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Abstract. Given k + 1 pairs of vertices (s1, s2), (u1, v1), . . . , (uk, vk) of a directed acyclic graph,
we show that a modified version of a data structure of Suurballe and Tarjan can output, for each
pair (ul, vl) with 1 ≤ l ≤ k, a tuple (s1, t1, s2, t2) with {t1, t2} = {ul, vl} in constant time such
that there are two disjoint paths p1, from s1 to t1, and p2, from s2 to t2, if such a tuple exists.
Disjoint can mean vertex- as well as edge-disjoint. As an application we show that the presented
data structure can be used to improve the previous best known running time O(mn) for the so
called 2-disjoint paths problem on directed acyclic graphs to O(m log2+m/n n + n log3 n). In this
problem, given four vertices s1, s2, t1, and t2, we want to construct two disjoint paths p1, from s1

to t1, and p2, from s2 to t2, if such paths exist.

1 Introduction

The problem of finding disjoint paths is one of the fundamental problems in graph theory
with many applications concerning network reliability, routing problems, VLSI-design, . . . Such
problems have been studied extensively and a variety of efficient algorithm are known for
undirected graphs (cf. the overviews given in [2] and [3]), whereas much less is known about
finding disjoint paths on directed graphs.

Previous results: Given 2k vertices s1, . . . , sk, t1, . . . , tk, one simple path finding problem
consists of determining k disjoint paths pi (i ∈ {1, . . . , k}) between the vertices {s1, . . . , sk}
and {t1, . . . , tk} with pi leading from si to tπ(i) for a permutation π of the numbers 1, . . . , k.
This problem can be solved with standard network flow techniques for directed as well as for
undirected graphs and for both, vertex- and edge-disjoint disjoint paths. For fixed k ∈ IN, this
leads to a running time of O(m+n), where here and in the following m will denote the number
of edges and n the number of vertices of the graph under consideration.

For undirected graphs and k ∈ {2, 3}, Di Battista, Tamassia, and Vismara [2] have shown
that allowing a preprocessing time of O(m + n) one can test the existence of k vertex-disjoint
paths between two vertices in constant time and output k such paths, if they exist, in a time
linear in the number of the edges visited by these paths. Di Battista, Tamassia, and Vismara
also gave an overview over other data structures supporting the above queries for k ≥ 4. For
results concerning edge-disjoint paths between pairs of vertices we refer the reader to the paper
of Dinitz and Westbrook [3].

For a directed graph G = (V,E) and a fixed vertex s ∈ V , Suurballe and Tarjan [14]
presented a data structure with a preprocessing time of O(n + m log2+m/n n) which, for each
t ∈ V , can test in constant time whether there are two disjoint paths from s to t, and, if
so, can output such paths in linear time. The result holds for both, vertex- and edge-disjoint
paths. Unfortunately, no generalization of this data structure is known to test the existence of
k ≥ 3 disjoint paths, and the best known data structure for finding two disjoint paths between
arbitrary pairs of vertices, i.e. s not fixed, is to construct, for each vertex s ∈ V as source



vertex, a separate data structure of the kind described by Suurballe and Tarjan. The data
structure of Suurballe and Tarjan can also be used to find two vertex- or edge-disjoint paths
from one fixed vertex s to two different vertices t1, t2 with (t1, t2) being equal to one of k
fixed pairs of vertices (u1, v1), . . . , (uk, vk) : Just add k extra vertices w1, . . . , wk and 2k extra
edges (u1, w1), (v1, w1), . . . , (uk, wk), (vk, wk) to G. As a consequence, the preprocessing time
increases to O(n + (m + k) log2+(m+k)/(n+k) n), but the time needed to test the existence of
disjoint paths will remain constant, and two such paths, if they exist, can be output in linear
time.

Another interesting paths finding problem is the k-disjoint paths problem. In this problem
we are given 2k vertices s1, . . . , sk, t1, . . . , tk and we want to construct k disjoint paths pi

(1 ≤ i ≤ k), from si to ti. For short, we will refer to this problem as the k-DPP or, more
precisely, as k-VDPP, if disjoint means vertex-disjoint, and as k-EDPP, if disjoint means edge
disjoint.

The first polynomial time algorithms for the k-VDPP where given by Ohtsuki [7], Sey-
mour [12], Shiloach [13], and Thomassen [17], for k = 2, and by Robertson and Seymour [10]
for general k. Some papers only consider the decision version of the k-VDPP, where the exis-
tence of disjoint paths is being tested without computing them explicitely. However, there is a
polynomial time reduction from this version of the problem to the general k-VDPP (cf. [16]).
With the line-graph reduction described by Perl and Shiloach in [9] the k-EDPP can be also
solved in polynomial time. If we let α be the inverse Ackerman function as defined in [15],
the currently best known time bounds for the k-DPP, are O(n + mα(m,n)) for the 2-VDPP,
O(n log n + mα(m,n)) time for the 2-EDPP as shown by the author of this paper in [16], and
O(mn2) time for the k-VDPP with k > 3, and O(m2n2) for the k-EDPP with k > 3 as shown
by Perković and Reed in [8].1

