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Abstract

The Anderson-Hubbard Hamiltonian at half-filling is investigated within dynamical mean-field theory at zero
temperature. The local density of states is calculated by taking the geometric and arithmetic mean, respectively. The
non-magnetic ground state phase diagrams obtained within the different averaging schemes are compared.

The metal-insulator transitions (MIT) due to
electronic interactions (Mott—Hubbard MIT) [1]
and due to impurity scattering (Anderson localiza-
tion) [2] are subtle quantum mechanical phenom-
ena which require non-perturbative investigation
schemes. In this respect, the dynamical mean-field
theory (DMFT) [3] is very useful. However, it
cannot describe the physics of Anderson localiza-
tion if the local disorder is included by taking the
arithmetic average over the disorder [4]. Recently,
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it was proposed to use the geometric average over
the disorder to include also the Anderson MIT
[5-7]. In this contribution we compare the entire
non-magnetic ground state phase diagrams of
correlated, disordered electrons at half-filled lattice
as obtained by taking the geometric and the
arithmetic averages over the disorder within the
DMFT [8].

We study the system described by a single-
orbital Anderson—-Hubbard model
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where #>0 is the amplitude for hopping between
nearest neighbors, U is the on-site repulsion, n;; =
ajgaio is the local electron number operator, a;,
(aiTg) is the annihilation (creation) operator of an
electron with spin g, and the local ionic energies ¢;
are independent random variables. We assume a
continuous probability distribution for ¢;, i.e.,
P(e;) = O(A4/2 — |&;])/ A, with O as the step func-
tion. Here, 4 is a measure of the disorder strength.
This model is solved within DMFT by mapping
it [3] onto an ensemble of effective single-impurity
Anderson Hamiltonians with different ¢;:
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Here p= U/2 is the chemical potential corre-
sponding to a half-filled band, and Vy and g are
the hybridization matrix element and the disper-
sion relation of the auxiliary bath fermions cy,,
respectively.

For each ionic energy ¢ we calculate the local
Green function G(w, ¢;), from which we can obtain
either the geometrically averaged local density of
states (LDOS) pgeom(®) = exp[(In p,(w))] or the
arithmetically averaged LDOS p, () = (pi(®)),
where  p;(w) = —Im G(w,&)/n, and (O;) =
[ de;2(e)OC(g;) is the arithmetic mean of O;. The
lattice Green function is given by the correspond-
ing Hilbert transform as G(w) = [dw/p (o) /(0w —
'), where the subscript « stands for either “geom”
or “arith”. The local self-energy X(w) is deter-
mined from the k-integrated Dyson equation
Z(w) = o — n(w) — 1/G(w), where the hybridiza-
tion function n(w) is defined as n(w)=
S Vil?/(@ —&). The self-consistent DMFTe-
quations are closed through the Hilbert transform
G(w) = [deNgy(e)/[w — e — Z(w)], which relates
the local Green function for a given lattice to the
self-energy; here N(¢) is the non-interacting DOS.

The Anderson—Hubbard model (1) is solved for
a semi-elliptic DOS, Ny(¢) = 4v/1 — 4¢2/n. Then
n(w) = G(w)/16. The DMFT equations are solved
at zero temperature by the numerical renormaliza-
tion group technique [9]. For numerical integra-

tions we use discrete values of ¢; selected according
to the Gauss—Legendre algorithm. The number of
g levels depends on 4 and is adjusted to obtain
smooth spectral functions [4].

The main results are presented in Figs. 1 and 2,
where the non-magnetic ground state phase dia-
grams of the Anderson—Hubbard model (1) are
plotted. At weak disorder, both averaging schemes
are seen to lead to very similar results for the
Mott-Hubbard transition from the paramagnetic
correlated, disordered metal (I) to the paramag-
netic, disordered Mott insulator (IV). For 4 <2 we
find hysteresis and a coexistence regime (II).
Above A ~ 2 there is a crossover regime (III). At
strong disorder the DMFT with geometrically
averaged LDOS describes an Anderson transition
between a correlated, disordered metallic and
insulating phase, respectively (V) [10]. Since
neither the paramagnetic Mott nor the Anderson
insulator is characterized by a broken symmetry
they are continuously connected, i.e., the phases
IV and V in Fig. 1 are connected by a continuous
line which does not cross a metallic phase.
Obviously, the Anderson transition is missed
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Fig. 1. Non-magnetic ground state phase diagram of the
Anderson—-Hubbard model at half-filling as calculated by
DMFT with the geometrically averaged local density of states.
I——correlated, disordered metal, II—coexistence regime, 11—
crossover regime, [IV—Mott insulator, V—Anderson insulator.
At the dashed line all states within the Hubbard subbands
become localized. W is a bare energy band-width.
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Fig. 2. Non-magnetic ground state phase diagram of the
Anderson-Hubbard model at half-filling as calculated by
DMFT with the arithmetically averaged local density of states.
Labels I-1V are the same as in Fig. 1.

within the DMFT supplied by the arithmetic
averaging.

In summary, although the geometric averaging
procedure does not capture all aspects of Ander-
son localization [6,11] it provides valuable new
insights into MITs in correlated and disordered
electron systems, which are not obtained by taking
the arithmetic disorder average [4].
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