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In systems possessing a spatial or dynamical symmetry ingeghermal Brownian motion combined with
unbiased, non-equilibrium noise gives rise to a chanrgltihchance that can be used to exercise control
over systems at the micro- and even on the nano-scale. TErigths known as “Brownian motor” concept.
The constructive role of (the generally overdamped) Brawmotion is exemplified for a noise-induced
transport of particles within various set-ups. We first preshe working principles and characteristics
with a proof-of-principle device, a diffusive temperatBeownian motor. Next, we consider very recent
applications based on the phenomenon of signal mixing. @&tierlis particularly simple to implement
experimentally in order to optimize and selectively cohaaich variety of directed transport behaviors.
The subtleties and also the potential for Brownian motoesaiing in the quantum regime are outlined and
some state-of-the-art applications, together with futoeelways, are presented.

1 Introduction

In hisannus mirabilis1 905, Albert Einstein (March 14, 1879 - April 18, 1955) psbid four cornerstone
papers that made him immortal. Apart from his work on the pkalectric effect (for which he obtained
the Nobel prize in 1921), wherein he put forward the photopdtigesis, and his two papers on special
relativity, he published his first paper on the molecularekic description of Brownian motion [1]. There,
he states (freely translated from the German) “In this woekslvow, by use of the kinetic theory of heat,
that microscopic particles which are suspended in fluidetg@movements of such size that these can be
easily detected with a microscope. It is possible that theseements to be investigated here are identical
with so-called Brownian molecular motion; the informatiawailable to me on the latter, however, is
so imprecise that | cannot make a judgement.” In his followpaper in 1906 [2], which contains the
term “Brownian motion” in the title, he provides supplememyttechnical arguments on his derivation
and additionally presents a treatment of rotational Branmnotion. In this second paper he also cites
experimental work on Brownian motion by M. Gouy [3] (but natlsert Brown). Einstein seemingly was
unaware of the earliest observations of Brownian motioneuramicroscope: namely, the work of the
Dutch physician Jan Ingen-Housz [4], who detected, probfitst, Brownian motion of finely ground
charcoal particles in a suspension at the focal point of age@®pe, and the detailed studies by the renown
botanist Robert Brown [5]. In clear contrast to Robert Browo performed a series of experiments,
Ingen-Housz provided a quite incorrect physical explamatif his observations by ascribing the effect to
the evaporation of the suspension fluid.
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The two founders of Brownian motion theory, Einstein and &rolmowski [6], as well as their contem-
poraries, were also unaware of related, mathematicastital precursors of the phenomenon: Already
in 1880, N. Thiele [7] proposed a model of Brownian motion Mtstudying time series. Another im-
portant development is the work by the founder of modern Metitical Finance, Louis Bachelier [8],
who attempted to model the market noise of the Paris Boursaigihn a Gaussian process. Moreover,
Lord Rayleigh [9] also did study a discrete, heavy randonkesnd performed a corresponding limiting
procedure towards a heat equation which is augmented byt @ednh for the statistical velocity.

These mathematical-statistical works already contaidigitly, via the (Gaussian)-propagator solution
of the corresponding heat or diffusion equation, the masulteof Einstein: namely, his pivotal analysis
of the mean squared displacement of Brownian motion. BEm$teused on what is nowadays character-
ized asoverdamped Brownian motiorHe was driven by the quest for the missing connection batwee
macroscopic and molecular dimensions. In doing so, hidtreshibits truly remarkable features:

e The average distance traveled by the Brownian particletibaltistic. The latter only holds for tran-
sient, very short times, typically of the orderdf~7 seconds, or smaller; an estimate, which already
Albert Einstein provided in a subsequent short note [10]. edkdhmark result of Brownian motion

theory is that the average displacement (after the abovéioned short transient) is proportional to
/2,

Thus, the velocity of a Brownian particle is not a useful meable quantity. Indeed, earlier experimen-
tal attempts aimed at measuring the velocity of Brownianigas, — like those by Sigmund Exner [11],
and many years later, the repeated, but far better devisattitative measurements by his son Felix Exner
in 1900 [12], — yielded puzzling results, and consequentdyerdoomed to failure.

e Einstein also showed that the diffusion strength is relatgtie Boltzmann constant (i.e., to the ratio
of the ideal gas constarit and the Avogadro-Loschmidt numbat,) and the molecular dimension
via the expression of Stokes’ friction.

The last finding motivated Jean Perrin and collaborator$ fd3indertake detailed experiments on
Brownian motion, thereby accurately determining the vétuehe Avogadro-Loschmidt number.

The relation described in this second feature also provad&st link between dissipative forces and
fluctuations. ThisEinstein relationis a first example of the intimate relation between therméeand
dissipation that characterizes thermal equilibrium: Kriswn under the label of the fluctuation-dissipation
theorem, put on firm ground only much later [14].

Itis just this overdamped Brownian noise which we attemptaosest with the concept of a Brownian
motor [15, 16]. Put differently: can one extract energy frBnownian (quantum or classical) particles
in asymmetric set-ups in order to perform useful work agaamsexternal load? If true, then it would
be possible to rectify thermal Brownian motion so as to ssgarshuttle or pump particles on a micro-
or even nano-scale. In view of the laws of thermodynamicgairticular the second law, the answer is
obviously a firmno. If we could indeed succeed, then such a devilish device dvoomstitute a Maxwell
demon perpetuum mobile of the second kind [17]. The only mbr open is thus to go away from
thermal equilibrium, so that the constraints of thermodyitdaws no longer apply. This leads us to study
non-equilibrium statistical mechanics in asymmetric sgst. There, the symmetry is broken either (i) by
the system characteristics, such as an asymmetric pepoténtial (or substrate) which lacks reflection
symmetry, called ratchet-like potentials, or (ii) the dgmes itself that may break the symmetry in the time
domain.

Clearly, noise-induced, directed transport in the presefia static bias is trivial. It is also an everyday
experience that macroscopic, unbiased disturbances cese cirected motion. The example of a self-
winding wrist watch, or even windmills prove the case. Thallednge becomes rather intricate when we
consider motion on the micro-scale. There, the subtleptagrof thermal noise, nonlinearity, asymmetry,
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andunbiasediriving of either stochastic, or chaotic, or determinigti@in can indeed induce a rectifica-
tion of the noise, resulting in directed motion of Browniaariicles [16]. As a consequence, new roadways
open up to optimize and control transport on the micro- antdoo-scale. This includes novel applications
in physics, nano-chemistry, materials science, nandrelgics and, prominently, also for directed trans-
port in biological systems such as in molecular motors [Ii8the next section, the concept of a Brownian
motor will be illustrated with a diffusive Brownian motor.