For directed graphs, the decision versions of the k-EDPP and the k-VDPP are NP-
complete, even for k = 2, as shown by Fortune, Hopcroft, and Wyllie [4]. However, in [9] Perl
and Shiloach presented an O(mn)-time algorithm for solving the 2-VDPP and the 2-EDPP on
dags (directed acyclic graphs). Fortune, Hopcroft, and Wyllie [4] generalized this result of Perl
and Shiloach to a polynomial-time algorithm for the k-VDPP on dags for all k ∈ IN. Lucch-
esi and Giglio [6] described a linear time reduction from the decision version of the 2-VDPP
on dags to the decision version of the 2-VDPP on undirected graphs. They also presented a
corollary from which it follows that there is always a solution of the 2-VDPP on the undirected
graph after the reduction, if this graph is non-planar. Since Perl and Shiloach [9] have shown
that the 2-VDPP on undirected planar graphs is solvable in linear time, the decision version
of the 2-VDPP on dags is also solvable in linear time. Finally, applying the reduction from the
2-EDPP on dags to the 2-VDPP on dags given in [16] there is an O(n + m log2+m/n n) time
algorithm for solving the decision version of the 2-EDPP on dags. As an application of the
k-EDPP on dags, Schrijver [11] described an airplane routing problem that can be solved with
an algorithm for the k-EDPP on dags.

New results. In some scenarios, given four vertices s1, s2, t1, and t2, apart from testing
whether there are two disjoint paths leading from the vertices in {s1, s2} to the vertices in
{t1, t2} we might also be interested in knowing whether the path starting in s1 leads to t1 or
t2. Given k + 1 pairs of vertices (s1, s2), (u1, v1), . . . , (uk, vk) of a directed graph, we present in
Section 3 a modified version of a data structure of Suurballe and Tarjan which can output, for
each pair (ul, vl) with 1 ≤ l ≤ k, a tuple (s1, t1, s2, t2) with {t1, t2} = {ul, vl} in constant time

1 For the last two results we also use the line graph reduction from the k-EDPP to the k-VDPP as well as the
reduction from the decision version to the general version of the k-DPP.

2



such that there are two vertex- or, alternatively, edge-disjoint paths p1, from s1 to t1, and p2,
from s2 to t2. This data structure can be constructed in O(n log2 n+(m+k) log2+(m+k)/(n+k) n)
time.

As an application of this data structure and main result of this paper, we show that it can
be used to improve the running time for the 2-VDPP on dags from O(nm) to O(m log2+m/n n+
n log3 n) time. The proof consists in a reduction from the 2-VDPP on dags to the 2-VDPP on
undirected graphs extending some ideas given in the proof of correctness of Lucchesi’s and
Giglio’s linear time reduction from the decision version of the 2-VDPP on dags to the decision
version of the 2-VDPP on undirected graphs. Applying the reduction from the 2-EDPP to the
2-VDPP given in [16] results in an O(m log2+m/n n + n log3 n) time algorithm for solving the
2-EDPP on dags.

2 Preliminaries

Paths referred to in this paper are always simple paths, i.e. paths on which no vertex appears
more often than once. If a vertex v or an edge e is visited by a path p, we write v ∈ p or e ∈ p.
For a path p and vertices a, b ∈ p, we let p[a, b] be the sub-path of p from a to b. p(a, b], p[a, b),
and p(a, b) will denote the sub-paths of p[a, b] starting in the vertex visited immediately after
a or, ending in the vertex visited immediately before b, or both, respectively. The length of a
path p is the number of edges visited by p and denoted by |p|. Finally, for two paths p1 and
p2, p1 ◦ p2 is the concatenation of the two paths.

As for paths, given a tree T = (V,E) and a vertex v or an edge e, we write v ∈ T or e ∈ T
if v ∈ V or e ∈ E, respectively. The father of a vertex v ∈ T is denoted by fT (v).

A topological numbering of the vertices of a dag G = (V,E) is an injective mapping from
V to {1, . . . , n} such that for each pair (v, w) of vertices for which there is a path from v to
w, τ(v) < τ(w) holds. It is well known, that for each dag G a topological numbering can be
computed in linear time (cf. [1]).

3 Finding Disjoint Paths Between Pairs of Vertices

Suurballe and Tarjan presented in [14] a data structure which, given a directed graph G = (V,E)
and a fixed vertex s ∈ V , for each vertex v, can test the existence of two disjoint paths from
s to v in constant time. This data structure can be constructed in O(n + m log2+m/n n) time.
It consists of a shortest-path tree T with source node s and stores with each vertex v ∈ V two
vertices p(v) and q(v) which on dags have the following properties:

1. If τ is a topological numbering of the vertices of V , then, for each v ∈ V with two disjoint
paths from s to v, τ(q(v)) < τ(v) and (p(v), v) ∈ E. 2. If there are two disjoint paths from s to
v, then there are also two disjoint paths from s to q(v). 3. Two disjoint paths p1 and p2 from
s to v, if they exist, can be constructed in O(|p1|+ |p2|) time as follows:

First, mark v and with each marked vertex x also mark q(x). Now, p1 can be constructed in
reverse direction starting in v and, when reaching a vertex x, following edge (p(x), x) in reverse
direction if x is marked, or, if it is not, following edge (fT (x), x) in reverse direction. p2 can be
constructed in the same way, after having un-marked all marked vertices visited by p1.

Let G′ = (V ′, E′) be the graph obtained from a dag G by replacing each vertex v ∈ V with
two vertices v1 and v2 and each edge (u, v) with an edge (u2, v1) and by adding new edges
(v1, v2) for every v ∈ V . Then, there are two internally vertex-disjoint paths from a vertex
u ∈ V to a vertex v ∈ V in G, if, and only if, there are two edge-disjoint paths from u2 to v1
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in G′. Hence, the data structure of Suurballe and Tarjan can be also used to test the existence
of two vertex-disjoint paths of a dag G = (V,E) and to construct such paths within the same
time bounds as for the edge-disjoint version of the data structure.

