interact with an environment. During an
execution, their content is updated by the system (module) or by the environment. The
content of the internal places can be updated only by the module itself. The distinction
between internal and interface places is similar to the distinction between controlled and
external variables in the Alur and Henziger’s formalism of reactive modules ([1]), or to the
distinction between unobservable owned variables and observable variables in the formalism
of fair Kripke structures as given in ([17]) 2.

The environment interacts with a module M by updating, from time to time, the content
of the interface places. Such an interaction can be mathematically modelled by a binary
relation R C N x N%°. A pair (M¢,M°) means that the environment reads the content
M¢ of the interface places and then update it to M°. From the module M point of view
this updating is done in exactly one step.

Definition 2.2 An environment for a module M = (v, S¢) is any binary relation R on the
set of markings N°°.

A couple J = (M, R), where M is a module and R is an environment for M, is called
an environmental module (e-module, for short); M is called the underlying module, and R
the environment, of J. E-modules will be mainly used to describe in a compact way the
behaviour of modules; they will abstract from some parts of the behaviour of modules by
collapsing many consecutive steps into a single one (see Section 3.2).

Definition 2.3 Let J = (M, R) be an e-module. The transition relation of the e-module
J is the binary relation [-)7 on N° given by

M[z)sM' < xis a transition and M[z),M', or
xr = (MC’MC) € R and M|SC :MC and Ml :M—MC+MC’

or all M, M' € N¥.
[ ,

It is important to note that the environment of an e-module may update the content of
the interface places whenever it is possible. That is, whenever a marking M is reachable
in the e-module, M|sc = M¢, and (M¢ M°) € R, then the environment may change the
marking on S¢ to M°. Then, the module can execute further 3.

We define now the asynchronous parallel composition of modules. Generally, a parallel
composition operation on models of distributed systems combines two models into a single
one whose behavior captures, in some sense, the interaction between that two models. There
are two major ways of forming the parallel composition of two models, synchronous and

2The set of interface places can be partitioned further into two sets, the set S of input places and the
set S°Ut of output places. In this way we have a full analogy with the formalisms mentioned above. However,
for our purposes such a partition is not important and we will not consider it.

3The approach we considered for an environment, and for the corresponding transition rule, does not take
into account the internal structure neither of the module nor of the environment. This one could appear
unrealistic. But, we want to use e-modules for abstraction purposes, and if we should take into consideration
the entire internal structure of the module and of the environment then such a purpose can be never reached.
However, an intermediate variant of taking into account partial information about their internal structure
(or to use something like semaphor variables) could be an worthy idea.



asynchronous, and for each of them different variants are known ([2], [17]). In synchronous
parallel composition, the models run in parallel and synchronize on actions from a given
set of actions. The main use of such an operation is for coupling a system with a fester
which tests for the satisfaction of a given property. Opposite to the synchronous parallel
composition is the asynchronous parallel composition, which does not assume any action
synchronization but the systems may communicate via a set of shared variables (locations).
The execution of such a system can be viewed as the interleaved execution of the components.
For examples of parallel compositions of Petri nets the reader is referred to [9], [41], [39],
[33], [42], [19] (see also the discussion at the end of the paper).

In order to avoid some annoying and totally unessential things for our purposes we assume
given two disjoint countable sets S and T, and all the nets we consider have the sets of places
and transitions included in § and T, respectively. For a finite set S¢ C S and a marking
M§ on S¢ (that is, M§ : S¢ — N) consider the set PN (S¢, M§) of all modules whose set of
places includes $¢ and whose initial marking agrees with M§ on S¢. Two modules M, and
M in this set are called compatible if Sy NS = S¢ and Ty N1y = 0.

Definition 2.4 Let My, My € PN (S, M§) be two compatible modules. The asynchronous
parallel composition of Mgy and My, denoted by Moo My, is the component-wise union of
My and My, that is:

e Moo M =(v,59, v= (%, Mo,l), and X = (S,T,F,W);

o S, T, F, W, My and | are the union of the sets of places, transitions, flow relations,
weight functions, markings and labelling functions of Mo and M, respectively.

We note that the unions of functions in Definition 2.4 are well-defined. In the case of My
we can write My = M8|53 + Mg + M(HS;H where M{ and M} are the initial markings of M
and M, respectively. The module Mg o M; is an element of PN (S¢, Mf).

To have a flexible notation we will identify a module M = (v, S¢) by its underlying net
7, whenever S¢ is clear from context; correspondingly, an e-module J = (M, R) will be
written as J = (v, R). Moreover, for vy, y1 € PN(S¢, M§) we will write yy o 7, instead of
Mg o M and we call it the composition of vy and 1 along S° or, simply, the composition
of vo and 1.

Let ePN (5S¢, M§) be the set of all e-modules whose underlying modules are in PN (S¢, Mf).
Two e-modules in this set are called compatible when their underlying modules are compat-
ible. The asynchronous parallel composition can be extended to compatible e-modules in
ePN(S5¢, M§) by

Joo Ji = (Moo Mi,RyURy).

The asynchronous parallel composition of (e-)modules in (e¢)PN(S¢ M§) is a partially
defined binary operation. It is commutative and associative whenever it is defined; that is,
xpoxy = x10xg and (rgoxy)oxe = xpo (z10x2), for all pairwise compatible (e-)modules x,
z1 and x2. Moreover, the modul v = ((S¢,0,0,0), M§,0), or (g, D) in case of e-modules, is
the unit of this operation *.

“One may consider the equivalence relation = on PN (S¢, M¢) induced by isomorphisms of labelled nets
which preserve S¢ (that is, their restrictions to S¢ is the identity on S¢) and their initial markings, and define
the asynchronous parallel composition on equivalence classes by means of any two compatible representatives
of that classes. Then, this operation is totally defined on the quotient set PN (S, M§)/= and structures it
as a monoid.



An important and intensively used method for trying to verify a system is to decompose
the system, to verify properties of individual components, and to infer from these some
properties of the system. There are many ways to decompose a system into components.
The one we consider is closely related to the asynchronous parallel composition; it is a
decomposition along a set of places. It is obvious that, given a net y and a subset of places S¢,
the decomposition along S¢ is not unique and, moreover, if we want to have some properties
of components, it is not all the time possible. For example, if we consider the net y in Figure
2.1 and S¢ = {s1}, then there is no decomposition of y into two modules each of them having
one transition and such that their asynchronous composition lead to the original net ~.
However, the decomposition based on subnets generated by subsets of transitions is indeed

ty
52 S3

to

Figure 2.1

the inverse operation of the asynchronous composition. If ¥ = (S, T, F, W) is a net and T}
is a subset of 7', by the subnet generated by T; we understand the net 31 = (51,14, Fy, Wh),
where S; = *T7, and F; and W; are the corresponding restrictions of F' and W to S; and
T1. The subnet generated by T — 17 will be called the difference of 3 and ¥, and it will
be denoted by ¥ — 3; (the set *T? N *(T — T1)® plays the role of interface places between
Y1 and ¥ — X). These concepts can be naturally extended to (labelled) marked nets. It is
clear now that the asynchronous composition of two nets vy; and v — 7 as above, along the
common set of places, leads to the net ~.

We close the section by an example of decomposition which will be used intensively in
the next section in order to exemplify process decomposition and process sample generation
(another example discussed in detail may be found in [37]). The net in Figure 2.2 is a Petri
net model of the Owicki/Lamport’s Mutex algorithm. It consists essentially of two sites:
the writer and reader site, the first one to the left, and the second one to the right, of the
dashbox in figure. The net uses three flags: the flag writer detached (s2) signals to the
reader that the writer is presently not striving to become writing, the flag reader detached
(s3) likewise signals to the writer that the reader is presently not striving to become reading,
and the flag writer involved (s1) is just the complement of writer detached (for a detailed
discussion about this net model the reader is referred to [27]).

That two sites of the net in Figure 2.2 are connected each other by means of the places
s1, sz and s3. We may separate them into two nets vy and y; by multiplying twice these
places togheter with their initial markings (Figure 2.3). Thus, we obtain two nets 7, and
71 whose asynchronous composition along {s1, s2, s3} is 7.



$1 = writer involved
s$9 = writer detached
s3 = reader detached
s4 = prepl

S5 = prep2

S = writing

s7 = producing

sg = pend2

s9 = failed

s19 = pendl

s11 = reading

S12 = using

Y0 4!

Figure 2.3

3 Process Decomposition w.r.t. Asynchronous Composition

This section addresses two main problems with respect to the asynchronous parallel com-
position of two modules My and M; with the same set of interface places:

1. What is the structure of processes of Myo M7 Can we decompose them into processes
of My and M;7 Can we get them by composing arbitrary processes of My and M7

2. Can we generate “fragments” of processes of My o M; corresponding to My or M;?

We will give to the first question a complete, and to the second one a partial, answer.

3.1 Process Decomposition

Let us consider the process 7 pictorially represented in Figure 3.1.1, of the net y from Figure
2.2. This process can be split into two parts (occurrence nets) mp and 71 as in Figure 3.1.2,
according to the decomposition of v (Figure 2.3). The initial cut of 7y generates a marking



Figure 3.1.1

of 7 with one token in s; and two tokens in s3, which is neither reachable in v nor in ~p;
similarly, the initial cut of m; generates a marking of y; with one token in each of the places
s1, $2 and s3, which is neither reachable in 7 nor in ;. However, 7y (71) can become a
process of vy (1) if we increase the initial marking of 7 (1) by one token in s; and one
in s3 (one token in s;). This fact is not a fortuitous one but it is a particular case of the
process decomposition theorem as we will see later.

First, we mention that labelled occurrence nets are particular nets whose places are la-
belled as well. Therefore, we can extend the definition of composition along a set S¢ to the
case of these nets by requiring supplementary p1(s) = po(s) for all s € S¢ (p; and py are
the corresponding labelling functions). Then, we adopt one more notation. For a Petri net
v = (%, My,l) € PN(S¢, M§) and a marking M € N°°, we denote by (y+ M) the Petri net
(3, Mo+ M,l) € PN(S¢,M§+ M). For every two compatible nets y;,v2 € PN(S¢, M§)
and every marking M € N°° we have:

(r1o72) + M) = (1 + M) o (v + M).

Theorem 3.1.1 (Process decomposition theorem)

Let vy, 71 € PN(S¢ M§) be two compatible nets. For each process m € Il(yp o 1) there are
two markings M', M" € N*°° and two processes my € I(yg+ M') and m € (1 + M") such
that m = mp o my (the composition of processes is along some set of common conditions).

Proof Let y,71 € PN(S¢ M§) be two compatible nets and m = (N, o p’) be a process
of v9 0 y1, where N = (B, E, F') (see the definition of processes in Section 1). Let

E, = {6 S E|p,(6) S Tk},

for kK = 0,1, and let C' be the set of conditions of 7w labelled by places in S¢. This set can
be partitioned into the following subsets (not necessary each of them non-empty):

Ci = CnNn°rNn°

Cin,O = {b eCn O7T|E|€0 € Ey: (beg) € F’}

Cing = {beCn°r|dey € Ey: (bye;) € F'}

00,1 = {b S C|360 € Ey,e1 € By : (eo,b), (b, 61) S F,}
01,0 = {b S C|360 € Ey,e1 € By : (el,b), (b, 60) S F,}
Cy = {bEC—COJEBO e Ey: (eo,b) EF,}

Cy = {bEC—Cl,()Eel e E;: (el,b) EF,}.
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Figure 3.1.2

In Figure 3.1.3(a) are picturially represented conditions from each of the sets defined above
(in this order).

Let mp be the subnet of m generated by Ey togheter with the set of conditions Cy, U Cyy, 14
and let m; be the subnet of m generated by E; togheter with the set of conditions C;j, U Cjy o
(Figure 3.1.3(b)). Considering the markings M’ = Mc¢, , and M" = M, ,, one can easily
verify that mo € II(yg + M’), m; € II(y1 + M"), and m = 7y o m; (the composition is along
the set B¢ = Cj, U Cin,O U Cz'n,l U 0071 U 0170 of COnditiOnS). a

The occurrence net my (71) in the theorem above will be called a process sample of m w.r.t.
7o (71). The set of all process samples of v w.r.t. v will be denoted by II(~y, o).

For the process 7 in Figure 3.1.1 we have (with the same notation as in the proof of
Theorem 3.1.1):

C = {b1,b2,b7,b10,b11,b14,b15}
Cin = @

Cinp = {b1}

Cing = {b3}

Con = {br}

Cio = {bio,bu1}

Co = {bi4,b15}

1 = 0.

7o and 7 in Figure 3.1.2 are processes of (vo + (1,0,1)) and (71 + (1,0,0)), respectively

10



-

Figure 3.1.3

(the order on the interface places is s;, s9, s3). Therefore, 7 is a process sample of 7 w.r.t.
Y0, and 7 is a process sample of © w.r.t. ;.

