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We present a class of exact ground states of a three-dimensional periodic Anderson model at 3=4
filling. Hopping and hybridization of d and f electrons extend over the unit cell of a general Bravais
lattice. Employing novel composite operators combined with 55 matching conditions the Hamiltonian
is cast into positive semidefinite form. A product wave function in position space allows one to identify
stability regions of an insulating and a conducting ground state. The metallic phase is a non-Fermi
liquid with one dispersing and one flat band.
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exact ground state wave functions describing metallic and n��;�; �	, connects any two sites within a unit cell [16].
The periodic Anderson model (PAM) is the basic mi-
croscopic model for the investigation of heavy-fermion
and intermediate valence systems, e.g., compounds con-
taining elements with incompletely filled f shells such
as cerium or uranium [1]. In its simplest form the PAM
describes strongly correlated, dispersionless f electrons
which couple, via a local hybridization, to noninteract-
ing conduction (d) electrons hopping between nearest-
neighbor sites. For real systems this is certainly an
oversimplification since there is experimental evidence
for (i) a weak, but finite, dispersion of the f electrons
(especially in uranium compounds) [2], (ii) nonlocal
contributions to the hybridization, and (iii) hopping of
the d electrons beyond nearest neighbors [3].

Recently, investigations into the origin of the dramatic
volume collapse at the � ! � transition in cerium have
drawn attention to the possibility of a Mott metal-
insulator transition in the PAM [4–6]. Although such a
transition is usually associated with the half-filled
Hubbard model with nearest-neighbor hopping, there ex-
ist remarkable similarities between the two models [7],
especially if both the d electron hopping and d� f
hybridization in the PAM connect nearest-neighbor sites
[7–10]. These results show that the spatial range of the
hopping and hybridization in the PAM are very impor-
tant, even on a qualitative level.

In this situation exact results on the existence of insu-
lating and metallic phases in the PAM and their depen-
dence on a general set of hopping, hybridization, and
interaction parameters are particularly desirable. Exact
results for the PAM are very rare since, in contrast to the
Hubbard model, there does not even exist an exact solu-
tion of the PAM in dimension D � 1. On the other hand,
it has been possible to construct exact ground states of the
PAM in certain regions of parameter space, namely, for
infinite repulsion of the f electrons [11–13]and for finite
repulsion in low dimensions (D � 1; 2) [14,15].

In this Letter we show that it is possible to construct
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insulating phases of the PAM at noninteger electron fill-
ing even in dimension D � 3. In particular, we explicitly
demonstrate (i) the insulating and conducting nature of
the solutions, (ii) the presence of strong variations in the
compressibility of the system when leaving the insulating
phase, and (iii) the non-Fermi liquid nature of the metal-
lic phase.

We consider a general Bravais lattice in D � 3 with a
unit cell I defined by the primitive vectors fx	g, 	 �
1; 2; 3. The Hamiltonian of the PAM has the form ĤH �
ĤH0 �UD̂Df, where D̂Df �

P
in̂n

f
i"n̂n

f
i# describes the local

Coulomb repulsion between the f electrons (U > 0	.
The one-particle part may, in general, be written as

ĤH 0 �
X
i;�

�X
r


tdr d̂d
y
i�d̂di�r;� � tfr f̂f

y
i�f̂fi�r;�

� Vr�d̂d
y
i�f̂fi�r;� � f̂fyi�d̂di�r;�	 � H:c:

� V0�d̂d
y
i�f̂fi� � H:c:	 � Efn̂n

f
i�

�
; (1)

where the terms with td;fr represent the kinetic energy of d
and f electrons due to hopping between two sites i and
i� r, Vr is the hybridization of d and f electrons at sites i
and i� r, V0 is the local hybridization, andEf is the local
f electron energy; here r � 0. The amplitudes td;fr are
real, but Vr; V0 can, in principle, be complex. In our
investigation the hopping and hybridization of the d and
f electrons extend over the unit cell of a general Bravais
lattice (Fig. 1). To avoid multiple counting of contribu-
tions to (1) by the H.c. term, the vector r must be properly
defined. To this end the sites within Ii, the unit cell defined
at site i, are denoted by rIi � i� r���, with r��� �
�x1 � �x2 � �x3; �;�; � � 0; 1. As shown in Fig. 1
the eight sites rIi can be numbered by the indices
n��;�; �	 � 1� �� 3�� 4�� 2�� without reference
to Ii. In the following we use orthogonal x	 vectors for
simplicity. Then r � r�0�0�0 � r���, with n��0; �0; �0	 >
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FIG. 1. Unit cell (I) of an orthorhombic lattice at an arbitrary
site i showing the primitive vectors x	 and indices n of the sites
in I. Arrows depict some of the hopping and hybridization
matrix elements (J � t; V) extending over I.
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We now introduce a superposition of operators creating
b (�d or f) electrons inside every unit cell Ii as