In this section we want to show:

Lemma 1. Let G = (V,E) be a dag and s1, s2 ∈ V be fixed. Then, given k pairs of vertices
(u1, v1), . . . , (uk, vk) it is possible to construct in O(n log2 n + (m + k) log2+(m+k)/(n+k) n) time
a data structure that can output, for each pair (ul, vl) with 1 ≤ l ≤ k a tuple (s1, t1, s2, t2)
with {t1, t2} = {ul, vl} in constant time such that there are two disjoint paths p1, from s1 to
t1, and p2, from s2 to t2, if such paths exist. Moreover, the paths themselves can be output in
O(|p1|+ |p2|) time.

The lemma holds for both, either vertex-disjoint or edge-disjoint paths.

Proof. Let G′ = (V ′, E′) be the graph obtained from G by adding k + 1 vertices s, w1, . . . , wk

and 2k +2 edges (s, s1), (s, s2), (u1, w1), (v1, w1), . . . , (uk, wk), (vk, wk) to G. Then our problem
can be reduced to the problem of determining, for each w ∈ V ′ with two disjoint paths from s
to w a tuple (s1, y1, s2, y2) such that there are two disjoint paths p1 and p2 from s to w with
pi (i ∈ {1, 2}) using (s, si) as first and (yi, w) as last edge. From now on we only consider the
case, where disjoint means edge-disjoint. The result for the other case follows by the reduction
given prior to this lemma.

We start with constructing in O(n + (m + k) log2+(m+k)/(n+k) n) time the data structure
of Suurballe and Tarjan for graph G′ with s as fixed source node and define T, p, and q to be
the shortest-path tree and the mappings described at the beginning of this section. Moreover,
we determine in O(n) time a tree T ′ consisting of all vertices v ∈ V ′ for which there are two
disjoint paths from s to v, s being the root of T ′, and fT ′(v) = q(v) for all v ∈ T ′.

In the following, for each v ∈ T ′, let p1(v) and p2(v) be the two disjoint paths from s to
v which would be constructed by Suurballe’s and Tarjan’s data structure, or more precisely,
p1(v) should be the path visiting (p(v), v) as last edge, and p2(v) should be the path visiting
(fT (v), v) as last edge. Moreover, for i ∈ {1, 2}, we define ri(v) to be first vertex visited after
s on pi(v).

We now try to determine the vertices r1(v) for all v ∈ V (we then also know the vertices
r2(v) for all v ∈ V , since {r1(v), r2(v)} = {s1, s2}). Therefore, we start a depths-first search
in T ′ and during this depths-first search, when visiting a vertex y, we will color the vertices
of T such that all vertices x 6= s on the tree path from s to y in T ′ are colored black if p1(x)
starts with edge (s, s1), whereas, if p1(x) starts with edge (s, s2), vertex x is colored red. All
other vertices of T should be colored white. In other words, for a black colored vertex x we
have r1(x) = s1, whereas for a red colored vertex x we have r1(x) = s2. Note that the red or
black colored vertices are exactly the vertices to be marked before the construction of p1(y)
and p2(y) with the data structure of Suurballe and Tarjan.

When our depths-first search reaches a child y of s in T ′ it is easy to see that r1(y) is equal
to y if p(y) = s, and equal to the first vertex 6= s on the tree path from s to p(y) in T , if
p(y) 6= s. Hence, we know how to color y correctly.

When reaching a vertex y not equal to a child of s in T ′, we will determine the last red
or black colored vertex x before p(y) on the tree path from s to p(y) in T . If x not exists, y
should be colored black if (s, s1) is the first edge on the path from s to y in T , and, if (s, s2)
is the first edge on this path, y should be colored red. If x exists, from the properties of the
data structure of Suurballe and Tarjan given at the beginning of this section it follows that
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p1(y)[s, y] = p1(x)[s, x] ◦ T [x, p(y)] ◦ (p(y), y), where T [x, p(y)] denotes the tree path from x
to p(y) in T . Hence, if by induction we have already shown that all ancestors of y in T ′ are
colored correctly, then y is also colored correctly by coloring it with the same color as x.

For an efficient implementation, in a preprocessing step taking O(m) time we determine all
v ∈ T the first vertex 6= s on the tree path from s to v in T .

For an efficient computation of the last colored vertex x on tree path from s to a vertex
y in T , we maintain two copies T1 and T2 of our shortest-path tree T . We delete all black
and red colored vertices from T1, as well as all black colored vertices from T2. Let y′ be the
vertex that appears in the middle of the tree path from s to y (note that with an appropriate
encoding of the vertices of T , y′ can be computed in constant time). We then ask whether y
is reachable from y′ in T1. If this is the case, x does not exist or lie on the tree path from
s to y′ in T . Otherwise, our search can be reduced to the tree path from y′ to y in T . In
other words, x can be determined by a binary search. We can also identify the color of x by
testing whether y is reachable from fT (x) in T2. We use the dynamic data structure of Holm, de
Lichtenberg, and Tarjan[5] for updating the trees T1 and T2 and for answering our connectivity
queries. This data structure allows us to delete a vertex with r adjacent edges or to reinsert
such a vertex in O(r log2 n) amortized time and to decide whether two vertices are connected
in O(log n/ log log n) worst case time.