We will consider now the converse of Theorem 3.1.1. Let v € PN(S¢, M§), 7 a process of
7, and let C(7) be the set of all conditions of 7 labelled by places in S¢. A p-partition of
C(n) is a couple of sets (A, C(w) — A) such that:

(i) A CC(nm);
(ii) (Vb e C(m) — A)(|*°b| = 1) and (Vb e C(nm))(|*bUDbD*| =2 = be C(w) — A).
Let y9,v1 € PN(S¢ M§), mo € II(yy) and m; € II(y1). A p-composition function from mg
to m is any labelled-preserving bijection f : Ay — A; such that:
(1) (Ag,C(m) — Ap) is a p-partition of C(m), and (A1, C(m) — Ay) is a p-partition of
C(my);

f is non-branching)
Vbo,bl)( (bo) =b = |.bo U.b1| <1A |b(.) Ubﬂ < 1);

(2) (
(

(3) (f is in-out)
(
(

Vbo,b1)(f(bo) =b1 A [®bpU®h| =1 = [bjUD}| =1);
the trzple (7o, 71, f) is cycle-free)
(Abo, b1, by, 01)(f(bo) = b1 A f(bg) = by A by <y by A by <y bo)-

It is easy to see that for the processes my € II(y9 + M') and m € II(y; + M") in the
proof of Theorem 3.1.1, the identity function f on B¢ = Cj, U Cjp o U Cip1 U Cp 1 U Ch g is
a p-composition function from my to 7. Moreover, for these processes we have:

(4)
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(5) M' = M{beCod(f)H'b\zl} and M" = M{beDom(f)||'b|:1}a where Dom(f) and Cod(f)
denote the domain and the codomain of f, respectively.

When a p-composition function satisfies (5) we say that it is compatible with M' and M".

Theorem 3.1.2 (Process composition theorem)

Let 9,71 € PN(S¢, M§) be two compatible nets, M',M" € N°°, my € U(y + M') and
m € I(y1 + M"). Then, for every p-composition function f : Ay — Ay from my to m
compatible with M' and M", there is a process ) € U(y1 + M") such that:

(1) = is obtained from w1 by renaming its elements (but not the labels) °;

2) mpom, € Il(ygov1) (the composition of processes is along Ay, whereas the composition
1 Yooy g
of nets is along S°¢).

Proof Let f : Ay — A; be a function as in the theorem’s hypothesis. Rename the
elements of the process 71 such that:

— the elements z &€ A, are renamed in a distinct way from all the elements of 7g;
— each element b; € A; is renamed by by, where f(by) = b;.

Let 7] be the process such obtained. From the axiomatic definition of processes it follows
easily that my o 7} € II(yy o 71), where the composition of process is along Ay. O

Theorems 3.1.1 and 3.1.2 give a complete answer to the first question in Section 3.
Moreover, they lead to a compositional semantics of modules, as follows. For a net v €
PN(S¢ M§) define

Ou(y) = U Oy +M).
MeNS©
Consider then the process composition operator oy as suggested by the composition
theorem. Formally, let vy,v; € PN(S¢ M§) be two compatible nets. Then, for every
M',M" € N%°, wy € (v + M') and 7y € II(y; + M"), mp opmg 1 is the set of all processes
mp o w1, where the composition, whenever it is possible, is along some set Ay of conditions
such that there is a p-composition function from g to 7; compatible with M’ and M" and
whose domain is Ag. Extend then this operation, by union, to sets of processes.

Corollary 3.1.1 Let yy,71 € PN(S¢ M§) be two compatible nets. Then,

(70 © 1) = W (y0) OM§ Wy (71)-

Formally, there is a bijection ¢ : B; U E; — B} U EY such that:
(i) pi(z) = pi(p(x)), for all x € By U Ei;
(i) @ <x, yiff o(x) <51 p(y), for all w € By U Ey

(p1 and p} are the labelling functions of m and =}, respectively). In fact, this is the classical concept of
isomorphism of processes. We did not consider it yet because in Section 4.1 we will introduce a more general
concept of isomorphism — see also the concept of a (j, A)-isomorphism in the next section.
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Proof Directly from definitions, composition and decomposition theorems. O

Define now the composition operator O>pMg O Processes of compatible nets vg,71 €
PN(S¢, M§), as follows. For every M', M" € N°°, 7y € (o + M') and 7, € Il(y; + M"),
T 0> Mg ™1 1s the set of all processes my o 71, where the composition, whenever it is possible,
is along some set Ay of conditions such that there is a p-composition function from my to
71 compatible with M’ — M and M"” — M and whose domain is Ag, for some marking M
smaller than both M’ and M". Extend then this operation, by union, to sets of processes.

Corollary 3.1.2 Let yy,v1 € PN(S¢ M§) be two compatible nets. Then,

(0 ©71) = I (70) 0> mg Wi (1)

Proof For each marking M on S¢ we have:

I((v0 0 m1) + M) ({70 + M) o (11 + M))
(o + M) opgerm U (1 + M) (Corollary 3.1.1)

C () o2 mg in () (definition of Iy, and o)

Thus, Iy (v0 0 v1) € in(70) 0> mg i (11)-

Conversely, for all markings M, M’ and M" on S¢, and all processes g € ((yo+M)+M")
and 1 € II((vyy + M) + M"), if there is a p-composition function from 7y to 7; compatible
with M" and M" and whose domain is Ay, then the composition of my and m along Ay,
whenever it is possible, is a process of (yg o 1) + M. That is, IL;, () 0> Mg I, (71) C
(o). O

3.2 Process Sample Generation

Given a net y = ypo~y1, where yy,y1 € PN(S¢, M§) are compatible nets, we may ask how to
generate all the process samples of v w.r.t. 7. Of course, we may generate all the processes
of v and then split these processes as in the proof of Theorem 3.1.1. We shall describe
in the sequel an alternative method based on e-modules which allows a direct generation
of process samples. First, let us look again to the nets in Figure 3.1.2. From the my’s
point of view (in the context of ), the conditions b1y and by; have been “pumped” by the
environment (by 7). However, for these two conditions, 7, has to pay with the condition
b7 (labelled by s1). More precisely, vy gives to ; a condition labelled by s; and receives
two conditions labelled by s; and s3. This exchange of conditions can be formally described
by the ordered pair g = ((1,0,1), (1,0,1)). It says that whenever the configuration on the
interface places {s1, s9, s3} is (1,0, 1), the net y; may work (using the tokens in these places)
and can produce the configuration (1,0,1) (in this case, the produced configuration is the
same with the initial one, but this is not the case in general).

Considering the set Ry of all such pairs, we obtain an e-module (v, Ry) whose behaviour
captures the “interactive” behaviour of vy with ~;, making abstraction of the internal be-
haviour of ;. We shall prove that the set of all process samples of v w.r.t. 7y can be easily
obtained from the set of processes of (g, Ro), which is to be defined. First of all we recall
the concept of a jumping (Petri) net in a slightly different way than in [31] and [35]; this
concept is a natural generalization of the concept of an e-module by allowing more sets of
interface places.
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Definition 3.2.1 A jumping net (marked jumping net, labelled marked jumping net) is
a couple J = (v, R), where 7y is a net (marked net, labelled marked net) and R is a finite
union of sets, each of which being a binary relation on N5 for some S’ C S.

The elements of R are called jumps of J. A jump (M,M'), where M, M’ € N5 and
S' C S, is called local on S’. For technical reasons we extend jumps to the whole set S of
places of v, as follows:

MRM <& M|SIRM,|SI andM|5_51=M'|g_5/,

for all markings M, M' € N°, where S’ C S and (M|g, M’|s) is a local jump on S’
A computation step in a jumping net J = (v, R) is performed either by a transition, in
the usual way, or by a jump. That is,

M[z)M' < either z € T and M[z),M', or z € R and M RM'.

In the case R C N¥ x N% for some $’ C S, labelled marked jumping nets correspond
exactly to e-modules (with the set S’ of interface places).

Local jumps which do not affect all places of a net can occur concurrently with each
other or concurrently with transition occurrences. This is formally reflected in the following
definition of processes of jumping nets (for convenience we will adopt an inductive definition).
Let J = (v, R) be a marked jumping Petri net, ¢ a transition and r = (M, M") a local jump
on a subset S’ C S. Then:

e an elementary occurrence net associated to t is a labelled occurrence net m = (N, p)
with the properties: 7 contains only one event e labelled by ¢, W (s,t) preconditions
and W (t, s) postconditions of e labelled by s, for all s € S, and no other element;

e an elementary occurrence net associated to r is a labelled occurrence net m = (N, p)
with the properties: 7 contains only one event e labelled by r, M(s) preconditions
and M'(s) postconditions of e labelled by s, for all s € S, and no other element.
Pictorially, the event e will be drawn by a double box;

e an initial occurrence net of y is an occurrence net (N, p) which does not contain any
event and, for each s € S, it contains exactly My(s) conditions labelled by s.

Definition 3.2.2 Let J = (v,R) be a marked jumping net. The set of processes of J,
denoted by T1(J), is the smallest set with the properties:

(1) TI(J) contains all the initial occurrence nets associated to J ;

(2) if my € I(T) and o is an elementary occurrence net associated to a transition t such
that °mo C 77, then the composition of m1 and m along °me, whenever it is possible, is

in I(J);

(3) if m € II(J) and my is an elementary occurrence net associated to a local jump r =
(M, M") on a subset S' of places such that |7$ Ny (s)| = M(s) for all s € S', then
the composition of w1 and o along °me, whenever it is possible, is in II(T).

In cases (2) and (3) we say that m is extended (to the right) by .
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It is clear that for every = € II(J) there is at least a sequence mg, 7y, ..., T, = 7, where
7o is an initial occurrence net and ;1 can be constructed from 7; as described in Definition
3.2.2, for all 0 <4 < m — 1. Processes of labelled jumping nets are obtained as for labelled
nets, by relabelling the events associated to transitions.

Every net can be viewed as a jumping net by taking the empty set as the set of jumps.
Consequently, processes of nets are particular cases of processes of jumping nets. That is,
II(y) C II(J), for every jumping net J = (7, R). Moreover, the Definition 3.2.2 leads also
to the inductive definition of processes of nets ([5]).

Example 3.2.1 Let Jy = (v, Ro) and J1 = (71, R1), where vo and 1 are the nets in
Figure 2.2, and Ry and Ry are relations on N%° containing ro and v, = ((0,1,1),(1,0,1)),
respectively (S¢ = {s1, 2,53} and r¢ is the pair given at the beginning of this section). Then,
mo (m1) in Figure 8.2.1 is a process of Jo (J1).

Ty .

Figure 3.2.1

Now let us turn our attention to the generation of process samples by jumping nets. First
let us note that a subnet y; of a net v may nduce some jumps for the net v —~;. Moreover,
it may induce the same jump at different markings of . If the jumps induced by 7; do not
depend on the internal configuration of 7;, but just on the marking on the interface places,
then v is called y;-context free.

Definition 3.2.3 Let vy,v1 € PN(S¢, M§) be two compatible nets, v = vy o y1, and let M
be a reachable marking in -y.
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(1) A jump (M¢,M°) on S¢ is induced by v at M in vy if there is a marking M € [My)~
such that:

(i) M|sc = M€ and M|sc = M*;
(ii) M is reachable from M only by occurrences of transitions in 1, but at least by
one occurrence (and so M|53 = M|56)

(2) v is called y;-context free if for every jump (M¢,M") induced by y, and for every
reachable marking M in vy, if M|ge = M€ then vy can induce (M¢, M°) at M.

It can be easily verified that the net y in Figure 2.2 is both ;- and y;-context free, v
and y; being the nets in Figure 2.3.

Let J = (v, R) be a jumping net. For each process m of J we define a new occurrence
net by removing all the events labelled by jumps (and the corresponding arcs). Let II'(7)
be the set of all these occurrence nets. The occurrence nets in Figure 3.1.2 are obtained,
as described above, from the processes in Figure 3.2.1. We note that for every J = (v, R),
II(y) € I'(T).

Theorem 3.2.1 (Process sample generation theorem)
Let v9,71 € PN(S¢, M§) be two compatible nets, and v = o o y1. If v is y1-context free
then TI(~y,v0) = '(J), where J = (y0, Ro) and Ry is the set of jumps induced by vy in 7.

Proof Let m be a process of v and m,..., 7, = 7 be an inductive definition of it. Define
a sequence of occurrence nets 7}, ..., m, = 7', as follows:
o
- 71'1 — 77]_7
— assume 77, ..., 7 have been defined, for i < n. If m;4; is obtained by extending m; to

the right by an event without preconditions and postconditions labelled by elements
in S, then extend 7} by the same event and in the same way; let m},; be the result.

If m;y1 is obtained by extending m; to the right by an event with preconditions or
postconditions labelled by elements in S¢, then extend «, by the same event and in
the same way, and relabel this event by the jump (M€, M°), where M¢ is the marking
on S¢ induced by (7!)° and M* is the marking on S¢ produced by the occurrence of
this event; let m;,; be the result.

