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1 Introduction

Timing analysis is necessary for hard real-time software to determine worst-case execution
times (WCETs). One option (see [11] for an overview) is static analysis as implemented by the
OTAWA tool-set [1].

Timing analysis of parallel code (i.e., multi-threaded code) is even more complex than the
analysis of single-threaded code. To enable it, synchronization points of threads must be de-
scribed similar to conventional flow-facts for OTAWA manually before running the analysis.
Placing IDs in source code is one part; the second is to describe the relationships between these
IDs in an XML file. With unstructured parallelism, this can be a big burden; with structured
parallelism implemented with Parallel Design Patterns (PDPs) the effort is reduced and better
WCET results can be achieved [§].

PDPs describe best-practice solutions for situations of parallelism. We extended the meta-
pattern to describe PDPs by Mattson et al. in [4} 8] and collected PDPs from four industrial ap-
plications in the parMEERASA Pattern Catalogue for Timing Predictable Parallel Design Patterns [4].
However, PDPs are abstract concepts with textual description and do not come with source
code for the implementation. As visible in Figure the respective concept on source code
level is Algorithmic Skeletons.

So far, we are not aware of any skeleton implementation for hard-real time embedded sys-
tems based on programming language C with POSIX (or comparable) synchronization prim-
itives. The Timing Analyzable Algorithmic Skeletons (TAS) close this gap. With them, (a) the
implementation effort for PDPs can be reduced because tested code is used, (b) software main-
tainability is improved because of a separation of concerns between application logic and paral-
lelism control, and (c) timing analysis is simplified: Instead of describing each synchronization
point, e.g., a barrier or lock, a skeleton instance is described in an intermediate XML format.
With an XML transformer, this intermediate TAS specific format is then translated into the XML
format for OTAWA.

For the parallelization of sequential pieces of code of legacy single-core applications we de-
veloped the pattern-supported parallelization approach [7]], which is also applicable for applications
with hard real-time requirements [6]. The core idea of the approach (see Figure[I.2) is to express
parallelism in a model built from the existing single-core source code. This model can then be
optimized manually or automatically [5] (Chapter [2). After this, to implement the optimized
model of the software, the TAS can be applied.

The structure of this technical report is as follows: Chapter 2| very briefly describes our soft-
ware for automatic optimization of a software model with PDPs. The focus of Chapter 3|is on
how to make use of the TAS. Support for timing analysis of software with TAS is shown in
Chapter [4

Acknowledgments: The research leading to these results has received funding from the Euro-
pean Union Seventh Framework Programme under grant agreement no. 287519 (parMERASA).
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Figure 1.1: Overview of the concepts for parallelization with Parallel Design Patterns (PDPs).
The illustrations on the right show the cooperation with application logic (custom
code) and the source-code parallelization concepts; checkered elements contain syn-
chronization elements.
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2 Multi-objective Optimization of an Activity
and Pattern Diagram (APD)

Here, very briefly the tool for model-based optimization is described. The results of paper [5]
were gained with an earlier version of it. In the pattern-supported parallelization approach [7]
(see Figure the optimization tool is applied to reduce the possible parallelism towards a
platform-specific optimum.

The optimization tool is implemented in Java. It consists of several NetbeansE] projects. The
optimization is done with SMPSO [9]; for this the jMetal framework [3] is used. The source
code of our optimization tool is available under the GNU LGPL v3 license:

https://github.com/parmerasa-uau/parallelism-optimization/

The input model of the software with high degree of parallelism is described as XML file. The
different PDP instances can be nested. Sequential execution order is expressed by the order in
which the PDPs are arranged in non-parallel tags. The following code shows a simplified and
obfuscated example for a control code.

<activity_pattern_diagram name="APD">
<task_parallelism name="TP1">
<activity name="B8F621C170007E89E6BEAD55BIFD" weight="114882" />
<task_parallelism name="TP2">
<activity name="7B6CE4223224129CEDAFAF251357" weight="20147" />
<activity name="8F195E8876AC94965E8CCE779EB6" weight="39429" />
<activity name="34E37CD625D2D525AD9428B84B57" weight="21253" />
</task_parallelism>
<task_parallelism name="TP3">
<task_parallelism name="TP4">
<activity name="A76393250B76433E65846AE6403D" weight="19338" />
<activity name="C4180E198902A4531D6F6376B8OE" weight="19870" />
</task_parallelism>
<activity name="0C39C15205FEA1575B1B4D88OEAD" weight="65992" />
<task_parallelism name="TP7">
<activity name="38DB925FA49CF01772DD14E312C5" weight="68700" />
<activity name="3921B9CDDCAC9D7D32F0088A37C3" weight="107919" />
</task_parallelism>
</task_parallelism>
</task_parallelism>
<task_parallelism name="TP11">
<activity name="DCB0712655F3F6DBA1483BAEE56C" weight="23088" />
<activity name="56530AB823899A834E05765083BC" weight="19660" />
<activity name="1E0658902D48ABFB48E188A3A635" weight="21454" />
</task_parallelism>
</activity pattern_diagram>

In addition, a file with all accesses to shared variable for each activity is needed. Typically the
name of an activity—see code section above—maps to one function in the code. If the function

LWebsite: http://www.netbeans.org
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2 Multi-objective Optimization of an Activity and Pattern Diagram (APD)

calls other functions, then their accessed variables are added to the set of variables of the calling
function. An obfuscated file for the crawler crane control code can be found on GitHub.