2 Archetype model of a Brownian motor

In order to elucidate thmodus operandif a Brownian motor, we consider a Brownian particle with mas
m and friction coefficient) in one dimension with coordinai€t), being driven by an external static force
F and thermal noise. The corresponding stochastic dynamissreads:

mi=-V'(x)—ni+ F+£&(t), (1)
whereV (x) is a periodic potential with period,

Ve+L)=V(x), 2
which exhibits broken spatial symmetry (a so-called ratpogential). A typical example is

V(z) = Vo [sin(2wx/L) + 0.25 sin(4mz/L)] , (3)

which is depicted in Fig. 1.

1
1.0 0.5 0.0 05 1.0
x/L

Fig. 1 Typical example of a ratchet-potentiil(z). It is periodic in the spatial coordinate with periddand exhibits
a broken spatial symmetry. Plotted here is the example f8)mir( dimensionless units.

Thermal fluctuations are modelled by a Gaussian white ndigaroshing mean((t)) = 0, satisfying
Einstein'sfluctuation-dissipatiomelation, i.e.

(€@)&(s)) = 2nkpTo(t—s), (4)

wherek s is the Boltzmann constant adddenotes the equilibrium temperature.
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In extremely small systems, particle fluctuations are oftescribed to a good approximation by the
overdampedimit of Eq. (1), i.e., by the Langevin equation

ni=-V'(z)+F +&(t), (5)

where the inertia terrmi has been neglected altogether [as implicit in Einstein’gkjvo

In the absence of an external bias, i.E. = 0, the second law of thermodynamics implies that the
thermal equilibrium stochastic dynamics cannot suppotatighary current, i.e.{z(¢t)) = 0. This can
be readily proven [16] upon solving the corresponding Folanck equation in the space of periodic
probability functions, with the stationary probabilityibg of the Boltzmann form.

This pivotal result no longer holds, however, when we commglet our archetype model by a non-
equilibrium,unbiasedi.e. zero mean) disturbance. An instructive way consisipplying a temporally
varying temperatur& — T'(t), with T'(¢) being a periodic function in time [19]. This means that the
Einstein relation is modified to read

(€()&(s)) = 2nkpT(t)6(t —s), (6)

with the temperature obeying(t) = T'(¢+7), whereZ denotes the period of the temperature modulation.
Most importantly, such an explicit time dependence movessystemout of thermal equilibrium In
particular, the system dynamics is no longer time-homogesieit thus breaks also the detailed balance
symmetry [20]. Note that this latter symmetry must alwaysobeyed in thermal equilibrium. A typical
periodic temperature modulation is:

T(t) =T (1+ Asgn[sin(27t/T))) (7

wheresgn[z] denotes the signum function, apd| < 1. This variation of the temperatufein (7) causes
jumps of T'(t) betweerl},,s = T (1 + A) andT.oqa = T (1 — A) at every half-period /2. Due to these
cyclic changes of the temperature, the system approachesaic long-time stationary state which, in
general, can be investigated only numerically in terms ofjEkét theory [19].

In the case of a static tilted Brownian motor with a fixed terapere?’, we immediately see that for
a given force, say’ < 0, the particle will on average move “downhill”, i.ez) < 0. This fact holds
true forany fixed non-zero value of the temperatufe Returning to the temperature ratchet wittbeing
subjected to periodic, temporal variations, one shouldeexthat the particles still move “downhill” on
the average. The numerically calculated correspondinadiourve” (see Fig. 2 in [21]) demonstrates,
however, that the opposite is true within an entire inteofalegativebias valued: Surprisingly indeed,
the particles are climbing “uphill” on the average, therepgrforming work against the load fordé. This
upward directed motion is apparently triggered by no otberee than the thermal fluctuatiofg). This
key finding is just what is commonly referred to as Brewnian motor effedtl 6, 21].

Because the average particle curréijtdepends continuously on the load foiEeit is sufficient for a
qualitative analysis to consider the cdse= 0: the occurrence of the Brownian motor or ratchet effect is
then tantamount to a finite current

(¢y #0 for F=0, (8)

i.e., the unbiased Brownian motor implementirected motion of particles

2.1 Working principle of a Brownian motor

In order to understand the basic physical mechanism behathtchet effect ak' = 0, we focus on very
strong, i.e.|]A| < 1 but adiabatically slow, periodic two-state temperatureloiations from (7). During a
first time interval, say € [7/2,7], the thermal energypT(¢) is kept at a constant valug;T (1 — A)
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Fig. 2 Working principle of a Brownian motor driven by temperatasillations [19]: Consider suspended nonin-
teracting particles in a viscous medium moving along an asgtric saw-tooth potential of periabl and heightAV
which are subjected to a temperature that changes in timeebatthe values “hot” and “ coldl’ € [Tcold, Thot]. FOr
simplicity, letAV/(kpThot) < 1, andAV/(ksTcoia) > 1. The dashed line in the middle panel indicates the level
2kgT below which circa 95 % of the particles are found at any giveret Initially, when the temperature is cold, the
particles are pinned at a potential minimum. Then, whenehgerature is switched to “hot”, the particles effectively
do not feel the potential and begin to diffuse. In the midtiestration the thin red line indicates a Gaussian-likepgha
for the corresponding particle distribution. When the tenagure is low again, any particles that have diffused the
short distancel; = aL, with a < 1/2, to the right are caught in the well to the right; likewisey guarticles that
have diffused the long distande; = (1 — a)L towards the left are caught in the well to the left, and the aes
pinned again in the original well from which they started.oBecause the chance for a particle to diffuse over the
short distancd.; during the time when the temperature is high is much largar the chance to diffuse over the long
distanceL., a net motion to the right is induced by such cyclic tempesatiuctuations.

muchsmallerthan the potential barrieAV between two neighboring local minima ®f(x). Thus, all
particles will have accumulated in a close vicinity of theegydial minima at the end of this time interval,
as sketched in the top panel of Fig. 2. Then, the thermal giengps to a valuézT (1 + A) muchlarger
than AV and remains stable during another half period, s&y 7,37 /2]. Because the particles then
barely feel the potential profile in comparison to the ineensise level, the particles spread out subject
to free thermal diffusion — see Fig. 2, middle panel. Finallyt) jumps back to its original “cool” value