As we can see, 7, is obtained from m; by relabelling all the events associated to transitions
in y; which induce jumps on §¢, for all s.

The process m can be decomposed along the set B¢ of conditions as in Theorem 3.1.2.
Let 1 = o 8. We have a € II(y,7p). Similarly, we can decompose 7’ along B¢ into '
and 3, but with the difference that all the events labelled by jumps that are connected to
some conditions in B¢, and the corresponding connecting arcs, are also kept in o' (the other
conditions connected to such events, and the corresponding arcs, are removed). Assume that
o/ corresponds to g, in the sense above. Then, if we remove from o the events labelled
by jumps and the corresponding arcs, we get . Moreover, o € II(J), which shows that
acll'(TJ).

Conversely, let m be a process of J. There is an inductive definition of =,

Mlyenn, Ty =T,

16



such that, for each i, the occurrence net m obtained from 7; by removing all the events
labelled by jumps (and the corresponding arcs) is an element of II'(J). Define now a
sequence of processes of v,

Tly-evy Tp,

such that, for each i, T; = 7, o 7} for some 7/, and show that =} is a process samples of y
w.r.t. 70. We will obtain in this way that 7’ is a process sample of v w.r.t. .

71 is an initial occurrence net of J and 7] = w. Extend 7 to an initial occurrence net 7
of v. Clearly, 71 = 7} o} for some 7!/, and 7} is a process samples of v w.r.t. .

Assume we have defined 71,...,7;, for 1 <7 < n. There are two cases to be considered.

Case 1: T4 is obtained by extending m; to the right by an elementary occurrence net
associated to a transition ¢ in y. Extend to the right the process 7; by the same elementary
occurrence net associated to ¢, and in the same way; let 7,41 be the result. Then, it is easy
to see that m; = m; , om} , for some 77, and 7, is a process samples of y w.r.t. .

Case 2: w41 is obtained by extending m; to the right by an elementary occurrence net
associated to a jump r = (M€, M°). Consider the marking M; induced by ;. Since 7y is ;-
context free it follows that «; can induce the jump r at the marking M;, and let w =1 - - - ¢,
be a nonempty sequence of transitions of y; inducing this jump (note that for every s € S¢,
M(s) = M*“(s)). Extend recursively to the right the process T; by elementary occurrence
nets associated to ti,...,%, (in this order), with the next remarks:

— the elementary occurrence net associated to ¢; has the same preconditions labelled by
places in S¢ as the elementary occurence net associated to r;

— the elementary occurrence net associated to t,, has the same postconditions labelled
by places in S¢ as the elementary occurence net associated to r.

The process 7;1, obtained in this way verifies 7; 41 = n}, om} | for some 7}, and =7, is
a process samples of v w.r.t. vp. O

Theorem 3.2.1 gives us a specification tool for all the process samples of a net v w.r.t. a
subnet y; generated by a subset of transitions, in case that v is y;-context free.

The context freeness property with respect to a subnet is a strong property. “Very simple”
nets do not have this property, as the net y is Figure 3.2.2 is. However, there are important

71 induces the jump ((2,0),(2,1)) 71 cannot induce the jump ((2,0),(2,1))
at (2,0) on {s,s2} at (2,0) on {s1,s2}

Figure 3.2.2

classes of nets with this property. For example, the net version of the Owicki-Lamport’s
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Mutex algorithm, which we already discussed, has this property. The difference between
this net and the net in Figure 3.2.2 can be expressed as follows.

Let 9,71 € PN(S¢ M§) be two compatible nets, and v = 7y o ;. For a marking M¢ on
S¢ define the set

miny (1, M¢) = {M]|s,|M € [Mo)y N Mlge =M A
(VM' € [Mo),)(M'|se = M® = —~(M' < M))}.

Then, it is easily seen that 7y is y;-context free iff whenever v, can induce a jump (M€, MC)
then for every marking M € min. (v, M€) there is a marking M’ reachable from M in v,
and which agrees with M on S¢ (in other words, the jump (M€, M) can be induced at
every marking in min, (1, M¢)).

Now, we can see that the net v in Figure 3.2.2 induces the jump ((2,0),(2,1)), but it
can not induce this jump at (2,0,0) € min,(vy1,(2,0)). In contrast, the net in Figure 2.2
satisfies the criterion above (we can easily check that due to the fact that the subnets -y
and 7, have very particular internal markings).

In [31] it has been proved that jumping nets are strictly more powerful than nets from
the interleaving semantics point of view, even if finite sets of jumps are considered. Clearly,
this result holds true for the case of process semantics as well. In some particular cases, as
we shall see below, jumping nets can be simulated by nets.

Definition 3.2.4 Let S be a finite non-empty set and R be a finite union of sets, each of
which being a binary relation on N’ for some set ' C S. We say that R is A-finite if
there is a finite set V' of vectors with integer components such that for every (M, M') € R
we have M' — M € V.

All jumping nets obtained by decomposing safe nets are A-finite.

Definition 3.2.5 Let J be a jumping net. Its set of jumps R is called complete if for
every reachable marking M in v and for every jump (My, M) € R, if (M1, Ms) is local on
S" C S and M|gs > M then there is a marking M' € N5 such that (M|s',M") € R and
M' — M|s = My — M.

In order to compare processes of jumping nets with processes of nets we need the concept
of (4, \)-isomorphism.

Definition 3.2.6 A process m; = (Ny,p1) of a labelled jumping net is (j, A)-isomorphic to
a process o = (No,p2) of a labelled net if there is a bijection ¢ : By U Ey — By U Ey such
that:

(1) p1(z) = pa(e(x)) for all x € By and for all © € Ey with the property that pi(x) is not
a jump; if p1(x) is a jump then p2(p(z)) is A;
)

(2) © <y y iff 9(x) <ay ly) for all ¢,y € By U EL.

This notion of (j, \)-isomorphism of processes is a slight generalization of the classical one
(see the footnote in Section 3.1): it is an isomorphism of occurrence nets preserving all the
condition-labels and all the non-jump event-labels; the events labelled by jumps are mapped
into events labelled by A (this justifies our terminology of (4, A)-isomorphism).

18



Theorem 3.2.2 Let J = (v, R) be a labelled marked jumping net. If R is A-finite and com-
plete then there is a labelled marked net v such that each process of J is (j, A)-isomorphic
to a process of v, and vice-versa.

Proof Since R is A-finite, there are finitely many vectors Vi,...,Vy on Z, k > 1, as in
Definition 3.2.4. Consider

Uy ={M|3M": (M,M"Ye R A M' — M =V;},

and let min(U;) the set of minimal elements of Uj;, for all ¢.

It is clear that min(U;) is finite, and for each M € min(U;) there is an unique M’ such
that (M,M') € Rand M' — M =V;.

To each 7 and M € min(U;) we associate a transition t; 5y such that W'(s,t; pr) = M(s)
and W' (t; m,s) = M'(s), for all places s € S" (M’ is as above and S’ is the subset of places
which the jump (M, M") is considered for). Moreover, t; p; will be labelled by .

Let o' = (X', My,1"), where:

- Y= (SaTlaFlawl);

-T'=TU {ti,M|1 <i<k, MEe€ mzn(UZ)}7

UI'(t) is I(t) for all t € T, and X otherwise;
— F" and W' are the extensions of F' and W as we sketched above.

J and v/ have the same initial marking. Assume now that M is a reachable marking in
both J and +'. Counsider the following two cases.

Case 1: M][t),M', for some transition ¢t € 7. From the definition of 4" we have M][t),, M’
too, and conversely.

Case 2: M RM' by a local local jump (M|g, M'|g:) on S" C S. Then, there is a jump

(M, Ms) on S’ such that My € min(U;) and M'|gr — M|sr = My — My, for some i. Conse-

quently, the transition #; 5, may occur at M and will yield M'; that is, M[t; ar, ) M'.
Conversely, if M[t; ar, ), M’ for some ¢ and M, then there are My and S’ C S such that

(My, M>) is a local jump on S’. Moreover, M'|sr — M|sr = My — M;. As the set of jumps

is complete, it follows that (M|g, M'|s) is a local jump on S" and M R M’ by this jump.
Using the above facts one can easily complete the proof of the theorem. O

4 Some Applications

In this section we will present some applications of the results developed in Section 3.1. We
will discuss first a technique of replacement and then some applications of it in proving the
correctness of Petri net structural (modular) transformations. Finally, a methodology for
validation of Petri net models, based on partially ordered runs, is proposed.
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4.1 Concurrent Behaviour and Replacements

Many transformations of Petri nets may be simply described by “replace the subnet y;
of v by the net «5”; that means the subnet v; will be removed from v and the net v, is
inserted in its place (denote the result by y[y1 < 72]). When 7, is “more detailed” than
v1, this operation is usually called a refinement; otherwise it is called an abstraction. Both
of them are particular cases of replacement. One of the main problem in connection with
replacement is the following: find some equivalence relations on nets, ~; and =, such that
Y1 &1 2 implies v &9 y[y1 < 72]. In literature, mostly refinement was studied. Various
techniques and a large number of behaviour and equivalence relations preserving refinement
(as above) have been proposed ([38], [29], [23], [40], [13], [18], [3], [4], [41], [6], [33])-

In this section we consider a technique of replacement based on subnets generated by
subsets of transitions. That is, only such subnets will be replaced. As a conclusion, the
replacement operation can be simply expressed by

Yl < el = (v — 1) ° e,

where (7 —71),72 € PN(S¢ M§) are compatible nets, and S¢ is the set of interface places
between v — 71 and ;. The equivalence relations we consider are based on the concepts of
isomorphism of processes and partial word.

Definition 4.1.1 Let m; = (N1,p1) and me = (Ng,p2) be processes (not necessary of the
same net). m and wo are called isomorphic, abbreviated m =2 wo, if there is a bijection
w: By UE] — By U Ey such that:

(1) p1(z) = p2(p(x)), for all x € Ey U{z € Bi|pi(z) € S1NS2 V pa(p(x)) € S1 N Sa};

As we can see our notion of isomorphism of processes is a generalization of the classical
one (see the footnote in Section 3.1): it is an isomorphism of occurrence nets preserving
all the condition-labels that the underlying nets have in common, and all the event-labels.
It does not yield an equivalence relation (transitivity is not assured, as the processes in
Figure 4.1.1 shows us: m & g, w9 = w3 but m; and 73 are not isomorphic), but this is not
important for the results we will obtain further.

m m s :
Figure 4.1.1

The reason for choosing such a notion of isomorphism can be explained shortly as follows
(it will become very clear in Section 4.2 where some Petri net transformations are discussed).
Generally, we are interested in replacing a subnet 1, of a net 7, by a net 5 which has some
structural properties that y; does not have. Moreover, we want to preserve the behaviour of
the net 7 (that is, we want to have v & [y, < 2], for some equivalence relation ). But,
for many transformations, s introduces new places or transitions which are copies of some
places and transitions of -1, having in common with v; only a subset of places. Usually,
copies of a transition are labelled as the transition is labelled; places are not labelled but it
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is not important at all whether we use a place s or a copy of it. In such a case, the notion
of isomorphism we adopted seems to be suitable enough.

In order to define the partial word associated to a process we have to derive from processes
another structure by recording only the events which are not labelled by . Let # = (N, p)
be a process of a net y. An abstraction of 7 is any labelled partially ordered set (E', A,p'),
where 6:

- E'={e€ Elp(e) # A};

— (e,e’) € A iff there is a path in 7 leading from e to €';

- =ple.

The equivalence class with respect to isomorphism (of labelled partialy ordered sets 7)
induced by (E', A,p'), denoted by PW (), is called the partial word associated to m. The
set of all partial words of v is denoted by PW (7).

Definition 4.1.2

(1) Two nets vy, and 7y are called process equivalent, abbreviated v, ~p yo, if for each
process w1 of y1 there is a process o of yo such that T = wo, and vice versa.

(2) Two nets vy, and -2 are called partial word equivalent, abbreviated vi ~pw 2, if
PW(n) = PW(72).

Thus, we have obtained two binary relations on nets, ~p (process equivalence) and ~pyy
(partial word equivalence). The relation ~=pyy is always an equivalence relation, but not
necessarily ~p; however, on sets A C PN (5S¢, M§) of pairwise compatible nets it is an
equivalence too. From this reason we will refer to both relations as equivalence relation;
this one does not induce “unwanted” consequences due to the fact that, whenever it is
necessary, we will assume that the nets to be considered are pairwise compatible.

The relations ~p and ~py will play the role of ~, from the beginning of this section;
the substitutes for ~; are just to be defined.