The basic optimization idea is to find a number of threads for every PDP instance. Hence, a
variable is set up for every PDP instance. If the number of threads for a skeleton is lower than
the code fragments it can execute, then these code fragments are put in descending order by the
weight and grouped into as many partitions as threads are available (greedy approximation
algorithm). Multiple objectives are available and several of them can be chosen for a multi-
objective optimization:

Objective.OBJ_CORES Number of cores needed to execute the optimized model.

Objective.OBJ_PATTERNS Number of parallel design patterns that are executed with more
than one thread.

Objective.OBJ_DURATION Estimated duration of the execution time of the software based
on the weight attributes in the input XML. The performance model is influenced by laten-
cies defined in class Plat form for the execution of a skeleton and the estimated number of
accesses to shared global variables via mutator functions, which has an additional delay
also defined in class Platform.

Objective.OBJ_GLOBALS Number of shared global variables which are accessed by more
than one thread and hence need to be secured with locks.

Objective.OBJ_GLOBALS_ACCESSES Number of approximated accesses to shared global
variables.

The complete configuration is done in class parallelismanalysis.ParallelismAnalysis.
Running this class does the optimization. At the end, a list of near-optimal configurations is
printed:

6131818.0 1.0 for 1.0 1.0 1.0 1.6 1.6 1.6 1.0 1.0 1.0 1.0 1.0
3510570.0 2.0 for 2.0 1.0 1.0 1.0 1.0 1.6 1.0 1.0 1.0 1.0 1.0
2479180.0 3.0 for 2.0 1.0 1.0 2.6 1.0 1.0 2.0 1.0 2.0 1.0 1.0
2145180.0 4.0 for 2.0 2.0 1.0 2.6 1.0 1.0 2.0 1.0 4.0 2.0 1.0
1235848.0 9.0 for 3.0 1.0 2.0 3.0 1.0 1.0 2.0 1.0 1.0 3.0 1.0
1308060.0 8.0 for 3.0 1.0 2.0 3.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0
1390649.0 7.0 for 3.0 1.0 2.0 2.0 1.0 1.0 2.0 1.0 1.0 2.0 1.0
1697254.0 6.0 for 3.0 1.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0
1190640.0 11.0 for 3.0 1.6 2.0 3.0 2.0 1.0 2.0 2.0 1.0 3.0 1.0
1902501.0 5.0 for 3.0 1.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1129445.0 12.0 for 4.0 1.0 2.0 3.0 2.0 1.0 2.0 2.0 1.0 3.0 1.0
1115641.0 13.0 for 4.0 1.0 2.0 3.0 2.0 2.0 2.0 2.0 1.0 3.0 1.0

The list shows only Pareto-optimal configurations. In the above example, the first two
columns show the estimated execution time and the number of threads working in parallel.
The other columns show the number of threads per skeleton instance (of the full crawler crane
model). A fitting configuration can then be selected and implemented with the TAS.



3 Usage of the Timing Analyzable Algorithmic
Skeletons (TAS)

The Timing Analyzable Algorithmic Skeletons (TAS) are an implementation of the Timing Analyz-
able Parallel Design Patterns (PDPs) introduced in [4]. They are intended to facilitate the paral-
lelization of sequential application code written in C language. The TAS are applicable both
for the parMERASA simulator for the predictable multi-core parMERASA architecture [10] as
well as for other platforms with POSIX threads.

The remainder of this section is structured as follows: Section [3.1] describes the basic knowl-
edge and possible configurations of the TAS. In Section we reveal details about applying
the skeletons. Therefore, we first respond to necessary preparations before the invocation of the
TAS is presented afterward. In order to provide a better understanding, the described process
is additionally shown at an example.

3.1 Basics of Applying TAS

The source code of the skeletons can be downloaded and is available under the GNU LGPL v3
licensel}

https://github.com/parmerasa-uau/tas/tree/master/first-fit/
The root directory contains a folder tas and several other files:

e Folder tas contains the TAS implementation.

e main.c contains a simple example for TAS with POSIX threads. The actual algorithms
executed by this file are located in folder tas (starting example: matrix multiplication).
On the parMERASA architecture this is more complex and main_parmerasa.c can be
used.

e Makefile is the Makefile to build the demo application with TAS and POSIX threads.
Makefile_parmerasa is the counterpart for the parMERASA simulator.

If TAS should be used on the parMERASA architecture then further files are necessary,
which are always the same for all applications on the simulator and not shipped with TAS:
segmentation.h and kernel_1lib [2]. In TAS, the files tas/tas.h and platform.h must then

10n GitHub, also a second version is available, which is suitable only for the parMERASA platform. Here it can
be defined explicitly which worker shall be used by a skeleton; hence, the mapping can be fixed because it is
clear on this hardware platform which thread is executed on which core.
The URL is: https://github.com/parmerasa-uau/tas/tree/master/static/
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3 Usage of the Timing Analyzable Algorithmic Skeletons (TAS)

be changed according to the number of available cores, also the PARMERASA flag must be set and
TAS_POSIX must be unset.

