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Abstract

The Anderson–Hubbard Hamiltonian at half-filling is investigated within dynamical mean-field theory at zero

temperature. The local density of states is calculated by taking the geometric and arithmetic mean, respectively. The

non-magnetic ground state phase diagrams obtained within the different averaging schemes are compared.

                                   

                               

                                                                                   
The metal–insulator transitions (MIT) due to
electronic interactions (Mott–Hubbard MIT) [1]
and due to impurity scattering (Anderson localiza-
tion) [2] are subtle quantum mechanical phenom-
ena which require non-perturbative investigation
schemes. In this respect, the dynamical mean-field
theory (DMFT) [3] is very useful. However, it
cannot describe the physics of Anderson localiza-
tion if the local disorder is included by taking the
arithmetic average over the disorder [4]. Recently,
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it was proposed to use the geometric average over
the disorder to include also the Anderson MIT
[5–7]. In this contribution we compare the entire
non-magnetic ground state phase diagrams of
correlated, disordered electrons at half-filled lattice
as obtained by taking the geometric and the
arithmetic averages over the disorder within the
DMFT [8].

We study the system described by a single-
orbital Anderson–Hubbard model
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Fig. 1. Non-magnetic ground state phase diagram of the

Anderson–Hubbard model at half-filling as calculated by

DMFT with the geometrically averaged local density of states.

I—correlated, disordered metal, II—coexistence regime, III—

crossover regime, IV—Mott insulator, V—Anderson insulator.

At the dashed line all states within the Hubbard subbands

become localized. W is a bare energy band-width.
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where t40 is the amplitude for hopping between
nearest neighbors, U is the on-site repulsion, nis ¼

a
y

isais is the local electron number operator, ais

(ay

is) is the annihilation (creation) operator of an
electron with spin s; and the local ionic energies �i

are independent random variables. We assume a
continuous probability distribution for �i; i.e.,
Pð�iÞ ¼ YðD=2 � j�ijÞ=D; with Y as the step func-
tion. Here, D is a measure of the disorder strength.

This model is solved within DMFT by mapping
it [3] onto an ensemble of effective single-impurity
Anderson Hamiltonians with different �i:

HSIAM ¼
X

s

ð�i � mÞay

isais þ Uni"ni#

þ
X

ks

Vka
y

iscks þ Vn

kc
y

ksais

þ
X

ks

�kc
y

kscks: ð2Þ

Here m ¼ U=2 is the chemical potential corre-
sponding to a half-filled band, and Vk and �k are
the hybridization matrix element and the disper-
sion relation of the auxiliary bath fermions cks;
respectively.

For each ionic energy �i we calculate the local
Green function Gðo; �iÞ; from which we can obtain
either the geometrically averaged local density of
states (LDOS) rgeomðoÞ ¼ exp½hln riðoÞi or the
arithmetically averaged LDOS rarithðoÞ ¼ hriðoÞi;
where riðoÞ ¼ �Im Gðo; �iÞ=p; and hOii ¼R

d�iPð�iÞOð�iÞ is the arithmetic mean of Oi: The
lattice Green function is given by the correspond-
ing Hilbert transform as GðoÞ ¼

R
do0raðo

0Þ=ðo�

o0Þ; where the subscript a stands for either ‘‘geom’’
or ‘‘arith’’. The local self-energy SðoÞ is deter-
mined from the k-integrated Dyson equation
SðoÞ ¼ o� ZðoÞ � 1=GðoÞ; where the hybridiza-
tion function ZðoÞ is defined as ZðoÞ ¼P

kjVkj
2= o� �kð Þ: The self-consistent DMFTe-

quations are closed through the Hilbert transform
GðoÞ ¼

R
d�N0ð�Þ= o� �� SðoÞ½ ; which relates

the local Green function for a given lattice to the
self-energy; here N0ð�Þ is the non-interacting DOS.

The Anderson–Hubbard model (1) is solved for
a semi-elliptic DOS, N0ð�Þ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 4�2

p
=p: Then

ZðoÞ ¼ GðoÞ=16: The DMFT equations are solved
at zero temperature by the numerical renormaliza-
tion group technique [9]. For numerical integra-
tions we use discrete values of �i selected according
to the Gauss–Legendre algorithm. The number of
�i levels depends on D and is adjusted to obtain
smooth spectral functions [4].

The main results are presented in Figs. 1 and 2,
where the non-magnetic ground state phase dia-
grams of the Anderson–Hubbard model (1) are
plotted. At weak disorder, both averaging schemes
are seen to lead to very similar results for the
Mott–Hubbard transition from the paramagnetic
correlated, disordered metal (I) to the paramag-
netic, disordered Mott insulator (IV). For Dt2 we
find hysteresis and a coexistence regime (II).
Above D � 2 there is a crossover regime (III). At
strong disorder the DMFT with geometrically
averaged LDOS describes an Anderson transition
between a correlated, disordered metallic and
insulating phase, respectively (V) [10]. Since
neither the paramagnetic Mott nor the Anderson
insulator is characterized by a broken symmetry
they are continuously connected, i.e., the phases
IV and V in Fig. 1 are connected by a continuous
line which does not cross a metallic phase.
Obviously, the Anderson transition is missed
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Fig. 2. Non-magnetic ground state phase diagram of the

Anderson–Hubbard model at half-filling as calculated by

DMFT with the arithmetically averaged local density of states.

Labels I–IV are the same as in Fig. 1.
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within the DMFT supplied by the arithmetic
averaging.

In summary, although the geometric averaging
procedure does not capture all aspects of Ander-
son localization [6,11] it provides valuable new
insights into MITs in correlated and disordered
electron systems, which are not obtained by taking
the arithmetic disorder average [4].
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