T (1 — A) and the particles slide downhill towards the closest locedimma of V'(x). Due to the lack

of reflection symmetry of the functiol («), the original population of one given potential well is thus
re-distributed asymmetrically, yielding a net averag@lkdisement after one temporal periéd

When the temperature is varied very slowly during a cyclel (@stricting the discussion to the case that
the potentialV/ (z) has only one minimum and maximum per peribdlike in Fig. 2) it is quite obvious
that if the local minimum is closer to its adjacent maximurdted to the right, a positive particle current
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() > 0 will arise. Put differently, upon inspection of Fig. 2, itiistuitively clear that during the cool-
down cycle the particles must diffuse a long distance toeftelbut only a short distance to the right. This
in turn induces a net transport against the steeper poltsiafze towards the right. All these predictions
rely on our assumptions thdt(1 + A) are much smaller/larger thakV, and that the time-perio@ is
sufficiently large.

The Brownian motor effect (8) occurs for very general terapge modulationg'(¢), as well. For the
same reason, the ratchet effect is also robust with respecbdifications of the potential shape [19] and
is recovered even for random instead of deterministic medthns ofT'(¢) [22], with a modified dynamics
on a discrete state space [23], and in the presence of firitgadrj24].

The directed particle currentis clearly bound to vanisihago termed adiabatic limit (i.e. for asymptot-
ically, very slow temperature modulations), when therngaligbrium is approached. A similar conclusion
holds true for asymptotically fast temperature modulatioBy use of a correspondent, perturbative Flo-
quet analysis one finds the noteworthy result that the ctidecays to zero in both asymptotic regimes
remarkably fast, namely likg —2 in the slow modulation limit, and’?, in the fast modulation limit,
respectively [19].

Moreover, for non-adiabatic temperature variations, tr@Bian motion in a diffusive Brownian motor
moving on a tailored ratchet profile is generally not redtifie its “natural” direction, but rather in the
opposite direction [19]. This in turn implies a time-scabeluced (non-adiabatic) current-reversal: It is
this very feature that is required for an efficient separatibparticles of different size, or other transport
qualifiers such as friction, mass, etc..

2.2 Features of a Brownian motor

We cannot emphasize enough that the ratchet effect, as éfkethn the temperature Brownian motor
model shown in Fig. 2, isotin contradiction with the second law of thermodynamics: tdraperature
changesin (7) are caused by two heat environments at twereliff temperatures with which the Brownian
motor system is in continuous contact. From this viewpdiig, archetype Brownian motor is nothing else
than an extremely simple, small heat engine. The fact thet audevice can produce work is therefore not
a miracle — but it is still very intriguing. The following chacteristics are a hallmark of Brownian motors.

2.2.1 Loose-coupling mechanism

Consider the “relevant state variableg) andT'(t) of our temperature Brownian motor. In the case of
an ordinary heat engine, these two state variables wouldyalwycle through one and the same periodic
sequence of events (“working strokes”). Put differentig evolutions of the state variableg) and7'(¢)
would be tightly coupled and almost synchronized.

In clear contrast to this familiar scenartbge relevant state variables of a genuine Brownian motor are
loosely coupled Some degree of interaction is required for the functiorofithe Brownian motor, but
while T'(t) completes one cycle;(¢) may evolve in a very different way. The spatial coordinatg) is
certainly notslavedby the unbiased modulation of the temperatfi(e).

This loose coupling between state variabissa salient feature of a Brownian motor device and dis-
tinguishes the Brownian motor concept from micron-sizeat, ditherwise quite conventional thermo-
mechanical or even purely mechanical engines. In particindispensable ingredients ahy genuine
Brownian motor are: (i) the presence of some amount of (noésearily thermal) noise; (i) some sort
of symmetry-breaking supplemented by temporal periodigibssibly via an unbiased, non-equilibrium
forcing), if a cyclically operating device is involved. ¥ thus not appropriate to advertise every such
small ratchet device under the trendy label of “BrownianonbtThis holds true especially if the govern-
ing transport principle is deterministic, like in mechaalicatchet devices of macro- or mesoscopic size,
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such as a ratchet wrench, interlocked mechanical gearssa@mndrdo’s “cochlea” [25] and other “screw-
like” pumping and propulsion devices. By the way, it is sugiiye to notice how Leonardo sketched a
ratchet-like machinery just to prove the impossibility lbé perpetuum mobil§6].

2.2.2 Dominant role of noise

Yet another distinguishing feature of a Brownian motor & tioise (no matter what its source, i.e. stochas-
tic, or chaotic, or thermal) plays a non-negligible, or esettominant role. In particular, it is the intricate
interplay among nonlinearity, noise-activated escap&dyos and non-equilibrium driving which implies,
that, generallynot even the direction of transpasgta priori predictable. See also in Sects. 4 and 5 below.

2.2.3 Necessary ingredients and variations of the Browmiator scheme

The necessary condition for the Brownian motor effect is perate away from thermal equilibrium,
namely, in a state with no detailed balance. This was actiemve through the cyclic variation of
the temperature (7); but there clearly exists a great waoidther forms of non-equilibrium perturbations
[27]. The following guiding prescriptions should be obssiwhen designing a more geneBabwnian
motor.

e Spatial and/or temporal periodicity critically affect tification.

All acting forces and gradients must vanish after averagirgg space, time, and statistical ensembles.

Random forces (of thermal, non-thermal, or even deteriiérasigin) assume a prominent role.

e Detailed balance symmetry must be broken by moving the syateay from thermal equilibrium.

A symmetry-breaking must apply.

There exist several possibilities to induce symmetry-kirea First, the spatial inversion symmetry of
the periodic system itself may be brokintrinsically; that is, already in the absence of non-equilibrium
perturbations. This is the most common situation and tyiyiéavolves a type of periodic asymmetric
(so-called ratchet) potential. A second option consisteénuse of a deterministic, unbiased skew forcing
f(¢t). For example, these may kochastidluctuationsf (¢t) possessing non-vanishing, higher order odd
multi-time moments — notwithstanding the requirement thay must be unbiased, i.e. the first moment
vanishes [28]. Such an asymmetry can also be created bysaupi@riodicnon-equilibrium perturbations
f(t). Both variants in turn induce a spatial asymmetry of the dyica. Yet a third possibility arises
via a collective effect in coupled, perfectly symmetric rexuilibrium systems, namely in the form of
spontaneous symmetry breakif9, 30, 31]. Note that in the latter two cases we speak of avBian
motor dynamics even though a ratchet-potential is not seciy involved. An instructive demo java
applet of a Brownian motor can be found on the web [32].