On both supported platforms, within main.c, the user has to modify only the preproces-
sor directive for defining the macro MAIN_CORE_0. The value of this macro represents the
main function of the application code to parallelize. Therefore, the programmer indicates
the root function of the application here and if necessary includes the corresponding header
file. Thereby, it is crucial that the added #include directive is located below the already ex-
isting #include statements. The following listing shows an example of defining the function
application_main() in file application_main. c as root function for application code.

#include application_main.h
#define MAIN_CORE_O application_main()

Within the function linked to MAIN_CORE_0, code is written in a sequential way and skele-
tons are invoked for executing segments of code in parallel. There are several different skele-
tons available, each implementing one specific PDP. The summery of all TAS and the imple-
mented Parallel Design Patterns is listed below:

e tas_taskparallel — Task Parallelism
e tas_dataparallel — Data Parallelism

e tas_pipeline — Pipelining

3.2 Details for Applying TAS

In this section we take a closer look on applying skeletons. Therefore, we describe all needed
actions to get from sequential to parallel code. This is the necessary work to be done in the
last phase of the pattern-supported parallelization approach [7], which is our preferred way
for parallelization.

We give an example for each step in order to provide a better understanding. To do this, the
sequential code shown below is being parallelized for executing on the parMERASA simulator.

// Variables

// Execution

void func() {
// sequential part
int max = 4;

int a

int b

if (a
b =

}

else {
a =b;

}

g
2;
b) {

QO A I

// parallel part 1

int i;

for (i=0; i<max; i++) {
a++;

}

10




3.2 Details for Applying TAS

// parallel part 2
int j;
for (j=0; j<5; j++) {
b++;
}
}

For this, we assume that the first part of function func (marked with comment: sequential
part) shall be executed sequentially. The rest of the code (marked with comments: parallel
part 1and parallel part 2)is a parallel execution of two threads. Skeleton tas_taskparallel
is a suitable solution for this parallelization problem and will be applied here for that reason.

In the remainder, Section explains necessary preparations. Afterward, Section
describes the invocation of a skeleton. Finally, a full example is given in Section to sum-
marize all required actions.

3.2.1 Preparations for Invoking Skeletons

Different information is needed for utilizing a particular skeleton. This includes the knowledge
about the type of the skeleton and the definition of code segments which shall be executed
in parallel. Furthermore, a possibility of accessing variables has to be provided. Therefore,
various preparations have to be done before execution of a particular skeleton is possible.

Skeletons can only execute functions with a specific prototype description. In general, they
are structured as follows?

void *function_name(void *args);

It corresponds to the data type tas_runnable_t which is the type for functions executed by
the TAS. The name of the function (here: function_name) can be defined customly. The other
characteristics, namely the type of the return value and the type of the parameter, are fixed.
Therefore, all parallelly executed code sections must be encapsulated in functions according to
this prototype. In the example we call these functions par_part_1 for the code marked with
the comment parallel part 1 and par_part_2 for the other parallel part of the code. The
code for function par_part_2 is shown in the listing below:

void par_part_2(void *args) {
// parallel part 2
int j;
for (j=0; j<5; j++) {
b++;
}
}

These functions are summarized in an array. This is done by holding function pointers in
this array. Therefore, each pointer refers to one particular parallel function. Each element of
this array is cast to type tas_runnable_t. In the example, this array is called par_code_parts
and its initialization takes place directly at declaration tim

2This is similar to the argument of POSIX function pthread_create.
30n the parMERASA platform, SHARED_VARIABLE (membase_uncachedd) volatile is the way to declare a com-
mon shared variable in an uncached memory region—cache consistency problems are avoided by this.

11



3 Usage of the Timing Analyzable Algorithmic Skeletons (TAS)

SHARED_VARIABLE (membase_uncached®) volatile tas_runnable_t par_code_parts[] = {
(tas_runnable_t) par_part_1,
(tas_runnable_t) par_part_2

118

A closer investigation of the code shows that in the parallel sections two variables are ac-
cessed by writing (namely a and b) and one variable is accessed by reading (namely max). For
this reason, a possibility for accessing variables must be provided to the created functions. This
can be done utilizing shared variables or by passing the variables as parameters.

All parameters to pass to a particular skeleton have to be encapsulated in a structure. The
exact type of this structure is defined customly for each applied skeleton. In doing so, it is
not allowed to define pointers within this structure. The reason for this is the privacy of local
variables. They are located in the private stack of a thread. If pointers to such variables are
passed to other threads, one thread is able to access (read or write) local data of another thread.
This violates the idea of a thread’s private stack. Since shared variables are not stored in this
stack, these variables can solve this problem.

Shared variables are defined as global variables. When applying parMERASA simulator as
target platform, shared variables are declared as follows:

’SHARED,VARIABLE(membase,uncachedO) volatile int var; ‘

Here a variable var of type integer is declared as shared variable. In contrary, the declaration
of this variable is quite simple with POSIX threads:

’int var; ‘

It is to mention that only variables applied for reading access should be passed as parameters,
otherwise they should be defined as shared variables. This is because the passed data structures
are copies of original variables and, therefore, the parameters are called by value. Since there
are no pointers allowed within these structures, it is not possible to call values by reference.

