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Abstract Modal Kleene algebra is Kleene algebra enriched by forward
and backward box and diamond operators. We formalize the symme-
tries of these operators as Galois connections and dualities. We study
their properties in the associated semirings of operators. Modal Kleene
algebra provides a unifying semantics for various program calculi and en-
hances efficient cross-theory reasoning in this class, often in a very concise
state-free style. This claim is supported by novel algebraic soundness and
completeness proofs for Hoare logic.

1 Introduction

Complex hardware and software development usually depends on many different
models and formalisms. This calls for a unifying semantics and for calculi that
enhance safe cross-theory reasoning. During the last decade, variants of Kleene
algebra (KA) have emerged as foundational structures with widespread applica-
tions in computer science ranging from program and protocol analysis [3,12,22],
program development [2,18] and compiler optimization [14] to rewriting the-
ory [20] and concurrency control [3]. The development has been initialized by
two seminal papers by Kozen, the first one providing a particularly useful and
elegant axiomatization of KA as the algebra of regular events [11], the second
one extending KA to Kleene algebra with tests (KAT) for modeling the usual
constructs of sequential programming [12]. But although KAT subsumes propo-
sitional Hoare logic (PHL) [13], it seems not appropriate as a unifying core cal-
culus, since it does not admit an explicit definition of modalities as they occur
in many popular methods.

KAT has recently been enriched by simple equational axioms for abstract
domain and codomain operations [4]. This Kleene algebra with domain (KAD)
is more expressive than KAT. It does not only allow relational reasoning about
hardware and software [4], it also subsumes propositional dynamic logic and
supplies it with a natural algebraic semantics [7].

This motivates the following question: Is KAD suitable as a calculus for cross-
theory reasoning and as a unifying semantics? Answering this question, however,
requires further consideration of the modal aspects of KAD in general and its
semantical impact for Hoare logic in particular1.
? Supported by DFG Project InopSys (Interoperability of System Calculi).
1 The relation between KAD and temporal logics will be the subject of another paper.



Our Contributions. First, we use the abstract image and preimage opera-
tions of KAD for defining forward and backward box and diamond operators as
modal operators à la Jónsson and Tarski [10]. We show that these operators are
related by two fundamental symmetries: Galois connections and dualities. The
former serve as theorem generators, yielding a number of modal properties for
free. The latter serve as theorem transformers, passing properties of one modal
operator automatically to its relatives. We also develop further natural and inter-
esting algebraic properties, including continuity of domain and codomain. Most
of them immediately transfer to predicate transformer algebras.

Second, we study the algebra of modal operators over KAD, which under
suitable conditions is again a Kleene algebra. This abstraction supports even
more concise state-free modal reasoning and leads to further structural insight.

Third, we apply modal Kleene algebra by giving purely calculational algebraic
proofs of soundness and relative completeness for PHL. We use this formalism
both for a faithful encoding of Hoare’s syntax and for modeling the standard
weakest liberal precondition semantics. Our encoding and soundness proof —
all inference rules of PHL are theorems in KAD — is more direct and concise
than previous KAT-based ones [13]. In particular, when abstracted to the algebra
of modal operators, the Hoare rules immediately reflect natural properties. Our
novel algebraic proof of relative completeness is much shorter and more abstract,
thus applicable to more models, than the standard ones (e.g. [1]). It exploits a
Galois connection between forward boxes and backward diamonds that is beyond
the expressiveness of most related modal formalisms.

These technical results support our claim that KAD may serve both as a
calculus for cross-theory reasoning with various calculi for imperative programs
and state transition systems and as a unifying semantics for modal, relational
and further algebraic approaches. The economy of concepts in Kleene algebra
imposes a discipline of thought which usually leads to simpler and more per-
spicuous proofs and to a larger class of application models than with alternative
approaches, for instance relational algebra (cf. [19]) or temporal algebra [21],
where some of our issues have also been treated. This is also interesting from a
pedagogical point of view, since taxonomic knowledge about various structures
and complex axiomatizations can be replaced by systematic knowledge about a
few simple operations together with symmetries and abstraction techniques, a
particular advantage of the algebraic approach. Finally, our results are of inde-
pendent interest for the foundations of modalities.

In this extended abstract, we can only describe the main ideas of our ap-
proach. See [17] for a full technical treatment and [5] for a synopsis of related
results on modal Kleene algebra and for further support for our claims.

Outline. The remainder is organized as follows: Section 2 introduces KAD
and its basic properties. Section 3 introduces modal operators and the associ-
ated algebras of modal operators. Section 4 develops the basic calculus of modal
operators. The syntax and semantics of Hoare logic and its soundness and com-
pleteness proofs in KAD are the subject of Section 5, Section 6 and Section 7.
Section 8 contains a summary, a discussion of further results and an outlook.