From an intuitive point of view, partial words of y[y; < 72| can be obtained from ab-
stractions of processes of 7 by removing from them abstractions of processes of v;, and
“inserting” back isomorphic abstractions of processes of «5. However, the insertion oper-
ation needs some “sockets” and these will be modelled by conditions labelled by interface
places. Thus, we introduce the concept of an S¢abstraction of a process as follows. Let
v be a net, S¢ C 5, and 7 a process of v. An S%-abstraction of 7 is any labelled partially
ordered set (B’ U E', A,p), where:

~ B'C{beBlp(b) € S¢ A (b =0 V |b*| = 0)}, and E' = {e € Elp(e) # A};

A labelled partially ordered set is a triple (X, <,p), where (X, <) is a partially ordered set and p is a
mapping from X into a set V.

"Two labelled partially ordered sets (Xi,<i,pi), © = 1,2, are called isomorphic if there is a bijection
f: X1 — Xs such that:

(i) (Vr,yeXi)(z<iy & f(@) <2 f(y)
(i) (Va € X1)(p1(z) = p2(f(x)))-
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— (z,y) € A iff there is a path in 7 leading from z to y;
- p' =plpue.

The equivalence class with respect to isomorphism induced by (B’ U E', A,p'), denoted by
S¢-PW (), is called the S-partial word associated to w. The class of all S¢-partial words
of v is denoted by S*-PW (7).

Definition 4.1.3 Let v,y € PN(S¢, M§).

(1) The nets vy, and 2 are called m-process equivalent, abbreviated y1 ~pp Yo, if for every
marking M on S¢, (y1 + M) =p (y2 + M).

(2) The nets v, and vy are called m-partial word equivalent, abbreviated v =, pw V2, if
for every marking M on S¢, S¢-PW (y1 + M)=S°-PW (y2 + M).

This definition says that no matter how the initial marking on S€ is increased that two
nets have the same processes (up to an isomorphism) or the same S¢partial words. It is
easy to see that =,,py is an equivalence relation on nets, but not necessarily =,,p; the
same remark as for process equivalence holds true in this case as well.

In order to simplify the writing we will use, in what follows, ~,, to denote one of the
relations ~,,p or ~,pw, and = to denote ~p or ~py,. Moreover, whenever we use both
R, and =, and =, denotes ~,,p (~n,pw), then ~ will denote ~p (=pw).

c M . .
Let M € N°° and ~,, be the binary relation

M .
Y Rm Y2 M (v + M) =y (2 + M).

That is, 1 o v iff (y1 + M) = (2 + M') for all M’ € N°° with M < M'.
Directly from definitions we obtain:

Proposition 4.1.1

(1) =~ C

2

)

A=

(2) o C %o C % for all M, M' € NS° with M < M'.

It is worth to mention that, for every two nets v,y € PN(S¢, M), every s € S¢ and
51,82 € 8 — (S1US2), 11 ~m Y2 implies 7] =, 75, where 7{ (74) is obtained from vy (72)
replacing s by s (s2).

The next theorem represents the main result of this section.

Theorem 4.1.1 Let vy, v1,v2 € PN (S M§). If vy is compatible with both vy, and 2, then
Y1 R Y2 implies o © 71 = o © V2.

Proof Let vy, 71 and v, as in theorem. Consider the next two cases.

Case 1: 1 =pp 2. We will show that for each process 7w of v = 7y o 7, there is a process
7' of ¥ = 4y o 2 such that m and 7’ are isomorphic. Let 7 be a process of . From
the process decomposition theorem it follows that there are two markings M’', M" € N*°
and two processes mg € I(yo + M') and m; € II(y; + M") such that 7 = m o m; (the
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composition of processes is along a set B¢ of common conditions — see the proof of the
process decomposition theorem).

By hypothesis, there is a process m € Il(y2 + M") such that m = m. Let f be an

isomorphism from 7 to me. The identity function tpc on B¢ is a p-composition function
from my to m; compatible with M’ and M". Clearly, f|pc o tpe is a p-composition function
from 7y to mg compatible with M’ and M"”. Then, by the process composition theorem it
follows that there is a process 75 € II(y2 +M"), isomorphic to 7y and such that 7’ = mg o7
is a process of vy o y2. Moreover, it is easily seen that m = mpom X mponwh = 7',
Case 2: 1 =mpw 7e. This case is quite similar to the previous one and so we will give
only the main idea. Let m be a process of yy o ;. Split 7 as in the first case and consider
ap and a1 two S%abstractions associated to my and 71, respectively, such that the only
conditions these abstractions contain are exactly those from B¢ By hyphotesis, there is an
SC¢-abstraction as of 79, isomorphic to «;. Hence, there is a process mo of 2 such that as
is an S¢abstraction of it. Compose 7y and 7 along B¢ as in the first case and let 7’ be
the result (clearly, we may assume that my and 7o have in common exactly the conditions
in B¢). One can easily prove that 7' € II(y; o y2) and PW (w) = PW (x'). O

Corollary 4.1.1 Let yy,v1,v2 € PN(S¢ M§). If vy is compatible with both i and 2, then
Y1 R Y2 tmplies yp o 1 Ry Yo © yo. Therefore, =p,p and =,pw are congruences on sets
A C PN(S¢ M§) of pairwise compatible nets, w.r.t. the composition along S€.

Proof Assume vy; =, 2. From Proposition 4.1.1(2) it follows that
(71 + M) = (72 + M),
and by Theorem 4.1.1 we have
(Yo + M) o (v1 + M) = (vo + M) o (2 + M),

for all M € N°°. Hence,

(voom)+M) = ((vo1)+ M)

for all M € NSC, which shows that vy o y1 =m 70 © 72.

The relations ~,,p and =, py are equivalences on sets A C PN(S¢ M§) of pairwise
compatible nets. In the view of commutativity and of the first part of this corollary we
obtain that these relations are congruences on such sets A. O

Corollary 4.1.2 Let v; be a subnet of a net v, S¢ be the set of interface places between
v —1 and 1, and let M§ be the restriction of the initial marking of vy to the set S¢. Then,
for every net vo € PN(S{, M§) compatible with v — y1, y1 =m y2 implies y = y[y1 < 72].

Proof Let vy =y —1. Then, v, 71,72 € PN(S{, M§), o is compatible with both y; and
Y2, ¥ = Yo 71, and y[y1 < ¥2] = o 02. The corollary follows now from Theorem 4.1.1. O

From a practical point of view we are interested in Corollary 4.1.2. The difficulty in using
this corollary cousists in the fact that we have to decide whether or not ; ~,, y2; that is,
we have to decide whether or not (y; + M) ~ (y2 + M) for all M € N°°. A favourable
particular case would be when a marking M € N°° exists such that the processes of the
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nets (y + M'), where M’ € N°° and —=(M' < M), can be reduced to processes of (y + M).
We will discuss such a case in what follows, but first let us introduce a few concepts.

If 7 = (N,p) is a labelled occurrence net and C is a subset of °7°, where °7° = °7 N 7°,
then we will denote by (m — C') the labelled occurrence net obtained from 7 by removing all
the conditions in C.

Definition 4.1.4 Let vy € PN(S¢ M§), My and My markings on S¢, m € Il(y+ M), and
o € I(y + Ms). We say that w1 and wy are almost isomorphic, abbreviated m =, ma, if
there are C1 C py H(S€) N°nS and Cy C py H(S€) N°nS such that (1) — Cy) = (19 — Cy).

This definition wants to say that if we remove from 7; and 79 some conditions without
predecessors and succesors and labelled by places in S¢, then we get two isomorphic labelled
occurrence nets.

Lemma 4.1.1 Let v € PN(S¢ M§), My and My markings on S¢, m € II(y + M), and
my € U(y + Mz). Then, m =g w3 iff (m — (py*(S) N °7)) = (m2 — (p3 ' (S°) N °75)).

Proof The “if” part follows directly from definitions. As for the “only if” part let us
suppose that m; =, 7. Then, there is C; C pl_l(SC) N°ny and Cy C pz_l(SC) N °7w§ such
that (m — C1) = (w2 — Cs); let ¢ be an isomorphism between these two structures. The
definition of isomorphism leads to the fact that

b e pH(SY) NO(m — C1)° iff p(b) € py H(S€) N °(my — Cy)°.

Moreover, p1(b) = p2(p(b)). Therefore,

(w1 = C1) = (py 1(8%) N°(m1 — C1)°) = (w2 — C2) — (p3 1 (S) N °(m2 — C2)°)
by the corresponding restriction of ¢, let it ¢'. Hence,

w1 — (CLU (pr ' (S°) N°(m — C1)°)) = ma — (Co U (py ' (S) N °(mg — C2)°))
by ¢'. As to accomplish the proof we have to remark that

Ci U (p; ' (S°) N °(m; — Ci)°) = p; 1 (S°) N °xy,

fori=1,2. O

Definition 4.1.5 Let v € PN(S¢,M§) and M € N%°. We say that vy is process stable
w.r.t. M if for every marking M’ € N°° with —(M' < M) we have:

— for each process ' of (v + M') there is a process © of (v + M) such that T =, 7';
— vice versa.

As an example, the nets in Figure 4.2.3(a)(b) are process stable w.r.t. M = (0,...,0),
where S¢ = {s1,...,s;}. We have:

Theorem 4.1.2 Let y1,772 € PN(S¢ M§) be two process stable nets w.r.t. a marking M
on S¢. If (v + M) = (2 + M) then 71 = V2.
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Proof We will prove the proposition only in the case ~=~p; the other one can be easily
obtained from this one. Let M’ € N°°. We have to show that (y, + M') = (y2 + M’).
Consider the next two cases.

Case 1: M' < M. For each process 7} of (y1 + M') there is a process m of (y1 + M)
and C; C py'(S°) Ne°n? such that 7 = m; — Cy. From hypothesis it follows that there is a
process 7o of (y2+ M) such that m; = 7. Let ¢ be the isomorphism between these processes
and let Cy = ¢(C1) and ¢’ = ¢|(, —¢,)ug,- It is not difficult to see that m = my — Cy is a
process of (y2 + M'), and 7] and 7% are isomorphic by ¢'.

Case 2: —~(M' < M). Let m} a process of (71 + M'). The net 7, is process stable w.r.t. M
and therefore there is a process m of (1 + M) such that 7} =, 7. Moreover, by Lemma
2.2.1 we have

(m1 = (1) 1(S9) N °(x1)?)) = (m1 — (pr ' (S9) N°7));
let 1, be an isomorphism between these two structures. From hypothesis it follows that

there is a process mo of (72 + M) such that m = 79, and let ¢ be an isomorphism between
these processes. It is clear that

py (89 N o5 = p(py ' (S€) N °nf),
and
(m1 = (py 1(89) N°nY)) = (m2 — (p3 ' (S°) N °73))
by ¢', which is the corresponding restriction of p. Using the fact that v, is process stable
w.r.t. M we get a process ), of (72 + M') such that mo 2, 7). Lemma 4.1.1 leads to

(m2 = (p ' (S°) N °73)) = (m — ((p2) ' (5) N°(m5)°)),

and let 12 be an isomorphism between these structures. Then, 150 01); is an isomorphism
between (7} — ((p}) " 1(S¢) N°(x])°)) and (7} — ((ph) 1(S¢) N°(74)°)), and it is straightfor-
ward to see that this isomorphism can be extended to an isomorphism between 7} and 7b.
Therefore, 7} = 7. O

4.2 Proving Correctness of Petri Net Structural Transformations

The Corollary and Theorem 4.1.2 may be used to prove the correctness of some Petri net
transformations. Their efficiency depends directly on the easiness of deciding the equiv-
alences =~,,p and =, pw. Intuitively, the simpler are ; and -y, the easier we can check
Y1 Rmp Y2 and 1 =ppw Y2 and, therefore, the more efficient we can apply Corollary 4.1.2
and Theorem 4.1.2. In what follows we will exemplify our discussion by considering some
transformations aimed to produce normal forms of Petri nets. As we will see, our proofs are
very short and elegant in comparison with the original proofs of correctness mainly based
on ad hoc methods (compare for example the proofs in [24], which takes many journal pages
and uses techniques of graph colouring, with our proofs of Theorem 4.2.1 and 4.2.2).

Recall first that processes of Petri nets can be defined inductively in terms of composition
of initial occurrence nets and elementary occurrence nets associated to transitions (Definition
3.2.2, for the case of an empty set of jumps).

According to [24], a labelled marked Petri net is called normalized if the weight function
and the initial marking take values into {0,1}. In [24] it was shown that every A-free labelled
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marked Petri net (that is, A cannot be a label) is partial word equivalent with a normal-
ized one. Moreover an algorithm to transform such a net into an equivalent normalized
one, was proposed. The algorithm works in two main steps, called Transformation-A
and Transformation-B. In the first one the weight function, and in the second the initial
marking, is processed. Also the initial marking is needed to be processed in the first step.
The solution proposed for processing the initial marking was to add new places and transi-
tions in order to “simulate” it. This fact led to an increasing almost double of the size (in
terms of places, transitions, and arcs) of the produced net. In [32] has been pointed out that
the normalization algorithm can be also applied to labelled nets and, further, in [33] has
been noted that the normalization preserves the processes as well if one consider the notion
of isomorphism we already adopted. Moreover, in [36] another solution for processing the
initial marking was proposed. It counsists of a distribution of the initial marking into the
old places. No place and transition is needed more. The size of the produced net is to the
half reduced. Therefore, we will describe the normalization algorithm taking into account
the solution proposed in [36] for processing the initial marking.