Therefore, the variables a and b must be defined as shared variables, while max can be passed
as parameter. The declaration of a and b is displayed below:

SHARED_VARIABLE (membase_uncached0) volatile int a;
SHARED_VARIABLE (membase_uncached0) volatile int b;

Simultaneous access to variables by different threads has to be prevented when employing
shared variables. If the implementation should be lock-free, this has to take place by avoiding
simultaneous write accesses by different threads. In concrete it means, if one thread writes a
particular shared variable, all other parallel executed threads are not allowed to access (read or
write) this variable.

If locks are available, shared variables need to be locked for each access. With respect to
WCET analysis, we propose the usage of synchronization idioms introduced in [4].

A particular data structure is defined for passing parameters to parallel code segments. In
our example this structure contains an element max and is named process_args_t. The fol-
lowing listing shows the described data structure:

typedef struct process_args {
int max;
} process_args_t;

12



3.2 Details for Applying TAS

A further array has to be initialized to pass the parameters to all parallel functions. This
array contains one instance of the defined data structure for each parallel function. Thereby, it
must be ensured that the functions in the function pointer array and the corresponding param-
eter structures in the parameter array can be referenced by the same index. In our example,
we call the array for parameters par_part_arguments. Furthermore, an array of pointers to
type void (in the example: par_args) is declared which is used for describing the elements
of the parameter array. While defining these arrays, their length has to be taken care of. The
number of elements in each array is exactly the number of functions executed in parallel by
the corresponding skeleton. The implementation of both arrays is displayed in the following
listing:

SHARED_VARIABLE (membase_uncached®) volatile process_args_t * par_part_arguments[2];
SHARED_VARIABLE (membase_uncached®) volatile void * par_args[2];

While executing a skeleton, a pointer referring to the correct parameter structure is passed
to each parallelly executed function. Thus, the parameters have to be extracted before apply-
ing them. To do this, a new variable (in the example: my_data) is declared within the called
function. This variable has the same type as the parameter structure (in the example: the type
process_args_t). It is set to the passed argument which is previously cast to the type of
the particular data structure. The cast is needed because of the function prototype’s parameter
type, which is a pointer to type void. Afterwards, the parameters can be extracted by accessing
the variable’s elements. As example the function par_part_1 is shown below:

void par_part_1(void *args) {
// extracting parameters
struct process_args *my_data;
my_data (struct process_args *) args;
int max = my_data->max;

// parallel part 1
int i;
for (i=0; i<max; i++) {
a++;
}
}

Finally, the content of the skeleton is brought together. Therefore, a data structure of a specific
type is applied for representing the entire skeleton. The type differs according to the given
skeleton. For instance, tas_taskparallel_t is the type for Task Parallelism. It is initialized
with the number of functions to execute in parallel and the defined arrays of function pointers
and parameter structures. In doing so, it is crucial that the number of functions matches the
length of these arrays. The declaration and initialization of this data structure are shown here:

SHARED_VARIABLE (membase_uncached@) volatile tas_taskparallel_t par_code = {
par_code_parts, par_args, 2

118

3.2.2 Invocation of Skeletons

The preparations explained in Section have to be performed before it is possible to invoke
a particular skeleton. For execution of a skeleton the previously defined data structures need
to be set to the correct values and afterwards, the skeleton has to be applied.

13



3 Usage of the Timing Analyzable Algorithmic Skeletons (TAS)

Setting the data structures to correct values largely means setting the elements of the param-
eter structures. In the example this is done as follows:

par_partl_arguments[0].max = max;

par_args[0]
par_args[1]

&(par_part_arguments);
NULL;

Next, the skeleton is applied by the invocation of three functions. Each function call is re-
sponsible for one specific part of the skeleton’s execution. A pointer to the structure represent-
ing the skeleton is passed to all of those functions. The listing below shows the example of how
to invoke the skeleton tas_taskparallel.

tas_taskparallel_init(&par_code, 2);
tas_taskparallel_execute(&par_code);
tas_taskparallel_finalize(&par_code);

Init In this phase, some initialization actions are done and the needed threads are assigned to
the skeleton. The number of threads to assign is passed as parameter to the invoked Init
function.

Execution The skeleton’s workload is assigned to its available threads and the execution takes
place. If the number of parallel code sections is higher than the number of assigned
threads, the workload of the skeleton cannot be executed in one round. In this case,
after execution of already assigned workload, further workload is assigned to the threads.
Assignment of workloads is applied iteratively until all work is done.

Finalize Here, some actions for completion are executed and the assigned threads are released.

Worker threads can be assigned to a skeleton either by a so-called static or dynamic selec-
tion. In the dynamic selection the initialization (phase Init) and the finalization (phase Finalize)
of the skeleton is done directly before and after execution. In contrary, the initialization and
finalization takes place before and after the execution of application code for static selection.

In both versions of selection there are advantages and shortcomings. When selecting workers
dynamically, it is possible to use the threads not needed at the moment for additional workload
like the execution of other functions. For static selection this is not possible. However, less
overhead is caused by fixed assignment during execution compared to the dynamic version.

3.2.3 Complete Example

In order to provide a better understanding, we show the running example of the above sec-
tions as a continuous implementation. Thereby, we utilize the parMERASA simulator as target
platform and apply a dynamic worker selection.