2 Kleene Algebra with Domain

A Kleene algebra [11] is a structure (K,+, ·, ∗, 0, 1) such that (K,+, ·, 0, 1) is
an (additively) idempotent semiring (an i-semiring) and ∗ is a unary operation
axiomatized by the identities and quasi-identities

1 + aa∗ ≤ a∗, (∗-1)
1 + a∗a ≤ a∗, (∗-2)

b+ ac ≤ c⇒ a∗b ≤ c, (∗-3)
b+ ca ≤ c⇒ ba∗ ≤ c, (∗-4)

for all a, b, c ∈ K (the operation · is omitted here and in the sequel). If the
structure satisfies (∗-1), (∗-2) and (∗-3), but not necessarily (∗-4), we call it a
left Kleene algebra. It is called a right Kleene algebra, if (∗-1), (∗-2) and (∗-4),
but not necessarily (∗-3) holds. The natural ordering ≤ on K is defined by a ≤ b
iff a + b = b. Models of Kleene algebra are relations under set union, relational
composition and reflexive transitive closure, sets of regular languages (regular
events) over some finite alphabet under the regular operations or programs under
non-deterministic choice, sequential composition and finite iteration.

A Boolean algebra is a complemented distributive lattice. By overloading, we
usually write + and · also for the Boolean join and meet operation and use 0
and 1 for the least and greatest elements of the lattice. The symbol ¬ denotes
the operation of complementation. We will consistently use the letters a, b, c . . .
for Kleenean elements and p, q, r, . . . for Boolean elements.

A Kleene algebra with tests [12] is a two-sorted structure (K,B), where K is
a Kleene algebra and B ⊆ K is a Boolean algebra such that the B operations
coincide with the restrictions of theK operations to B. In particular, p ≤ 1 for all
p ∈ B. In general, B is only a subalgebra of the subalgebra of all elements below
1 in K, since elements of the latter need not be multiplicatively idempotent. We
call elements of B tests and write test(K) instead of B. All p ∈ test(K) satisfy
p∗ = 1. The class of Kleene algebras with tests is denoted by KAT.

When a Kleenean element a describes an action or abstract program and a
test p a proposition or assertion, the product pa describes a restricted program
that executes a when the starting state satisfies assertion p and aborts other-
wise. Dually, ap describes a restriction of a in its possible result states. We now
introduce an abstract domain operator that assigns to a the test that describes
precisely its enabling states.

A Kleene algebra with domain [4] is a structure (K, δ), where K ∈ KAT and
the domain operation δ : K → test(K) satisfies for all a, b ∈ K and p ∈ test(K)

a ≤ δ(a)a, (d1) δ(pa) ≤ p, (d2) δ(aδ(b)) ≤ δ(ab). (d3)

KAD denotes the class of Kleene algebras with domain.
Let us explain these axioms. Since δ(a) ≤ 1 by δ(a) ∈ test(K), isotonicity

of multiplication shows that (d1) can be strengthened to an equality expressing
that restriction to the full domain is no restriction at all. Axiom (d1) means
that after restriction the remaining domain must satisfy the restricting test. (d3)
states that the domain of ab is not determined by the inner structure of b or its



codomain; information about δ(b) in interaction with a suffices. It also ensures
that the modal operators introduced below distribute through multiplication.

Moreover, (d1) is equivalent to one implication in each of the statements

δ(a) ≤ p⇔ a ≤ pa, (llp) δ(a) ≤ p⇔ ¬pa ≤ 0, (gla)

that constitute elimination laws for δ, while (d2) is equivalent to the other impli-
cations. (llp) says that δ(a) is the least left preserver of a. (gla) says that ¬δ(a)
is the greatest left annihilator of a.

All domain axioms hold in the relational model, but (d1) and (d2) suffice
for many applications, such as, for instance, proving soundness of propositional
Hoare logic. Our completeness proof, however, depends on (d3). We will always
explicitly mention where (d3) has to be used.

Because of (llp), domain is uniquely characterised by the two domain axioms.
Moreover, if test(K) is complete then a domain operation always exists. If test(K)
is not complete, this need not be the case.

Many natural properties follow from the axioms. Domain is fully strict (δ(a) =
0 ⇔ a = 0), stable on tests (δ(p) = p) and satisfies the import/export law
(δ(pa) = p δ(a)). See [4] for further information.

Moreover, the Galois-like characterization (llp) implies that the domain op-
eration satisfies a continuity property.

Proposition 2.1. Domain commutes with all existing suprema in KAD; in par-
ticular, it is additive (δ(a+ b) = δ(a)+ δ(b)) and isotone (a ≤ b⇒ δ(a) ≤ δ(b)).