Since the number of edge deletions and reinsertions needed for the computation of the
vertices r1(v) for all v ∈ V is bounded by O(n) and we only have to answer O(n log n)
queries, the construction time for our data structure can be bounded by O(n log2 n + (m +
k) log2+(m+k)/(n+k) n) time. Given a vertex v, the paths p1(v) and p2(v) can be output with
the data structure of Suurballe and Tarjan in O(|p1|+ |p2|) time. ut

4 Solving the 2-VDPP on dags

In this section we present an O(m log2+m/n n+n log3 n)-time algorithm for solving the 2-VDPP
on a dag G = (V,E). We extend some ideas already used by Lucchesi and Giglio in [6] to prove
the correctness of their linear time reduction from the decision version of the 2-VDPP on dags
to the decision version of the 2-VDPP on undirected graphs.

As observed by Thomassen [18], it is easy to see that, given an instance I = (G, s1, s2, t1, t2)
of the 2-VDPP on dags, the following reductions will not change the solvability of the 2-VDPP
(i.e. there are two disjoint paths p1, from s1 to t1, and p2, from s2 to t2, before the reduction,
iff the same is true after the reduction):

– Delete an edge e ∈ {(v, si) | v ∈ V, 1 ≤ i ≤ 2} ∪ {(ti, v) | v ∈ V, 1 ≤ i ≤ 2}.
– Delete a vertex v 6∈ {s1, s2, t1, t2} with its adjacent edges that has no adjacent edges entering

v or no adjacent edges leaving v.
– If there is a vertex v ∈ V − {s1, s2} with only one edge (v, w) leaving v, delete v from G

and replace each edge (u, v) with a new edge (u, w) (if edge (u, w) already exists, just delete
edge (u, v) from G).

– If there is a vertex v ∈ V −{t1, t2} with only one edge (u, v) entering v, delete v from G and
replace each edge (v, w) with a new edge (u, w) (if edge (u, w) already exists, just delete
edge (v, w) from G).

Let us call an instance I of the 2-VDPP to be irreducible if none of the reductions above
are applicable to G. Then it is easy to prove the following lemma:
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Lemma 2. For each instance I1 = (G, s1, s2, t1, t2) of the 2-VDPP with G = (V,E) being a dag
one can construct in O(m) time an irreducible instance I2 = (G′, s1, s2, t1, t2) of the 2-VDPP
on dags with G′ = (V ′, E′) such that,

– I1 has a solution iff I2 has a solution,
– |V ′| = O(|V |) and |E′| = O(|E|),
– given a solution to I2 we can solve I1 in O(|V |+ |E|) time.

According to Lemma 2, we will from now on concentrate on solving the 2-VDPP on ir-
reducible instances and describe an algorithm for solving such instances. This algorithm will
make use of the following technical lemmas:

Lemma 3. Let G = (V,E) be a dag in which each vertex has an out-degree of at least two
with the exception of two vertices x and y which have an out-degree of 0 and are reachable from
every vertex v ∈ V − {x, y}. Then, for each pair v, w of vertices there are two vertex-disjoint
paths p1 and p2 with one path starting in v and the other one in w and with one path ending
in x and the other one in y. In particular this holds for all dags G with (G, s1, s2, t1, t2) being
an irreducible instance of the 2-VDPP, if we let x := t1 and y := t2.

Proof. If either v or w is equal to either x or y, say w.l.o.g. v = x, we only need to search for
a path from w to y not visiting vertex x. Since every vertex u ∈ V − {x, y} has an out-degree
of at least two, such a path must exist. Hence, let us assume that w, v 6∈ {x, y}.

Let τ be a topological numbering of the vertices of G. It is clear that x and y must have
the largest topological numbers, namely, n − 1 and n. Given v and w, we construct step by
step two disjoint paths from v and w to x and y starting with two paths pv from v to v and
pw from w to w of zero length. We always try to maintain the following invariant: If r and u
are the endpoints of pv and pw, where τ(r) < τ(u) and r 6∈ {x, y}, then the path of pv and pw

with endpoint u visits no vertex z with τ(z) > τ(r) before u. It is obvious that this invariant
holds immediately after the initialization of pv and pw. Defining r and u as above we can add
an edge (r, z) to the path ending in r such that the paths remain vertex-disjoint, since r has
an out-degree of at least two. Now, either the invariant holds after adding edge (r, z), and this
means we can add an further edge to one of the paths, or {r, u} = {x, y} and, hence, pv and
pw are two disjoint paths from v and w to x and y. ut

Lemma 4. (Thomassen [18]) If G is a dag with I = (G, s1, s2, t1, t2) being an irreducible
instance of the 2-VDPP, then, for each vertex v ∈ V − {s1, s2, t1, t2}, there exist four paths p1

from s1 to v, p2 from s2 to v, p3 from v to t1, and p4 from v to t2 such that the only vertex
visited by more than one of the four paths is v.

Proof. Let us consider two outgoing edges (v, u) and (v, w) from v. From Lemma 3 we know
that there are two disjoint paths from the vertices u and w to the vertices t1 and t2. Adding
the edges (v, u) and (v, w) to these paths results in two disjoint paths leading from v to the
vertices t1 and t2. In order to construct disjoint paths from s1 and s2 to v we apply Lemma 3
to the graph obtained from G by replacing each edge (v, w) by its reverse edge (w, v). ut

In the following, we let G = (V,E) be a dag and I = (G, s1, s2, t1, t2) be an irreducible
instance of the 2-VDPP. Moreover, we define U(G) to be the undirected graph obtained from
G by replacing each directed edge (u, v) of G with an undirected edge {u, v}. In the first step
of our algorithm, we determine two simple disjoint paths p1, from s1 to t1, and p2, from s2 to
t2, in U(G).

