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Theoretical Physics I
University of Augsburg, Germany

Prof. Dr. Peter Talkner
Theoretical Physics I
University of Augsburg, Germany

Prof. Dr. Jerzy Łuczka
Department of Theoretical Physics
University of Silesia, Katowice, Poland

Erster Berichter: Prof. Dr. Peter Hänggi
Zweiter Berichter: Prof. Dr. Jerzy Łuczka
Tag der m̈undlichen Pr̈ufung: 15 M̈arz 2006



Contents

1 Introduction 5

2 Stochastic model of a tilted rocked ratchet 13
2.1 Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.3 Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.4 Potential Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2.5 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

3 Quantifiers characterizing the optimal transport 19
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1 Introduction

Isn’t it sometimes that a facade
of randomness and chaos
conceals a demon
of order and harmony.

(Łuczka)

Historical remarks
In 1827 Robert Brown (1773–1858), a leading British botanist observed under the micro-

scope irregular motion of pollen grains and spores of mosses suspended in water
(see Fig. 1.1)1. Puzzled by the phenomenon he performed a number of further experiments,
using different organic and inorganic objects, different surrounding fluids like water or alcohol
and different microscopes. One year later he published his findings [1] where he concluded
that this kind of motion is caused by the bombardments by the small particles, which he calls
”active molecules”. His theory, however, has one weakness: He claimed that the motion of
active molecules originates from the molecules themselves and not that it is caused by heat.
He knew that he was not the first to discover this kind of mobility and in his 1829 paper [2]
he referred to a number of experiments and observations done earlier, however, for organic
bodies only. Although Brown was not the first observer of this kind of motion, he was the pi-
oneering experimentalist who made systematic investigations, trying to understand the origin
of this random motion. His study showed that this kind of motion is universal and in particular
not restricted to living matter. He turned the story of the neverending inanimate bodies dances
in fluids from biology to a problem of physics. Brown was not aware of the work of the Dutch
physiologist, botanist and physicist Jan Ingen-Housz (1730–1799), who in 1785 had made
some observations of the irregular motion of carbon dust on alcohol.

After Brown other scientists performed their own experiments and proposed new theories,
in order to give a quantitative description of the phenomenon. Unfortunately, the experimen-
talists usually measured the instantaneous velocities of the frisky particles and ended up with
irreproducible average values. There were also several attempts to explain of this kind of
motion, mostly as an effect of external forces, like the most popular temperature gradient
produced by the light illuminating the probe and the convection connected with it.

The breakthrough came with Albert Einstein (1879–1955) in hisannus mirabilis1905,
when he published, beside others outstanding papers, his theoretical explanation of Brownian

1 The picture of Robert’s Brown microscope (Fig. 1.1) used on the courtesy of Prof. Brian J. Ford (http:
//www.brianjford.com ).
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1 Introduction

Figure 1.1:Robert Brown’s microscope as presented to the Linnean Society in 1928 [3].

motion in [4]. This work has provided an evidence for the existence of atoms, and moreover,
directed the experimentalists to what they should focus in their experiments on the Brownian
motion, namely, to the fluctuations of position of a Brownian particle. He derived there the
famous formula for the relation between the diffusion coefficientD and osmotic pressure for
the particle of radiusr suspended in a liquid at the temperatureT . He showed thatD is related
to the Boltzmann constantkB (i.e to the ratio of the ideal gas constantR and the Avogadro
numberNA) and molecular dimension via the Stokes frictionγ (or equivalent the coefficient
of the viscosity of solventη) [5]. Nowadays, in a statistical physics, this formula is referred to
as theEinstein relation

D =
RT

NA

1

6πηr
=

kBT

γ
. (1.1)

Also in 1905, William Sutherland (1859–1911) developed similar theory yielding the same
formula for the coefficient of diffusion [6]. At the same time Marian Smoluchowski (1872–
1917), also worked on the kinetic theory of Brownian motion. He used a different approach
– his derivation was based on combinatorics and the mean free path approximation. In 1906,
provoked by Einstein’s publication, he presented his own work, where he proposed the equa-
tion which later on became the basis of the theory of stochastic processes [7,8].

Three years after Einstein’s elaboration, the French physicist Paul Langevin (1872–1946)
devised a very different technique of description of the Brownian motion, in his own words
“infinitely more simple” than Einstein’s. By introducing a stochastic (complementary) force
representing the random “kicks” in the velocity space, he solved the problem by means of
Newton’s second law. Einstein used the method of deriving and solving partial differential
(Fokker-Planck) equation for the time evolution of the probability density of position of the
Brownian particle (i.e. the diffusion equation).

It is however surprising that Einstein and Langevin used the term ”Brownian motion”, but
did not cite any paper of Robert Brown and instead referred to the experiments by the French
physicist Ĺeon Gouy [9].
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The experimental confirmation of the kinetic theories of Brownian motion came with Jean
Baptiste Perrin (1870–1942) [10], who won the 1926 Nobel Prize for his work on the discon-
tinuous structure of matter.

The two approaches, based on the Fokker-Planck and the Langevin equations, are now
widely used as the equivalent formulation of continuous Markov processes in many different
branches of science like physics, chemistry, economy and even in social sciences.

Ratchet introduced
In 1912 Smoluchowski published a paper [11] where he designed in a thought experiment

a gadget showing the possibility of rectifying thermal energy using a ratchet and pawl mecha-
nism. In other words - he proposed a device that far from the equilibrium state is able to convert
the thermal motion of Brownian particles into directed motion, just by using the breaking of
symmetry. The small section in [11] was like a kind of response to the postulate of L. Gouy
who had insinuated that the molecular ratchet mechanism would violate the second law of
thermodynamics [12]. The same idea was reformulated and elucidated in the early 1960 by
Richard Feynman (1918–1988) in his famous ”Lecture of Physics” [13].

Figure 1.2:A schematic cartoon of the Smoluchowski-Feynman ratchet and pawl device.

Let us briefly examine the apparatus we call Smoluchowski-Feynman ratchet presented in
the Fig. 1.2. The machine consists of an axle with vanes at one of its ends and a ratchet at the
other. The pawl restricts the motion in one direction. Both ends of the instrument placed in
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1 Introduction

different ”boxes” with gas temperaturesT1 andT2, undergo random motion due to collisions
with molecules. The first impression is that at even the same temperaturesT1 = T2, the axle
may only turn in one direction because of the pawl mechanism and on the average a directed
motion is generated by means of the thermal fluctuations. It looks like that we have just
constructed aperpetuum mobileof the second kind or a specific Maxwell demon is seemingly
at work. The paradox was explained by Feynman [13]: Every single part of the device is
subjected to the neverending bombardments of equal intensity in all directions. It is therefore
possible that due to the Brownian motion, the pawl would rise above the ratchet’s teeth and
cause turns in both directions with the same probability. The net motion is then obviously
zero. A critical analysis of the Smoluchowski-Feynman construction is presented in [14, 15].
On the other hand, if the two temperatures are different,T1 6= T2, the resulting average motion
is nonzero. In this case, the macroscopic difference of temperature causes the net motion of
the axle.

This analysis can be a motivation for an abstract mathematical formulation [16] of the
ratchet deviceillustrated in Fig 1.2:

a) The ratchet (wheel) presents a spatially periodic system. It corresponds to a spatially
periodic potentialV (x) = V (x + L).

b) The symmetry of the ratchet is broken, because of the pawl mechanism (the teeth are
asymmetrical). It corresponds to a breaking of a reflection symmetry of the potential:
there is no real numberx0, such that the relationV (x0 − x) = V (x0 + x) is fulfilled.

c) The average random force acting on the vanes and caused by collisions of gas molecules
is zero. It corresponds to the zero-mean thermal fluctuations.

d) The directed motion can be induced by a temperature gradient or a constant bias force.
However, these are trivial cases and instead we would drive the system out of the equi-
librium state with a nonthermal force of a zero mean.

Since Feynman the knowledge of the physics of ratchets was put forward. There exists a
very rich literature dealing with the above formulated issue [17,18], mainly in the overdamped
regime [19]. There are many conceptual models of ratchets including pulsating ratchets with
a deterministic driving [20–22], random dichotomic driving [23, 24] or deterministic driving
but a dichotomic random force [25]. Moreover, the fluctuating force ratchets with random
dichotomic [26, 27], Gaussian tilting [28–30], rocking (periodic tilting) ratchets or asymmet-
ric tilting ratchets (assuming spatially symmetric potential but asymmetric driving) was also
studied. Other possibilities of extracting useful motion from zero-mean forces are extensions
of the Smoluchowski-Feynman device – temperature ratchets with periodic temperature vari-
ations [31] or dichotomous random switching of the temperature [26, 32–34]. The ratchet
effect was found also for a case of inhomogeneous (state dependent) friction [35, 36]. There
exists also an amazing phenomenon that makes use of the ratchet effect, calledParrondo para-
dox [37–39]. If we refer to the configuration of the system as to a game and we consider two
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fair games, we can expressed this paradox as the following: by random switching between
two fair random games one can end up with a game that is no longer fair.

