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Is the dynamics of open quantum systems always linear?
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(Dated: September 7, 2006)

We study the influence of the preparation of an open quantum system on its reduced time evolu-
tion. In contrast to the frequently considered case of an initial preparation where the total density
matrix factorizes into a product of a system density matrix and a bath density matrix the time
evolution generally is no longer governed by a linear map nor is this map affine. Put differently, the
evolution is truly nonlinear and cannot be cast into the form of a linear map plus a term that is
independent of the initial density matrix of the open quantum system. As a consequence, the inho-
mogeneity that emerges in formally exact generalized master equations is in fact a nonlinear term
that vanishes for a factorizing initial state. The general results are elucidated with the example of
two interacting spins prepared at thermal equilibrium with one spin subjected to an external field.
The second spin represents the environment. The field allows the preparation of mixed density ma-
trices of the first spin that can be represented as a convex combination of two limiting pure states,
i.e. the preparable reduced density matrices make up a convex set. Moreover, the map from these
reduced density matrices onto the corresponding density matrices of the total system is affine only
for vanishing coupling between the spins. In general, the set of the accessible total density matrices
is nonconvex.

PACS numbers: 03.65.Yz, 05.30.Ch, 02.50.-r

I. INTRODUCTION

Closed systems are known to be an idealization. In general, real systems interact with their environment and exhibit
properties that cannot be observed in finite closed systems, such as irreversibility of the time evolution and, related,
the relaxation of observables toward stationary values and dephasing, or decoherence. Various techniques have been
developed to treat the dynamics of open systems without explicitly considering the full Hamiltonian dynamics [1]. For
example, effective equations for the reduced density matrix of the considered open system, known as master equations,
have been proposed long ago [2, 3, 4] and still are of considerable interest because of their conceptional simplicity
and potential usefulness [5, 6]. New challenges in this field of fundamental physics have come from nanotechnology
[7] and quantum computing [8].

Any equation determining the time evolution of a density matrix has to obey several general properties which
guarantee that the density matrix stays selfadjoint, positive and normalized in the course of time. These general
properties still leave much freedom and, in order to further restrict possible dynamical laws, additional requirements
for the dynamics have been postulated [9]. One seemingly natural property that often is assumed without even being
mentioned is the linearity of the time evolution, which generally is understood as a consequence of the linearity of
the Schrödinger and the Liouville-von Neumann equation for closed systems. This argument, however, only works
by analogy and no proof of the necessity of this requirement is available. Just on the contrary Pechukas [10, 11] has
recently shown that linearity may only hold if the initial state of the total system factorizes into a product of a density
matrix for the open system and another one for the environment, and if a sufficient number of pure states can be
prepared. The assumption of linearity is a prerequisite of a Markovian dynamics and of complete positivity [12, 13].
These properties then lead to the mathematically well characterized class of Lindblad master equations. From the
physical point of view, however, these equations suffer from certain deficiencies [10]. They are restricted to the regime
of weak coupling between the considered system and its environment. In particular the weak coupling assumption
will fail at sufficiently low temperatures [14, 15]. Moreover, there are various general statistical mechanical properties
that are incompatible with the assumption of a Markovian dynamics [16].

A few microscopic models of systems interacting with their environment can be reduced exactly to Lindblad mas-
ter equations with time dependent coefficients [17, 18], thereby describing the single time non-Markovian reduced
dynamics.

The dynamics of an open system is determined by both, the full dynamics of the considered system interacting
with its environment and the initial state of the complete system. The significance of the initial state was emphasized
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in several works [19, 20, 21, 22, 23, 24, 25, 26, 27]. In an experiment this initial state is imposed by a preparation
procedure. Here we will only be concerned with equilibrium preparations that lead to a thermal equilibrium of the
total system in the presence of external fields that only act on the system and that are switched off finally. In this
way, the initial state is described by a canonical density matrix:

ρF = Z−1 exp







−β



H −
∑

j

FjXj











, (1)

where β is the inverse temperature, H the Hamiltonian governing the dynamics of the total system, F = (Fj)
are external, i.e. classical, fields, Xj the corresponding conjugate operators of the open system and Z =