ÂAy
Ii�

�
X

b�d;f

X1
�;�;��0

a�n��;�;�	;bb̂b
y
i�r���;�

�
X

b�d;f

�a�1;bb̂b
y
i� � a�2;bb̂b

y
i�x1;�

� . . .� a�8;bb̂b
y
i�x2�x3;�

	;

(2)

with a�n;b � 0 for all n. Although fÂAy
I�; ÂA

y
I0�0 g �

fÂAI�; ÂAI0�0 g � 0 and fÂAI�; ÂA
y
I�g � Kd � Kf, where Kb �P

8
n�1 jan;bj

2 and n � n��;�; �	, the composite operator

ÂAy
I� does not obey canonical anticommutation rules since

fÂAI�; ÂA
y
I0�0 g � 0 for I � I0. Because of the translational

symmetry of the lattice the prefactors a�n;b are the same in

every unit cell. Making use of this fact, ĤH can be cast into
the form

ĤH �
X
i;�

ÂAIi�ÂA
y
Ii�

�U
X
i

P̂Pi � Eg; (3)

where P̂Pi � n̂nfi"n̂n
f
i# � n̂nfi" � n̂nfi# � 1, Eg � KdN �UN��

2N��2Kd � Ef	, and N and N� are the number of elec-
trons and lattice sites, respectively. For (3) to reproduce
(1) the prefactors a�n;b in ÂAy

Ii�
must be expressed in terms

of the microscopic parameters tdr , tfr , Vr, V�
r , V0, V�

0 , Ef,U,
for all r 2 Ii, taking into account periodic boundary
conditions. This leads to 55 coupled, nonlinear matching
conditions [17] which can be written in compact notation,
with b; b0 � d; f, as [18]

X1
�1;�2;�3��1

 Y3
i�1

D�i;�i

!
a�n�;ban�;b0 � Tb;b0

�rr;� : (4)

Apart from the constant term Eg in (3) ĤH is a positive
semidefinite operator. A state jgi fulfilling the condi-
tions P̂Pijgi � 0 and ÂAy

Ii�
jgi � 0 for all i will then be

an exact ground state of ĤH with energy Eg. We note that P̂Pi
assumes its lowest eigenvalue, 0, when there is at least one
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f electron on site i. Therefore, a state of the form jgi �QN�
i�1 F̂F

y
i j0i, where the operator F̂Fy

i � �i"f̂f
y
i" ��i#f̂f

y
i#

(with arbitrary coefficients �i�) creates one f electron
on every site i, fulfills the first condition. Further, a state
of the form jgi �

QN�
i�1�ÂA

y
Ii"
ÂAy
Ii#
	j0i fulfills the second

condition. Consequently, the (unnormalized) product
state

jgi �
YN�

i�1


ÂAy
Ii"
ÂAy
Ii#
F̂Fy
i j0i (5)

has at least one f electron on every site i, the productQN�
i�1 ÂA

y
Ii"
ÂAy
Ii#

creating at most two more (d or f) electrons

on i. Clearly, jgi has the desired property ĤHjgi �
Egjgi and is thus an exact ground state of ĤH with energy
Eg. Although jgi is a product state over sites i it is
actually nonlocal because the operator ÂAy

Ii�
creates elec-

trons also at the boundaries of the unit cell Ii with
neighboring unit cells. This leads to a genuine dependence
of jgi on the lattice structure and hence on the spatial
dimension.

Since the product of the three operators in jgi creates
N � 3N� electrons, the ground state is 3=4 filled; i.e.,
there are on average three electrons per site. The arbi-
trariness of �i;� implies a large spin degeneracy of jgi
which is globally paramagnetic (for �i� � �� it would
be ferromagnetic). Neglecting the trivial 2S� 1 multi-
plicity of the spin orientation, the ground state is
N�=2-fold degenerate [19]; all degeneracies are still con-
tained in (5). We note that a ground state solution jgi for
a particular value of the interaction U � U1 is not con-
nected in any simple way to a solution for a different
value U � U2 since the constraint (4) requires all other
parameters to adjust when U is changed. In particular,
jgi is not a ground state at U � 0.

The physical nature of jgi depends on the values of
the coefficients a�n;b in (2) which are solutions of (4) for
given microscopic parameters. We now identify localized
and itinerant ground states and discuss their physical
properties.