In the next section we shall illustrate this concept for theecof a temporaklynamical symmetry
breaking This approach is readily implemented experimentally, dvedefore does carry a great potential
for novel applications and devices.

3 Brownian motors and dynamical symmetry breaking

What we call a ratchet mechanism is to some extent a mattexsté.t Ourbona fideratchet prescrip-

tions in Sec. 2.2 apply indeed to a number of diverse micquisaectification mechanisms that have been
known for a long time, well before the notion of Brownian mob®ecame popular. Such mechanisms
do involve ingredients like spatial periodicity, randomdes, non-equilibrium (detailed balance breaking)
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and zero-mean external biases (both in space and time). \owia this category of processes the re-
flection asymmetry of the substrate plays no essential adfleough its presence may add certain sofar
unnoticed similarities with the ratchet phenomenologyofmenon feature of all these non-ratchet, or pos-
sibly ratchet-related, rectification mechanisms is songgateof temporal synchronization between input
signal(s) and/or spatial modulation of the substrate,itepth a dynamical symmetry breaking.

3.1 Harmonic mixing

A charged particle spatially confined by a nonlinear foramijsable of mixing two alternating input electric
fields of angular frequencid®; and(2s, its response containing all possible higher harmonid3:9fQ2,
and their sum and difference frequencies. For commensimatié frequencies, i.em; = nf),, there
appears a rectified output component, too [33]: such a dcdr@mmixing (HM) signal is ar{n + m)-th
order effect in the dynamical parameters of the system [8}, 3

Let us consider the stochastic dynamics of an overdampdéidipawith coordinater(t),

= —V'(z) + F(t) + £(t), 9)

moving on the one dimensional substrate poteftial) = ¢(1—cos x), subjected to an external zero-mean
Gaussian noisg(t) with the auto-correaltion functioff (¢)£(0)) = 2D4(t), and a periodic two-frequency
drive force

F(ﬁ) = A COS(Qlt + ¢1) + Ao COS(QQt + ¢2), (10)

with ©; and(), integer-valued multiples of the fundamental frequefigyi.e.,2; = nQy andQy = my.
For D = kT the Langevin equation (9) is the zero-mass limit of Eq. (Xhwi= 1; in the case of bistable
potentials it describes a well-known synchronization meenon known as Stochastic Resonance, both
in physics [36] and biology [37]. A standard perturbatiopamrsion leads to a general expression [34]
for the non-vanishing dc componefit = (i) of the particle velocity. In the regime of low temperature,
D <« AV = 2¢q, the particle net current can be approximated to

. 2 m n

Jo__ ™ (A1) (A _

D= " gmn <D> (D) cos(ngs — maor) (11)
for Q2 < ¢ (low frequency limit), and to

Jo_ 1 cay (AT (A2 _

Qo T 9m+n (D) (Ql) (QQ COS(H¢2 m¢1) (12)

for Q3 > ¢ (high frequency limit). The sign of, is controlled by the input phases, ¢», while an
average ovep; or ¢, would eliminate the rectification effect completely. Thetsinusoidal components
of F'(t) get coupled through the anharmonic terms of the substraempal V' (x) [38]; the dependence of
Jo onA,, ,, = ngs — me¢; characterizes HM indeed as a synchronization effect.

In the derivation of Egs. (11) and (12) no assumption was megarding the reflection symmetry of
V(x); actually, HM rectification may occur on symmetric subsisattoo. However, a simple perturba-
tion argument [39] leads to the conclusion that a symmetridad cannot mix low-frequency rectangular
waveforms, namely no HM is expected for

F(t)= Alsgr‘[cos(ﬂlt + ¢1)] + AQSgr{COS(QQt + ¢2)], (13)

with 4;, A, > 0 and sgii .. ] denoting the sign of . . ]. However, arasymmetricevice can!
In order to illustrate the properties aBymmetriddM [40] let us consider the driven dynamics (9) in
the piecewise linear potentitll(z) = ©tAV/Ly for —Ly < 2 < 0andV(z) = zAV/Ly for0 < z < Ly,
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with L, + Lo = L and, say,L. < L4, i.e. opposite polarity with respect to the potential in.Fij the
external driveF'(t), in Eq. (13), is assumed to vary slowly in time.

The advantage of imposing the adiabatic lifdit, 2> — 0, is that the outpuj(£21,Q, A1, A2) of a
such doubly-rocked ratchet is expressible analyticallienms of the curreniz(A) of the standard one-
frequency rocked ratchet [41], obtained by settihg= A andA, = 0in Eqg. (13). Note that herg; (A4) is
a symmetric function ofi, and in the adiabatic approximatigp(A4) = jr(—A4) = A[u(A) — u(—A4)]/2,
wherep(A) is the mobility of an overdamped particle running down thtedi potentialV/ (x) — Ax.

The overall ratchet curreni{Q, Q2, A1, As) results from the superposition of the two standard one-
frequency currentgz (A1 +Az) andjr (A, — A,) for drive ac amplituded; + A; andA; — A, respectively
[40]. In particular, for any positive integers, n with m > n,

j(Ql7QQ :(21771417142) = jan(A17A2)

(=1t .
_(2m— Dzn—1) AJ(Al,Ag)p(Amm), (14)

2m —1
2n

where
1
Jave (A1, A2) = 5[3'3(141 — A2) + jr(41 + A2)] ,
1
Aj(Ay, Ag) = 5[3'3(141 — As) — jr(A1 + A9)], (15)

andp(A,, ) = |m — Ay, m|/m — 0.5 is a modulation factor witt\,, ,,, = (2n — 1)¢2 — (2m — 1)¢y,
mod@m).