Tr exp
{

−β
(

H +
∑

j FjXj

)}

is the partition function of the total system. Here, Tr denotes the trace over the

total system. In this way, initial states of the total system are reproducibly prepared. They correspond to a thermal
equilibrium of the environment at a given temperature and to a state of the system that depends on the strengths
of the external fields Fj . The set of density matrices that can be obtained upon variation of the fields forms the
equilibrium preparation class. The reduced states belonging to this preparation class are determined by the trace
over the environment, which is denoted by TrB:

ρFS = TrB ρ
F. (2)

The calculation of this trace is nontrivial in most cases and in general does not lead to the canonical distribution
of the uncoupled system, Z−1

S exp {−βHS} [14, 28, 29, 30] where HS is the Hamiltonian of the system in presence
of the external fields and ZS the respective partition function. This particular form is only obtained in the limit
of weak coupling between the system and the environment [3, 29, 31]. In the weak coupling limit, the equilibrium
density matrix of the total system factorizes into a product of a system and an environment density matrix. This is
an example of the factorizing preparation which leads to a product of a particular density matrix of the environment
ρB and an arbitrary density matrix ρS of the system:

ρfac = ρS ρB. (3)

The factorizing preparation is assumed in most theoretical investigations though it is often difficult, if not impossible,
to realize it experimentally.

A more general class of preparations has been suggested in the context of the path integral approach to open
systems [22]:

ρO =
∑

j

Ojρ
FO′

j , (4)

where ρF is defined as in the equilibrium preparation, eq. (1), and Oj and O′
j are operators that only act on the

system’s Hilbert space. For applications of this preparation class we refer the reader to Ref. [22].
The state of the open system after the preparation results as the trace over the environment of the density matrix

of the full system at that time, i.e.

ρS(t) = TrB U(t) ρ U †(t), (5)

where

U(t) = exp

{

−
i

~
Ht

}

(6)

is the unitary time evolution operator of the full system and ρ(0) = ρ the density matrix resulting from the preparation.
Requiring an affine time evolution of the reduced density matrix ρS(t) means that ρS(t) is the sum of a term linear

in, and one independent of ρS , i.e.

ρS(t) = T (t) ρS + I(t), (7)

where T (t) is a linear operator and I(t) is independent of ρS . According to eq. (5) the reduced density matrix at time
t is a linear image of the initial full density matrix ρ under the successive action of the unitary time evolution of the
full system and the operation of the trace. In order to obtain a map from the initial reduced density matrix ρS to its
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value at a later time t we introduce the blow-up map R(ρS) that assigns to each reduced initial density matrix ρS one
belonging to the total system:

ρ = R(ρS). (8)

Its particular form depends on the initial preparation of the system. Expressing the initial total density matrix ρ with
the help of the blow-up map by the reduced initial state one obtains the reduced time evolution of the system:

ρS(t) = TrB U(t)R(ρS)U †(t). (9)

An affine time evolution as described in eq. (7) will result only from an affine blow-up map. So one may ask under
which conditions the blow-up map is affine.

Because a density matrix is a positive normalized operator, we require that the blow-up mapR acts on a convex set of
reduced density matrices, i.e. a set that contains with each pair ρS1 and ρS2 all convex combinations λρS1 +(1−λ)ρS2

for all 0 < λ < 1. We assume next that the considered preparation provides such a convex set of reduced density
matrices. For any particular preparation one has to check this property. We then further may ask under which
conditions R preserves the convexity condition, put differently under which conditions a full density matrix that
corresponds to a convex combination of reduced density matrices again is given by a convex combination. Then the
preparation class also forms a convex set. For such a convex blow-up map one obtains:

R
(

λρS,1 + (1 − λ)ρS,2

)

= λR(ρS,1) + (1 − λ)R(ρS,2). (10)

This then implies that the blow-up map is affine:

R(ρS) = LρS + χ, (11)

where L is a linear operator that maps reduced density matrices onto full density matrices and χ is an operator of
the full system. A proof of this statement is given in the Appendix A.