After declaration is done, the invocation of the skeleton can be implemented. As shown in
the listing, the sequential parts of the code stay at their position in function func. The parallel
code is removed because it is now located in the functions for parallel execution. Instead, the
initialization of the parameter structures and the invocation of the skeleton is done in func.
The presented sequential code implemented in a parallel way applying TAS is displayed in the
listing below:

14



3.2 Details for Applying TAS

void par_part_1l(void =*args);
void par_part_2(void x*args);

// Variables

typedef struct process_args {
int max;

} process_args_t;

SHARED_VARIABLE (membase_uncached®) volatile int a;
SHARED_VARIABLE (membase_uncached0) volatile int b;

SHARED_VARIABLE (membase_uncached®) volatile process_args_t * par_part_arguments[2];

SHARED_VARIABLE (membase_uncached®) volatile void * par_args[2];

SHARED_VARIABLE (membase_uncached@) volatile tas_runnable_t par_code_parts[] = {
(tas_runnable_t) par_part_1,
(tas_runnable_t) par_part_2

I8

SHARED_VARIABLE (membase_uncached®) volatile tas_taskparallel_t par_code = {
par_code_parts, par_args, 2

18

// Execution
void par_part_1l(void *args) {
// extracting parameters
struct process_args *my_data;
my_data = (struct process_args x) args;
int max = my_data->max;

// parallel part 1
int i;
for (i=0; i<max; i++) {
at+;
}
}

void par_part_2(void *args) {
// parallel part 2
int j;
for (j=0; j<5; j++) {
b++;
}
}

void func() {
// sequential part
a=1;
b =2;
if (a < b) {
b = a;
} else {
a=>b;

}

// parallel execution (runs in main thread)
par_partl_arguments[0].max = max;

par_args[0] = &(par_part_arguments);
par_args[1] NULL;

tas_taskparallel_init(&par_code, 2);
tas_taskparallel_execute(&par_code);
tas_taskparallel_finalize(&par_code);

15
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4 Analysis Support for OTAWA

To get a WCET estimate of a parallel program a suitable tool is necessary. We focus on the
OTAWA toolseiﬂ OTAWA applies static analysis for WCET calculation. For this, it needs the
source code of the application and also the binary file of the compiled program (see Figure[4.T).
In addition, it needs IDs as annotations in source code for parallel software and an XML file
describing the relationships between these IDSEI

TAS XML OTAWA
XML

Source Code
with

Annotations

Compiled
Program

Figure 4.1: Information flow for WCET analysis with OTAWA of code with Timing Analyzable
Algorithmic Skeletons (TAS); additional conventional flow facts are not shown here.

Because the notation of this OTAWA XML syntax is complex, we present a simplified XML
schema not describing synchronization idioms but TAS skeleton instances. This format is de-
scribed in detail in the next Section In addition, the process of generating the OTAWA
XML from it is described (Section and tests to check both formats (Section [4.3). Because
the notation of this OTAWA XML syntax is complex, we present a simplified XML schema not
describing synchronization idioms but TAS skeleton instances. This format is described in de-
tail in the next Section In addition, the process of generating the OTAWA XML from it is
described (Section and tests to check both formats (Section [4.3).

OTAWA can perform the WCET analysis only for a small set of processors. This selection is
even more restricted for multi-core processors. Hence, the remainder is mainly focused on the
parMERASA architecture, which can be analyzed with OTAWA.

Website: http://www.otawa. fr/
2In other words, the additional XML file describes “parallel flow-facts”.
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4 Analysis Support for OTAWA

4.1 Structure of the TAS XML Format

An overview over the XML format for the Timing analyzable Algorithmic Skeleton (TAS) XML can
be seen in the following listing:

<?xml version="1.0"7?>
<program xsi:schemalLocation="http://www.w3schools.com tas.xsd"
xmlns="http://www.w3schools.com"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<threads>
<thread>
</thread>

</threads>
<tas_taskparallelisms>
<tas_taskparallelism>
</tas_taskparallelism>
</tas_taskparallelisms>
<tas_dataparallelisms>
<tas_dataparallelism>
</tas_dataparallelism>
</tas_dataparallelisms>
<tas_pipelineparallelisms>
<tas_pipelineparallelism>
</tas_pipelineparallelism>
</tas_pipelineparallelisms>
<csections>
<csection>
</csection>

</csections>

</program>

Each TAS XML file contains a list of all participating threads, the task parallelism, data parallel
and parallel pipeline skeleton instances that are used in the C program, as well as an additional
csection tags for critical sections (OTAWA XML syntax). All parts are described in the following
in more detail.

4.1.1 Participating Threads

The tag <threads> hosts all threads which are participating in the system and are used to
process a task or pipeline step. The following listing shows an example of this:

<threads>
<thread cluster="0" core="0" id="0" routine="main"/>
<thread cluster="0" core="1" id="1" routine="tas_thread"/>
<thread cluster="1" core="0" id="2" routine="tas_thread"/>
<thread cluster="1" core="1" id="3" routine="tas_thread"/>
</threads>

Here, four threads are employed in the program. To enable analyzability, the mapping of
the threads to the corresponding cores has to be defined. This is done by the cluster and core
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attributes. Each thread also needs a unique ID that can be referenced later with the id attribute.
Lastly, the routine of the thread has to be defined. For the main thread this is the name of the
function where the first skeleton is executed, i.e., the function chosen as root for the WCET anal-
ysis. All other threads that are spawned by the main thread have the routine set to tas_thread.