The most significant properties of the rectification curr@a) and (15) are elucidated in Fig. 3(a),
(b), where results from numerical simulation are displafgrch comparison [40]: (1) The doubly rocked
ratchet current in the adiabatic limit) is insensitiveQg, Q5 for Qs # Q3 = (2m —1)/(2n — 1); its
intensity coincides with the “baseline” valyg,s (A:, A2) of Eq. (15); spikes correspond to odd fractional
harmonics; their amplitud&j(A;, A2)/(2m — 1)(2n — 1) is suppressed at higher harmonics, i.e., for
largerm, n. (2) The sign of the spike factakj(A;, As) is sensitive to the signal amplitudds, A». For
instance, if we choosé;, A, so thatd; + As and|A; — A,| fall onto the rising (decaying) branch ofA)
in Fig. 3a, them\j(A;, A») is negative (positive). (3) The current spike$ayQ, = (2m —1)/(2n —1)
depend on the initial value af;, and for a fixedp, , their amplitude oscillates with, proportional to the
modulation factop(A,, ,,). We remark that the overall sign of our doubly rocked ratclietent is always
determined by the polarity df (x) (positive forLy < L1), as|Aj(Ai1, A2)| < |javg(A1, A2)| for any
choice ofA;, As. However, in thepartially adiabaticregime, where only one frequency tends to zero,
multiple current inversions are also possible [40].

3.2 Gating mechanism

A periodically-driven Brownian motion can also be rectiftegimodulating the amplitude of the substrate
potentialV (z). Let us consider for instance the overdamped dynamicsibesdny the Langevin equation

&= —-V'(z)[1 + F2(t)] + F1(t) + £(2). (16)

To avoid interference with possible HM effects we follow mescription of Sec. 3.1, namely we take
F;(t) = A;sgricos(Q;t + ¢;)], withi = 1,2 and A; > 0. Mixing of the additiveF; (¢) and the multi-
plicative signalF:(t) provides a control mechanism of potential interest in dedesign. Without loss of
generality, our analysis can be conveniently restrictetthéopiecewise linear potenti&l(z) also used in
the previous subsection.

In the adiabatic limit, the ac driven Brownian partiel@) can be depicted as moving back and forth over
atime modulated potenti®l(x,t) = V(x)[1+ F>(¢)] that switches between two alternating configurations
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Fig. 3 Rectified current driven by two rectangular waveforms witedi amplitudes: (a) one-frequency rocked ratchet;
(b), Harmonic mixing case of Egs. (9), (10); (d) gating metha (16). Panel (a): Response curug A) of the
potential vV (z) driven by a low-frequency rectangular force with amplitudeat zero temperatur® = 0 (dashed
curve), and low temperatur®/AV = 0.05 (solid curve). Panel (b): Numerical simulations for a dguidicked
ratchet with¢, = ¢2 = 7 andQ; = 0.01 (open circles) and in adiabatic approximation (green lind green
crosses). The baseling.., Eq. (15), is indicated by the green line; the spikes at sosherted integer-valued odd
harmonics are marked with green crosse§, Panel (c): Adiabatic approximation fgn = ¢2 = 37 /2 (main panel)
and¢: = 37/2, 2 = 7/2 (inset). In both cased: = 3, A2 = 2, D = 0.6; Panel (d): Numerical simulations for
a rocked-pulsated ratchet in the adiabatic regime with= 4, A> = 0.5 andQ; = 0.01; noise level:D = 0.4.
Main panel: 91 = ¢2 = = (adiabatic approximation); inset: simulation (open @g}lversus the fully adiabatic
approximation &) for ¢1 = w and¢2 = 0. V(z) parameters arez; = 0.9, L = 1, AV = 1in (a)-(c) andAV = 2

in (d).

Vi(x) = V(z)(1+ Az). Both substrate profileg,. (x) are capable of rectifying the additive driving signal
F; (t) with characteristic functiongy. (A, ), respectively; the net currents (A;) are closely related to the
curvejr(A) plotted in Fig. 3(a), namely [40]

() = (0 Ao in | 2] a7)

with D — D/(1 + A,). It follows that the total net current can be cast in the foltdh) (with

Jave (A1, A2) = (1/2)[7- (A1) + j+(A1)] (18)
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and
Aj(Ar, Az) = (1/2)[v- (A1) — v+ (A1), (19)

wherevy (A1) = Ay [us (A1) + pa(—A1)]/2. We recall that in our notationy. (A) is the static nonlinear
mobility of the tilted potentiald/y (x) — Ax.

It is apparent thatAj (A1, A2)| may grow larger thatj.vs (A1, A2)| and, therefore, a current rever-
sal may take place for appropriate values of the model pamaB)eas shown by the simulation results in
Fig. 3(d). In fact, already a relatively small modulatiortloé ratchet potential amplitude at low tempera-
tures can reverse the polarity of the simply rocked ratéfet). Let us consider the simplest possible case,
O = Qq andg; = ¢o: As the ac drive is oriented along the “easy” directior/dfr), namely to the right,
the barrier heighV/(z,¢) is set at its maximum valuAV (1 4+ A,); at low temperatures the Brownian
particle cannot overcome this barrier height within a haHdaive periodr/2;. In the subsequent half
period the driving signaF (t) changes sign, thus pointing against the steeper side df tlet) wells,
while the barrier height drops to its minimum valnd’ (1 — A,): Depending on the value d&V/D, the
particle has a better chance to escape a potential well tlethinan to the right, thus making a current
reversal possible. Of course, the net current may be céedrola the modulation parametess and¢.,
too (see inset of Fig. 3d).

Note that Eq. (14) is symmetric under « n exchange. This implies that, as long as the adiabatic
approximation is tenable, each spectral sike n) of the net current is mirrored by a spike, m) of
equal strength (see Fig. 3). This is not true, e.g., in théiglgradiabatic regime, where the dynamics
depends critically on which rati@, /25 or Q2 /) tends to zero [40].

The rectification effect introduced in this subsectionsegion a sort oflynamical symmetry breaking
mechanism, osynchronized gatingwhich requires no particular substrate symmetry. In treeaat a
symmetric piecewise linear potentidl; = L, the baseline current., (A1, A2) clearly vanishes, while
the current spikes due to gating remain.

Asymmetry-induced and nonlinearity-induced mixing areebaseparable in the case sihusoidal
input signals. This case is analytically less tractable stmalvs significant differences with respect to
the square-wave rectification investigated so far. Spikethé output current spectrum occur for any
rational value of2;/Q, = m/n, including evenfractional harmonics, i.eQ/Q; = 2m/(2n — 1), or
02/ = (2m — 1)/2n, respectively, but they are no longer symmetric under ttohamnge ofn — n.
This is so because HM cannot be separated from asymmetnga@ddmnixing. It has been noticed that a
binary mixture of particles [42], diffusing through a quasie dimensional channel, provides a convenient
study case (both numerical and experimental) to contraglimearity versus asymmetry induced signal
mixing.