6



Table 1. The path-replacement in the different sub-cases

Sub-case Description: For i, j with {1, 2} = {i, j} Replacements

1a v ∈ pi, v
′ ∈ rj p∗

i := pi[si, v] ◦ ri[v, ti]
2a v ∈ pi, v

′ ∈ rj p∗
j := pj [sj , v

′] ◦ rj [v
′, tj ]

1b.α u ∈ pi[ci, ti], u
′ ∈ qj p∗

i := qi[si, u] ◦ pi[u, ti]
1b.β u ∈ pi[si, ci), u

′ ∈ qj pj := qj [sj , u
′] ◦ pj [u

′, tj ]
2b u ∈ pi, u

′ ∈ qj

1c.α u, v ∈ pi, u
′ ∈ qi, v

′ ∈ ri, u 6∈ pi(di, ti] p∗
i := qi[si, u

′] ◦ pj [u
′, v′] ◦ ri[v

′, ti]
1c.β u, v ∈ pi, u

′ ∈ qi, v
′ ∈ ri, u ∈ pi(di, ti] p∗

j := qj [sj , u] ◦ pi[u, v] ◦ rj [v, tj ]
2c u, v ∈ pi, u

′ ∈ qi, v
′ ∈ ri

1d u ∈ pi, v ∈ pj , u
′ ∈ qi, v′ ∈ rj p∗

i := qi[si, u
′] ◦ pj [u

′, v] ◦ ri[v, ti]
2d u ∈ pi, v ∈ pj , u

′ ∈ qi, v′ ∈ rj p∗
j := qj [sj , u] ◦ pi[u, v′] ◦ rj [v

′, tj ]

Like Lucchesi and Giglio we call an edge (u, v) visited in this direction by p1 or p2, a forward
edge, if (u, v) ∈ E, and, if not (i.e. (v, u) ∈ E), a reverse edge. For two consecutive edges (u, v)
and (v, w) on p1 or p2, one being a forward and the other one being a reverse edge, v will be
reffered to as a switch.

Lucchesi and Giglio in [6] proved that there is a choice of four vertices u, u′, v, and v′ with
u and v being switches which makes it possible to replace p1 and p2 with two new paths p∗

1

and p∗
2 such that all switches of p∗

1 and p∗
2 are also switches of p1 or p2 and such that u or

v is no longer a switch on p∗
1 or p∗

2. The main idea of our algorithm consists of dividing our
algorithm into several rounds and of choosing in each round the vertices u, u′, v, and v′ much
more carefully so that the path replacements of p1 and p2 removes at least a constant fraction
of all switches.

Let us sketch what is done in each round. For i ∈ {1, 2}, let ni be the number of switches
on pi at the beginning of the round, let ci be the vertex on pi visited immediately after the
b1

4nic-th switch of pi and let di be the vertex on pi visited immediately before (ni − b1
4nic)-th

switch of pi. If b1
4nc = 0, we let ci := si and di := ti.

We now choose four vertices u, v, u′, v′ as follows: Let τ be a topological numbering of the
vertices of G. Like Lucchesi and Giglio in [6] we define v to be the switch with largest topological
number among all switches on p1 and p2, but unlike Lucchesi and Giglio we let v′ be first vertex
x with τ(x) > τ(v) visited by the path p1 or p2 which does not visit v. We then distinguish
between two main cases: Case 1, where v ∈ p1[s1, c1) or v ∈ p2[s2, c2), and Case 2, where
v ∈ p1[c1, t1] or v ∈ p2[c2, t2]. In Case 1, like Lucchesi and Giglio, we define u to be the switch
with the lowest topological number on p1 or p2, whereas in Case 2, unlike Lucchesi and Giglio,
we let u be the switch on p1[c1, t1] or p2[c2, t2] having the smallest topological number among
all switches on these sub-paths. In both cases we let u′ be the last vertex x with τ(x) < τ(u)
visited by the path p1 or p2 not visiting u. Moreover, again in both cases, we define q1 and q2

to be two disjoint paths from s1 and s2 to u and u′ such that q1 starts in s1 and, hence, q2

starts in s2, and, similarly, let r1 and r2 be two disjoint paths from v and v′ to t1 and t2 such
that r1 ends in t1 and r2 ends in t2. These paths must exist because of Lemma 3.

Depending on the positions of the vertices u, u′, v, v′ on the paths p1 and p2 we consider
different sub-cases and replace p1 and p2 with two paths p∗

1 and p∗
2 as shown in Table 1. For

i ∈ {1, 2}, sub-cases with prefix number i should be a sub-case of Case i. The new paths are
disjoint:

Lemma 5. p∗
1 and p∗

2 are disjoint.
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Proof. For the Cases 1a, 2a, 1b.α, 1b.β, and 2.b this follows from the fact that the sub-paths of
p1 and p2 used for the construction of p∗

1 and p∗
2 apart from u′ and v′ visit only vertices x with

τ(x) ≤ τ(v) (Cases 1a, 2a) or only vertices x with τ(x) ≥ τ(u) (Cases 1b.α, 1b.β, 2b). Let p′
1 and

p′
2 be the sub-paths of p1 and p2, respectively, that were used for the construction of p∗

1 and p∗
2 in

one of the remaining cases. Then the disjointness from p∗
1 and p∗

2 in the remaining cases follows
if we can show that τ(u) ≤ τ(x) ≤ τ(v) holds for all x ∈ p′