(i) Localized ground state.—The coefficients an;b may
be chosen in such a way that jgi has exactly three
electrons per site. To see how this can be achieved we
take a look at a typical factor ÂAy

Ij"
ÂAy
Ij#
ÂAy
Ij0 "
ÂAy
Ij0 #
F̂Fy
j00 entering

in jgi, where j00 is a common site of the two unit cells Ij,
Ij0 . Since F̂Fy

j00 always creates one f electron on j00, the
product of the four unit cell operators should create only
two more electrons (one " and one # ) on j00. Therefore,
terms of the form d̂dyj00"f̂f

y
j00"d̂d

y
j00#f̂f

y
j00#�a

�
n1;d

a�n2;f � a�n1;fa
�
n2;d

	2

which are also generated and which lead to more than two
additional electrons on this site must be prohibited. This
can be achieved by choosing a�n;d=a

�
n;f � pn � p for all n.

It follows from (4) that along the diagonal of a unit cell
with end points n; n0 the relation a�n;fan0;d � a�n;dan0;f
holds, implying p and therefore also the hybridization
186401-2
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amplitudes to be real. A solution of (4) of this form is
obtained for tbr � tb�, i.e., for equal hopping along x; y; z.
In this case the ground state takes the form

jloci �
Y
i

	X
�

�i��pd̂d
y
i#d̂d

y
i"f̂f

y
i� � f̂fyi"f̂f

y
i#d̂d

y
i�	



j0i: (6)

Denoting ground state expectation values by h. . .i the lo-
cal f;d-electron occupations are found as hn̂nfi i��1�2z	=
�1�z	;hn̂ndi i� �2�z	=�1�z	, where z � jtf1=t

d
1j is a mea-

sure of the nearest-neighbor hopping amplitude of the f
electrons. Since the latter can be expected to be much
smaller than that of the d electrons (z � 1), the f (d)
electron occupation per site is found to be close to one
(two). Hence there exist local moments on most of the f
sites. We see that hn̂nii � hn̂nfi i � hn̂ndi i � 3 for all i; i.e., the
electron distribution is indeed uniform. The localization
is due to a subtle quantum mechanical interference be-
tween the hopping and hybridization processes of the
electrons. Therefore, the nature of this localized state is
quite nontrivial.

By separating the Hamiltonian ĤH into an itinerant
part ĤHitin � ĤH0 �

P
i;�
V0�d̂d

y
i�f̂fi� � H:c:	 � Efn̂n

f
i� �P

rĤHitin�r	 and a complementary localized part ĤHloc �

ĤH � ĤHitin, and using hb̂byi�b̂b
0
j�0 i � 0 for i � j and

b; b0 � d; f, one finds hĤHitin�r	i � 0 and hĤHloci � Eg:
This clearly illustrates the localized, and thus insulating,
nature of the ground state whose energy is obtained as
Eg � N�
�1� 2z	Kf=z�U (Fig. 2). The parameter
space in which the localized ground state jloci is stable
is represented in terms of the variables Ef;U; t

f
1=t

d
1 ; t

d
2=t

d
1

by the surfaces I1; I2 in Fig. 3. The stability region is seen
to extend through the phase diagram from weak to strong
interactions U.

For y � jtd2=t
d
1j > 1=2, i.e., rather large next-nearest

neighbor hopping of d electrons, the localized state
jloci ceases to be the ground state. Apparently, at yc �
1=2 a different, most probably itinerant, phase becomes
stable. We note that the ground state energy Eg�y	 has a
Ε
N

(
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FIG. 2. Ground-state energy of the localized state expressed
in terms of �Eg=N� �U	=jtd1 j as a function of next-nearest
neighbor hopping of d electrons, jtd2=t

d
1 j, for different values of

f hopping z � jtf1=t
d
1 j; here jV1=V0j � 1=2.
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finite value at yc, but infinite slope (see Fig. 2). This exact
result has a direct physical interpretation. Namely, since
the size of the hopping element may be tuned by pressure,
the infinite slope of Eg at y � yc is expected to corre-
spond to an anomaly in the compressibility at a critical
pressure Pc. Such a feature is indeed observed in some
heavy-fermion systems [20].