Another important family of ratchet-based systems are molecular motors. The name refers
to proteins or protein complexes that are able to transduce chemical energy, usually stored in
the ATP (AdenosineTriPhosphate), into mechanical work and directed motion in an asymmet-
ric environment at the molecular scale. There are transporting proteins (translationary motors)
which move along the intracellular, polar “highways”, like tubulin filaments (with kinesin
walking towards the positive and dynein to the negative end) or active filaments (with cor-
responding myosin advancing in the positive extremity). The filaments are asymmetric and
periodic structures with period of about8nm. Other motor proteins perform rotatory motions,
like theF1F0ATPase which produces (with nearly 100% efficiency [40, 41]) the life-essential
nucleotide ATP. It is stunning that every day we produce and burn a half of our body weight
in ATP. In fact it is not at all easy to move in a cellular environment. Due to the relatively high
viscosity of the surrounding fluid the motor has to struggle against the strong friction force. On
the other hand due to the heat bombardments by particles of the solution the motor perceives
strong kicks in every direction. For the molecular motor it is like to “walk in a hurricane and
swim in molasses” [42,43].

Many different aspects of the molecular motors were studied in great detail. The model of
a motor with two feet and its manner of walking (stepping) along tubulin was addressed both
experimentally [44–46] and theoretically [47–52]. A one dimensional model of the motor in
an open tube, with dynamics alternating between two configurations, when the motor moves
on a tubulin using the ratchet effect (bounded state) and the free diffusive motion in the tube
(unbounded state) was studied in [53–55]. The mechanical properties of a motor was examined
by use of an optical tweezers technique [56–58] and the conformational changes of a motor
simulated by means of molecular dynamics [59], to name but a few.

The overdamped dynamics is a valid approximation for many physical applications [60]. It
is particularly well suited to describe the motion of molecular motors. In other situations the
inertial effects, however, can play an important role. Examples are the diffusion of adatoms
on a crystal surface [61–63], dissipation in threshold devices [64,65], dislocation of defects in
metals [66,67] and in a hysteretic Josephson junction [68,69].

Subject of this thesis
In this thesis we will study transport of aninertial Brownian particle in a periodic ratchet-

type potential additionally subjected to an external, time periodic force, i.e. rocked ratchet.
The vast majority of works focused on rocking ratchets is concentrated on the behavior of the
overdampedregime [70–72] and the control of the emerging directed transport as a function
of control parameters such as temperature, external load (yielding the load-current character-
istics), or some other control variable, for reviews see [17,18,43,73–76].

A notable exception is the first work on an inertial rocking ratchet [77] wherein the higher-
order, statistical cumulant properties of the stochastic position variable have been explored.
The deterministic aspects of the inertial rocked dynamics has extensively been studied within
the last few years. We give a short review of the present state of art in the section 4.
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1 Introduction

In contrast, the role of the fluctuations of the directed current has not attracted much atten-
tion in the literature [62]. Here, we fill this gap and focus in more detail on the fluctuating
behavior of the Brownian motor position and current. The average drift motion together with
its fluctuation statistics are salient features when characterizing the performance of a Brownian
motor.

When we study the motion of Brownian motors, the natural transport measure is a conve-
niently defined average asymptotic velocity〈〈v〉〉 of the Brownian particle. It describes how
much time a typical particle needs to overcome a given distance in the asymptotic (long-time)
regime. This velocity, however, is not the only appropriate transport criterion and other at-
tributes can also be important.

The goal of this work is to constitute the most significant characteristics relevant for op-
timization of the Brownian motormodus operandi. In order to establish them, we consider
the two following aspects: the quality of the transport and the energetic efficiency of such a
system.

B

Axx

0

x1

xx

tt

0

x1

t1

Figure 1.3: Two sets of illustrative trajectories of an inertial, rocked Brownian motor (see
in text). Both sets of trajectories A and B possess the same average asymptotic
velocity, but exhibit a distinct different diffusion behavior.

In Fig. 1.3, one can identify two different groups A and B of random trajectories of the
Brownian particle; both possess the same average drift velocity〈〈v〉〉. However, it is obvious
upon inspection that the dynamical properties of these two groups of trajectories are different.
The particles from the group A travel more or less coherently together while the particles from
the group B spread out as time goes by. If we fix the distancex = x1 then most particles from
the group A reach this distance at about the same timet = t1, while most of the B trajectories
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either stay behind or have already proceeded to more distant positions. It is thus evident that
the noise-assisted, directed transport for the particles in the group A is more organized than in
the group B.

D

Cxx

xx

tt

Figure 1.4: Typical trajectories of an inertial, rocking Brownian motor; both sets assume the
same average velocity but differing velocity fluctuations.

There is still another aspect related to Brownian motor transport. This refers to the external
energy input into the system which may be essential in practical applications. We would like to
know how much of this input energy is converted into useful work, namely into directed cargo
transport, and how much of it gets wasted. Since motors move in a dissipative environment,
we need to know how much of the input energy is being spent for moving a certain distance
against the acting friction force. If the particle additionally proceeds against a bias force we
can also ask how much energy is exploited for this purpose.

Fig. 1.4 depicts trajectories representing different motor scenarios. The motor C moves
forward unidirectionally. The motor D moves in a more complicated manner: its motion alter-
nates between small oscillations and fast running episodes mostly in the positivex direction,
but sometimes also in the opposite one. Again the mean velocity in both cases is the same,
however, the particle C uses energy pumped from the environment to proceed constantly for-
ward while the particle D wastes part of its energy to perform oscillations and back-turns. By
simply inspecting these schematic pictures one can guess immediately when directed transport
is more effective.

We note that in Fig. 1.3, the cases A and B can be characterized by the effective diffusion
coefficientDeff , i.e., by the spreading of fluctuations in the position space at a fixed time
while the cases C and D in Fig. 1.4 can be characterized by the variance of velocityσ2

v =
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1 Introduction

〈〈v2〉〉−〈〈v〉〉2. The three quantities〈〈v〉〉, Deff andσ2
v can be combined to define two important

characteristics of transport, namely the efficiency of noise rectification [78, 79] and the so-
called Ṕeclet number [80–83].

Outline
The thesis is organized as the following: In the next chapter we present the typical model

of titled rocked Brownian particle, its dimensionless form and the potential profiles used in
this work. Next, in the second chapter we discuss the quantifiers of interest. In the chapter 4
we present the result of the numerical analysis of the unbiased, noisy inertial dynamics and
identify the optimal driving parameters of the discussed system. In the chapter 5 the inertial
biased rocked dynamics is addressed. In the last chapter we summarize the thesis.
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2 Stochastic model of a tilted rocked ratchet

The archetype of the inertial Brownian motor is represented by a classical particle of massm
moving in a spatially periodic potentialV (x) = V (x + L) with periodL and barrier height
∆V [77,84]. The particle is driven by an external, unbiased, time-periodic force of amplitude
A and angular frequencyΩ (or periodTΩ = 2π/Ω). The system is additionally subjected
to the thermal noiseξ(t) and the constant load forceF . The thermal fluctuations due to the

3 π
2 ω

0

π
2 ω

π
ω

.

.

.

.

.V(x,t)V(x,t)

xx

Figure 2.1:Schematic picture of a rocking ratchet with the potentialV (x, t) = V (x) −
xa cos(ωt), cf. Eqs (2.3) with zero bias (F = 0) and a ratchet potentialV (x)
defined in (2.19).

coupling of the particle with the environment are modeled by a Gaussian white noiseξ(t) of a
zero mean

〈ξ(t)〉 = 0 (2.1)

and the auto-correlation function satisfying Einstein’s fluctuation-dissipation relation

〈ξ(t)ξ(s)〉 = δ(t− s). (2.2)

We mentioned in the introduction that there are two equivalent descriptions of stochastic
dynamics. One is the Langevin equation of motion that describes the time evolution of a
positionx(t) and a velocityv(t) of the Brownian particle. The second is the Fokker–Planck
equation that describes the time evolution of a probability densityP (x, v, t).

2.1 Langevin equation

The dynamics of the system is modeled by the Langevin equation [85]

mẍ + γẋ = −V ′(x) + F + A cos(Ωt) +
√

2γkBT ξ(t), (2.3)
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2 Stochastic model of a tilted rocked ratchet

where a dot denotes differentiation with respect to time and a prime denotes a differentiation
with respect to the Brownian motor coordinatex. The parameterγ denotes the Stokes friction
coefficient,kB stands for the Boltzmann constant andT is the temperature.

2.2 Scaling

Upon introducing characteristic length- and time-scales, Eq. (2.3) can be rewritten in dimen-
sionless form, namely

¨̂x + γ̂ ˙̂x = −V̂ ′(x̂) + F̂ + a cos(ωt̂) +
√

2γ̂D0 ξ̂(t̂), (2.4)

with [78]

x̂ =
x

L
, t̂ =

t

τ0

, τ 2
0 =

mL2

∆V
. (2.5)

The characteristic timeτ0 is the time a particle of massm needs to move the distanceL/2
under the influence of the constant force∆V/L when starting with a zero velocity. The re-
maining re-scaled parameters are:

• the friction coefficient̂γ = (γ/m)τ0 = τ0/τL is the ratio of the two characteristic times,
τ0 and the relaxation time of the velocity degree of freedom, i.e.,τL = m/γ,

• the potentialV̂ (x̂) = V (x)/∆V = V̂ (x̂ + 1) has unit period and unit barrier height
∆V̂ = 1,

• the load forceF̂ = FL/∆V ,

• the amplitudea = AL/∆V and the frequencyω = Ωτ0 (or the periodT = 2π/ω),

• the zero-mean white noisêξ(t̂) has auto-correlation function〈ξ̂(t̂)ξ̂(ŝ)〉 = δ(t̂− ŝ) with
re-scaled noise intensityD0 = kBT/∆V .