1 and all x ∈ p′
2 with x 6∈ {u′, v′}. It is

easy to see that this holds, if, for every ordered pair of vertices (x, y) ∈ {(u, v′), (u′, v), (u′, v′)}
with x, y ∈ p′

i for an i ∈ {1, 2}, x appears before y on p′
i. But this last statement is true since

v′ must appear after the last switch on p1 or p2, whereas u′, in Case 1, must appear before
the first switch on p1 or p2, and, in Case 2, must appear before the first switch on p1[c1, t1] or
p2[c2, t2], and, therefore, before v or v′ on p1 or p2. ut

From the definition of u and v as vertices with the smallest or largest topological number
it follows that after the path replacements shown in Table 1 u or v can no longer be a switch
of p1 or p2. Unfortunately, we can not guarantee that much more switches are deleted from p1

and p2 in the Cases 1b.β, 1c.β, or 2a. Therefore, in these cases the idea is to consider not only
one round but a number k of rounds such that in the first k − 1 rounds we are in one of the
Cases 1b.β, 1c.β, or 2a, and in the last round we are in one of the other cases.

We will from now on consider the k rounds as exactly one round sometimes also called
super-round and the k rounds as sub-rounds of this round. For a simpler implementation of the
sub-rounds we will not update the vertices ci and cj , after each of the first k − 1 sub-rounds.
There is one exception: In a sub-round corresponding to Case 1c.β we replace ci with di and di

with ci (since pi after the replacement visits the vertices between ci and di in reverse direction).
The k-th sub-round then guarantees that enough switches are being removed from p1 and p2

in each super-round.
More precisely, from the replacements given in Table 1 we can conclude that after each round

- i.e. after each super-round in the Cases 1b.β, 1c.β, or 2a - at least 1 + min{b1
4n1c, b1

4n2c}
switches (or 1 + max{b1

4n1c, b1
4n2c} switches if n1 = 0 or n2 = 0) are removed from p1 and

p2. For example, in Case 1c.α at least all switches of pi(di, ti] are removed from pi. Thus our
algorithm terminates after O(log n) rounds with two disjoint paths p1, from s1 to t1, and p2,
from s2 to t2. We now show that each round can be implemented efficiently:

Lemma 6. Each round has a running time of O(n log2 n + m log2+m/n n).

Proof. It is obvious that for each round (/super-round) the numbers n1 and n2 as well as the
vertices ci, di, cj , and dj and therefore the boundary vertices u, u′, v, v′ (of the first sub-round
in the case of a super-round) can be computed in O(n) time. With standard network flow
techniques two disjoint paths from the vertices s1 and s2 to the vertices u and u′ as well as two
disjoint paths leading from the vertices v and v′ to the vertices t1 and t2 can be computed in
O(m) time. Given these paths, it is easy to determine in which case we are and to implement
the path replacements for the Cases 1a, 1b.α, 1c.α, 1d, 2b, 2c, and 2.d, again in linear time.

We now consider the time complexity of the Cases 1b.β, 1c.β, and 2a. In the following,
when talking about the paths p1 and p2 or the boundary vertices, if we mean the paths at the
beginning of the l-th sub-round or the boundary vertices in the l-th sub-round we denote them
by pl

1, p
l
2, u

l, u′l, vl, or v′l, respectively, and if we mean the paths after the last sub-round we
write pk+1

1 and pk+1
2 .

Let us define the original part of pl
1 and pl

2 to be the part of pl
1 and pl

2 that is equal to
the corresponding part of p1

1 or p1
2. More precisely, if before the first sub-round we mark all
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vertices of p1
1 and p1

2 and in the j-th sub-round when replacing pj
1 and pj

2 with pj+1
1 and pj+1

2

we un-mark all edges not lying on the sub-paths of pj
1 and pj

2 used for the construction of pj+1
1

and pj+1
2 , then the original part of pl

1 (pl
2) is the sub-path of pl

1 (pl
2) consisting of the marked

edges.
We next want to show that the boundary vertices of each sub-round must lie on the original

parts of this sub-round, which will be useful for an efficient implementation of the sub-rounds.
It is obvious that, for l ∈ {1, . . . , k}, ul and vl must lie on the original part of pl

1 and pl
2 since

all switches of pl
1 and pl

2 lie on the original part of these paths.
For an l ∈ IN, let us define numbers l1 and l2 such that the l1-th sub-round is the last sub-

round before the l-th sub-round in which we are in Case 1b.β or 1c.β and the l2-th sub-round
is the last sub-round before the l-th sub-round in which we are in Case 2a or 1c.β (l1 or l2
should be 0 if no such sub-round exists). Then by induction one can show that the endpoints
of the original parts of pl

1 and pl
2 consist of the vertices ul1 , u′l1 , vl2 , and v′l2 , where we define

u0 = s1, u
′0 = s2, v

0 = t1, and v′0 = t2. Moreover, again by induction one can show that
τ(ul1) ≤ τ(x) ≤ τ(vl2) holds for all vertices x 6∈ {u′l1 , v′l2} on the original parts of pl

1 and pl
2.