3.3 Stokes’ drift

Particles suspended in a viscous medium traversed by alwmiiggl wave travelling in the-direction, are
dragged along according to a deterministic mechanism krasa8tokes’ drift [43]. As a matter of fact, the
particles spend slightly more time in regions where thedacts parallel to the direction of propagation
than in regions where it acts in the opposite direction. @mg44] a symmetric square wayékz — Qt)
with wavelengthh = 2x/k and temporal period, = 27/, capable of entraining the particles with
velocity +bv [with v = Q/k, 0 < b < 1, and the signs- denoting the orientation of the force]. During
one cycle, the particle velocity is positive for a longer dinmterval, \/2(1 — b)v, than it is negative,
A/2(1 + b)v; hence, the average drift velocity, = b2v. The unknown factob depends on the speed of
travelling wavef (kx — Qt) and the temperature of the propagation medium.

The longitudinal motion of a massive particle on a propaggsiubstraté/(z, t) can be modelled by
replacing

Viz) = V(z,t) =V (x—ovt) (20)
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in the stochastic differential equation (1). Let us consfist the sinusoidal wave of Fig. 4a
V(x,t) = —qcos(xz — vt). (1)
A Galileian transformationg (t) — y(t) = z(t) — vt, allows us to reformulate Eq. (1) as [45, 46]

mij = —ny —nu — gsiny + £(t). (22)

Equation (22) describes the Brownian motion in the tiltedki@ard potentidl’ (y) = —qcosy + nvy,
shown in Fig. 4(b). This problem was studied in great detaRRisken in Ref. [47]. The theme of Brownian
motion and diffusion in periodic potentials has also beestelyi applied to describe the transport properties
of superionic conductors [48, 49, 50], or for the evaluatibthe thermally activated escape rates and the
corresponding current-voltage characteristics of dandwsgphson junctions [51, 52]. To make contact
with Risken’s notation, we introduce the damping constant »n/m, the dc driving forceF = —~yv
and the angular frequenay = ¢/m. The time evolution of the stochastic process) is characterized
by random switches betweerackedstate with zero-mean velocity and@nning state with asymptotic
average velocityy) = F/y = —wv. In terms of the mobility:(T) = (y)/F, locked and running states
correspond toy, = 0 and~u = 1, respectively. In the underdamped < wq, zero-temperature limit,
T — 0, the stationary dynamics (22) is controlled by a singleshodd F;, ~ 3.36wy, see Fig. 4c: For
F < F; the particley(t) sits in one potential well; foF" > F; it falls down the tilted washboard potential
with speedF'/~; the0 < 1 jump ofyu(T') at the threshold becomes sharper dstends to zero.

On reverting to Eq. (22) notation, we see immediately thattineshold$’; - F; in Fig. 4(c) define three
special values of the travelling wawenamely:

4
vy ==L vy ~336, /L vy=1 (23)
T\ m m n

Upon equating; andvs we attain an estimate for the upper limit of the damping constant below which
we may expect to detect a hysteretic cycle, ig/m = (7/4)+/q/m. On increasing) much larger than
1o, v1 andvy merge withvs, which in turn becomes very small [47].

The stationary velocity of the Brownian particiét) can be easily determined by inverting the— y
transformation, that is

vs = (&) = v[l —yu(T)] = b*(T)o, (24)

whereu is the velocity of the incoming wave adT’) is the unknown Stokes’ factor. In the presence of
noise, no matter how weak, s@y= 0+, the dynamics of the process is controllecibyonly: Forv > vy

the procesg(t) is in the running state withu(7T) ~ 1, or equivalently the particle(¢) is subjected to
no Stokes’ drift, i.e.ps ~ 0; for v < v the procesg(t) is in the locked state with(7') ~ 0, which
corresponds to a dragging speed~ v of the Brownian particle:(¢). In the latter case the particle rides
the travelling wave like a surfeBfownian surfef45]).

The efficiency of the Stokes’ drift increases when lowerihg temperature. Moreover, in the low
damping regimey < 1y, it sets on abruptly by tuning the parametersandq to appropriate threshold
values — see Eq. (23). Brownian surfers in the overdamped i g, are restricted to either extremely
low frequencies or exceedingly large amplitudes of theetitang wave, namely,v < ¢; for n — oo the
dragging effect thus becomes less and less efficient.

A massive Brownian particle undergoes Stokes’ rectificatiothe presence of time and space mod-
ulation of its substrate, see also [54]. For the travelliray&(21) the displacement of any point on the
substrate averages out to zero, and so does the spatiajjavsrine substrate deformation at a given time
t. However, if we regard’ (x, t) as a propagating elastic wave, the corresponding synctation of time
and space modulations sustains a net energy transport wirdetion of propagation. In this sense the
dynamics (1) is biased and Stokes’ drift requires no asymaomtofile of the travelling substrate wave.
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Fig. 4 (a) Snapshot of the travelling potentiélz, t) of Eq. (21) att = 0. (b) Tilted washboard potentid (y) of

Eq. (22). A Brownian surfer is represented by a filled cireldBrownian swimmer by an empty circle. (c) Locked-
to-running state transition for an underdamped Browniatigla in a washboard potential. The dashed curves define
the hysteretic loop of the noiseless cg$t) = 0, with depinning branch starting & = wg and re-pinning branch
ending atFy = (4/7)~ywo [53]. TheT = 0+ step atF’ is represented by a solid curve. Parameter values: ¢ = 1
andn = 0.03.

For an asymmetric waveforii(z, t), Egs. (1) and (20) describe a travelliragchet Asymmetry makes
then the Stokes’ drift problem more intriguing. Suppose wappgate the piecewise linear potentigh:)
of Sec. 3.1 with constant velocityaccording to Eq. (20). Because of the spatial asymmetryanalefine
two threshold speeds” for a wave travelling to the right and to the left, respediveith v, > v3 . This
implies that at low temperatures Stokes’ drift to the rigb¢tmes effective e.g. for larger particle masses,
viz. lower substrate amplitudes, than to the left.