From now on, for the sake of simplicity, we will use only the dimensionless variables and shall
omit the “hat” for all quantities in Eq. (2.4).

2.3 Fokker-Planck Equation

The statistically equivalent Fokker-Planck equation corresponding to eq. (2.4) describing the
time evolution of the probability densityP (x, v, t) is given by the formula

∂

∂t
P (x, v, t) = LFP (t) P (x, v, t), (2.6)

14



2.3 Fokker-Planck Equation

with the time periodic Fokker-Planck operator

LFP (t) = − ∂

∂x
v − ∂

∂v

[
F − γv − V ′(x) + a cos(ωt)

]
+ γD0

∂2

∂v2
, (2.7)

LFP (t + T ) = LFP (t). (2.8)

Using the Fokker-Planck equation (2.6) with the given initial conditions we get the probability
densityP (x, v, t) and define the averages

〈g(x(t), v(t))〉 =

∫
dx

∫
dv g(x, v) P (x, v, t), (2.9)

e.g. the n-th moment of the positionx(t)

〈xn(t)〉 =

∫
dx

∫
dv xn P (x, v, t). (2.10)

The integration ofP (x, v, t) over the positionx of the particle defines the time dependent
velocity distribution

P (v, t) =

∫
dx P (x, v, t), (2.11)

and as a consequence the mean velocity

〈v(t)〉 =

∫
dv v P (v, t). (2.12)

For large times the periodically driven stochastic process approaches an asymptotic periodic
velocity probability distributionPas(v, t) (the positive and periodic function of time),

Pas(v, t + T ) = Pas(v, t), (2.13)

with normalization ∫
dv Pas(v, t) = 1. (2.14)

The asymptotic averages can be then defined as

〈g(v(t))〉as =

∫
dv g(v) Pas(v, t), (2.15)

so the asymptotic average velocity is given by

〈v(t)〉as =

∫
dv v Pas(v, t). (2.16)

For later use we introduce the time averaged asymptotic velocity distribution

Pas(v) =
1

T

∫ T

0

dt Pas(v, t), (2.17)

and the time averaged mean velocity

〈〈v〉〉 =
1

T

∫ T

0

dt 〈v(t)〉as = lim
t→∞

1

t

∫ t

0

ds 〈v(s)〉. (2.18)
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2 Stochastic model of a tilted rocked ratchet

2.4 Potential Profiles

For the asymmetric ratchet potentialV (x) we consider the linear superposition of three spatial
harmonics [78],

−V ′(x)−V ′(x)

−1 −0.5 0 0.5 1

xx

V (x)V (x)

a

b

c

Figure 2.2:A plot of the shape of the periodic potentialV (x) and corresponding forceF (x) =
−V ′(x) defined in (2.19) for:
a) a symmetric sinus potentialc1 = c2 = 0 (dotted);
b) an asymmetric ratchet potentialc1 = 0.25, c2 = 0 (dashed);
c) an asymmetric ratchet potentialc1 = 0.245, c2 = 0.04 (solid).
To illustrate the differences, the potentials and corresponding forces was shifted
up or down for the cases a) and c), respectively.

V (x) = V0[sin(2πx) + c1 sin(4πx) + c2 sin(6πx)], (2.19)

whereV0 normalizes the barrier height to unity and the parametersc1 andc2 determine the
ratchet profile (or the spatial asymmetry – see Figure 2.2). In this work we analyze the fol-
lowing cases:

a) the simple sinus potential:
c1 = 0, c2 = 0 ; V0 = 0.5

b) the ratchet profile:
c1 = 0.25, c2 = 0 ; V0 ≈ 0.454,
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2.5 Numerical method

c) the ratchet profile:
c1 = 0.245, c2 = 0.04 ; V0 ≈ 0.461.

There is also a possibility to extract the effective force acting on the molecular motor and
therefore reproduce the corresponding effective ratchet potential. One can perform this cal-
culation by means of the analysis of the time series [86] using the recorded single-molecule
experimental data [40, 56]. In this thesis, however, we will deal with the three hypothetic
potential profiles given above.

2.5 Numerical method

The noiseless, deterministic inertial rocked ratchet shows rather complex behavior and, in
distinct contrast to overdamped rocked Brownian motors, often exhibits a chaotic dynamics.
By adding noise, one typically obtains a diffusive dynamics, thus allowing stochastic escape
events among possibly coexisting attractors.

As analytical methods to handle these situations effectively do not exist, we carried out
extensive numerical simulations. We have numerically integrated Eq. (2.4) by the Stochas-
tic Runge Kutta (SRK) method of the second order [87] with time steph = 10−3–10−4 T .
The initial conditions for the coordinatex(t) were chosen according to a uniform distribu-
tion within one cell of the ratchet potential. The starting velocities of the particles were also
distributed uniformly in the interval[−0.2, 0.2].

The first103 periodsT of the external force were skipped in order to eliminate transient
effects. For the estimation of the quantities of interest the usual averages over the time (106 T )
and333 different realizations were taken.

When simulating the deterministic equation (4.3) one has to choose among the several pos-
sibilities of initiations of runs. By doing this one has to be sure, that computed averages are
relevant and do not differ much for another set of initial conditions. If there is only one at-
tractor present (like e.g.. the case shown on the Fig. 5.3) for given driving parameters we
need only one runde facto. If there are more attractors the calculated quantities can vary for
the different sets of initial conditions due to an often fractal structure of the basins of attrac-
tion. However, one can enlarge the number of runs and compare the calculated quantifiers for
this different sets. We did this for five different forms of uniform distributions of the initial
conditions:

• x = x0 andv ∈ [−0.2, 0.2], wherex0 is a position of the local minimum of the spatial
periodic potential,

• x ∈ [0, L] andv = 0,

• x ∈ [0, L] andv ∈ [−0.2, 0.2],

• x ∈ [0, L] andv ∈ [−2, 2],

• a circle in the phase space with the origin at (x,v)=(x0,0) and radiusr = 0.2.
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2 Stochastic model of a tilted rocked ratchet

We have increased the number of runs up to the point where we have obtained the satisfactory
agreement of maximal 1% difference between the calculated averages of the specific quantity
(e.g. velocity〈〈v〉〉) for the above given sets of initial conditions.
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3 Quantifiers characterizing the optimal transport of
Brownian motors

As already elucidated in the introduction , there are several quantities that characterize the
effectiveness of directed transport [88]. A global transport measure is an asymptotic mean
velocity 〈〈v〉〉 of the Brownian motor averaged over one cycle of the external, time periodic
drive and over all noise realizations, see eq. (2.18).

3.1 Effective Diffusion and P éclet number

The effective diffusion coefficient, describing the fluctuations around the average position of
the particles, is defined as

Deff = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2

2t
, (3.1)

The coefficientDeff can also be introduced via a generalized Green-Kubo relation, which we
detail in Appendix A. Intuitively, if the stationary velocity is large and the spread of trajectories
is small, the diffusion coefficient is small and the transport is more effective. To quantify this,
we can introduce the dimensionless ratio – the Péclet number Pe [80, 81, 89] by use of a
double-averaging procedure, i.e.,

Pe=
l〈〈v〉〉
Deff

, (3.2)

Originally, the Ṕeclet number Pe has arisen in problems of heat transfer in fluids and stands
for the ratio of heat advection to diffusion [89]. When the Péclet number is small, the random
motion dominates; when it is large, the ordered and regular motion prevails. The value of the
Péclet number depends on a characteristic length scalel of the system. Dealing with ratchets
the most adequate choice for such length scale is the period of the periodic potential, which in
re-scaled units (see section 2.2) is equal tol = 1.

3.2 Rectification Efficiency

The second aspect of the motor trajectories we want to control is related to the fluctuations of
the velocityv(t). In the long-time regime, it is characterized by the varianceσ2

v = 〈〈v2〉〉 −
〈〈v〉〉2. The Brownian motor moves with an actual velocityv(t), which is typically contained
within the interval

v(t) ∈ (〈〈v〉〉 − σv, 〈〈v〉〉+ σv) . (3.3)
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3 Quantifiers characterizing the optimal transport

Now, if σv > 〈〈v〉〉, the Brownian motor may possibly move for some time in the direction
opposite to its average velocity〈〈v〉〉 and the directed transport becomes less efficient.