Let v = (X, My,!) be a net, S; C S, and M be a marking of v. We say that M is uniformly
distributed over Sy if |M(s1) — M (s2)| < 1 for all s1,s2 € S;. Now, using the replacement
operation we can describe the normalization algorithm as follows.

Transformation-A: Let v = (X, My,!) be a net and ny, = maz{W (s,t), W(t,s)|t € T},

for all s € S. Replace recursively the subnets v; generated by Ts = ®*s®, where s is a place
with ng > 1, by 7. defined as follows:

- 7; = (Efan, ll)a Z; = (ngTs,’FS,’WSI)’

CRA]

S! = (S5 —{s})UC(s), where C(s) = {st,...,s™} is a set of ns new places (copies of
the place s);

— T} := Ujeege C(t), where C(t) = {ta,B|A,B C C(s) N |A| =W (s,t) A |B|=W(t,s)}
is a set of new transitions (copies of the transition t), for each t € *s®;

— F':= F| UF,, where:
F, = t
t

{(s',ta,B)tapeC
{(tA,B,8')|tAyB eC
Fy, = {(Sl,tAyB)|tAyBEC
{(tA,B,8')|tAyB eC

te®s® Ns'#s N (d,t) e FIu
te®s* Ns'#s A (t,s) e F}
N s e AU
N s € B},

)
)

A~ N SN~

A
A
)
)

and C(*s®) is the union-extension of C(-) to the set ®s°;

— W/ is given by:

Wis',tap) = W(s',t) for all (s',t4 ) € F1,
Wi(tas,s') = WI(ts') for all (tas,s') € Fi,
WI(f) = 1 forall f € Fy;

— M;|¢(s) is an arbitrary but fixed uniformly distributed marking over C(s) such that
Mo(s) = Xyecs) Mg(s), and My(s") :== Mo(s') for all s" € S5 — {s};
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Figure 4.2.1

— lg(tA,B) = I(t) for all ta,B € Té.
This transformation is exemplified in Figure 4.2.1.

Theorem 4.2.1 ([36])
The net v yielded by Transformation-A on the input v satisfies v ~p 7.

Proof In the view of Corollary 4.1.2 we have to prove that v, ~,,p 7., for all s with
ng > 1. To prove this it is enough to show that, for every marking M on the interface
places, we have:

— each initial occurrence net of (s + M) is isomorphic with each initial occurrence net
of (75 + M);

— each elementary occurrence net of (y, + M) associated to a transition ¢ is isomorphic
with each elementary occurrence net of (v, + M) associated to any copy of ¢;

— if m and 7' are isomorphic processes of (vs + M) and (v, + M), respectively, and the
process 7 is extended by an elementary occurrence net associated to a transition ¢,
then 7’ can be extended by an elementary occurrence net associated to a copy of ¢
and, moreover, the processes obtained in this way are isomorphic. Vice versa, if 7’ is
extended by an elementary occurrence net associated to a copy of a transition ¢, then
7 can be extended by an elementary occurrence net associated to ¢ and, moreover, the
processes obtained in this way are isomorphic.

But these facts follow directly from the definition of .. O

Transformation-B: Let v = (X, My,!) be a net such that W (f) =1 for all f € F. Let
mg = My(s), for all s € S. Replace recursively the subnets v, generated by T = *s®, where
s is a place with my > 1, by 7. defined as follows:

- 7; = (Efan, ll)a Z; = (ngTs,’FS,’WSI)’

CRA]

~ §L = (S5 — {s}) UC(s), where C(s) = {s',...,s™s} is a set of new places (copies of
the place s);
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T! := Uycese C(t), where C(t) = {t',..., 1™} is a set of new transitions (copies of the
transition t), for each ¢t € *s°®;

Fs, = I} U F;, where:

o= {(, )t eT! A seS A (st eFIU
{#, " eT! N s'eSE A (t,5) € F},

F, = {8t eT! A sseC(s) A (s,t) € FIU
{#, O eT! N ste€C(s) A (t,s) € F;

WI(f)=1forall f € Fl;
M!(s") =1 for all 1 <i < my, and M!(s') := My(s') for all s' € S5 — {s};
— I"(t") = I(t) for all t' € T".

This transformation is exemplified in Figure 4.2.2 for the case of the place s;. Clearly, the
net yielded by Transformation-B is normalized.

Figure 4.2.2

Theorem 4.2.2 ([24])
The net v yielded by Transformation-B on the input v satisfies v ~p 7'.

Proof Similar arguments as those in the proof of the theorem above works in this case
too. O

The above two theorems assure the correctness of the normalization algorithm.

In [28] a systematic investigation of graph theoretic properties of Petri nets within the
framework of language theory was initiated. In other words, various subclasses of Petri nets
were introduced by imposing various restrictions on the in- and out- degree of nodes in the
graph of the underlying net structure. Further these restrictions were refined in [32] by
considering (n,m)-transition restricted Petri nets as being Petri nets for which the weight
function takes values in {0,1} and 1 < |*¢| <n and 1 < [t*| < m for all transitions ¢. Thus,
interesting hierarchies of Petri net languages were obtained, and in the case of A-labelled
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Petri nets, the normal form was improved with respect to the finite transition sequence
behaviour. More precisely, it was shown that every A-labelled Petri net is equivalent to
a (2,2)-transition restricted net (with respect to the finite transition sequence behaviour).
This result was extended in [34] by showing that this new normal form, called the super-
normal form, preserves the partial words but not the processes. We will give here short
proofs of these results. Let us recall first the basic transformations.

Let v be a labelled net. In the view of the results above we may assume that v is
normalized ([32], [34]). Now we have to do two basic transformations on 7.

Transformation-C: Let 7 be a normalized net. Replace recursively the subnets ;
generated by ¢, where ¢ is a transition such that |*t| = 0 or |¢t*| = 0, by v = (X}, M{,1})
defined as follows:

— if 3 is the net in Figure 4.2.3(a) then X} is the net in Figure 4.2.3(b);

— if 3 is the net in Figure 4.2.3(c) then X is the net in Figure 4.2.3(d);

the initial marking of «; on the places si,..., s is the same as the initial marking of
v on these places;

the labeling is that specified in diagrams.

(b)

(d)
Figure 4.2.3

It is clear that the net 4/ yielded by Transformation-C is normalized and satisfies |*t| > 1
and |t*| > 1 for all transitions ¢.

Theorem 4.2.3 ([34])
The net ' yielded by Transformation-C on the input v satisfies v ~pw 7 .

Proof In the view of Corollary 4.1.2 we have to prove that v, ~p,pw 7, for all ¢ with the
property |*t| = 0 or |[¢*| = 0. But this job is as simple as minute it is, and therefore it is
omitted (for the nets in Figure 4.2.3(a)(b) we may use Theorem 4.1.2). O

Transformation-D: Let v be a normalized net v satisfying |*¢| > 1 and [t*| > 1 for all
t € T. Replace recursively the subnets y; generated by ¢, where ¢ is a transition such that
|*t| > 3 or [t*] > 3, by v} as given in Figure 4.2.4, but with the next remarks:
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— in the case n = 1 or n = 2 the places s; or s; and sy respectively are directly connected
to t";

— in the case m = 1 or m = 2 the only successors of t" are sp+1 or spy1 and Spy2
respectively;

— the initial marking of +; on the places in S is the same as the initial marking of v on
these places, and it is 0 for the other places;

— the labeling is that specified in diagram

(we explicitly mention that exactly one transition in the net in Figure 4.2.4 is labelled by a.
Moreover, it is assumed that *t = {s1,...,5,}, t* = {Snt1,---»Sntm}> S1r---1 5 4m_3 are
new places, and ¢, ..., "™ 2 are new transitions).

Figure 4.2.4

It is clear that the net 4/ yielded by Transformation-D is normalized and (2, 2)-transition
restricted, and the proof of the next theorem can be easily completed.

Theorem 4.2.4 ([34])
The net ' yielded by Transformation-D on the input y satisfies v =pw 7'

We want to stress again on the simplicity (and elegance, in our view) of the correctness
proofs of these transformations in comparison with the original ones. As one could expect,
not any Petri net transformation can be proved, about its correctness, by our method. We
will show that by considering a transformation proposed in [4] (Transformation-E below).
This transformation is in connection with Petri nets with A-transitions, abbreviated A-PT'N,
which are labelled Petri nets whose labelling function [ has the property: for each transition
t, [(t) equals ¢t or A (in [4] such nets were called strictly labelled nets).

Transformation-E: Let v = (3, Mo,l) be a net and A = {t € T|l(t) = a}, for all
a € I(T)—{A} such that at least two distinct transitions are labelled by a. Replace recursively
the subnets y4 generated by A, where A is as above, by 7/, defined as follows:

~ 8§ = 84U {sk s2} U {s|t € A}, where S, is the set of places of 74;
- T ={a} U {th 3,3t € A};

W'(s,t') = W(s,t), for all s € Sy and t € A,
W'(t?,s) = W(t,s), forall s € S4 and t € A,
W'(t3,s) = W(s,t), for all s € Sy and t € A,
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s t?)=1,if ' = s, or s’ = 82, forall t € A,
a) = W’(av 83) =1,

W'(z,y) = 0, otherwise
(this defines both F’ and W');
— M{(s") = My(s") for all S" € S4, and M|(s') =0 for all ' € S" — Sy;

— U'(a) =a and I'(t') = X for all t’ # a.

This transformation is exemplified in Example 4.2.4(a)(b). In [4] it was shown that if v is

89 —» @ —» S5

S3— a4 —> 5S4
(c) an S¢partial word of v/,
Figure 4.2.4

without auto-concurrency (no two transitions, not necessarily distinct, of the same set A —
as in Transformation-E — may be concurrently enabled) and multiple need (each transition
in each set A — as in Transformation-E — only needs one token) then y and ' are fully
concurrent bisimular (7' being the net yielded by Transformation-E); therefore, v ~py '
(see [4] for more details).

The correctness of Transformation-E cannot be proved by Corollary 4.1.2. Indeed, the
nets y4 and 'y in Figure 4.2.4(a)(b) (v is without auto-concurrency and multiple need)
are not =, pw-related because the labelled partially ordered set in Figure 4.2.4(c) is an
S¢-partial word of (v/y + (1,1,0,0)) but not of (ya +(1,1,0,0)) ((1,1,0,0) is a marking on
S9, 83,54, S5).

As a conclusion, a more deeper insight on the nature of these kind of transformations
should be achieved. Concerning Petri nets with A transitions we can prove that, in general,
there is no transformation of labelled nets into partial word equivalent A\-PT N'’s.

Proposition 4.2.1 There is a labelled net which is not partial word equivalent to any net
with \ transitions.

Proof Consider the labelled net 7 in Figure 4.2.4(a) with the difference that its initial
marking contains 2 tokens in s; and no one in the other places.

Suppose by contradiction that there is a »-PT N +' such that PW (y) = PW(y'). Consider
a process 7 of v obtained by applying all six transitions of v in an arbitrary but fixed way.
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PW (r) will have two distinct paths b,a,c and d,a,e. PW(r) is a partial word of v as
well, and hence there is a process @' = (N',p’) of 4/ such that PW (n') = PW (w). There
are the events eq,...,eg of 7’ labelled respectively by b,d, a, a,c, e, and such that there are
paths from e; to e3, from eg to es, from ey to e4, and from e4 to eg. There is no path
between the events es and e4 and, they being labelled by the same transition a, there are
label-preserving bijections between their sets of postconditions; let h be such a bijection
(h: e} — e}). Now define a new process of 7' by interchanging the arcs starting from 4" and
h(b'), for all postconditions b’ of e3 (that is, the arc starting from b’ will be transformed into
an arc starting from h(b') but with the same end as b, and vice versa).