We note that the mixing parameter λ has to be identical on the left and on the right hand side of the eq. (10). This
is a consequence of the fact that the trace of R(ρS) over the Hilbert space of the environment must coincide with the
system density matrix ρS :

TrB R(ρS) = ρS . (12)

For the factorizing preparation (3) the blow-up map R is always linear. It simply acts as the multiplication by the
reference environment density operator ρB . In the case of a classical system dynamics the role of density matrices is
taken over by probability densities defined on the respective phase space. Then, any preparation can be characterized
by a conditional probability density ρ(x|xS) for the state x of the total system given the state xS of the system
[19, 20, 21]. The corresponding blow-up map R is then given by the multiplication with this conditional probability
and, hence, is always linear. No such simple construction scheme is available in quantum mechanics and Pechukas [10]
showed that the factorizing preparation is the only one for which the blow-up map is linear, provided that a sufficient
number of pure states of the reduced system are contained in the preparation class. For the convenience of the reader
the precise formulation of the theorem and a proof is given in the Appendix B.

In the present work, we will consider the influence of the preparation of an open quantum system on its reduced
time evolution by means of the simple example of two interacting spins. One of those is considered as the system, the
other one plays the role of the environment. The second spin is only a very crude caricature of a true environment
which clearly fails to cause dissipation or dephasing in the system because of its finiteness. Nevertheless, it suffices to
illustrate the influence of the preparation on the subsequent dynamics of the system.

We assume that the total system starts from an equilibrium preparation, i.e. that its initial state is described by a
density matrix of the form of eq. (1). It will be shown that in general this preparation renders the time evolution of
the reduced system nonlinear.

II. TWO SPINS

Both interacting spins σ1 = (σx
1 , σ

y
1 , σ

z
1) and σ2 = (σx

2 , σ
y
2 , σ

z
2) with Pauli spin matrices σi

α, α = 1, 2, i = x, y, z, are
of total length s = 1/2. The first spin, σ1 is considered as the system and the second one, σ2 takes over the role of
the environment. Every density matrix of the total system then assumes the form

ρ =
1

4
(1 + S1 · σ1 + S2 · σ2 + σ1 · C · σ2) , (13)
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where

Sα = 〈σα〉 (14)

denotes the Bloch vector of the spin α = 1, 2 and the matrix

C = 〈σ1σ2〉 (15)

denotes the correlation matrix of the two spins. The dot-product denotes the scalar product in three dimensions, e.g.
S1 ·σ1 = Sx

1σ
x
1 + Sy

1σ
y
1 + Sz

1σ
z
1 . The reduced density matrix of the system is given by the trace over the environment

(i.e. the second spin), and hence becomes

ρS = Tr2 ρ =
1

2
(1 + S1 · σ1) . (16)

Here we want to study the opposite direction, that is to go from ρS to ρ. In particular, we look for conditions
under which the respective blow-up map R(ρS) = ρ is convex. We recall that the blow-up map is determined by the
preparation process of the system. In the process of a preparation the state of the system is controlled by external
fields F that ideally act only on the system, as given in eq. (1) for the equilibrium preparation. For the considered
spin one can think of static magnetic fields. For interacting spins the two Bloch vectors and the correlation matrix
will depend on the applied magnetic field.

We next investigate the requirement of the convexity of the blow-up map R. A necessary condition for this property
to hold is the convexity of the domain of definition of R. This implies that for any pair of reduced density matrices
ρFk

S , k = 1, 2 that result from two different values of the field, all convex linear combinations can be prepared by
means of another value F3 of the field:

ρF3

S = λρF1

S + (1 − λ)ρF2

S , (17)

with F3 being a uniquely defined function of the fields F1, F2 and λ. Using the general form of the reduced density
matrix in (16) one finds a respective equation for the Bloch vectors, reading

S1(F3) = λS1(F1) + (1 − λ)S1(F2). (18)