However, if the substrate oscillates side-wise with a cmtstpeed, with
v — v(t) = v sgrcos(2,t)] (25)

and(), < v/l, the corresponding moving waveforvi(z, t) in average transports no energy, but can still
induce rectification because of its asymmetry. Indeedyfok v < v, the Brownian surfer drifts to the
right and the system works like a “massive particle sievetitd\that in the notation of Eq. (22) such a
particle sieve corresponds to a simple inertial rockedheit[24, 55]



14 Peter Hanggi, Fabio Marchesoni, and Franco Nori: Browniaiors

4 Quantum Brownian motors

Brownian motors are typically small physical machines whaperate far from thermal equilibrium by
extracting energy fluctuations, thereby transportingsitas objects on the micro-scale. At variance with
e.g. biomolecular motors, certain molecular sized physisgines necessitate, depending on temperature
and the nature of particles to be transported, a descriptiahaccounts for quantum effects, such as
quantum tunnelling and reflection in the presence of quarBoomnian motion [56]. For this class of
guantum Brownian motors recent theoretical studies [3558]have predicted that the transport becomes
distinctly modified as compared to its classical counterpiar particular, intrinsic quantum effects such
as tunnelling-induced current reversals [57, 59], power-like quantum diffusion transport laws, and
guantum Brownian heat engines have been observed withtréoemd-setting experiments that involve
either arrays of asymmetric quantum dots [59], or certalihrazeays composed of different Josephson
junctions [60].

In contrast to thelassicaldescription, the theory fajuantumBrownian motors (as well as correspond-
ing experiments) is much more demanding. This is mainlyedan the fact that one has to master the
mutual interplay of (i) quantum mechanics, (ii) quantumsiiation, and (iii) non-equilibrium driving.
Any of these three aspects alone is already not straighdfialte accommodate theoretically. In particular,
the theoretical description of non-equilibrium, dissipatjuantum Brownian motors schemes is plagued
by difficulties such as: (a) the commutator structure of quammechanics occurring in the Hilbert space
of the combined system plus the bath(s), (b) the descrimfaquantum dissipation that at all times ne-
cessitates consistency with the Heisenberg relation amcithanglement features between system and
environment(s), (c) the correct treatment of quantum tetddalance [61] in equilibrium, so that no quan-
tum Maxwell demon is left alive when all applied non-equililm sources are “switched-off”, to name
only a few of the main causes of possible theory-relatedlfstf

The present state of the art of the theory is thereby chaiaeteby specific restrictions such as, e.g.,
an adiabatic driving regime, a tight-binding descriptiarsemiclassical analysis, or combinations thereof
[57, 58]. As such, the study of quantum Brownian motors idrfiam being complete and there is plenty
of room and an urgent need for further developments. A pdaichallenge for theory and experiments
are quantum Brownian motors that are built from bottom uphenrtano-scale. First results for quantum
Brownian rectifiers based on infrared irradiated molecwiaes have recently been investigated in [62]. In
those quantum systems one employs coherent, driven timmgdi3] through tailored asymmetric nano-
structures, in combination with dissipation due the caxyplio macroscopic fermionic leads, which are
kept at thermal equilibrium.

As a typical example where theory and experiment have mediseeiss the case of a rocking quantum
ratchet as depicted in the bottom panel in Fig. 5. It is knolat for a slowly rocked classical Brow-
nian motor (adiabatic regime) [41, 64], the noise-indueaddport does not exhibit a reversal of current
direction. Such a reversal occurs only in the non-adiabratiking regime at higher driving frequencies
[41]. This very situation changes drastically when quanturmelling enters into the dynamics. A true
benchmark for a quantum behavior of an adiabatically ro¢kexvnian motor is then the occurrence of
a tunnelling-induced reversal at low temperatures, asrétieally predicted in [57]. This characteristic
feature has been experimentally verified with an electroantium rocking Brownian motor composed
of a two-dimensional gas of electrons moving within a fahtéd, ratchet-tailored hetero-structure of a
GaAs/AlGaAs interface [59], see the top panel of Fig. 5. Thigent reversal indicated the existence of
parameter configurations where the quantum Brownian matoent vanishes. In the neighborhood of
these system configurations we consequently can devisenunpiaefrigerator that separates “cold” from
“hot” electrons in absence of currents [59].
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Fig. 5 Inaquantum Brownian motpbeing driven by an adiabatically varying ac-rocking vottaquantum tunnelling
can contribute to the electron current. Due to the undeglgsymmetric potential structure, the two components to
the time-averaged net current are of opposite sign [57].sTireagth of the two contributions can be tuned individually
by temperature. This causes a tunnelling-induced curesetsal (occurring nedr.5K in the top graph) [59] that can
be exploited to direct electrons aloagpriori designed routes. Below the measurement graph is a scarieictgoa
micrograph of the used quantum ratchet device. Figure geavby Heiner Linke, University of Oregon.

5 Recent applications

Over the last decade or so, many theoretical schemes andiragpéal implementations of Brownian
motors have been devised [16, 21]. Several recent aplitatise an external rocking force, of electric or
mechanical origin, as a tunable control.

A few fascinating examples are the light powered singleenole opto-mechanical cycle, experimen-
tally studied by H. E. Gaub and collaborators [65], the usealfoidal suspensions of ferromagnetic
nanoparticles [66], ratchet devices that control the nmotid magnetic flux quanta in superconductors
[30, 31, 67, 68], or the Brownian motor induced clusteringofibrofluidized granular gas yielding the



16 Peter Hanggi, Fabio Marchesoni, and Franco Nori: Browniaitors

eI Ey

ey
c:::'g
47

b)

Fig. 6 Panel (a): A scanning-electron-microscope picture of glsipore with a ratchet-shaped (i.e., asymmetric)
periodic variation of the diameter along its axis; the léngt one period i8.4um. Panel (b): Scanning-electron-
microscope picture of a silicon wafer which is pierced by géwmumber of practically identical pores with pore
distances of 1.5 mm and pore diameters of 1 mm. This illiesriite enormous potential for separation with a parallel
three-dimensional ratchet-architecture.
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Fig. 7 Panel (a): Concept of a microfluidic drift ratchet. Schematoss section through the plane of the experimental
setup. A macro-porous silicon wafer is connected at botts émdasins. The pores with their ratchet-shaped profile
are schematically indicated in dark grey. The basins angahes are filled with liquid; micrometer-sized particles of
two different species are indicated. The fluid is pumped laaekforth by a pumping device, indicated by the piston
on the left hand side. Figures provided by Christiane Ketttal. [71]. Panel (b): Average Brownian motor induced
particle currenb. versus particle diameter for various driving frequencig¢gr and viscosities (relative to waterk.
Particularly note the very sharp velocity reversal aroQrsgum. For further details, see Kettneral. [71]