(ii) Itinerant ground state.—The localized ground
state discussed above has exactly three electrons per
site. In general, the intersite hopping and hybridization
will lead to a variable number of electrons per site and
hence to a conducting state. An itinerant ground state is
obtained, for example, by choosing p�

n � �pn; jpnj �
jpj, corresponding to imaginary p and, hence, imaginary
hybridization amplitudes Vr.Whether Vr is real, complex,
or imaginary depends on the linear combination of the
corresponding electronic orbitals [7,15,21–23] and hence
on the lattice symmetry. For example, Vr may be tuned
from real to imaginary by introducing axial distortions of
D4h symmetry to an underlying Oh lattice symmetry [22].
Therefore, such a solution requires anisotropic hopping
and hybridization amplitudes. The itinerant ground state
discussed here emerges if the hybridization on the same
site and in the basal (xy) plane vanish. The anisotropy in
the hopping starts at the level of next-nearest neighbor
amplitudes.

To show that this state is indeed conducting the solution
is generalized to fillings beyond 3=4 by inserting the
operator V̂Vy

M �
Q

M
j�1


PN�
i�1 aji�

P
b�d;f;�+b�b̂b

y
i�	 into (5)

next to j0i; here aji; +b� are numerical coefficients. This
operator introduces M<N� additional particles into the
ground state. It allows one to calculate the energy
Eg for different particle numbers. In particular, one finds
�� � Eg�N� 2	�Eg�N� 1	 �Kd, �� � Eg�N� 1	 �
Eg�N	 �Kd, i.e., �� ��� � 0. Therefore, the solution
is conducting [24]. The stability region of the conducting
state corresponds to the surface C in Fig. 3.

To describe the itinerant case a k-type representation is
more suitable. Denoting the Fourier transforms of ÂAIi�
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FIG. 3. Surfaces in parameter space representing stability
regions of the insulating ground state (I1 for jV1=V0j< 1=2,
I2 for jV1=V0j � 1=2) and the conducting ground state (C).
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and b̂bi� by ÂAk� and b̂bk�, respectively, (2) takes the form
ÂAy
k� �

P
b�d;fa

�
kbb̂b

y
k�; the expressions for the coefficients

a�kb will not be reproduced here. We can now define new
canonical Fermi operators ĈC.;k�, . � 1; 2, where ĈC1;k� �

R1=2
k ÂAk�, with R�1

k �
P

bjakbj
2, and ĈC2;k� is determined

by the anticommutation rules between ĈC1;k� and ĈCy
2;k�. It

follows that �
P

i;�ÂA
y
Ii�
ÂAIi��KdN̂N�

P
k;�
�Kd�R�1

k 	 �

ĈCy
1;k�ĈC1;k��KdĈC

y
2;k�ĈC2;k�� ĤHg, such that (3) can be

written as ĤH � ĤHg �UP̂P� N�
U� 2�Kd � Ef	. In
the ground state, using P̂Pjgi � 0, the Hamiltonian ĤH
therefore reduces to ĤHg. Thus we succeeded in diagonal-
izing ĤH for the ground state. There are two bands, the
lower one having a dispersion Kd � R�1

k , while the upper
one is dispersionless (‘‘flat’’); the Fermi energy is EF �
Kd. Such a band structure around EF has been observed
in experiment [25].

The momentum distribution of the d; f electrons be-
comes nbk�h

P
�b̂b

y
k�b̂bk�i� �2jakbj

2�jak;b0�bj
2	Rk, with

nk �
P

b�d;fn
b
k � 3. Since the coefficients akb are regu-

lar functions of k this also holds for ndk, nfk, and nk.
Consequently, the momentum distributions of the elec-
trons in the interacting ground state have no discontinu-
ities. Since the ground state is paramagnetic and metallic,
the system is a non-Fermi liquid. This is a consequence of
the degeneracy of electrons in the upper band. In terms
of the ĈC.;k� fermions one finds hĈCy

1;k�ĈC1;k�i � 1 and
hĈCy

2;k�ĈC2;k�i � 1=2 (upper band half filled).
In summary, we derived the first exact ground state

solution of a three-dimensional periodic Anderson model
with finite hopping and hybridization of d and f electrons
in the unit cell. This was achieved by (i) casting the
Hamiltonian into a positive semidefinite form using com-
posite operators in combination with 55 coupled, non-
linear matching conditions for the input parameters and
(ii) constructing a product wave function of these com-
posite operators in position space. For real hybridization
amplitudes we obtained an insulating ground state whose
compressibility diverges at the boundary of the stability
region. By contrast, for imaginary hybridization ampli-
tudes we identified a conducting non-Fermi liquid state
consisting of one dispersing band and one (upper) flat
band. The stability regions of the two ground states ex-
tend through an unexpectedly large region of parameter
space, e.g., from weak to strong interactions U.

By modifying the structure of the composite operators
it is possible to vary the stability regions of these ground
states [26], and also to describe magnetically ordered
phases.
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