If we want to optimize the effectiveness of the motor motion we must introduce a measure
for the efficiencyη that accounts for the velocity fluctuations. Assume, that the motor works
against the given forceF (not yet define). The efficiency of a machine is defined as the ratio
of the powerP = F〈〈v〉〉 done on the surroundings and the input powerPin, η = P/Pin. If
the motor is working against the constant external load forceF , one can define theefficiency
of energy conversion[18,75,76,86,90,91]; reading,

ηE =
|F 〈〈v〉〉|

Pin

. (3.4)

A grave disadvantage of such a characterization is that it yields a vanishing measure (i.e.
ηE = 0) in the absence of a load forceF . In many cases, however, like e.g. for protein
transport within a cell, the Brownian motor operates at a zero bias regime (F = 0) and its
objective is to carry a cargo across a viscous media. Clearly, the energy input required to
move a particle with the friction coefficientγ by a given distance depends on the velocity,
tending to zero at slow motion. Since we are interested in delivering the cargo in a finite time
one should require that the transport is accomplished at an average motor velocity〈〈v〉〉. In this
case, the necessary energy input is finite. Thus, we put forF the average viscous forceγ〈〈v〉〉
to obtain the so-calledStokes efficiency[86,92]; i.e.,

ηS =
γ〈〈v〉〉2

Pin

. (3.5)

There is no overall consensus on the numerator in (3.5) [79,90–100]. If we put in the numer-
ator the rate of work done on the fluid by the Brownian motor motion, then the corresponding
efficiencyηS is not an appropriate measure because numerator is' 〈v2〉. This quantity can
be relatively large even if there occurs no transport of the motor, i.e. even if〈v〉 = 0 ! More
suitable information on the efficiency of the transport is gained when [92, 96] the numerator
' 〈v〉, as proposed here. Upon combining the two above given notions we recover therec-
tification efficiencyoriginally proposed by Suzuki and Munakata [79, 101] or its equivalent
version presented by Derenyiet al. [96]

ηR =
γ〈〈v〉〉2 + |F 〈〈v〉〉|

Pin

. (3.6)

It is made up of the sum of the efficienciesηS andηE. Therefore, it accounts for both, the
work that the Brownian motor performs against the external biasF as well as the work that is
necessary to move the object a given distance in a viscous environment at the average velocity
〈〈v〉〉.

The average input power for a tilted rocking ratchet is given by [78,82]:

Pin = γ|〈〈v2〉〉 −D0|. (3.7)
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3.2 Rectification Efficiency

This expression follows from an energy balance of the underlying equation of motion (2.4).
The derivation of the above formula can be found in Appendix B. If the second moment of
velocity 〈〈v2〉〉 is reduced, i.e. the varianceσv diminishes, the rectification efficiency (3.6)
increases and the transport of the Brownian motor becomes more efficient.

To experimentally determine either of the above given efficiencies of any molecular motor
(like kinesin) it is sufficient to determine the average velocity of the motor with its variance
and the temperature of the thermal bath [102].
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3 Quantifiers characterizing the optimal transport
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4 Performance with zero bias force

In this chapter we put the constant bias force of the driven system (2.4) equal to zero (F = 0).
It means that there is no apparent preferred direction of the Brownian particle to travel. The
dynamics is now governed by the following equation of motion:

ẍ + γẋ = −V ′(x) + a cos(ωt) +
√

2γD0 ξ(t). (4.1)

We would like to identify conditions for the optimal performance of the above defined rock-
ing ratchet. We follow the arguments given in the introduction and search for the operation
regimes where the whole set of particles would advance in a coherent manner, utilizing as
much of the input energy as possible for a directed motion, without back turns or intrawell
oscillations.

For the overdamped dynamics given by

γẋ = −V ′(x) + a cos(ωt) +
√

2γD0 ξ(t). (4.2)

we can identify two thresholds of the external force strengths: the lower thresholdac1 and the
upper thresholdac2. The first corresponds to the force that is needed to overcome the barrier
of the potential from the side with the smaller slope. The second threshold corresponds then
to the force that the particle needs to overcome the barrier of the potential from side with the
steeper slope. Note that for the inertial dynamics these two strengths are not that relevant,
since the particle can accumulate kinetic energy and therefore is able to make a transition over
one of the barriers of the ratchet potential for weaker driving strengths thanac1 or ac2.

4.1 Generic Ratchet

The roots of the noisy ratchet effect lie in the evolution of the Newton equation (eq. (4.1) with
D0 = 0). First of all we recall the analysis of the deterministic dynamics of a particle moving
in a typical ratchet profile, widely investigated in the literature [77,103–115].

4.1.1 Deterministic dynamics

As the generic ratchet potential we take the one that consist of two spatial harmonics (i.e.
c2 = 0, see Fig. 2.2 (b)). The corresponding Newton equation reads

ẍ + γẋ = −2π(cos(2πx) +
1

2
cos(4πx)) + a cos(ωt). (4.3)

23



4 Zero bias force

Since we have an explicit time dependence, the phase space is three dimensional. The nonlin-
earity of the noiseless equation (4.3) then allows chaotic attractors to appear. For the attractor
that takes a particle alongn spatial periodsL of potential ink time periodsT

v(t + kT ) = v(t),

x(t + kT ) = x(t) + nL, (4.4)

we can define the winding numberW as a ratio

W =
n

k
. (4.5)

For locked orbits the particle stays in one well of potential forever and thereforen = 0 and
corresponding winding number is alsoW = 0. For running solutions the winding number can
assume any number, depending on the dynamics. This measure corresponds to the character-
istic average velocity of a particle beeing translocating by a given attractor

v̄ =
nL

kT
= W

L

T
. (4.6)

If we reduce the system to an overdamped one (cf. eq. (4.2) withD0 = 0), the dimension-
ality of the state space become two and it prevents the particle to act in a chaotic manner.

In the Fig. 4.1 we show stroboscopically the instantaneous velocities of the deterministic
particles with different starting conditions (for details see section 2.5) and therefore we plotted
all attractors existing at a given value of a control parametera. As a stroboscopic time interval
we took the period of the driving forceT . We plot this so-called bifurcation diagram as a
function of the driving strengtha. To eliminate transient effects106 periodsT of the external
driving were disregarded. Other parameters of the system (4.3) are fixed to the values:γ = 0.5
andω = 3.6.

For small driving strengthsa the massive particle possesses not enough kinetic energy to
make a transition over any barrier of the ratchet potential. As we increasea the particle
can eventually accumulate enough kinetic energy to go over one of the barriers and running
solutions emerge. Therefore, for small values ofa the transport is regular. If we increase
the control parameter for values larger thana = 1.8 we can notice several transitions from a
regular periodic motion to chaos and back from chaos to a periodic motion. At the bifurcation
pointab ' 2.33 the transition from chaotic to regular, periodic attractor of period four occurs
(this point is indicated by an arrow in Fig. 4.1). Note that for the noisy dynamics (cf. Fig. 4.3),
we reveal the first current reversal at this very pointa ' 2.33. Very close to this bifurcation
point the deterministic system exhibits intermittent dynamics of type I (cf. the second column
in Fig. 4.2) [116, 117] reflecting the reciprocation of one chaotic and one periodic attractors
[103]. For smaller values thanab, say fora = 2.25 there exists one periodic orbit of period
one, that transports the particles in the negativex direction, cf. the first column in Fig. 4.2. For
a = 2.25 the particle crossn = 1 spatial period ink = 1 time period so the winding number
W = 1 and characteristic velocitȳv = 3.6/2π. For a stronger thanab, say fora = 2.35,

24



4.1 Generic Ratchet

Figure 4.1: Bifurcation diagram: stroboscopic velocityv as a function of periodic driving
strengtha, plotted for a potential shown in Fig. 2.2 (b). For a given valuea
we shown all existing attractors . The arrow indicates the bifurcation point from
chaos to period 4 attractor ata = 2.33, see text for details. The remaining rescaled
parameters read: frictionγ = 0.5, angular driving frequencyω = 3.6.
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4 Zero bias force
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the three driving strengthsa = 2.25, 2.33, 2.35.
Upper row: The phase space (instantaneous velocity versus position). Fora =
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4.1 Generic Ratchet

after the bifurcation point, we find one regular attractor (see the third column in Fig. 4.2)
that transports the particle in the positivex direction overn = 1 period of potential ink = 2
time periods and therefore the winding numberW = 1/2 andv̄ = 3.6/4π. In general: If the
corresponding pre- and post-bifurcation attractors can transport the particles in the opposite
directions then it is likely that after the bifurcation point the current reversal appears.

Due to very complicated structure of the basins of attraction it is however not clear how to
compute averages in the deterministic case and e.g. the mean velocity would strongly depend
on the chosen set of initial conditions. For some sets of control parameters and depending
on the initial conditions, we can reveal multiple attractors in the phase space. Again, if they
can transport the particle in the opposite direction, we would gain the possibility of separate
particles, by choosing the appropriate attractor via its basin of attraction i.e. by choosing the
appropriate starting conditions [112].

Plugging the noise into the system, one get rid of this problem, allowing the Brownian
particle to visit all existing attractors, depending on the noise intensity but independent of the
initial conditions. In the following we deal with a relatively low temperature of the heat bath
so the deterministic architecture of attraction still affects the noisy driven dynamics (4.1).

4.1.2 Noisy dynamics: Fluctuations versus driving strength

We start out to study the role of fluctuations in both position and velocity space, by varying
the amplitudea of the sinusoidal driving force. In doing so, we assume a relatively small
temperature, so that the Brownian motor dynamics is not far from a deterministic behavior
as described in prior works. To put it all into numbers, we choose the following set of the
parameters: frictionγ = 0.5, angular driving frequencyω = 3.6 and weak thermal noise of
strengthD0 = 0.01. The average asymptotic long-time velocity is shown in Fig. 4.3 (a). It
reveals that for an amplitudea ' 1.5 the directed,inertial transport sets in before the lower
threshold of the ratchet forceac1 ' 2.14 is reached. The mean velocity assumes a first local
extremum near the lower threshold of the potential forcea ' ac1. Note that in the presence of
small noise, the current is strictly speaking never zero. However, the noise induced transitions
over the potential barriers for a weak driving strength are extremely rare and the system mainly
dwells in the locked state, so we can characterize the outcome of our Langevin simulation as
a deterministic, zero-current result. Upon closer inspection, we notice that in the vicinity of
a ' 0.6, the velocity fluctuationsσv shown in Fig. 4.3(b) undergo a rapid increase. We will
discuss this feature afterwards.