It is easy to see that the procedure above defines a process " of /. Moreover, the partial
word associated to 7 contains a path d, a, ¢ but no partial word of v contains such a path.
Therefore, PW (n") ¢ PW (y); a contradiction. O

4.3 A Methodology for Validation of Petri Net Models

One aim of simulation is to validate the model w.r.t. some desired behavioural properties
(that is, to check whether the desired properties are reflected or not in the simulated runs of
the model). As we could expect, many problems are encountered when dealing with simu-
lation of a Petri net model: fairness, alternatives (solving conflicts), termination conditions,
visualization and property checking for large processes, etc. All these problems could be
grouped into two main classes: generation and analysis of processes (for a detailed discus-
sion the reader is referred to [11]). Therefore, it turns out to be an important task to look
for an adequate tool to represent and generate processes as well as for an efficient strategy
for analyzing them. In this section we will show how the mechanism developed in Section 3
can be used for validation of Petri net models.
Suppose that a net v can be decomposed as follows:

Y= wev (899
W o= mem (89
Tnea = Ya-1°7n (SO

(the sets of interface places in brackets). Formally, we may write

y=90° (oo (Ya10%) ")

We suppose that the net «, is of reazonable small size such that it supports an ad hoc
validation. Then, we can define the jumping net J, 1 in order to generate process samples
and validate 7y,_1 in the context of ~,. If this step is successfully performed then we may
counsider valid the net (y,-1 ©y,) and continue validation. The main problem we encounter
when dealing with the construction of jumping Petri nets (as above) is to find a convenient
way to describe the set of jumps. In fact, this problem has two main aspects:

1. decide whether it is possibe to define a jumping Petri net J; (as above);

2. if the answer to the question above is positive, then find a convenient way to describe
the set of jumps.
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A partial answer to the first question is done by the process sample generation theorem
(Theorem 3.2.1). The answer to the second question seems to be more complicated. How-
ever, in practice it could be not necessary to construct a priori the jumping Petri nets J;.
We may take ; and generate processes of it until a jump is necessary. Then, we take the
current marking on the interface places and, togheter with the current marking on the in-
ternal places of 7, we generate a jump for ; (and save the current marking on the internal
places of /).
A related topic to this methodology of validation can be found in the next section.

5 Modular Model Checking

Model Checking is an automatic technique for verifying finite-state reactive systems, such
as sequential circuit designs and communication protocols. Specifications are expressed in a
temporal logic, and the reactive system is modeled as a state-transition graph. An efficient
search procedure is used to determine automatically if the specifications are satisfied by
the state-transition graph. The technique was developed by E.M. Clarke and A. Emerson
([7], [8]), and an alternative approach based on showing inclusion between w-automata
was later devised by R. Kurshan ([21]). Unfortunately, temporal logic model checking
procedures sufferes from the state space explosion problem. This problem arises in systems
which are composed of many parallel processes; in general, the size of the state space grows
exponentially with the number of processes. An obvious method for trying to avoid the
state space explosion problem is to use the natural decomposition of the system into simpler
components. Properties of the individual components are verified first, and then properties
of the global system are deduced from these. The state space explosion problem is only
one motivation for pursuing modular verification. Modular verification is advocated also
for other methodological reasons; a robust verification methodology should provide rules for
deducing properties of systems from properties of their constituent modules.

In this section we show that, by means of e-modules, we can transfer properties from the
constituent modules to the entire system. The main advantage lies in a possible significant
reduction of the state space, in case that e-modules are suitable chosen (see the example at
the end of Section 5.4). Since for safe Petri net modules we can associate in a very natural
way a finite state-transition graph, and also for generality, we will present our results first in
terms of fair Kripke structures, and then we will relate Petri net modules to these structures.

The transition relation of a fair Kripke structure will be divided into two relations, internal
and ezternal, the first one modeling the internal behaviour of the system, while the second
one is used to model the interaction with the environment. Consider then a preorder of
stmulation intended to capture two basic aspects:

e 3 system K; may be embedded into a system Ky having “more behaviour”;

e the system K5 may abstract from some parts of the behaviour of K; by collapsing
several consecutive steps into a single one (this is what makes our preorder different
from those known from literature — see, for example, [14], [8], [20]).

Then, we show that the delayed version of a formula holds in K;, whenever the original
formula holds in Ks and there is a simulation from K; to K. Finally, we relate Petri net
modules to fair Kripke structures, and discuss briefly step fairness constraints.
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5.1 Temporal Logic

We will use the wniversal branching-time temporal logic VCTL* to specify properties of
reactive systems. This logic is obtained from CTL* by eliminating the existential path
quantifier 8. However, to ensure that existential path quantifiers do not arise via negation,
we will assume that formulas are expressed in negation normal form (that is, negations are
applied only to atomic propositions). As a result, the logics contain both V and A as boolean
operators. The temporal operators are X (“nexttime”), U (“until”), and V' (“releases”).
There are two types of formulas in VCT'L*: state formulas, whose satisfaction is related
to a specific state, and path formulas, whose satisfaction is related to a specific path. Let A
be a set of atomic propositions. The syntax of state formulas is given by the following rules:

(i) true, false, p and —p are state formulas, for all p € A;
(ii) if ¢ and 9 are state formulas, then ¢ V ¢ and ¢ A ¢ are state formulas;
(iii) if ¢ is a path formula, then V(p) is a state formula.
Two additional rules are needed to specify the syntax of path formulas:
(iv) if o is a state formula, then ¢ is a path formula;
(v) if ¢ and 4 are path formulas, then oV, p A, X, ¢ Ut and ¢ Vi) are path formulas.

VCTL* (over the set A of atomic propositions) is the set of state formulas generated by the
above rules. Note that since negation in YCT'L* can be applied only to atomic propositions,
assertions of the form —V(y), which are equivalent to 3(y), are not possible. Thus, the logic
VCTL* is not closed under negation.

We give the semantics of the logic VCT L* using fair Kripke structures (or structures, for
short) as defined in [8]. Such a structure is a 6-tuple K = (Q, Qo, A, L, p, F), where:

e () is a finite set of states;

Qo C Q is a set of initial states;

A is a finite set of atomic propositions;

L:Q — P(A) is a function that labels each state with the set of atomic propositions
true in that state;

p C Q x Q is a transition relation;

F C P(Q) is a set of fairness constraints given as Biichi acceptance conditions.

The fairness requirements intend to guarantee that every path (infinite computation in K)
contains infinitely many states from each A € F. Formally, we define the concepts of path
and fair path as follows. First, for an infinite sequence of arbitrary elements ¢ = xpxy---
we define

inf(o) = {z|z = z; for infinitely many ¢}.

8This restriction is necessary in order to be able to transfer properties from systems with “more behaviour”
to systems smaller in the simulation preorder, which have “less behaviour” (see Section 5.2).
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A path (starting or beginning at qp) in a structure K is an infinite sequence of states

0 = {qoq192 -

satisfying g; p gi11, for all 4 > 0. The notation o* will be used to denote the suffix of o which
begins at g;. The path o is called fair if inf(c) N A # 0, for all A € F.
We extend the labeling function £ to paths and denote by £(o) the infinite word

L(qo0)L(q1)L(g2) -~

If ¢ is a state formula, the notation K, ¢ = ¢ means that ¢ holds at state q in the structure
K. Similarly, K,0 = ¢ means that ¢ holds along path o in the structure K. When K is
clear from context, we will usually omit it. The relation |= is defined inductively as follows
(q is a state, o is a path, p € A, ¢; and @, are state formulas, and ¢ and 1 are path
formulas):

— ¢ [ true, and ¢ [~ false.
qgEpiffp € L(g), and ¢  —p iff p & L(q);

qFE 1V iff ¢ | o1 or ¢ F po.
gE o1 N iff ¢ = @1 and q = ¢2;

q | V(p) iff for all fair paths o starting at ¢, o |= ¢;

o = ¢ iff o = ¢, where qq is the first state of o;

—okEeVyYiffolEypor o=
cEpANYiff o =@ and o 1.
ok Xy iff ol .
o Uil (37 20)(0? Eob A (VO <1 <j)(o" |= ¢)).
o @V iff (Vj > 0)((VO <i <j)(o" Ep) = of E1h).

When a state formula ¢ is true in all initial states of K, we will write K |= .
Consider the operators & and U given by:

o Oy iff trueUy;

e pUY iff pU(p A1),

and call them eventually and until with equality. For a formula ¢, by © we denote the
formula obtained from ¢ by replacing all the occurrences of U by U.
Let ¢ a formula. Define recursively the formula ¢ as follows:

— if ¢ = true, false, p or —p, then ¢ = ¢;

— if o = 1 V2, then ¢ = $1 V @y;

if o = 1 A s, then @ = P A P9;

if ¢ =V(p1), then @ = V(p1);

— if o = X1, then ¢ = Opy;
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— if o = Uy, then ¢ = (Op1) Upy;
- lf Y = g01Vg02, then (,5 = ¢71V(<>¢72)

The formula ¢ is called the delayed version of the formula ¢. We can also apply this
construction to formulas % by replacing the operator U by U.

5.2 A Simulation Preorder

In the context of modular verification it is helpful to define a preorder relation capturing
the idea of “more behaviors” and to use a logic whose semantics relate to the preorder. The
preorder should preserve, in some sense, the satisfaction of formulas of the logic, i.e., if a
formula is true for a model, a clear specified variant of it should also be true for every model
which is smaller in the preorder. Additionally, composition should preserve the preorder,
and a system should be smaller in the preorder than its individual components.

We will make now a basic assumption valid for the rest of the paper (another two will be
made in the next section):

e the transition relation p of each structure K is the union of two given binary relations
on states, p = p'Up®, not necessarily disjoint. The relation p* models the internal state-
changes in K (that is, proper atomic steps performed by K), and p¢ models external
state-changes in K (that is, state-changes caused by the environment). Usually, p¢ is
not completely known, but we can approximate it starting from the remark that in
many real cases we know the response of an environment to an output of the module.

Each structure Kj;, j = 0,1,2,..., we will consider is assumed to have the components
KJ = (QJ?Q%?Aja‘C]ap]vfj)v where Pj = :0; U pje

Definition 5.2.1 Let Ky and Ky be two structures, and A C Ay N Ay. Let q and ¢ be
states in Ky and Ko, respectively. A simulation from (K71, q) to (Ka,q') w.r.t. A is a binary
relation H C Q1 X Q2 such that:

(1) (¢.4) € H;
(2) for all qy and dy, if (q0,4h) € H, then:

(2.1) L1(q0) N A= La(qp) N A;

(2.2) for every fair path o = qoqy - - in Ky there is a fair path o' = ¢{q} -+ in Ky and
a decomposition of o,
where 19 = 0, such that for all 5 > 0 the following hold:
(a) ifij-f—l = Z'j"i_l and (Qij7Qij+1) € pflz7 then (Q§'aQ§'+1) € p§ and (qij+17QQj+1) € H;
(b) ifiji1 = i;+1 and (gi;, qi;,,) € P, then (¢, ;1) € p2 and (qul,ngl) € H;
(¢c) if ij+1 > i+ 1, then (q;-,qg-ﬂ) € p5 and (q¢j+1,q£j+1) € H.

To indicate that two fair paths o and o’ correspond as in Definition 5.2.1(2) we will write
H(o,0'). Clearly, if H(o,0') holds, then H(c%, (¢')’) holds for all j > 0, where ij are as in
Definition 5.2.1. When there is a simulation relation from (Ki,q) to (Ks,q') w.r.t. A, we
will write (K1,q) <4 (K2,q").
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Definition 5.2.2 A binary relation H s a simulation from K; to Ky w.r.t. A if for each
initial state q of K1 there is an initial state ¢' of Ko such that H is a simulation from (K1, q)
to (Ka,q") w.r.t. A.

We will use the notation K; <4 K9 whenever there is a simulation from K; to Ky w.r.t.
A. In the case p§ = p§ = 0 and A = Ay C A; our definition of simulation is that from
[14] (except for the fact that we use fairness constraints given as Biuchi but not as Streett
acceptance conditions).

Proposition 5.2.1 The simulation relation < 4 is a preorder (i.e., a reflexive and transitive
order) on structures whose set of atomic propositions include A.

Proof The relation H = {(¢,q)|q € Q} is a simulation from K to K w.r.t. A. Thus, <4
is reflexive.

Assume that H; is a simulation from K; to Ky w.r.t. A, and H> is a simulation from Ky
to K3 w.r.t. A. Let H3 be the usual product of the binary relations H; and Hs. We show
that Hjz is a simulation from K;j to K3 w.r.t. A.

First of all we note that £1(q) N A = L3(¢") N A, for all (q,¢") € Hs. Indeed, for each
(q,q") € Hj there is a state ¢’ in Hs such that (q,¢') € Hy and (¢',q") € Hy. Since H; and
H, are simulations, it follows that

Li(g) NA=La(¢")NA=L3(q") N A,

which proves our statement above.

For each initial state g in K7 there is an initial state ¢, in Ky such that H; is a simulation
from (K1, qo) to (Kg,qy) w.r.t. A. Similarly, there is an initial state ¢j in K3 such that Hy
is a simulation from (Ko, ¢) to (K3, q() w.r.t. A. Let
and

o' = dh -+
be fair paths in K; and Ko, respectively, as in Definition 5.2.1 (4,41, ... specify the decom-
position of o). For the fair path o’ there is a fair path

" n_I
o =4qq

in K3 and a decomposition of o',
as in Definition 5.2.1. We will define recursively a partition of o

U:q0q1:q1c0(Ik1Qk2

such that Hs3(o,0”) holds. There are several cases to be considered.