4.1.2 Task Parallelism Instances

A task parallelism skeleton in C consists of two parts. First, the functions that are executed by
the threads have to be defined. The following example defines three tasks (vfahrwerk_parto,
vfahrwerk_partl, and vfahrwerk_part2):

SHARED_VARIABLE (membase_uncached®) volatile void * vfahrwerk_task_parallelism_args[3];
SHARED_VARIABLE (membase_uncached®) volatile
tas_runnable_t vfahrwerk_task_parallelism_runnables[] = {
(tas_runnable_t) vfahrwerk_parto,
(tas_runnable_t) vfahrwerk_partl
(tas_runnable_t) vfahrwerk_part2
I8
SHARED_VARIABLE (membase_uncached®) volatile tas_taskparallel_t
vfahrwerk_task_parallelism = {
vfahrwerk_task_parallelism_runnables, vfahrwerk_task_parallelism_args, 3};

After defining the runnables, the skeleton is initialized, executed and finalized, like in the
following C code fragment:

tas_taskparallel_init(&vfahrwerk_task_parallelism, 3);
tas_taskparallel_execute(&vfahrwerk_task_parallelism); // ID=tas_ tp_fahrwerk
tas_taskparallel_finalize(&vfahrwerk_task_parallelism);

The call to tas_taskparallel_execute has to be annotated with a unique ID. The XML de-
scription for the skeleton can be defined with a <tas_taskparallelism> tag after preparing
the C code. The ID set in <tas_taskparallelism> has to be identical to the annotation in
the C code.

<tas_taskparallelisms>
<tas_taskparallelism id="tas_tp_fahrwerk" description="Task Parallelism in Fahrwerk"
main_as_worker="1">
<threads>
<thread ref="0" main="1"/>
<thread ref="1"/>
<thread ref="2"/>
</threads>
<tasks>
<task function="vfahrwerk_part0" thread="0"/>
<task function="vfahrwerk_partl" thread="1"/>
<task function="vfahrwerk_part2" thread="2"/>
</tasks>
</tas_taskparallelism>
</tas_taskparallelisms>

In addition to the ID, a free description can be provided by the description attribute. This
description will be added to the comments in the generated OTAWA XML to improve compre-
hensibility. Lastly the main thread can be defined to be also a worker for the tasks, indicated
by setting the attribute main_as_worker to

SHowever, the case that the main thread is not a worker is not supported. For running a skeleton with a single
thread this is no limitation; in this case no XML code for OTAWA is generated at all.
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Beside the attributes, the participating threads and the executed tasks have to be defined.
The threads which will be executing the tasks are defined under the <threads> tag. Each
thread listed here has to reference a thread defined under the global <threads> tag under
<program>. The ref attribute of each thread therefore is a reference to the ID of a thread. In
addition, the thread that starts all other threads has to be marked as such, setting the main
attribute to 1.

The <tasks> tag holds a list of all functions that are executed by the task parallelism skele-
ton. The number of tasks and the number of threads executing the tasks should to matc For
each task the C function that is executed by this task is specified by the function attribute. In
addition, the thread that is executing the task is referenced by the thread attribute. Logically,
all threads defined for the skeletons under <threads> have to be referenced by the <task>
elements.

4.1.3 Data Parallelism Instances

Data Parallelism is used when the same function is called several times with different input pa-
rameters. An example is a genetic algorithm, where several individuals (representing different
parameter sets) have to be evaluated using the same fitness function. Let’s assume a function
init_and_evaluate, which does exactly that. First, the parameters for the skeleton have to be
defined:

// TOTAL_CORE_NUM is the number used cores, i.e., number of workers plus one
SHARED_VARIABLE (membase_uncached®) volatile ga_args_t my_ga_args_data[TOTAL_CORE_NUM];
SHARED_VARIABLE (membase_uncached®) volatile void * my_ga_ args[TOTAL_CORE_NUM];
SHARED_VARIABLE (membase_uncached®) volatile tas_dataparallel_t dp_ga =
{(tas_runnable_t) init_and_evaluate, my_ga_args, TOTAL_CORE_NUM};

Then, the skeleton can be executed. In case of the genetic algorithm, the skeleton is called
several times within a loop, where each iteration corresponds to a generation. Since all indi-
viduals of a generation are evaluated in parallel by the skeleton, no further loop is required.
Otherwise a nested loop would execute a bulk of evaluations with as many iterations as needed
to process all individuals of the generation:

void demo_5_main_core_0() {

tas_dataparallel_init(&dp_ga, TOTAL_CORE_NUM);
for (iteration = 0; iteration < GA_GENERATIONS; iteration++) {

tas_dataparallel_execute(&dp_ga); // ID=genetic_dp_execute

}
tas_dataparallel_finalize(&dp_ga);

The XML description for the above function looks then as follows:

<tas_dataparallelisms>
<tas_dataparallelism id="genetic_dp_execute" description="Genetic Algorithm"
main_as_worker="1" nr_args="8">