Upon further increasing the amplitude of driving,a > 1.5, the Brownian motor generates
a directed transport behavior. We also observe that the corresponding width of the weakly
asymmetric, time averaged asymptotic velocity distributionPas(v) slightly decreases (see the
first column on Fig. 4.5), meaning that the velocity fluctuations become smaller. The follow-
ing explanation thus applies: Because ata < 1.5 escape jumps between the neighboring wells
are rare, i.e., the average directed current is very small (note also the accompanying, very
weak asymmetry in the distributionPas(v) shown in the first row in the Fig 4.5 fora = 0.68).
The input energy is pumped primarily into the kinetic energy of the intra-well motion and
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Figure 4.3: Fluctuation behavior of an inertial Brownian motor versus the driving strength
a. Upper plot (a): averaged dimensionless velocity〈〈v〉〉 of the inertial Brownian
motor in Eq. (2.4). Bottom plot (b): variance of the corresponding velocity fluctu-
ationsσv and effective diffusionDeff . All quantities have been computed for the
rescaled ratchet potential depicted on Fig. 2.2(b) and defined in eq. (2.19) with
the parameter set (b) (see section [2.2] for details). The force corresponding to
this potential ranges fromac1 = −2.14 to ac2 = 4.28. The angular frequencies
at the well-bottom and at the barrier-top, respectively, equal each other, reading
5.28. The remaining rescaled parameters read: frictionγ = 0.5, angular driving
frequencyω = 3.6 and weak thermal noise of strengthD0 = 0.01.
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Figure 4.4:Dimensionless factors describing the performance of the Brownian motor depicted
versus the driving strengtha. Upper plot (a): rectification efficiency (or Stokes
efficiency) defined in Eq. (3.6). Bottom plot (b): the Péclet number defined in
(3.2). Rescaled parameters and the ratchet profile are the same as in the Fig. 4.3.
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4 Zero bias force

eventually is dissipated. Asa is increased further, the Brownian motor mechanism starts to
work, and some part of energy contributes to the net motion of the particle. Therefore, less en-
ergy remains available to drive intra-well oscillations and consequently the distributionPas(v)
shrinks and the motor optimizes its performance. Above the upper threshold value of the po-
tential forceac2 ' 4.28 the current starts to decrease because of the weakened influence of the
ratchet potential at large rocking amplitudes.

The occurrence of multiple reversals of the directed current, as it is depicted in Fig. 4.3 (a),
is a known, interesting feature of inertial Brownian motors. Several prior studies did elucidate
in greater detail the corresponding mechanism [77,103,104,107–113]. Here, we take instead
a closer look at the current fluctuations and the effective diffusion. We observe that for the
chosen set of parameters the maximal absolute stationary velocity on the Fig. 4.3 (a) does not
exceed the value 0.4. In contrast, its fluctuations keep growing as the driving amplitude rises
mostly due to the complicated way of motion – see the2nd column on the Fig 4.5. Generally
beside the usual transitions consistent with the mean velocity the particle sometimes goes
in the opposite direction and performs intra-well oscillations. At large driving, the particle
hardly feels the potential and undergoes a rocked, almost free Brownian motion with velocity
fluctuations growing proportional toa, cf. the dashed line in the Fig. 4.3 (b). Within this
directed transport regime, the rectification efficiency (3.6) and the equivalent Stokes efficiency
(3.5) remain rather small, cf. the Fig. 4.4 (a). Such small rectification efficiency is the rule for
this driven inertial Brownian motor.

For the small driving, with almost no transitions present, it is clear that the effective dif-
fusion almost vanishes. When the motor starts to transport (a ' 1.5) the Brownian particles
gain enough energy to cross the potential barrier, but due to the undirected thermal forces, they
spread out as time goes by. The effective diffusion starts to grow as we increase the driving
strength. For the highest〈〈v〉〉 we notice that the diffusion gets suppressed reflecting the more
regular motion of the particles, which now proceed in a more coherent manner, cf. the third
column on the Fig 4.5 fora = 4.1.

Moreover, one can observe two current reversals on the Fig. 4.3 (a), so there are two addi-
tional points where average velocity equals zero, but we perceive no corresponding vanishing
of the effective diffusion. It means that there are still transitions present in the system for
this driving strengths. The mean velocity equals zero according to the fact that the number of
jumps to the right and to the left are equal.

The above described behavior has its reflection in a Péclet number cf. the Fig. 4.4 (b).
Its maximal value for the generic driving parameters is found of about Pe' 1. It indicates
the typical high relative randomness of the transport, i.e. the highly diffusive motion of the
particles. The best performance is not surprisingly found for the largest value of the velocity
and corresponding largest values of Pe andηR.

Let us next inspect the distributionPas(v) shown on the first column of the Fig. 4.5. These
probabilities look rather symmetric; however, a finite ratchet velocity requires a certain amount
of asymmetry either in the location or the width of the velocity peaks. Here, the current results
mainly due to a slight shift of the maxima location.

The most peculiar feature of the current distributions shown in the first column of Fig. 4.5
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Figure 4.5:Time averaged asymptotic velocity distributions (1st column), short-time trajecto-
ries of5T (2nd column) and long-time trajectories of1000T (3rd column) plotted
for the selected driving amplitudes, i.e.a = 0.68, 2.14, 3.25, 4.1. The remaining
rescaled parameters read: frictionγ = 0.5, angular driving frequencyω = 3.6 and
weak thermal noise of strengthD0 = 0.01.
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4 Zero bias force

is the emergence of two additional side-peaks fora & 0.6 centered nearv = ±1, which
eventually dominatePas(v) at larger driving amplitudes. Of course, for zero drive we recover
the strictly symmetric single-peaked Maxwell distribution, with the maximum atv = 0.

What is the origin of those three peaks in the distributionPas(v)? Our first conjecture to
connect it with the ’running’ solutions turned out to be incorrect. This is so, because fora . 1
the particle rarely leaves the confining potential well and thus cannot significantly contribute
to the side peaks of the distribution function. Further, we checked the outcome for the distri-
butionPas(v) when reflecting barriers were placed at the maxima of the potential. Under such
constraints, the three-peak-structure is recovered as well. Moreover, the sinusoidally driven
damped particle in a harmonic potential can exhibit both, a singly-peaked as well a double-
peaked averaged velocity distribution [118]. However, for the parabolic potential that fits best
the wells of our ratchet potential around its minima, we found a single peakedPas(v).

We therefore do conclude that the characteristic behavior for the additional side-peaks is
rooted in the nonlinear, anharmonic character of the corresponding well of the periodic asym-
metric ratchet profile.

4.1.3 Noisy dynamics: Fluctuations versus noise strength

In the Fig. 4.6, we present the results of the numerical analysis of the directed transport versus
the rescaled temperatureD0. We chose a sub-threshold driving strength for which the thermal
noise plays a constructive role by inducing noise activated jumps across the potential barriers.
We seta = 0.8 and the other parameters remain the same as in the previous section. In
the Figures 4.6 and 4.7 we have plotted the calculated quantifiers as a function of rescaled
temperatureD0 in the range from small rescaled temperatureD0 = 0.01 up to the thermal
energy comparable with the barrier height∆V of the ratchet potential (i.e.D0 = ∆V = 1). A
further increase of temperature suppress the influence of the asymmetric ratchet potential and,
consequently, the directed transport degrades.

Moreover, the time-averaged velocity distribution depicted in the first column of the Fig.
4.8 approaches the equilibrium velocity distribution as we increase temperature. For smallD0

the movement is typically bounded to oscillations inside the well of the ratchet potential with
accompanying very rare transitions. For the high temperatures all the characteristics reflects
the highly random motion, see also the third column of Fig. 4.8. A shallow, local minimum
occurs for the velocity fluctuations, cf. dashed line in Fig. 4.6 (b) where the average current
itself is maximal. These fluctuations are, however, notably three orders of magnitudelarger
than the directed current. Accordingly the rectification efficiency shown in Fig. 4.7 (a) is quite
small.

The effective diffusion (solid line on the Fig. 4.6 (b)) exhibits rather large values and the
corresponding Ṕeclet number (see Fig. 4.7 (b)) has therefore small values. At any temperature,
for a small driving amplitudea, the particle possesses very small efficiency and act in a rather
random manner performing rare transitions. The spatial spreading over the wells of the ratchet
potential is therefore large. Again, the Brownian motor is not operating efficiently.
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Figure 4.6: Fluctuation behavior of an inertial Brownian motor versus the noise strengthD0.
Upper plot (a): averaged dimensionless velocity〈〈v〉〉 of the inertial Brownian mo-
tor in Eq. (2.4). Bottom plot (b): variance of the corresponding velocity fluc-
tuationsσv and effective diffusionDeff . All quantities have been computed for
the rescaled ratchet potential depicted on Fig. 2.2(b) and defined in eq. (2.19)
with the parameter set (b) (see section [2.2] for details). The angular frequencies
at the well-bottom and at the barrier-top, respectively, equal each other, reading
5.28. The remaining rescaled parameters read: frictionγ = 0.5, angular driving
frequencyω = 3.6 and weak driving strengtha = 0.8.
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4.2 Optimization of the performance

Thus far, changing the temperature of the ratchet environment or the driving strength did not
lead to a large enhancement of the rectification efficiency. What is needed in achieving a large
rectification efficiency is a sizable Brownian motor current which is accompanied by small
current fluctuations, see Eq. (3.6). It is also highly desirable to have a small spatial spreading
of the realizations of the process described by the Langevin equation (2.4). This scenario
seemingly implies that the Brownian particles should proceed in a persistent manner with
very few, occasional back-turns only. This in turn causes small fluctuations in the velocity
and, additionally, provides a dominating asymmetry of the time averaged asymptotic velocity
distribution.