Case 1: iy = 1 = j;. Clearly, if (go,q1) € p§ then (qy,¢)) € p$ and, consequently,
(q4,47) € p§. Moreover, (¢q1,¢}) € Hy and (¢},q}) € Ha, which shows that (¢1,¢}) € Hs.
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We consider in this case k; = 1, and the decomposition of o continues with o', (¢')! and
(o (Hi(o!, (6")!) and Ha((0")Y, (0"”)1)) hold).
Case 2: 4y =1 and j; > 1. Consider k1 = ij,. 1t is easy to verify that (g, q},) € Hy and
(¢},,4Y) € Ha; therefore, (qx,,qy) € Hz. The decomposition of o continues with ok (o)
and (o).

The other two cases, 17 > 1 and j;3 = 1, and 43 > 1 and j; > 1, can be discussed in a
similar way. We conclude that < 4 is transitive and, therefore, < 4 is a preorder. O

Theorem 5.2.1 Let K| and K5 be two structures. Then, for every two states q and q' of
K, and Ko, respectively, and every two fair paths o and o' in Ky and K, respectively, if H
is a simulation from (Ki,q) to (Ka,q') w.r.t. a set A C A1 N Ay and H(o,0') holds true,
then for every YCTL* formula ¢ over A we have:

(1) if ¢ is a state formula and ¢' |= @ then q = @;

l|_

(2) if ¢ is a path formula and o' |= @ then o |= .

Proof We prove the theorem by induction on the structure of @.

Base: If p is true or false, the result is trivial. If g = p for p € A, then ¢ | p iff
p € L2(q'). By the definition of simulation, £1(q) N A = L2(¢') N A, and so p € L1(q) iff
p € L2(¢'). Thus, g = p. The case ¢ = —p for p € A is similar to the previous one.

Induction: There are several cases.

1. ® =P, APy, a state formula. Then,

{EFP = dFp and ¢
= ¢Fp; and ¢}=9, (induction hypothesis)
= qFP
The same reasoning holds if 3 is a path formula (replacing ¢’ by ¢’ and ¢ by o).

2. © =9, VP,, astate or path formula. This case is similar to the previous case.

3. P =V(p,), a state formula (¢; is a path formula). Suppose ¢’ = p. Let o1 be a fair
path in K starting at ¢. By the definition of simulation relation, there is a fair path
o9 in Ky starting at ¢ and such that H(oq, 03) holds. Then,

¢ EP = o02=9%; (definition of =)
= o1 =P, (induction hypothesis)

As o} has been arbitrarily chosen, we obtain ¢ = 3.

4. If ¢ is a path formula consisting of only a state formula and o’ = 3, then the initial
state of o’ satisfies p. By the induction hypothesis, the initial state of o will satisfy
®. Thus, o = P.

5. © = X@;, a path formula. Suppose o’ = @. Then, (¢/)! = 3,. Since H(o,0’) holds,
there is 4; > 1 such that H (o', (¢')") holds. Therefore, by the induction hypothesis,
o' =3, and so ¢ = 0P, = .
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6. = p,Up,y, a path formula. Suppose o' = ». Then, there is 5 > 0 such that
(0"} E @1 AP, and, for all 0 <i < j, (/)" E 7.
The definition of simulation leads to the existence of an i; > j such that H(c%, (o')?)
holds, and from the induction hypothesis we obtain ¢% = @, Ap,. Clearly, o = 0P,
for all 0 <i <ij, and so o |= ?.

7. © = §,V©y, a path formula. The argument in this case is similar to that for the
previous case.

The theorem is proved. O

An immediate consequence of the Theorem 5.2.1 is the following result.

Corollary 5.2.1 Let K1 and K3 be two structures and A C Ay N As. If K1 <4 Ko then,
for every YCTL* formula ¢ over A, Ky = % implies K| = ©.

5.3 Asynchronous Composition of Structures

We cousider in this section an asynchronous composition of structures, strongly motivated
by its correspondence with composition of e-modules. This operation implies that two
structures execute concurrently by performing steps in an interleaved way. That is, at every
step, the composed structure may choose to perform a step from one or the other of its
components. In order to simplify our discussion and close more structures to e-modules, we
will make two basic assumptions:

e the states of each structure K will be considered as interpretations over a finite set V'
of typed variables. That is, each state ¢ is a function assigning to each variable v € V
a value ¢(v) in its domain. For the case of finite-state systems we have to assume that
all variables range over finite domains. We also assume that with each set V', a subset
Ve CV is specified. V¢ defines the set of external or interface variables that are used
by the system to communicate with an environment. The set V¢ =V — V¢ is the set
of internal variables of K; it is related to the relation p® by:

Va,d')((a,4") € p° = qlyi =d'|vi).

That is, the environment may update only the external variables, whereas the system
may update all the variables.

From now on we will assume that for a system Kj;, j =0,1,2,..., its sets of variables
are denoted by Vj, V and V}, whitout adding them to the tuple defining K.

e the fairness constraints we consider are of the form:
F=F'UF¢ where F' C P(Dom(p')) and F¢ C P(Dom(p°)).

The sets in F* are called internal fairness constraints, whereas those in F¢ are called
external fairness constraints. These fairness requirements intend to capture the idea
that the environment is given the chance to interfere with the system (by entering
infinitely many times in states where the communication with the environment is
possible), but also the system may have a proper behaviour (by entering infinitely
many times in states where internal steps may be done).
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Two structures K; and Ky are called compatible if Vi N'V§ = () and V€ = Vif. The first
condition requires that a variable can only be owned by one of the systems, whereas the
second condition requires that the external variables are common for both systems.

Definition 5.3.1 Let Ki and Ko be two compatible structures. The asynchronous compo-
sition of K, and Ky, denoted by K; o Ko, is the structure K = (Q, Qo, A, L, p, F), where:

(1) the set Q of states consists of all the interpretations q of V.= Vi U V¢ U VY, where
Ve = VE = V§, such that qlv, and qly, are states in Ki and Ko, respectively, and
Li(qlvy) N A2 = La(qlv,) N Ax;

(2) Qv =1{q€Qlalv, € Qs N ql,Q5};
(3) A= A1 UAy;
(4) L(q) = L1(qlv,) U La2(q|vy) for all g € Q (the definition of Q avoids the existence of
atomic propositions p both true and false at q);
(5) (¢,q) € p iff
= (glvi,d'vi) € p1 and ¢'ly; = qly;, or
- (dlw, d'lv) € p2 and ¢'|yi = qly;.

If a step performed in one of the systems is external (internal), then the corresponding
step in K is external (internal). A step may be both external and internal;

(6) F =1{{q € Qlgh;, € A1}|A1 € F1} U{{q € Qlq|v, € A2}|Ay € Fo}.

Our definition of asynchronous composition is mainly the same in [16] and [17], excepting
that we do not consider strong fairness constraints (our fairness constraints are like weak
fairness constraints in the papers cited above). States of the composition are “pairs” of com-
ponent states that agree on the common variables and on the common atomic propositions.
Each transition of the composition involves a transition of one of the two components.

It is straightforward but tedious to prove that asynchronous parallel composition is com-
mutative and associative (up to isomorphism).

For a structure K we denote by Reach(K) the set of all reachable states in K; that is,

Reach(K) = {q € Q|3q0 € Qo : (q0,9) € p"}.

Given two compatible structures K; and Ky, consider K12 = (Q1,Q%,.A1, L1, p1.2,F1.2)
defined as follows:

— Plo=ph, pfo = p§ U Ps U ph;
— p5 is the set of all pairs (qi|v;,q2|v;), where q; and ¢o are states in K; o Ko, ¢ €
Reach(Ky o K2), (q1lvs, @2[v,) € p5 and qify: = gafyy;

- ﬁé is the set of all pairs (q1|v;, g2|v, ) such that there is a sequence of states in K o K»,

q]-:q%w"aqg_l:qQa

with the properties: ¢; € Reach(K; o K3), (q{|V2,q{+1|V2) € pby and q{|V1i = q{+1|V1i
forall1 <j<my
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— fLQ =F U?Q, where ?2 = {{q|vl|q S Reach(K1 o Kz) A q|V2 S A2}|A2 S .7:2}.

The fairness constraints in Fo are obtained from the (internal and external) fairnes con-
straints in F»; all of them are external fairness constraints in K . Indeed:

— if Ay is an external fairness constraint in Fs, then every state ¢ € Reach(K; o K»)
with the property g|y, € A verifies also ¢|y, € Dom(p5), and so q|y, € Dom(p$);

— if Ay is an internal fairness constraint in Fo, then every state ¢ € Reach(K; o K3) with
the property g¢|v, € Ay verifies also g|v, € Dom(ph), and so g|y, € Dom(ph).

Therefore, for every fairness constraint As € Fo,
{alvilg € Reach(Ky 0 K3) A glv, € Ag} C Dom(ph U p5),
which shows that F5 is a set of external fairness constraints in K 1,2-
Theorem 5.3.1 Let K; and Ky be two compatible structures. Then, Ki o Ko <4, Kip.

Proof Let K = K; oK. Consider H = {(¢,q|v,)|g € Q} and show that H is a simulation
from K = K; 0 Ky to K1 w.r.t. Aj.
For every state g € () we have:

(L1(glvi) U La(glvz)) N AL

(L1(gqlv,) N AL U (L2(glv,) N A1)

= Li(gln) U (L1lgqlvi) N A2) (definition of Q)
= El(q|V1)'

L(g) N Ay

Then, we note that for every initial state g in K, qo|y; is an initial state in K o.
Let 0 = qoq1qo - - - be a fair path in K. Decompose the path o,

O =iy iy iy
such that, for all 7 > 0, the following requirements are satisfied:
(a) if 4j41 =25 + 1, then (gi;vi, 4i;4.10) € proor (g vas i1 1va) € P5;
(b) ifij41 > 4541, then (¢;0ve, dijalva) € (PH)F, ailvi =+ = diy -1 v @35l = iy lve
Define now a path o’ of K2 by modifying the path o as follows:
— keep all (a)-type steps (but restrict all states to V7);
— replace each (b)-type sequence by (qi;|vi, i, [vi)-

Clearly, this is an infinite path of K. We will prove that this path is fair. Let A € F o.

Case 1: A € F;. Then, A" = {q € Q|q|y, € A} is a fairness constraint in K. Since o is
a fair path it follows that inf(o) N A" # 0, and so there is ¢ € Q@ Ninf(o). It is enough to
show that ¢|y, occurs infinitely many times in o’. In fact, the only problem we encounter
is the following one: “condensing” a (b)-type sequence by its left and right most states we
may loose some occurrences of ¢ and, therefore, of g|y;,. However, at least one occurrence
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of g|v, is kept in the left or right most state, and this is enough to ensure that ¢y, occurs
infinitely many times in o’

Case 2: A € Fy. Then, there is a fairness constraint A, € F, such that
A ={q|v,|q € Reach(K, o K3) A ql|y, € As}.

But, the set A" = {q € Q|q|v, € A2} is a fairness constraint in K, and so there is ¢ € A’
occurring infinitely many times in 0. Moreover, ¢ is reachable in K and g|y; € Dom(ph U p5)
(as we have shown above the theorem). By a similar argument as in Case 1 we can prove
that ¢|y, € inf(c’). Hence, inf(c') N A # (.

Therefore, the path ¢’ is fair and it is straightforward to prove that H(o,oc") holds. Thus,
H is a simulation from K; o Ky to K9 w.r.t. A;. O

Corollary 5.3.1 Let Ky and Ks be two compatible structures. Then, for every YCTL*
formula ¢ over Ay, Ky |= @ implies K; o Ky |= B, where K 5 is the structure defined as
above.

Proof From Theorem 5.3.1 and Corollary 5.2.1. O

What we have already doune in this section acts as an abstraction methodology. Given
a system Kj o Ko, we abstract from the internal variables of K3, obtaining Kj 3. The
structure K o collapses consecutive steps in K; o Ky by a single one, ensuring a simulation
from Kj o K to Kj 3. The number of states in Kj 2 could be reduced in comparison with
K 0 Ky (the number of arcs could be increased but this is not as important as the reduction
in the number of states is). If the main meaning of a formula is not diminished by delaying
it, then we may try to check its satisfaction in K o.

It is generally recognized that abstractions are not efficient if all the variables in a system
are visible (if we cannot abstract from the internal variables of Ko, in our case — see [8] and
[17] for more comments). On the other side, to have a good abstraction it is important to
produce exactly pf ,, or to produce approximations sufficiently closed to pf 4 so that we can
still verify interesting properties of the system.