Now, from τ(u′l1) < τ(ul1) ≤ τ(ul) ≤ τ(vl) ≤ τ(vl2) ≤ τ(v′l2) we can conclude that the vertices
u′l and v′l must appear after a vertex x ∈ {ul1 , u′l1} on pl

1 or pl
2 or be equal to x and they

must appear before a vertex y ∈ {vl2 , v′l2} on pl
1 or pl

2 or be equal to y. Therefore, u′l and v′l

lie on the original part of pl
1 or pl

2. We can use the knowledge that the boundary vertices lie
always on the original part of p1 or p2 and that this part is always a sub-paths of p1

1 or p1
2 for

an efficient computation of the boundary vertices:
Knowing the original parts of p1 and p2 for each sub-round, we can easily compute vl for

all l ∈ {1, . . . , k} if, before starting the first sub-round, we construct in O(n) time a list of
all switches on p1 and p2 sorted by their topological numbers. We then only need to delete
repeatedly the vertex with the largest topological number from this list until we find a vertex
with x lying on the original part of p1 or p2. We can always start the search with the last vertex
deleted in the previous sub-round. Hence, the time needed to compute the boundary vertex v
taken over all sub-rounds is bounded by O(n), and, in nearly the same way, this also holds for
the boundary vertex u.

We still have to explain how we can compute u′l and v′l for all l ∈ {1, . . . , k}: For i ∈ {1, 2},
let wi be the first switch on pl

i and let zi be the first switch on pl
i[ci, ti], or, if there is no switch

on pl
i, let wi = zi = t. Prior to the first sub-round we compute, for all i ∈ {1, 2} and all switches

x ∈ p1
i , two vertices l(x) and l′(x) such that l(x) is the last visited vertex y with τ(y) < τ(x)

on p1
j [sj , wj ] and l′(x) is the last visited vertex y with τ(y) < τ(x) on p1

j [sj , zj ]. From the fact
that u′l lies on the original part of pl

1 or pl
2, and from the fact that u′l in Case 1 must appear

before w1 or w2 and in Case 2 before z1 or z2 on one of the paths pl
1 or pl

2, we can conclude
that u′l = l(x) in Case 1, and u′l = l′(x) in Case 2. l(x) and l′(x) can be computed efficiently:

Lemma 7. Computing for all switches x ∈ p1
1 and x ∈ p1

2 the values l(x) and l′(x) takes O(n)
time.

Proof. Computing l(x), for all switches of pi (i ∈ {1, 2}), can be done in O(n) time if we
consider the switches in topological decreasing order: For determining l(x) for the switch x of
pi with the largest topological number, we step through the vertices of pj in reverse direction
from wj to sj until we find a first vertex y with τ(y) < τ(x). y must then be equal to l(x), and,
for all vertices z ∈ pj(l(x), wj ], we have τ(z) > τ(y). Hence, if we search for the vertex l(x′)
with x′ being the switch with the second largest topological number on pi, we continue the
walk along the path pj now starting in l(x). We can conclude that computing the values l(x)
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for all switches of p1
1 or p1

2 can be done in O(n) time. Similarly, the values l′(x) for all switches
can be computed in O(n) time. ut

v′l can be computed in the same efficient way. We just have seen, that if we know for each
sub-round in which Case we are, i.e. if we know the original parts of pl

1 and pl
2, we can efficiently

compute the vertices ul, u′l, vl, and v′l. To decide, for each sub-round, in which case we are,
the super-round is split into two phases. In the first phase, if in a sub-round u and v lie on p1

and p2 in such a way that we might be in Case 1b.β, 1c.β, or 2a, we always assume that we
are in this case and, under this assumption, we compute the boundary vertices for the next
sub-round. For example, if v ∈ pi[si, ci) and u ∈ pj [sj , cj) with {i, j} = {1, 2} we assume that
we are in Case 1b.β (note that we will never encounter more than one of the three cases).

After the first phase we construct the data structure described in Lemma 1 with (u1, v1), . . . ,
(uk, vk) being equal to the pairs of boundary vertices (u, u′) of each sub-round considered in
the first phase of our super-round.

In the second phase, starting again with the first sub-round we use this data structure to
determine for each pair (ul, u′l) of boundary vertices a tuple (s1, w1, s2, w2) with {w1, w2} =
{ul, u′l} such that there are two disjoint paths r1, from s1 to w1, and r2, from s1 to w2, and in
the same way we can construct a tuple (w1, t1, w2, t2) with {w1, w2} = {vl, v′l} such that there
are two disjoint paths from w1 to t1 and w2 to t2. We finally test whether we are in one of
the Cases 1b.β, 1c.β, or 2a and, therefore, have correctly computed the boundary vertices of
the next sub-round. If we are in one of the other cases we stop the computation of boundary
vertices since then we must be in the last sub-round of the super-round.

We finally want to determine the paths pk+1
1 and pk+1

2 resulting from the replacement of p1

and p2 in the last sub-round of our super-round. If in the last sub-round we are in one of the
cases 1c.α, 2.c, 1.d, or 2d, p1 and p2 are replaced by three pairs of disjoint paths: r1 and r2,
from s1 and s2 to uk and u′k, q1 and q2, from vk and v′k to t1 and t2, and, two sub-paths of the
original parts of pk

1 and pk
2. We can read off these paths from the data structure of Lemma 1

and from the paths p1
1 and p1

2 in O(n) time. Even, if in last sub-round we are in one of the Cases
1a, 1b.α, or 2b, we can construct pk+1

1 and pk+1
2 in O(n) time. For details see the appendix of

this paper. ut

Theorem 8. On dags the 2-VDPP is solvable in O(m log2+m/n n + n log3 n) time.

Proof. As shown, our algorithm for solving the 2-VDPP consists of O(log n) rounds with a
running time of O(n log2 n + m(log2+m/n n)). This leads to a running time of O(n log3 n +
m(log n)(log2+m/n n). The stated time bound follows, if the 2-VDPP on dags can be reduced
to the 2-VDPP on dags with only O(n) edges.