Such a behavior can be realized by a combined tailoring of the asymmetry of the ratchet
potential together with the use of appropriate driving conditions. In the quest for achieving
such a favorable situation we use the three-harmonics ratchet potential plotted in the Fig. 2.2
for the set (c). Our hope is that upon minimizing the noise further we can achieve a substantial
improvement of the efficiency.

At very weak noiseand large, nonadiabatic rocking frequencies, this inertial Brownian mo-
tor starts moving efficiently for the values of the driving strenght of abouta = 3.7, see Fig.
4.9 (a). Because the directed velocity becomes maximal and simultaneously the fluctuations
in both position and velocity space are locally minimal, see in Fig. 4.9 (b), we indeed find the
desired enhancement of the rectification efficiency, see Fig. 4.10 (a).

We have studied several other ratchet potentials by varying the parametersc1 andc2 in Eq.
(2.19) and still found regimes where the inertial ratchet works with a high efficiency (not
shown). In all these cases we found that the velocity distribution has a support concentrated
mainly on one of the semi-axes. Strongly asymmetric velocity distributions are depicted in
the first column of Fig. 4.11. In contrast, with the modec2 set zero (see in Fig. 2.2 (b))
we could not identify such an optimal regime for the rectification of noise. The shape of
these distributions just corroborates the fact that large rectification efficiencies are the result
of persistent, (uni)-directional Brownian motor motion, accompanied by a strong asymmetry
of the current statistics, see Fig. 4.11.

Let’s take a closer look at the trajectories of the optimally working ratchet. Typically, there
are two possible dynamical states of the ratchet system: a locked state, in which the particle
oscillates mostly within one potential well (cf. the case with amplitudea < 3 or e.g.a = 4.73
in Fig. 4.11), and a running state, in which the particles surmount the barriers of the potential.
Moreover, one can distinguish two classes of running states: either the particle overcomes the
barriers without any back-turns (stable running states – cf. the case with an amplitudea = 3.70
in Fig. 4.11) or it undergoes frequent oscillations and back-scattering events (unstable running
states – cf. the case with amplitudea = 3.37 in Fig. 4.11). For a small driving amplitude,
we find that the locked behavior is generic implying that the average motor velocity is almost
zero, see Fig. 4.11. If the amplitude is increased up to some critical value, herea ' 3.25,
the running solutions emerge. About this critical point, fora = 3.37, the particle alternates
between running and locked states, and uses energy for both barrier crossings and intra-well
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4.2 Optimization of the performance
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Figure 4.9:Top: the average, dimensionless velocity〈〈v〉〉 of the inertial, rocked Brownian mo-
tor under nonadiabatic driving conditions. Bottom: corresponding velocity fluc-
tuationsσv (dotted line) and corresponding diffusion coefficientDeff (solid line).
Values of the remaining parameters are the same as in Fig. 4.11.
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4 Zero bias force
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Figure 4.10:Top: Brownian motor efficiencyη. Bottom: depicted is the Ṕeclet number Pe,
being proportional the inverse of the Fano factor. All quantities are plotted versus
the external driving amplitudea. Values of the remaining parameters are the same
as in Fig. 4.11.
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4.2 Optimization of the performance
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Figure 4.11:Time averaged asymptotic velocity distributions (1st column), short-time trajectories of5T (2nd

column) and long-time trajectories of1000T (3rd column) of the rocked particle moving in the

asymmetric ratchet potential shown on Fig. 2.2 (c). The forces stemming from such a potential

range between−4.67 and1.83. The two angular frequencies at the well-bottom and at the barrier-

top are the same, reading5.34. The remaining parameters are:γ = 0.9, ω = 4.9 andD0 =
0.001. One can see that fora = 1 and4.73 the particles usually oscillate in a potential well,

most of the time performing none or only a few steps. This results in an almost zero mean

velocity, a very small effective diffusion but with rather large velocity fluctuations. For another

set of driving amplitudes:a = 3.37 the mean velocity is large,σv becomes suppressed, but

the effective diffusion exhibits an enlargement due to a “battle between attractors”. The case

a = 3.70 corresponds to the optimalmodus operandiof the inertial Brownian motor - the net

drift is maximal and fluctuations are suppressed.
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4 Zero bias force

oscillations (see the second row in Fig. 4.11). This behavior is reflected in an enormous
enhancement of the effective diffusion [65,83,119–121].

If the driving amplitude is further increased, a regime of optimal transport sets in. The
rapid growth of the average velocity is accompanied by a decline of both the position and the
velocity fluctuations. It means that the different realizations of the process (2.4) stay closely
together; note the casea = 3.70 in Fig. 4.11. Because there are no intra-well oscillations, the
energy that is dissipated per unit distance, is minimal.

At even larger drive amplitudes an upper threshold is approached, where the velocity sharply
decreases to a value close to zero. Moreover, the diffusion coefficient is small and the velocity
fluctuations are large, cf. the case with amplitudea = 4.73 in the Fig. 4.11. In this regime, the
particle dangles around its actual position, as it occurs fora < 3, meaning that its motion is
confined mostly to one well. We note, however, that the amplitude of the intra-well oscillations
becomes much larger so that the corresponding velocity fluctuations are also large.

We conclude that the diffusion coefficient is small for cases when the particle performs
either locked motion or stable running motion.

All these considerations are accurately encoded and described by the two previously dis-
cussed measures, namely, the efficiencyη (3.6) and the Ṕeclet number Pe in (3.2). It is found
that the optimal regime for the ideal modus operandi of the Brownian motor is achieved when
both the efficiency and the Péclet number become maximal, see in Fig. 4.10. Indeed, in this
regime of optimal performance, the particle moves forward steadily, undergoing rare back-
turns [105], see the casea = 3.70 in the Figures 4.11 – 4.10.
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5 Inertial motor under load

We explore now how an external static load force influences the driven noisy dynamics 2.4. In
particular this chapter treats the behavior of the noise-activated, directed current of an inertial
Brownian motor as a function of an external bias, thus yielding the velocity-load behavior and
performance in presence of an external conservative load force when inertial effects dominate.
Varying the load force from negative to positive values the current of the inertial Brownian
particle goes through zero at what is defined as the stall forceFstall. If the particle moves
with a positive mean velocity for negative load forces, than for the intervalF ∈ [|Fstall|, 0] the
particle does work against the external load.

We will demonstrate that a rocked, inertial Brownian particle, if put to work against a load,
can exhibitnegative differential mobility[122] and evenabsolute negative mobility[123] i.e.
that the current decreases with increasing force or that the particle moves in the opposite di-
rection of the force, respectively. This extraordinary phenomenon has been observed within a
quantum mechanical setting for electron transfer phenomena [124], for ac-dc-driven tunnelling
transport [125], in the dynamics of cooperative Brownian motors [126–128], Brownian trans-
port with complex topology (entropic ratchets) [129–134] and in some stylized, multistate
models with state-dependent noise [135,136], to name but a few.

5.1 Biasing the ratchet

5.1.1 Current-load behavior and negative differential mobility

The complex inertial Brownian evolution can manifest its counterintuitive nature when we test
its response to a constant external load force. In Fig. 5.1 we depict the load-velocity charac-
teristics of a particular Brownian motor (2.4). Contrary to the familiar, monotonic dependence
found for overdamped ratchet dynamics [73, 137], the velocity-load-behavior becomes now
considerably more complex, exhibiting distinct non-monotonic characteristics. Around the
forcesF ' −1.4 andF ' 0 an increase of the biasF results in a corresponding decrease
of the average velocity. This behavior is termednegative differential mobility. The effect is
extremely pronounced for small positive load forces.

Let us elucidate the underlying working mechanism in greater detail: For the parameter val-
ues specified as in Fig. 5.1, at zero load the corresponding deterministic dynamics possesses a
single stable attractor of period one which translocates the particle to the neighboring ratchet
potential well during one periodT of driving (see the section 4.2)

x(t + T ) = x(t) + 1,

v(t + T ) = v(t). (5.1)
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5 Inertial motor under load

−2

0

2

〈〈v〉〉〈〈v〉〉

−2 −1 0 1 2

FF

〈〈v
〉〉

=
F/γ

0

0.25

0.5

0.75

Fstall 0 0.1 0.2 0.3

FF

Figure 5.1:Average velocity of the inertial Brownian motor (2.4) as a function of an external,
constant forceF . The system parameters are:a = 3.7, ω = 4.9, γ = 0.9 and
D = 0.001. The dotted line denotes the average velocity of a particle moving in
the absence of a periodic potential, being the limiting case for the Brownian motor
dynamics atF →∞. One can notice a few regimes where the differential mobility
(∂〈〈v〉〉/∂F ) assumes a negative value. The most pronounced such behavior occurs
for small positive values of the biasF (depicted in the inset). For bias forces
F ∈ (Fstall, 0), Fstall ' −0.074, the Brownian motor performs against the external
load.