5.4 Modular Model Checking of Petri Nets

To each safe net v we can associate, in a natural way, a Kripke structure without fairness
constraints K(y) = (Q, Qo, A, L, p), as follows:

e regard places as variables which range over finite sets of positive integers. Then, the
set of states is the set of all interpretations of variables (markings of v componentwise
bounded by some integer n). The only initial state is the initial marking;

e we may define a set A of atomic propositions using the variables in S and the constants,
functions and predicates over the corresponding domains (as in [22], p. 182). These
propositions should be either true or false at a marking (state) M, and they will be
used to define state and path formulas. Let £ be the function which associate to each
marking M the set of all atomic propositions in 4 satisfied at M;

e the transition relation is specified by the set of transitions of v in an obvious way;
that is, (M, M') € p iff there is a transition ¢ such that M[¢),M'. The relation p is
considered internal (p = p*).
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We may also add to K () a set F of fairness constraints getting in such a way a fair Kripke
structure K (v, F) associated to +y.

We suppose from now on that for every net (module, e-module) there is given a set
of atomic propositions (referring to its set of markings). Moreover, we will assume that
whenever we merge (combine) two markings M; and M, which agree on some places (in
order to obtain a marking of the composed net, module or e-module), the propositions that
are satisfied at the new marking are exactly those that are satisfied at M; and M, 9,

We extend the notations above to modules and e-modules by:

e for a safe module M = (v, 5¢), K(M) is obtained from () by considering S¢ as the
set of external (interface) variables;

e for a safe e-module J = (M, R), K(J) is obtained from K (M) by adding the external

transition relation
p°={(M,M") € N® x N¥|M'|gi = M|gi A (M]se, M'|sc) € R}
to the transition relation of M;

e for a safe module M (e-module J) and a set F of fairness constraints, K(M,F)
(K(J,F)) is the structure obtained by adding F to the 5-tuple K (M) (K(J)). For
e-modules, the fairness constraints we use are like in Section 5.3.

The pairs (v, F) (M, F), (J,F)) as above are called fair nets (modules, e-modules). The
simulation and satisfaction relations are defined for them by means of the structures they
induce. For example, if (71, F1) and (Jz2, F2) are two fair safe e-modules whose underlying
nets are elements of PN (S¢ M§), A is a set of commom atomic propositions, and ¢ is a
VCT L* formula over the set of atomic proposition of J7, then we write

- (1, F1) =4 (J2, Fo) for K(Jh,F1) <4 K(J2,F2), and
- (J1,F1) |E o for K(J1,F1) F .
)

Let (J1,F1) and (J2, F2) be two compatible fair e-modules whose underlying nets are ele-
ments of PN (S¢, M§). Define their composition, denoted (71, F1) o (J2, F2), by (J10J2, F),
where F is defined as in Definition 5.3.1 Further, consider the fair e-module (712, F1,2),
where:

— Ji2 = (7,R12);
— Ri2 = R UR) U RY;

— R, is the set of all pairs (M|ge, M'|gc) € Ry, where M is reachable in [J; o J;

R} is the set of all pairs (M|ge, M'|gc), where M is reachable in J; o Jo and M'|g, is
reachable from M|g, (in y2) by at least one transition occurrence;

Tt was pointed out in [12] that in the case of 1-safe nets we may restrict the set of atomic propositions
to propositions ps, where s is a place, with the following meaning: a marking M satisfies p iff it marks the
place s. Clearly, for such nets, our supposition trivially holds. Anyway, it is not a severe restriction for the
case of safe nets.
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~ Fi9 = F1UFy, where Fy = {{M|s,|M is reachable in Jj0J2 A M|s, € As}|As € Fy}.
The following theorem makes the connection between modules and structures.

Theorem 5.4.1 Let (Ji,F1) and (J2,F2) be two compatible fair e-modules whose under-
lying nets are elements of PN (S¢, M§). If J1 o Ja2 is safe, then:

(1) K((J1,F1) o (T2, F2)) = K(J1,F1) © K(J2, F2);
(2) (J1,F1) o (T2, F2) <, (T2, F12);

(3) for every VCTL* formula ¢ over the set of atomic proposition of J1, (J12,F12) E®
implies (J1,F1) o (J2, F2) = .

Proof If J; o J, is safe, then [J; and [Jo are safe. Then, (1) follows immediately from
definitions (see also the assumption on composing markings at the beginning of the section),
and (3) from (2) and Corollary 5.3.1.

(2) Let Kl = K(jl,fl) and K2 = K(jQ,fg). We have:

K((Jh,F1) o (T2, F2)) = K(J1,F1) o K(J2, F2) = Ky 0 Ky <4, Kip.
By the remark that K, = K(J1,2,F1,2) we get (2). O

When the set F of fairness constraints of a fair e-module (J, F) contains only the set of all
reachable markings, then all paths of the e-module are fair. In such a case we may simplify
the pair (J,F) to J (but understanding that all the paths of J are fair). Composition
of such e-modules leads to such an e-module (all paths are fair). Then, directly from the
theorem above we obtain:

Corollary 5.4.1 Let ;1,72 € PN(S¢, M§) be two compatible nets. If yi0y2 is safe, then for
every YVOTL* formula o over the set of atomic proposition of v1, J = @ implies y1 0y = P,
where J = (71, R) and R is the set of jumps induced by vy in 1 o o (Definition 3.2.3).

Proof Counsidering J; = (71,0) and J> = (72, 0), the e-module J; 2 is just the e-module
J in theorem. Moreover, Fi 2 contains the set of all reachable marking in v; and also a
subset, possible strict, of this one. However,

Y1072 <4, (J12,F12) = (T, Fi12) <ay, J-
Then, J |= % implies 71 072 |= 7. O
This corollary tells us how properties of components are transferred to the entire system.
As we have mentioned in the previous section, the main goal is to find an approximation of
the set of jumps, sufficiently closed to the real set of jumps on the interface places. A very

convenient case is when a net v = g o y; is context-free w.r.t. 7y or ;. This is the case
of the net in Figure 2.2 which is context-free w.r.t. both vy and ;. Then, Jy = (y0, Ro),

where
Ry = {((07 L, 1)7 (07 L, 1))7 ((07 L, 1)7 (07 L, 0))7

((0’ 17 0)7 (07 1’ 0))’ ((0’ 1’ 0)7 (07 1’ 1))7

((1,0,1),(1,0,1)),((1,0,1),(1,0,0))},
is an e-module which assures a simulation from  to it. The state space of « is reduced
to the state space of vy (we have to add some more arcs, corresponding to Ry, but this is
not as important as the reduction of the state space is). Therefore, properties of Jy can be
transferred then to .
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5.5 Step Fairness Constraints

The fairness constraints we considered in the last sections assure that the environment is
given the chance to interfere with the system. However, this does not assure that the
environment will do it; an environment step (q,¢’) € p may be “simulated” by the system
(that is, (¢,q') € (p*)"). If the system enters infinitely many times in ¢ then the system
itself may simulate each time the environment step (¢,¢'). In such a case, there is no
“proper” cooperation with the environment w.r.t. ¢q. From this point of view we may ask
for strengthening the fairness constraints. A way to do that is to consider sets of steps as
constraints. That is,

F =F L UF,, whereF, CP(p") and Fo C P(p°).
The fairness requirements are defined now by
(VA € F)(infs(o) N A #0D),
where, for a path o,
infs(o) ={(q,¢)lg =@ N ¢ =qiy1 for infinitely many i}.

Excepting for the case of e-modules where each step is both internal and external, the step
fairness constraints are expressive enough: they can select only the paths containing both
infinitely many internal steps and infinitely many external steps.

All the results developed in Section 5.2 hold also for such of fairness requirements.

The composition of two structures (under these fairness constraints) may be defined as in
Section 5.3 but with the difference:

F = {{ed) e @xQlaly; =d'ly; N (dlvi,d'lv) € Ai}Ar € F1}U
{{(e,d) € @ xQlaly; = d'lv; A (alvssd'lvs) € A2}|A2 € Fo}.

The construction Kj o in the same section may be transferred to this case but with the
following definition for Fo:

— for each external fairness constraint Ay € Fo, consider the set A, of all pairs (¢1]v;, ¢2|v;)
such that ¢; is reachable in Kj o Ko, (q1]v,, q2|v,) € A2 and q1|V1i = QZ|V11'.

Let Fy = {Ab| Ay € F, is an external fairness constraint};

— for each internal fairness constraint Ay € F; consider the set A’ of all pairs (q1|v; , g2]1v;)
such that there is a sequence of states as in the definition of p (see Section 5.3) and
: i ; " (
(qilver @t Ive) € Az and gf|ys = qi " |y, for some 1 < j <n.

Let 7; = {A}|Ay € Fy is an internal fairness constraint};
— Fo = ?; U ?;

With this definition of Kj 2, Theorem 5.3.1 holds in this case as well. Indeed, the proof
keeps the same line up to the fairness requirements of o’. Then, let A5 € Fj 2 be a fairness

constraint in K7 2. There are three cases to be considered: Al e F, A e 7;, and Ay € ?22.
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The first two can be treated in the same way as the case 1 in the proof of Theorem 5.3.1.
For the last case, let Ay € F; be the set which A, is obtained from. Since o is fair, there is a
pair (g, ¢') of states in K; o K, such that q|V1i = q,|V1i, (qlvy,4'|v,) € Az, and the pair (q,q")
occurrs infinitely many times in 0. However, each occurrence of (g, ¢') is inside of a (b)-type
sequence, and each such (b)-type sequence is collapsed in o’ by the pair of its left and right
most states; moreover, these pairs are in A}. As the set of states is finite, at least a pair as
that described above occurs infinitely many times in o’. That is, infs(c’) N A% # 0, and so
the path o is fair.

The results in Section 5.4 may now be easily reformulated for the case of step fairness
constraints.

Conclusions and Related Work

Nets equiped with subsets of interface places (modules, in our paper) appear naturally
when a distributed systems is modelled as a set of actors communicating through buffers
by message passing. In this context, composition of nets by merging places (asynchronous
composition, in our paper) is an important operation. In literature, different variants of
modules and asynchronous compositions have been considered. In [6], the modules (called
there open interface nets) are non-labelled and endowed with a set of markings on the
internal places (called stable states). Our modules are exactly those from [41] (called there
host nets) or [39] (called there net components), with the difference that in [39] they are
not labelled; the asynchronous composition for modules we considered is like in [41] (called
there place composition). The set of interface places may be partitioned (as we have already
said in Section 2) into subsets of input and output places as in [19]. The concept of an
e-module is a new one; however, the idea of considering the interaction between a module
and an environment has been touched on in [41] (by adding two transitions ¢, and t], for
each interface place s), in [39] (by means of actions, which are jumps in our paper), and in
[19], but in a totally different way and with different purposes than ours. The terminology
of Petri net (reactive) module, as we considered, seems to be the most adequate one in the
context of modelling reactive systems which may interact with each other.

Section 3 counsiders the (plain) process semantics together with a notion of process iso-
morphism (different than the classical one), suitable in proving correctness of Petri net
transformations. It is shown that processes of composed nets can be decomposed in pro-
cesses of “shifted” components (that is, components whose initial markings are increased),
and vice versa. Clearly, this semantics is not compositional with respect to the operation of
composition we considered, but with a little effort we can obtain a compositional one (Corol-
lary 3.1.2); it is totally diferrent than the semantics considered in the papers cited above.
For example, the process semantics in [19] was suitable modified such that the compositional
property was achieved, and the CFFD-semantics in [39] is a conjunction of stable failures,
divergence traces, and infinite traces (which lead to compositionality). The second part of
Section 3 takes into consideration the generation of process samples of a module w.r.t. some
submodules. The generation is done via e-modules which are particular cases of jumping
nets (as we have mentioned, [39] consideres actions which are jumps in our terminology, and
which are used as an abstraction mechanism but in a different way than us; the concept of
a jump and its main use as an abstraction mechanism goes back to [30] and [31]).
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The main line we follow in Section 4.1 is a classical one: find two equivalence relations
~1 and =%y such that from 7; =1 2 one can infer v x5 y[y1 < v2]. We propose two pairs of
such equivalences; they are based on our semantics and, therefore, they are different than
the others known from literature. We believe that they are very suitable in proving the
correctness of structural transformations of Petri nets, as the Section 4.2 points out.

Section 5 considers temporal logic model checking in connection with modular design.
Since we do not restrict the environment action on modules, we cannot transfer, in a direct
way, properties from components to the entire system; however, some delayed versions of
them may be transferred. The logic we use is VC'T'L* which has enough expressive power.

Finding efficient methods to describe or approximate the set of jumps induced by sub-
modules is of great importance for practical applications. Certainly, there is no general
method to that; we have to restrict ourself to subclasses of (safe) nets, and this one could
be an interesting subject of study. By taking into consideration partial information about
the internal structure of the module and/or environment (as it has been already mentioned
in Section 2) we can reduce the size of the set of jumps. On the other side, using semaphor
variables (as partial information), the interface places may be regarded both as input and
output places, without a specific distinction. When some semaphor variable is on, the mod-
ule and the environment may work together; when the variable is off, only the environment
may work. The environment is setting this variable; the module has just to use read arcs
([42]) in order to know when it has the right to work.
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