This means that the Bloch vector of the system must be a uniquely invertible function of the external field. For the
equilibrium preparation this is the case because then the derivatives of the Bloch vector components with respect
to the field components coincide with the correlations of fluctuations of the first spin. These derivatives form the
elements of the susceptibility matrix which is an invertible matrix in thermal equilibrium. Hence, S1(F) has a uniquely
defined inverse F(S1). We investigate the consequences of the convexity condition (10) of the blow-up map for the
spin system. Using eqs. (17) and (13) for the total density matrix of the full system one finds analogous relations
from eq. (10) for both the Bloch vector of the second spin and for the correlation matrix with the same field F3 that
results from eq. (18), i.e.,

S2(F3) = λS2(F1) + (1 − λ)S2(F2),

C(F3) = λC(F1) + (1 − λ)C(F2). (19)

These are non-trivial conditions which in general will not be satisfied. Expressing next the fields Fi by the set of
Bloch vectors S

i
1 = S1(Fi) that result for the respective fields we find by use of eq. (18) the following relations for

the Bloch vectors of the second spin and the correlation matrix:

S2[λS
1
1 + (1 − λ)S2

1] = λS2[S
1
1] + (1 − λ)S2[S

2
1],

C[λS1
1 + (1 − λ)S2

1] = λC[S1
1] + (1 − λ)C[S2

1]. (20)

Hereby we introduced the notation S2[S1] = S2(F) and C[S1] = C(F). From these equations it follows that both
S2[S1] and C[S1] are affine functions, see Appendix A. Therefore they can be represented as

S2[S1] = A · S1 + B,

C[S1] = D · S1 + E, (21)

where B is a constant vector, A and E are constant, second order tensors and D is a constant third order tensor.
Hence, these quantities must neither depend on the applied field F nor on the Bloch vector S1.
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III. AN EXPLICITE ILLUSTRATION

We consider the equilibrium preparation for the following simple two-spin Hamiltonian as an example,

H = −Fzσ
z
1 + eσz

2 + gσx
1σ

x
2 , (22)

Here we only allow for a field in the z-direction. The two spins interact by their x-components. We study the
equilibrium preparation class at the fixed inverse temperature β that results if the field Fz assumes all possible values,
−∞ < Fz <∞:

ρFz = Z−1 exp {−βH} . (23)

Because the Hamiltonian H commutes with the operator σz
1σ

z
2 one can diagonalize H in the eigenspaces of σz

1σ
z
2 . This

then yields the four eigenvalues Ei

E1 = −
√

(Fz − e)2 + g2, E2 =
√

(Fz − e)2 + g2,

E3 = −
√

(Fz + e)2 + g2, E4 =
√

(Fz + e)2 + g2, (24)

and the corresponding eigenprojection operators Pi:

Pi =
1

4

(

1 + σz
1σ

z
2 −

Fz − e

Ei

(σz
1 + σz

2) +
g

Ei

(σx
1σ

x
2 − σy

1σ
y
2 )

)

, i = 1, 2, (25)

Pi =
1

4

(

1 − σz
1σ

z
2 −

Fz + e

Ei

(σz
1 − σz

2) +
g

Ei

(σx
1σ

x
2 + σy

1σ
y
2 )

)

, i = 3, 4, (26)

such that H =
∑

i EiPi holds. The canonical density matrix ρFz at the inverse temperature β is a mixture of the pure
states Pi with the Boltzmann weights pi = exp {−βEi} / [2 (cosh(βE1) + cosh(βE2))], i.e.,

ρFz =

4
∑

i=1

piPi =
1

4
(1 + S1zσ

z
1 + S2zσ

z
2 + Cxxσ

x
1σ

x
2 + Cyyσ

y
1σ

y
2 + Czzσ

z
1σ

z
2) . (27)

The x- and y-components of the two Bloch vectors vanish. The non-vanishing z-components read

S1z = β (FzF+(βE1, βE3) − eF−(βE1, βE3)) ,

S2z = β (FzF−(βE1, βE3) − eF+(βE1, βE3)) , (28)

where the auxiliary functions F±(x, y) are defined by:

F±(x, y) =
y sinh(x) ± x sinh(y)

xy (cosh(x) + cosh(y))
. (29)

Finally, the non-vanishing elements of the correlation matrix C are given by:

Cxx = −βgF+(βE1, βE3),

Cyy = βgF−(βE1, βE3),

Czz =
cosh(βE1) − cosh(βE3)

cosh(βE1) + cosh(βE3)
. (30)

As already stated above, in the present case of the equilibrium preparation the z-component of the Bloch vector
of the first spin is a uniquely invertible function of the field magnetic Fz . This can be shown by inspection from
eq. (29), see also Fig. 1. We note that the equilibrium preparation contains the pure system states ρS = 1

2
(1 ± σz)

asymptotically in the infinite field limit Fz → ±∞. If one also took into account fields that couple to the other spin
components σx, σy, the eigenstates of these components could also be prepared asymptotically. In the case studied
here, however, no other pure states than the eigenstates of σz can be prepared. Thus, for this particular case one of
the conditions of the Pechukas theorem to hold are not met.
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βg = 0.0

βg = 1.5

βg = 3.0
-1

-0.5

0

0.5

1

S
1z

-2 -1 0 1 2

βFz

FIG. 1: The Bloch vector component Sz1 as a function of the field βFz resulting from eq. (28) for βe = 1. With increasing
coupling parameter βg = 0.5, 1, 1.5 the slope at Fz = 0 decreases. Apparently, the functions Sz1(F ) are monotonic and hence
possess a unique inverse.

βg = 0.0

βg = 0.5

βg = 1.0

βg = 1.5βe = 1.0

-0.8

-0.7

-0.6

-0.5

S
2z

-1 -0.5 0 0.5 1

S1z

FIG. 2: The Bloch vector component Sz2 as a function of Sz1 resulting from eq. (28) for βe = 1 and different values βg =
0, 0.5, 1, 1.5. Note that a strictly linear dependence results only for the case of vanishing coupling g = 0. An approximate
linear regime exists in a neighborhood of S1z = 0.

A. Testing convexity of the blow-up map

We now come to the discussion of the eqs. (21) which are necessary conditions for the blow-up map to be convex.
Because in the considered preparation class only the z-component of the field is varied and because of the symmetries
of the considered Hamiltonian these equations need only be checked as functions of Sz1 for the Bloch vector component
Sz2 and the diagonal elements of the correlation matrix, respectively:

Sz2[Sz1] = ASz1 +B,

Cxx[Sz1] = DxxSz1 + Exx,

Cyy[Sz1] = DyySz1 + Eyy,

Czz[Sz1] = DzzSz1 + Ezz. (31)

If the blow-up map were convex these equations would have to result from the eqs. (28, 30) by eliminating the external
field Fz . There is no need to perform the lengthy calculation to see that the above equations hold only if the system-
environment interaction is absent, i.e. if the coupling constant g in the Hamiltonian vanishes. We note that with
E1(−Fz) = E3(Fz) and the symmetries of the auxiliary functions F±(x, y) = ±F±(y, x), S1z becomes an odd function
whereas Cxx is an even function of Fz. If eq. (31) was to hold, Dxx would have to vanish and Cxx would have to be
a constant. This is true if and only if g = 0. Figs. 2 and 3 depict the dependences of Sz2 and of the correlation
functions, respectively, on Sz1 for finite coupling strengths. In all cases, except for g = 0, and for the correlation
Czz , the deviations from linearity are strikingly obvious. We note, however, that for small values of the Bloch vector
component S1z the component S2z and correlation Cxx are almost constant and the other correlations Czz and Cyy
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βg = 1.5

βe = 1.0

Cxx

Cyy

Czz

−0.5

0

0.5

-1 -0.5 0 0.5 1

S1z

FIG. 3: The non-vanishing correlation functions Cxx, Cyy, Czz as a function of the Bloch vector component Sz for βe = 1 and
βg = 1.5. The correlation functions Cxx and Cyy clearly deviate from straight lines following from eq. (31). For the correlation
functions also an approximately linear regime exists in a neighborhood of S1z = 0.

are linear. This behavior is in accordance with a convex blow-up map. Below we will come back to the blow-up in
the linear response regime when the external fields are small.