phenomenon of granular fountainand thegranular ratchettransport perpendicular to the direction of
unbiased energy input [69]. Yet another (Brownian moteitxted phenomenon is the emergence of para-
doxical motion of noninteracting, driven Brownian pamiglexhibiting arabsolute negative mobilitgnd
corresponding current reversals [70]. Note that an absolagative mobility implies that the response is
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Fig. 8 Parallel acting Brownian motors: Asymmetric pores in a raporous silicon membrane containing ca. 1.7
million pores act as massively parallel Brownian motors, icf Ref. [72]. When the pressure oscillations of the
water are switched on, the photoluminescence signal arsl ttteinumber of particles in the basin located to the
right, see in panel (a) of Fig. 7 increases linearly. For swtnivally, cylindrical-shaped pores no systematic dsft i
observed, see in a). The net transport behavior is strorgpemtiant on the applied pressure amplitude and shows
qualitatively the theoretically predicted current inversb). The pressure oscillations are toggled on and off é8ch

s. The experimental parameters used are as follows: thesdsg luminescent polystyrene spheres in water possess
a diameter of 0.32xm, the pressure oscillation frequency is 40 Hz and the aghptiet mean square (r.m.s.) pressure
during the ‘on’ phase of 2000 Pa. The number of etched mddukain a single pore was 17. [Image: Max-Planck-
Institute of Microstructure Physics]

oppositeto the applied force that is applied around the origin of Zeroe; as such, this phenomenon must
be distinguished from so-called differential negative ftigbwhich is typified by a negative-valued slope
of the response-force characteristiwgayfrom the origin.

Here, we discuss the prominent potential of a microfluidairation of Brownian motors that can
be used to separate particles with large separation poveeinashort times. The set-up of the device is
depicted in Figs. 6, 7. It consists of a three-dimensionayaof asymmetric pores, see Fig. 6a), b) in
which a fluid such as water containing some immersed, susgepalystyrene particles is pumped back
and forth with no net bias (!), see Fig. 7a). Due to the asymntdithe pores, the fluid develops, however,
asymmetric flow patterns [71], thus providing the ratchddfif force in which a Brownian particle of
finite sizecan both, (i) undergo Einstein diffusion into liquid layefsdiffering speed, and/or (ii) become
reflected asymmetrically from the pore walls. Both mechasiwill then result in a driven non-equilibrium
net flow of particles.

The numerical evaluation of the Brownian motor current thiefds a rich behavior, featuring an amaz-
ingly steep current reversal as a function of the partide,see Fig. 7b). Note that the direction of the net
flow cannot be easily guessed a priori; indeed, the directitime Brownian motor currentis determined by
the interplay of the Navier-Stokes flows in this tailored getry and hydrodynamic thermal fluctuations.
This proposal for a microfluidic ratchet-based pumping devias recently been put to work successfully
with experiments [72]: the experimental findings are in ggodlitative agrement with theory; but more
work is required to achieve detailed quantitative agregmen

Remarkably, this device has advantageous three-dimeaisoaling properties [71, 73]: a massively
parallel architecture composed of ca. 1.7 million pores,Kifj. 6b), is capable to direct and separate
micron sized suspended objects very efficiently, see in &igrhese type of devices have clear potential
for bio-medical separation applications and therapy use.
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Fig. 9 Superconducting Niobium film grown on an array of Nickelmigées. The magnetic flux quanta, or vortices,
shown as balls, can be separated in two groups: (i) pinneécesy shown in red, which move from one triangular-
shaped pinning trap to another one and, thus, these arelygisffected by the pinning potential; and (ii) interstitia
vortices, shown in blue, which move in-between triangles, @ not directly interact with the pinning traps. However,
the interstitial vortices can indirectly feel the spatiaymmetry via their interactions with the pinned vorticesisT
problem can be mapped into the similar system of two spediempailsive particles in which one type or species of
particles directly interacts with the spatially-asymrneesubstrate. The other type of particle (interstitial iae$ here,
shown in blue) is insensitive to the substrate, at least iirecdmanner. It has been shown in that those particles
(assigned red) subject to the substrate potential creagffentive asymmetric potential, with the opposite asynmnet
or opposite polarity, for the other (blue) particles. Whdintlze particles are subjected to an ac drive force, this
“inverted-polarity” potential rectifies the motion of th&uk particles (interstitial vortices in our case) in oneedtion,
and the original pinning potential rectifies the motion af ted particles (pinned vortices) along the opposite doact

because the latter feel a potential with opposite polaFiyure provided by Jose Vicent, Universidad Complutense de
Madrid.

Another area of growth regarding applications of Browniastons to micro-devices involve the control
of the motion of quantized flux quanta in superconductors 830 67, 68]. For instance, the authors of
Ref. [68] fabricated a device that controls the motion of fjuanta in a Niobium superconducting film
grown on an array of nanoscale triangular pinning potesitefl Fig. 9.

The controllable rectification of the vortex motion is dughe asymmetry of the fabricated magnetic
pinning centers. The reversal in the direction of the voftiex is explained theoretically by the interaction
between the vortices trapped on the magnetic nanostrgcturé the interstitial vortices. The applied
magnetic field and input current strength can tune both therippand magnitude of the rectified vortex
flow. That ratchet system is explained and modeled theaitBticonsidering the interactions between
particles. This device allows a versatile control of the imobdf vortices in superconducting films. Simple
modifications and extensions of it [30, 31, 67, 68]wouldwaltbe pile-up (magnetic lensing), shaping, or
"sculpting” of micromagnetic profiles inside superconaust Vortex lenses made of oppositely oriented
asymmetric traps would provide a strong local increaseeVtrtex density at its focus regions. Extensions
of these types of systems [30, 31, 67, 68] could allow the amatbntrol of interacting particles in colloidal
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suspensions, and interacting particles in micro-pored,rem just controlling the motion of flux quanta.
These systems provide a step toward the ultimate contraice motion in tiny microscopic devices.

6 Conclusion

With this work we commemorate some intriguing features efrich physics of Brownian motion which
Albert Einstein pioneered 100 years ago. We can assessighaltysics of classical and quantum Brownian
motion and its use for technological are still very much undeestigation. One main lesson to be learned
from Einstein’s work is that rather than fighting thermal ®roan motion we should put it to constructive
use: Brownian motors take advantage of this ceaseless samisee to efficiently direct, separate, pump
and shuttle particles reliably and effectively.
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