In [6] Lucchesi and Giglio have shown that two disjoint paths p1, from s1 to t1, and p2,
from s2 to t2, on a dag G = (V,E) can be constructed from two disjoint paths in U(G) by
replacing sub-paths of p1 and p2 by sub-paths of a set S of disjoint paths. More precisely, if we
add extra vertices x and y as well as four extra edges (x, s1), (x, s2), (t1, y), and (t2, y) to G, S
can be chosen arbitrarily as long as S consists of two disjoint paths from x to v as well as two
disjoint paths from v to y for every v ∈ V . Such paths must exist because of Lemma 4.

As disjoint paths from x to the vertices v ∈ V let us choose the paths that would be
constructed by the data structure of Suurballe and Tarjan given in [14]. These paths can only
consist of the edges of the shortest-path tree T and of edges of the form (p(w), w) with T and
p being defined as described in the beginning of Section 3. Consequently, the graph containing
these O(n) edges plus O(n) edges needed for the construction of disjoint paths from vertices
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v ∈ V to y, and containing the edges of p1 and p2 is a subgraph of G on which the 2-VDPP is
solvable, but which consists of only O(n) edges. ut
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5 Appendix

Computation of the paths pk+1
1 and pk+1

2 , if we are in Case 1a, 1b.α, or 2b.

Let us assume that in the last sub-round we are in Case 1b.α. The other cases can be
handled in a similar way. Since in the last sub-round we are in Case 1b.α the endpoints of
the original parts of pk+1

1 and pk+1
2 consist of the vertices uk and u′k as well as of two further

vertices x and y. Note that x, y 6∈ {uk, u′k} (x 6= uk 6= y since x and y are not switches,
x 6= u′k 6= y since u′k must appear before vk and v′k and, therefore, before x or y on pk

1 or
pk
2). For z ∈ {x, y}, there must be an i-th sub-round having z as one of its boundary vertices

and making z to an endpoint of the original part of pj
1 and pj

2 for all j ∈ {i + 1, . . . , k + 1}.
2 Since z is visited after uk or u′k on pk

1 or pk
2, we have τ(z) > τ(uk) > τ(u′k) and, therefore,

2 To keep our proof simple, suppose there is a sub-round 0 of case 1b.β having s1, s2, t1, and t2 as boundary
vertices and making them to the endpoints of the original parts of p1

1 and p1
2.
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z = vi or z = v′i. Moreover, in the i-th sub-round, we must be in one of the Cases 1c.β or
2a. Choose l maximal such the l-th sub-round has x or y as one its boundary vertices vl or
v′l and the sub-round is of kind 1c.β or 2.a. Let us assume for a moment that x is the vertex
with x ∈ {vl, v′l}. We can conclude that y ∈ {vl, v′l} must also hold, since, otherwise, for all
j ∈ {i + 1, . . . , k + 1}, either the original part pj+1

1 or the original part of pj+1
2 either does not

contain y or it contains y, but does not contain y as an endpoint of an original part (note,
there is no further sub-round having y as one of its boundary vertices).

Suppose now that x ∈ pl+1
1 - otherwise rename x and y - and say uk ∈ pl+1

1 (the case
u′k ∈ pl+1

1 can be handled in the same way).
We show that pl+1

1 [uk, t1] = pk
1[u

k, t1] and pl+1
2 [u′k, t2] = pk

2[u
′k, t2].

pl+1
1 [uk, x] = pk

1[u
k, x] and pl+1

2 [u′k, y] = pk
2[u

′k, y] holds, since pk
1[u

k, x] and pk
2[u

′k, y] are
sub-paths of the original parts of pk

1 and pk
2. Hence, if one of the above equations does not hold,

then there is a j ∈ {l + 1, k} such that the j-th sub-round must have a boundary vertex b on
pj
1[x, t1] = pl+1

1 [x, t1] or on pj
2[y, t2] = pl+1

2 [y, t2] causing one of this sub-paths to change. Since
τ(b) > τ(u′k) and b cannot be a switch, we can conclude that b = v′j and we are in one of the
Cases 1c.β or 2a. It follows that vj must lie on the part of pj

1 or pj
2 containing switches, i.e. on

pl+1
1 [uk, x] and pl+1

2 [uk, x], and as a consequence of the path replacements in the cases Cases
1c.β or 2a one of these sub-paths will be changed so that not the complete sub-path pl+1

1 [uk, x]
or pl+1

2 [uk, x] belongs to the original part of the following sub-rounds. A contradiction.
Thus, we know that,

pk+1
1 = q1[s1, u

k] ◦ pk
1[u

k, t1]
= q1[s1, u

k] ◦ pl+1
1 [uk, t1]

= q1[s1, u
k] ◦ pl

1[u
k, x] ◦ r1[x, t1]

= q1[s1, u
k] ◦ p1

1[u
k, x] ◦ r1[x, t1]

and

pk+1
2 = q2[s2, u

′k] ◦ pk
2[u

′k, t1]
= q2[s2, u

′k] ◦ pl+1
2 [u′k, t1]

= q2[s2, u
′k] ◦ pl

2[u
′k, y] ◦ r2[y, t2]

= q2[s2, u
′k] ◦ p1

2[u
′k, y] ◦ r2[y, t2],

where r1 and r2 are two disjoint paths from the vertices x and y to t1 and t2, hence, after
identifying l in linear time, pk+1

1 and pk+1
2 can be read off from the data structure of Lemma 1

and the paths p1
1 and p1

2 in linear time.
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