IV. DISCUSSION, IMPLICATIONS AND CONCLUSIONS

We have illustrated Pechukas’ verdict on the linear time evolution of open quantum systems [10] by a simple
example. Moreover, we have demonstrated that the theorem holds for affine time evolutions: If two complete sets
of pure system states can be prepared this more general class of evolution implies a factorizing preparation of the
total initial density matrix where the environment density matrix must be independent of the system density matrix.
Actually, Pechukas’ original proof [10] applies as well in the affine case. Nowhere in the proof he made explicit use of
the homogeneity condition, i.e. R(λρS) = λR(ρS), λ real, that would render an affine R a linear map.

At first, this may only seem a modest generalization of the original conclusion but it sheds some light on the crucial
role of the inhomogeneity term of (generalized) master equations which appears when the initial density matrix does
not factorize. The present analysis excludes that this term is independent of the initial reduced density matrix and
actually is not merely an inhomogeneity of the otherwise linear master equation but must depend on the reduced
density matrix in a nonlinear way. In those cases, when a Markovian dynamics is approached for long times this
nonlinear term must vanish for sufficiently large times. It will do so, however, in a characteristic manner that depends
on the particular initial reduced density matrix.

In the present example only one set of pure system states, the eigenstates of σz , are preparable and yet the affinity of
the blow-up map implies a factorizing preparation. We note that in general the condition on the number of preparable
pure states of the Pechukas theorem cannot be relaxed. A counter example is provided by the work of Karrlein and
Grabert [27] who considered a harmonic oscillator coupled to a bath of harmonic oscillators with a non-factorizing
thermal preparation. This preparation allows for pure position states and still leads to a linear master equation.

Another example of a non-factorizing preparation that leads to a linear master equation results from the following
preparation procedure: (i) start with a factorizing density matrix ρS0 ρB0 at a time t = −t0, t0 > 0, (ii) turn on the
interaction between the system and the bath, and (iii) use the density matrix that has evolved at t = 0 as the result of
the preparation. We term this preparation the factorize-and-wait preparation. The blow-up map R(ρS) then assumes
the form:

R(ρS) = e−
i

~
Ht0G−1

t0
(ρS)ρB0e

i

~
Ht0 , (32)

where Gt is the linear propagator of the reduced density matrix for the factorizing preparation, i.e.,

ρS(t) = Gt(ρS(0)) = trB e
− i

~
Ht0ρS(0)ρB0e

i

~
Ht0 . (33)

Here, the inverse of the propagator Gt is needed in order to infer the proper system part of the factorizing density at
t = −t0 from the density matrix ρS that is to be prepared at t = 0. In view of possible fast relaxation processes and
the build-up of system-bath correlations [23, 24, 26] after the interaction has been switched on, this inverse propagator
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will not be defined on the total set of possible density matrices [32]. Still, it is a linear operator and thus the blow-up
map (32) also is linear. It is obvious, however, that no pure states of the system can be prepared at time t = 0 in
this way, i.e., that the factorize-and-wait preparation does not provide pure states. Therefore, the conditions for the
Pechukas theorem are not met and the theorem is thus not in conflict with the linearity of the blow-up map of the
entangled factorize-and-wait preparation.

Finally, we discuss the equilibrium preparation in the limit of weak external forces. In the region close to thermal
equilibrium Mori’s generalized quantum Langevin equations [33] provide a proper description of the time evolution
of the set of system operators that couple to the external fields. In this case, the preparable density matrices of the
total system follow from eq. (1) in linear approximation in the external fields Fj and hence assume the linear response
form [34]:

ρF = ρ0 + β
∑

i

∫ 1

0

dx (ρ0)1−x (Xi − 〈Xi〉0) (ρ0)xFi, (34)

where ρ0 denotes the equilibrium density matrix of the total system in the absence of external fields and 〈X〉0 the
average of the operator X with respect to the density matrix ρ0. The corresponding density matrix of the reduced
system ρFS = TrB ρ

F then becomes

ρFS = ρ0S + β
∑

i

∫ 1

0

dx TrB(ρ0)1−x (Xi − 〈Xi〉0) (ρ0)xFi. (35)

We recall that the external fields act on the system, i.e. that the conjugate operators Xi are system operators. The
expectation values of these operators with respect to the density matrix ρFS are linear functions of the external fields
by construction and can be written as:

〈Xj − 〈Xj〉0〉 ≡ TrS (Xj − 〈Xj〉0) ρ
F

S =
∑

i

χjiFi, (36)

where the response matrix χij is obtained by inserting eq. (34) into the middle term of eq. (36).