41f not, then (a) multiple round of execution are performed assigning functions to threads in a round-robin manner
or (b) some threads do not execute functions.
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<threads>
<thread ref="0" main="1"/>
<thread ref="1"/>
<thread ref="2"/>
<thread ref="3"/>
<thread ref="4"/>
<thread ref="5"/>
<thread ref="6"/>
<thread ref="7"/>
</threads>
<task function="init_and_evaluate"/>
</tas_dataparallelism>
</tas_dataparallelisms>

The tag <tas_dataparallelism> contains an id, which must exactly match the ID annota-
tion of the source code, a description, which is used to add comments in the generated OTAWA
XML, and an attribute main_as_worker that marks the main thread as worker. In addition, the
attribute nr_args defines the total number of executions of the singular task, which may be a
multiple of the threads used by the skeleton. In the above example, if a generation contains only
8 individuals, then the 8 applied threads are enough to completely process the task, therefore
the nr_args attribute is set to 8. If, e.g., 8 threads would still be used to process the individuals,
but the total number of individuals per generations are 40, then nr_args would be set to 40.

Similar to the task parallelism skeleton, the <threads> tag contains all threads used by the
data parallelism skeleton, with one thread marked as main, being the initial main thread. In
contrast to the task parallelism skeleton, only a single <task> tag is defined, which describes
the function called by the skeleton using the <function> attribute. In the genetic algorithm
example, this would be the init_and_evaluate function.

4.1.4 Pipeline Parallelism Instances

For a pipeline example, let’s assume a number of matrices, that are processed in the following
steps:

1. Generate a number of random matrices (create_fft_input)

2. Apply a fast Fourier transform on all matrices (a_to_A)

3. Multiply the matrices with another set of random matrices (AB_to_C)
4. Add the matrices together to a single matrix (C_to_D)

5. Apply an inverse fast Fourier transform on the matrix (D_to_d)

Each step corresponds to a pipeline stage, which can be executed in parallel. For the above
example, the parameters for the skeleton would look as follows (&io here represents a struct
that holds the input and output matrices):

SHARED_VARIABLE (membase_uncached®) volatile tas_pipeline_inout_t io =
{& cache[0], & cache[l]};
SHARED_VARIABLE (membase_uncached0) volatile
void * task_parallelism_args[STAGES] = {
(void x) &io, (void *) &io, (void x) &io, (void x) &io, (void *) &io
ki
SHARED_VARIABLE (membase_uncached0) volatile

21




4 Analysis Support for OTAWA

tas_runnable_t task_parallelism_runnables[STAGES] = {
(tas_runnable_t) &create_fft_input,
(tas_runnable_t) &a_to_A, (tas_runnable_t) &AB_to_C,
(tas_runnable_t) &C_to_D, (tas_runnable_t) &D_to_d
ki

Then, the call to the pipeline skeleton would look as follows:

void demo_fft_init() {
tas_taskparallel_init(&task_parallelism, 5);

tas_pipeline_execute(&task_parallelism, ITERATIONS, &io); //ID=tas_pipeline_fft
tas_taskparallel_finalize(&task_parallelism);

}

To describe the skeleton in XML, a <tas_pipelineparallelism> tag is used:

<tas_pipelineparallelisms>
<tas_pipelineparallelism id="tas_pipeline_fft"
description="Parallel FFT calculation with pipeline"
main_as_worker="1" iterations="25">
<threads>
<thread ref="0" main="1"/>
<thread ref="1"/>
<thread ref="2"/>
<thread ref="3"/>
<thread ref="4"/>
</threads>
<tasks>
<task function="create_fft_input"/>
<task function="a_to_A"/>
<task function="AB_to_C"/>
<task function="C_to_D"/>
<task function="D_to_d"/>
</tasks>
</tas_pipelineparallelism>
</tas_pipelineparallelisms>

As attributes it has an id, which needs to be the exact same as the ID annotation in the source
code, a description used for comments in the generated OTAWA XML, main_as_worker to
mark the main thread as a worker, and iterations to define the number of times the pipeline
is to be executed. This number has to be the same as the ITERATIONS constant in the C code
above. The skeleton makes sure that the prolog and epilog of the pipeline is handled correctly.

As with the other skeletons, all participating threads are defined under the <threads> tag
where one thread is marked as main. Typically the number of threads is equal to the number
of pipeline stages. Under the <tasks> tag, all pipeline stages are defined with the <task>
tag that contains the attribute function, which lists the name of the function that executes the
pipeline stage.

4.1.5 Common Attributes for all Skeleton Instances

Every skeleton has additional attributes that can be set in the corresponding tags, which are
tas_taskparallelism, task_dataparallelism, and tas_pipelineparallelism:

o executed_after references the skeleton that came sequentially before the currently de-
scribed skeleton instance; see Figure |4.2| for an example. If this attribute is omitted it is
set to BEGIN.
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Figure 4.2: Example for execution of skeleton instances after each other (black arrows) or by
call (gray arrows) in the execution order.

Example: The main thread executes two Task Parallelism skeletons (A, F) after each other.
A would reference BEGIN, while F would reference the ID of A.

o called_by references the skeleton that called this skeleton, i.e., the skeleton is nested; see
Figure.2|for an example.