In the presence of weak noise, this periodic motion is robust in the sense that the eq. (5.1)
still holds in distribution. The particle moves with a high Stokes efficiency as a consequence
of small fluctuations of the velocity from its average value. To realize this periodic regime,
however, requires that all system parameters are precisely tuned. Any small external loadF ,
regardless of its sign, drives the system away from this most efficient regime and the aver-
age velocity starts dropping to smaller values. In particular a small positive force leads to a
decrease of the average velocity and consequently to a negative differential mobility. In con-
trast, at very large magnitudes of the load forceF , the periodic potential force becomes less
important and the velocity eventually assumes its its asymptotic value, reading〈v〉 = F/γ.

5.1.2 Efficiency of forced and rocked Brownian motors at optimal driving
conditions

As we remarked already above with the parameters of Fig 5.1, the Brownian motor operates
optimally near the biasF ' 0. With Fig. 5.2 (a), we depict the behavior of the Stokes ef-
ficiency within an interval of bias forcesF ∈ (Fstall, 0) where the motor does work against
the external force. The Stokes efficiency assumes a value of about0.75 at F = 0, and mono-
tonically decreases with decreasing load, reaching zero at the stall forceFstall ' −0.074,
where the average velocity vanishes. For loads within the interval(Fstall, 0), the ratchet de-
vice pumps particles against the bias, cf. Fig. 5.1. The behavior of the rectification efficiency
in this regime closely matches the behavior of the Stokes efficiency. Indeed, within this forcing

42



5.2 Absolute negative mobility in a symmetric potential

regime the efficiency of energy transductionηE assumes much smaller values than the Stokes
efficiencyηS, see Fig. 5.2 (b). Within this forcing regime the bell-shaped character ofηE is an
immediate consequence of its definition in eq. (3.4): It acquires vanishing values at the stall
force, where the velocity becomes zero and atF = 0, where the output power vanishes. In
between the average input powerPin varies only slightly.
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Figure 5.2:Behavior of different efficiency measures within the regime of ”uphill motion”.
Depicted are the efficiency of rectificationηR, the closely related Stokes efficiency
ηS, in panel (a), and the efficiency of energy conversionηE, panel (b), versus
the external loadF , varying between the stall forceFstall and the vanishing bias
F = 0. The Stokes efficiency assumes much larger values than the corresponding
energetic one; it is therefore dominating the viscous, noise-assisted transport. The
driving parameters are the same as in Fig. 5.1.

5.2 Absolute negative mobility in a symmetric potential

In the following the influence of noise and load on the motion of the particle in a symmetric
sinus potential is addressed

V (x) = sin(2πx). (5.2)

It is obvious that for a zero tilt and a symmetric potential one cannot produce any directed
motion in the system. If we tilt the system, we break the symmetry and net motion appears,
usually in the direction given by the tilt. Sometimes, however, the dynamics turns out to be
very counterintuitive.

In this section we set the system parameters as follows: the strength of the external driving
a = 4.2 with the angular frequencyω = 4.9, the frictionγ = 0.9 and the low temperature
D0 = 0.001. We can identify the stall forces asF±

stall ' ±0.17. For strong loads the average
velocity is not much different from that of a free particle i.e.〈〈v〉〉 = F/γ. It means that the
particle does not feel the potential anymore, and slides down more or less freely.

The solid line on the Fig. 5.3 corresponds to the current – load plot for the Brownian particle
in a symmetric sinus potential. One can notice that for a small load forces the Brownian parti-
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5 Inertial motor under load

cles move against the force. This behavior is calledabsolute negative mobility. This stunning
behavior is a purely noise-induced feature. In the range of load force between[F−

stall, F
+
stall],

for a deterministic part of equation 2.4 (see the dashed line in the Fig. 5.3) the particle dwells
in one place resulting in a zero net motion.
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Figure 5.3:Average velocity of the inertial Brownian particle in a symmetric sinus potential
(2.19 a) depicted as a function of an external, constant forceF for the deterministic
(dashed line) and noisy (solid line) dynamics. The system parameters are:a = 4.2,
ω = 4.9, γ = 0.9 andD = 0.001. The dotted line denotes the average velocity of
a particle moving in the absence of a periodic potential, being the limiting case for
the Brownian motor dynamics atF →∞. The most prominent regime where the
absolute mobility (〈〈v〉〉/F ) assumes a negative value is shown in the center plot.
The most pronounced such behavior occurs for small absolute values of the bias
F . For bias forcesF ∈ [F−

stall, F
+
stall] with F±

stall ' ±0.17, the Brownian particle
performs against the external load.

Although this feature is purely noise induced, it still has, its roots in the deterministic struc-
ture of attractors. The situation is completely symmetric with respect toF = 0, so we will
focus on the small positive loadF = 0.1. For a given driving strengtha = 4.2 there exists
one stable attractor, which causes the particle to dwell in one potential well according to the
external periodic driving, see first column in Fig. 5.4. If we, however, heat up the system a
bit, the thermal random force kicks out the particle from the stable attractor, and impose the
dynamics to relax again and again. The structure of the deterministic phase space for small
times (including the transient effects) is shown in the second column in Fig. 5.4. It means
that with noise the particle is able to proceed with a negative velocity while in a deterministic
case, after relaxation, it stays in a locked state forever. For a noisy dynamics we can see this
situation as the ghost attractors of a negative direction on a phase space, see Fig. 5.5. Both
situations, deterministic with transient effects and noisy, give almost the same picture of the
phase space, c.f. second column in Fig. 5.4 and Fig. 5.5.
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5.2 Absolute negative mobility in a symmetric potential
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Figure 5.4:Deterministic motion shown for the parameters:γ = 0.9, ω = 4.9, F = 0.1 and
a = 4.2. We took uniformly distributed initial conditions in rangesx0 ∈ [0, 1] and
v0 ∈ [−0.2, 0.2].
Upper row: The phase space (instantaneous velocity versus position). On the left
we show period one locked attractor that produces zero current. On the right we
show the transient effects, resulting in a very complicated picture of the phase
space.
Lower row: Trajectories of the particles shown as an illustration of the attractors
plotted in the upper row. To show transient effects in more details we used only 50
periodsT long runs of the deterministic motion.
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5 Inertial motor under load
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Figure 5.5:Stochastic motion shown for the parameters:D0 = 0.001, γ = 0.9, ω = 4.9,
F = 0.1 and the driving strengtha = 4.2. Upper plot: The phase space (instanta-
neous velocity versus position). Lower plot: Stochastic trajectories of the particle
moving in a tilted rocked sinus potential.

46



5.2 Absolute negative mobility in a symmetric potential

We now take a look at the efficiency of the Brownian particle in the periodic symmetric
potential under influence of the the load force. As already said zero bias means zero current
resulting in the zero efficiency. For a non vanishing bias we can determine the efficiencies
defined in the section 3.2. In the Fig. 5.6 we showed the relative amount of work done
against all forces together (solid line) and also against the load and viscous forces separately
(the dashed and dotted line, respectively). We notice that all three efficiencies are very small
compared to the optimally working ratchet, with maximal values of the order of10−3. The
weakest effect is found for the Stokes efficiencyηS. It means that almost all average output
power is used for a motion against the load, cf. the efficiency of the energy conversionηE

(the dashed line in Fig 5.6). It is a completely different situation of what we have found for
a ratchet potential with the optimal driving conditions, presented in the previous section. The
work done by the Brownian motor against the load was very small and the particle struggles
mostly against the Stokes force.
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Figure 5.6:Different efficiencies measures as defined in section 3.2, of the inertial Brownian
particle in a symmetric sinus potential (2.19 a) plotted as a function of an exter-
nal, constant forceF ∈ [F−

stall, F
+
stall]. Note that the plotted curves are strictely

symmetric with respect toF = 0. The system parameters the same as in the Fig.
5.3.
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6 Summary and Conclusions

In this thesis the properties of the transport of amassiveBrownian particle moving in a periodic
potential with and without spatial symmetry are addressed. The system is driven out of an
equilibrium state by an external, time periodic force. The case with an additional constant
bias force was also investigated.

Strongly nonlinear systems far from equilibrium driven inertial ratchets belong to the class
of extremely complex and complicated issues. Our model implies a large, 7-dimensional, pa-
rameter space, which is made up of: frictionγ, external driving strengtha and frequencyω,
load forceF , noise strengthD0 and two constantsc1 andc2 that define the potential shape.
As a tool for the analysis of the above formulated problem the numerical simulation of the
corresponding Langevin equation (2.4) was used. This method, however, requires a relatively
long CPU time to estimate all of the relevant quantifiers. It is therefore not possible to system-
atically explore totality of the parameter space. In order to achieve a deeper understanding of
the system, we elucidated the dynamics for a few representative points of the parameter space
in greater detail. In the numerical analysis we kept frictionγ, frequencyω and both potential
constantsc1, c2 fixed. We used the driving strengtha, temperatureD0 and load forceF as
control parameters.