χij = β

∫ 1

0

dx Tr (Xi − 〈Xi〉) (ρ0)1−x (Xj − 〈Xj〉0) (ρ0)x. (37)

Because χij is an invertible matrix we may solve eq. (36) for the external fields Fi

Fi =
∑

j

χ−1
ij〈Xj − 〈Xj〉0〉. (38)

In this way the external fields are expressed in terms of the linear functional 〈Xj −〈Xj〉0〉 of the system density matrix
ρFS . Using this relation in eq. (34) we find for the blow-up map the affine form R(ρFS ) = LρFS + χ where

LρFS = β
∑

i,j

∫ 1

0

dx (ρ0)1−x (Xi − 〈Xi〉0) (ρ0)xχ−1
ij TrS (Xj − 〈Xj〉0) ρ

F

S ,

χ = ρ0. (39)

With eq. (5) one obtains for the time evolution of the reduced density matrix

ρFS (t) = TrB U(t)L(ρFS )U †(t) + TrB ρ
0 (40)

where we used that the total density matric ρ0 is invariant under the full time evolution. Actually this is a linear
equation in the reduced density matrix ρS . In order to see this one puts t = 0 in eq. (40), to express the trace of
ρ0 over the environment in terms of the reduced density matrix ρS : TrB ρ

0 = ρS − TrB L(ρS). Hence, for the Mori
preparation the time evolution of the reduced density matrix is linear. This is also in agreement with the findings for
the above discussed model, see Figs. 2 and 3.
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APPENDIX A: CONVEX MAPS ARE AFFINE

We prove that a differentiable convex map M from a Banach space B1 into a Banach space B2 is also affine. The
derivative of M(x) at x ∈ B1 is defined as the linear map DM(x) : B1 → B2 that is tangential to M at x. For further
mathematical details see e.g. Ref. [35]:

lim
||h||1→0

||M(x+ h) −M(x) −DM(x)h||2
||h||1

= 0, (A1)

where || · ||i, i = 1, 2 denotes the norm in the respective Banach space. The convexity of M then requires that
its domain of definition D(M) is convex, i.e. that with each pair x, y of elements of D(M) also all convex linear
combinations, λx+(1−λ)y, with 0 < λ < 1, belong to D(M). Moreover, this property is conserved under the convex
map M :

M
(

λx+ (1 − λ)y
)

= λM(x) + (1 − λ)M(y). (A2)

Taking the derivative with respect to λ one finds from (A2):

DM
(

λx+ (1 − λ)y
)

(x− y) = M(x) −M(y). (A3)

For λ = 0 one obtains

M(x) = DM(y)x+M(y) −DM(y)y. (A4)

The first term on the right hand side is linear with respect to x and the second and third term are independent of x
and hence M is affine.

APPENDIX B: PECHUKA’S THEOREM

Pechukas proved in Ref. [10] that a preparation is factorizing if the following conditions are satisfied: (i) the
corresponding blow-up map of the preparation is convex; (ii) two different complete sets of pure system states can be
prepared in the considered preparation class.