Example: A Pipeline Parallelism skeleton B executes a Data Parallelism skeleton D to
parallelize one of its pipeline steps and therefore shorten its run time to match its other
pipeline steps. D would reference the ID of B.

e init_id references the ID of the skeleton initialization statement. The initialization is nec-
essary for binding threads to the skeleton during run-time. If this attribute is present,
then the necessary XML code for OTAWA is generated; also the attribute finalize_id
must be present.

e finalize_id references the ID of the skeleton finalization statement. The finalization is
necessary for releasing threads from the skeleton after its execution and still during run-
time. If this attribute is present, then the necessary XML code for OTAWA is generated;
also the attribute init_id must be present.

4.1.6 Critical Sections

In addition to the descriptions of the TAS instances, a list of <csection> tags can be defined,
listed under the <csections> tag. These will be copied to the generated OTAWA XML file.
Csections are necessary for critical sections, i.e., threads have to make sure that only one of
them executes6 a code part at a point of time.

Single Use of a Lock Variable

As an example consider a function that calculates a random number. In this function a critical
section is defined for access on the globally defined seed. In C, an excerpt of the function can
look like this:

double rando() {
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ticket_lock(&lock_random); // ID=rando_lock

ticket_unlock(&lock_random); // ID=rando_lock

Here, a ticket lock is used to secure thread safety. Both calls to lock and unlock have to be
annotated with an ID, in this case the ID is named rando_lock. Now a <csection> tag for
this critical section has to be defined for all threads that can access the critical section.

<csections>
<!-- additional csection for random number generator -->
<csection id="rando_lock" description="Random Number Generator">
<thread id="0,1,2,3"/>
</csection>
</csections>

The above example defines such a lock, here for four threads with the IDs 0, 1, 2 and 3. The
description attribute is optional and is used to set a comment in the generated OTAWA XML.
Therefore, the generated XML file for the above example would be:

<!-- Random Number Generator -->
<csection id="rando_lock">

<thread id="0,1,2,3"/>
</csection>

Repeated Use of a Lock Variable

If the lock would also be used in another code part (typically to secure accesses to the same
data structure), then the lock/unlock pair would be annotated with a new ID:

void rando_init() {
ticket_lock(&lock_random); // ID=rando_init_ lock

ticket_unlock(&lock_random); // ID=rando_init_lock

The intermediate XML code must then be extended with the second ID:

<csections>
<!-- additional csection for random number generator -->
<csection id="rando_lock rando_init_lock" description="Random Number Generator">
<thread id="0,1,2,3"/>
</csection>
</csections>

The <thread /> tag should contain only the threads which actually try to acquire the de-
scribed lock if possible. However, under no circumstances a thread may be missed here.

CSection Tags for TAS

Beside the defined <csection> one more <csection> is defined in the generated OTAWA
XML file, if at least one TAs instance description exists:
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<!-- additional csection for skeletons -->

<csection id="tas_worker_get_worker_available_lock
tas_get_workers_available_worker_available_lock
tas_worker_release_worker_available_lock
tas_thread_worker_available_lock">
<thread id="0,1,2,3"/>

</csection>

This <csection> is created automatically and appended as last <csection> referencing
all threads defined under the global <threads> tag. The listed ID list is generated in one
line separated by a whitespace in the XML file but is written here as one per line to enhance
readability.

4.2 Running the Converter

The converter translates from TAS XML to OTAWA XML. Its source code is available under the
GNU LGPL v3 license:

https://github.com/parmerasa-uau/tas2otawa/

The implementation was done with Java in Eclipse. Simple XMLE] is used for parsing and
writing XML files. For a translation, we recommend adding a jUnit test extending the class with
name eu.parmerasa.sik.xmlconverter.converter.AbstractTasTest. The conversion can
then be performed with method runTest (String filename). This test also checks both input
and output XML files (see Section [4.3).

As alternative, a zip containing the required jar files as well as a shell script for Linux and a
batch script for Windows to run the converter can be built with Eclipse. After unpacking the
zip, the converter can be called directly by running the scripts (tas2otawa.bat for Windows and
tas2otawa.sh for Linux).

Two parameters are expected by the script, i.e., the names of the files with the input XML
and the output XML, e.g.:

tas2otawa.sh input.xml output.xml

The scripts expect to be called in the directory they are in, because a relative classpath entry
is defined within the scripts. If needed, the classpath entry can be changed to absolute paths.
If the XML files are not in the local directory, the full path to the files has to be set as well, e.g.,
c:\temp\input.xml or /home/input.xml. Both Linux and Windows paths are supported.

4.3 Validating the XML Files

Both the TAS XML and the OTAWA XML files can be validated through provided XML Schema
(.xsd) files. These XML files are included in the zip of the converter and can be found in the
source code folders: tas.xsd for the intermediate XML files and annotations.xsd for the OTAWA
XML files. To link the TAS XML to the schema file, a reference with correct namespace has to
be set in the <program> tag:

SWebsite: http://simple.sourceforge.net/
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<program xsi:schemalLocation="http://www.w3schools.com tas.xsd"
xmlns="http://www.w3schools.com"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

</program>

Again, the namespaces and attributes should be written in a single line but have line breaks
here to enhance readability. The converter writes similar attributes in the created OTAWA XML
file to reference annotations.xsd. In addition, DTD files are available for both XML formats.
Also several checks are run in Java just before the conversion is run.

To validate the XML files, a tool of choice can be used. An example is the Eclipse Web Tool
Platform (WTP). It adds a Validate command to the context menu of XML files.
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