For inertial ratchets two characteristic times, the period of the external driving forceT =
2π/ω and the rescaled Stokes timeτL/τ0, are relevant. In this thesis both were chosen to be of
the same order. Being more specific: in the section 4.1 the time periodT = 2π/3.6 ' 1.745
and the Langevin timeτL/τ0 = 2; in the section 4.2T = 2π/4.9 ' 1.282 andτL/τ0 ' 1.111.
It means that we do not neglect the influence neither of the external driving nor of the inertia
of the particle. In fact we need both of them incorporating to enhance the transport properties.

In this work, criteria for the optimal transport of an inertial rocked ratchet were established
by means of two relevant quantifiers: the efficiencyη and thePéclet numberPe. We can define
several different efficiency measures that reflect the forces that a particle has to work against.
Here the forces are: average Stokes forceγ〈〈v〉〉 and loadF so we can define an adequate
efficiency for each of them. We have therefore Stokes efficiencyηS and efficiency of energy
conversionηE, that describe how much energy is used to proceed against the respective force.
The sum of these two defines therectification efficiencyηR, that describes how much of total
energy pumped into the system is effectively used. From the numerical analysis it follows
that the most efficient and regular transport is obtained when Péclet number and rectification
efficiency are simultaneously large.

Performance of Brownian Motors
For a generic ratchet presented in the section 4.1, in the considered regime of the control
parameters, the efficiency of maximum 10% and relatively random manner of motion was
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6 Summary

found. The potential parameters can be adjusted to obtain a potential form with relatively flat
slopes, like the potential used in the section 4.2. For this particular profile the characteristics
of the motion are greatly enhanced, resulting in a rectification efficiency of about 70% and
relatively high Ṕeclet number at the optimal driving strength. For this particular strength we
inspected the influence of a external static load force. We found that for small loads, regardless
the sign, the velocity of the particle drops to zero when we increase the bias. The external
load destroys therefore the regular and efficient ratchet dynamics. For small positive loads a
negative differential mobility, (i.e.∂〈〈v〉〉/∂F < 0) was found.

Absolute negative mobility
Next we investigated the response of a particle moving in a symmetric sinusoidal potential to
a static load force. Here, we have found another intriguing interplay between the deterministic
and noisy dynamics, revealing in an absolute negative mobility (〈〈v〉〉/F < 0). This feature
appears to be completely noise induced, as for the deterministic motion the averaged velocity
equals zero for small loads.

Conclusions
Though the physics of these systems has been extensively studied in many different aspects
for 25 years, there are still new and interesting phenomena waiting to be discovered. Up to our
knowledge there exist no analysis ofunderdampednoisy systems where the influence of the
friction force can be neglected. There are several papers exploring the deterministic properties
of Hamiltonian ratchets [138–140] in both classical and quantum regime. The influence of the
heat bath and therefore of thermal noise on a dynamics of systems with a very weak dumping
is definitely interesting and promising topic.

The possibility of revealing the phenomenon of the absolute negative mobility in ratchets is
definitely an interesting problem. For the ratchets known and well understood feature are cur-
rent reversals (i.e. the change of sign of the current for different values of control parameter).
It is highly probable that one could find absolute negative mobility in this very points, where
the current change its sign.
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A Effective Diffusion

In this thesis we have considered the effective diffusion coefficient, which is defined as

Deff = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2

2t
, (A.1)

where the brackets〈·〉 denote an average over the initial conditions of position and velocity
and over all realizations of the thermal noise. Another definition of the diffusion coefficient is
given by the formula

D = lim
t→∞

〈[δx(t)− δx(0)]2〉
2t

, (A.2)

whereδx(t) = x(t)− 〈x(t)〉. By inspection one finds

Deff = D (A.3)

if

lim
t→∞

1

t
〈δx(t)δx(0)〉 = 0. (A.4)

In our case, this term vanishes because of the presence of thermal noise and dissipation. More
generally,|〈δx(t)δx(0)〉| may increase at most ast1/2 if the diffusion coefficientD as defined
in (A.2) is finite. Consequently, for such processes the equation (A.3) also holds.

We now show that the diffusion constantD is related to the auto-correlation function of the
velocity via a Green-Kubo relation, in spite of the fact that the system is far from equilibrium.
For a system with periodic driving,D takes the form

D =

∫ ∞

0

ds C(s), (A.5)

where

C(s) =
1

T

∫ T

0

dτ Cas(τ, s) (A.6)

denotes the time average of the velocity correlation functionCas(τ, s) over one periodT =
2π/ω of the driving and where

Cas(t, s) = 〈δv(t)δv(t + s)〉as (A.7)

is the nonequilibrium asymptotic velocity-velocity correlation function. In the case of periodic
driving, this function is periodic with respect to the first argument, i.e.,

C(t, s) = C(t + T , s). (A.8)
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A Effective Diffusion

To show the Green-Kubo relation, we start from the expressionẋ(t) = v(t) from which it
follows that

δx(t)− δx(0) =

∫ t

0

ds δv(s). (A.9)

Therefore (A.2) takes the form

2D = lim
t→∞

1

t

∫ t

0

ds1

∫ t

0

ds2 〈δv(s1)δv(s2)〉

= lim
t→∞

1

t

∫ t

0

ds1

∫ t

0

ds2 C(s2, s1 − s2), (A.10)

where

C(t, s) = 〈δv(t)δv(t + s)〉. (A.11)

Changing the integration variables(s1, s2) → (s = s1 − s2, τ = s2) and exploiting the
symmetry of the correlation function,C(t, s) = C(t + s,−s), one obtains

D = lim
t→∞

1

t

∫ t

0

ds

∫ t−s

0

dτ C(τ, s)

= lim
t→∞

1

t

∫ t

0

ds

∫ t

0

dτ C(τ, s)− lim
t→∞

1

t

∫ t

0

ds

∫ t

t−s

dτ C(τ, s). (A.12)

We assume that the diffusion coefficient is finite. Therefore the second term in the second line
of (A.12) tends to zero ast →∞, so that

D =

∫ ∞

0

ds lim
t→∞

1

t

∫ t

0

dτ C(τ, s). (A.13)

For t = KT , one splits the second integral into sum over subsequent periods,

lim
t→∞

1

t

∫ t

0

dτ C(τ, s) = lim
K→∞

1

KT

K∑
k=1

∫ kT

(k−1)T
dτ C(τ, s)

=
1

T

∫ T

0

dτ Cas(τ, s) = C(s) (A.14)

where

Cas(τ, s) = lim
K→∞

1

K

K∑
k=0

C(τ + kT , s). (A.15)

The Eqs. (A.11), (A.13)-(A.15) represent the Green-Kubo relation for the diffusion constant of
such periodically driven processesx(t); notably, theseper seconstitute far from equilibrium
processes.
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B Efficiency

With this appendix we present the derivation of the expression (3.6) for the average input
power. As already elaborated we combine the arguments in [79, 92, 96] and establish the
efficiencyηR as in eq. (3.6)

ηR =
γ〈〈v〉〉2 + |F 〈〈v〉〉|

Pin

. (B.1)

In the denominator,Pin denotes the rate of the energy input to the system. To calculatePin,
let us recast (2.4) into the form

dx = vdt , (B.2)

dv = −
(
γv + V ′(x, t)

)
dt +

√
2γD0dW (t) , (B.3)

where
V (x, t) = V (x)− ax cos(ωt)− Fx (B.4)

andW (t) is the Wiener process

〈W (t)〉 = 0, 〈W 2(t)〉 = t. (B.5)

Now, we evaluate the ensemble and temporal averages of the re-scaled kinetic energy
G(v) = v2/2, v = v(t). To this aim, first we apply Ito’s differential calculus to the func-
tion G(v) to obtain

d
(
v2/2

)
= −

(
γv2 + vV ′(x, t)− γD0

)
dt

+
√

2γD0vdW (t). (B.6)

The ensemble average (i.e. the average over all realization of the Wiener process denoted by
〈·〉) for the rate of change of the kinetic energy results in

d

dt
〈v2/2〉 = −

[
γ〈v2〉+ 〈vV ′(x)〉

−〈v a cos(ωt)〉 − 〈Fv〉 − γD0

]
,

where we exploited the (Ito)-martingale property (for the part containing the Wiener process).
Next, we average over the temporal period as in (2.18) (periodic time-dependence of asymp-
totic probability). In doing so, we evaluate

〈〈 d

dt
v2〉〉 =

1

T

[
〈v2(t + T )〉 − 〈v2(t)〉

]
= 0 . (B.7)
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Likewise, for the contribution

〈〈vV ′(x)〉〉 =
1

T

[
〈V (x(t + T ))〉 − 〈V (x(t))〉

]
= 0 . (B.8)

Consequently, we obtain

0 = −γ
[
〈〈v2〉〉 −D0

]
+ F 〈〈v〉〉+ 〈〈va cos(ωt)〉〉. (B.9)

We define the average input power as

Pin := |F 〈〈v〉〉+ 〈〈va cos(ωt)〉〉|, (B.10)

i.e. the input energy to the system per unit time. From eq. (B.9) it follows

Pin = γ|〈〈v2〉〉 −D0|. (B.11)

Thus, upon combining (B.1) and (B.11) the relation for the rectification efficiency (3.6) emerges

ηR =
γ〈〈v〉〉2 + |F 〈〈v〉〉|
γ|〈〈v2〉〉 −D0|

. (B.12)

We also emphasize here, that our scheme for the efficiency of rectification at zero bias (F = 0)
is independentof the transport friction-coefficientγ. This feature is in agreement with the
corresponding result by Suzuki and Munakata [79].
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