The proof consists of two steps. The first step is a consequence of the positivity of the blow-up map R(ρS) and
makes use of the possibility to prepare pure states of the system. Assume {|ψ〉} is a pure state of the system that can
be prepared. In the first step of the proof it is shown that the density matrix ρ of the full system has the form

ρ = R(|ψ〉〈ψ|) = |ψ〉〈ψ|χ (B1)

where the bath-density matrix χ in general depends on the system state |ψ〉.
For the proof we note that any density matrix of the total sytem can be represented as a weighted sum of products

of pure system density matrices |ψi〉〈ψi| and bath density matrices χi,

ρ =
∑

i

ci|ψi〉〈ψi|χi, (B2)

where the states |ψi〉 are normalized and orthogonal on each other: 〈ψi|ψj〉 = δi,j , and the coefficients ci are not
negative and add up to unity:

∑

i ci = 1. Taking the trace of R(|ψ〉〈ψ|) over the bath one recovers the pure state
|ψ〉〈ψ| and on the other hand, using TrB χi = 1 one finds from eq. (B2) :

|ψ〉〈ψ| =
∑

i

ci|ψi〉〈ψi|. (B3)

Hence, all but one coefficients ci vanish and eq. (B1) holds.
Up to this point we have not made use of the convexity of the blow-up map and therefore the reduced bath density

matrix χ may still depend on the system state |ψ〉.
In the second step of the proof we first take two pairs of orthonormal system states, |ψ1〉, |ψ2〉 and |ϕ1〉, |ϕ2〉 that

span the same two-dimensional subspace:

|ψ1〉〈ψ1| + |ψ2〉〈ψ2| = |ϕ1〉〈ϕ1| + |ϕ2〉〈ϕ2| ≡ P, (B4)
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where P is the projection operator on this subspace. The absolute values of the mutual scalar products then are
determined by an angle α:

| (ψ1, ϕ1) |
2 = cos2 α, | (ψ1, ϕ2) |

2 = sin2 α,

| (ψ2, ϕ1) |
2 = sin2 α, | (ψ2, ϕ2) |

2 = cos2 α. (B5)

We assume that the two pairs of states ψi and ϕi can be prepared. According to the first step of the proof the full
density matrix that corresponds to either of the pure states is a product of the pure state and a density matrix of the
bath:

R(|ψi〉〈ψi|) = |ψi〉〈ψi|χ(ψi), R(|ϕi〉〈ϕi|) = |ϕi〉〈ϕi|χ(ϕi), i = 1, 2, (B6)

where χ(ψi) and χ(ϕi) are bath density matrices. We shall show that they all are the same. For this purpose we
make use of the convexity of the blow up map and consider its action on the density matrix that is proportional to
the projection P onto the two dimensional subspace, ρS = 1

2
P . The action of the blow up map can be represented in

either of two ways by convex combinations of pure states, see eq. (B4):

|ψ1〉〈ψ1|χ(ψ1) + |ψ2〉〈ψ2|χ(ψ2) = |ϕ1〉〈ϕ1|χ(ϕ1) + |ϕ2〉〈ϕ2|χ(ϕ2). (B7)

Calculating the matrix elements with the four pure states ψi, ϕi, one obtains the following equations relating the
reference density matrices χ(ψi) and χ(ϕi):

(

χ(ψ1)
χ(ψ2)

)

=

(

| cosα|2 | sinα|2

| sinα|2 | cosα|2

) (

χ(ϕ1)
χ(ϕ2)

)

, (B8)

and
(

χ(ϕ1)
χ(ϕ2)

)

=

(

| cosα|2 | sinα|2

| sinα|2 | cosα|2

) (

χ(ψ1)
χ(ψ2)

)

. (B9)

We may exclude the trivial cases when the pairs ψi and ϕi coincide and either cos2 α = 1 or sin2 α = 1. In all other
cases, the four equations only have a solution with χ(ψ1) = χ(ψ2) = χ(ϕ1) = χ(ϕ2). Hence, the bath density matrix
is identical for all preparable system density matrices in the considered subspace such that a factorizable state of the
total system results on this subspace.

In order to apply this argument to higher dimensional system Hilbert spaces it must be possible to prepare sufficiently
many pure system states. Starting as above with a two dimensional subspace that can be spanned by two pairs of
preparable bases {ψi}, {ϕi}, i = 1, 2 one next considers the subspace spanned by either |ψ1〉 and |ψ3〉 or by |ϕ1〉 and
|ϕ3〉 and finds χ(ψ1) = χ(ψ3) for the reference bath operators in the density matrix of the full system. That means
that two different sets of pure states spanning the system’s Hilbert space must be preparable.
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