Proof. Let b = sup(a : a ∈ A) exist for some set A ⊆ K. We must show that
δ(b) = sup(δ(a) : a ∈ A). First, by isotonicity of domain, δ(b) is an upper bound
of the set δ(A) = {δ(a) : a ∈ A}, since b is an upper bound of A.

To show that δ(b) is the least upper bound of δ(A), let p be an arbitrary
upper bound of δ(A). Then for all a ∈ A, δ(a) ≤ p ⇔ a ≤ pa ⇒ a ≤ pb, by
(llp). Hence pb is an upper bound of A and therefore b ≤ pb. But by (llp) this is
equivalent to δ(b) ≤ p. ut

A codomain operation ρ can easily be axiomatized as a domain operation on
the opposite semiring. As usual in algebra, opposition just swaps the order of
multiplication. An alternative definition uses the operation of converse, which
can be axiomatized for K ∈ KA as follows. For all a, b, p ∈ K with p ≤ 1,

a◦◦ = a, (a+b)◦ = a◦+b◦, (ab)◦ = b◦a◦, (a∗)◦ = (a◦)∗, p◦ ≤ p.

Consequently, p◦ = p and a ≤ b⇔ a◦ ≤ b◦. Codomain is defined by ρ(a) = δ(a◦).

3 Modalities

We now define various modal operators in KAD. Their names are justified, since
they induce mappings on test algebras that form Boolean algebras with operators
in the sense of Jónsson and Tarski. They can also be interpreted, respectively,



as disjunctive or conjunctive predicate transformers. This links KAD with the
syntax and semantics of Hoare logic.

The first definition introduces forward and backward diamond operators in
the standard way via abstract preimage and image.

|a〉p = δ(ap), (1) 〈a|p = ρ(pa). (2)

Conversely therefore, δ(a) = |a〉1 and ρ(a) = 〈a|1. Forward and backward dia-
monds are duals with respect to converse.

|a〉p = 〈a◦|p, 〈a|p = |a◦〉p. (3)

They are also related by an exchange law.

Lemma 3.1. Let K ∈ KAD. For all a ∈ K and p, q ∈ test(K),

|a〉p ≤ ¬q ⇔ 〈a|q ≤ ¬p. (4)

Proof. Expanding the definitions of forward and backward diamonds and using
(gla) we calculate |a〉p ≤ ¬q ⇔ qap ≤ 0 ⇔ 〈a|q ≤ ¬p. ut

Therefore, even in absence of converse, forward and backward diamond are in-
terdefinable. Moreover, both operators are unique. Duality with respect to com-
plementation transforms diamonds into boxes:

|a]p = ¬|a〉¬p, [a|p = ¬〈a|¬p. (5)

By (4) and (5), this symmetry can also be expressed by Galois connections.

Lemma 3.2. Let K ∈ KAD. For all a ∈ K, the operators |a〉, 〈a| and 〈a|, |a]
are lower and upper adjoints of Galois connections. For all p, q ∈ test(K),

|a〉p ≤ q ⇔ p ≤ [a|q, 〈a|p ≤ q ⇔ p ≤ |a]q. (6)

Exploiting the symmetries further yields the dualities |a]p = [a◦|p and [a|p =
|a◦]p and the exchange law |a]p ≤ ¬q ⇔ [a|q ≤ ¬p. In later sections, we will
use these Galois connections as theorem generators and the dualities as theorem
transformers. We write 〈a〉p and and [a]p if the direction does not matter.

Many modal properties can be expressed and calculated more succinctly in
a point-free style in the operator semirings induced by the modal operators.
While such structure-preserving abstractions are standard in algebra, they have
no immediate logical analogues. See [17] for more information.

Proposition 3.3. Let 〈K〉 be the set of all mappings λx.〈a〉x on some K ∈
KAD, where a ∈ K. Defining addition and multiplication on 〈K〉 by

(〈a〉+ 〈b〉)(p) = 〈a〉p+ 〈b〉p, (7) (〈a〉 · 〈b〉)(p) = 〈a〉(〈b〉p), (8)

the structure (〈K〉,+, ·, 〈0〉, 〈1〉) is an i-semiring. Depending on whether 〈.〉 is |.〉
or 〈.|, we call it the forward diamond semiring or backward diamond semiring.



The natural ordering on 〈K〉 is defined by point-wise lifting as

〈a〉 ≤ 〈b〉 ⇔ ∀p.〈a〉p ≤ 〈b〉p. (9)

By duality with respect to complementation, also the structures ([K],u, ·, [0], [1])
are i-semirings, the forward and backward box semiring, respectively. Here, u is
the lower bound operation on box operators defined by

([a] u [b])(p) = ([a]p)([b]p); (10)

the natural ordering is lifted as for diamonds. This yields an interesting corre-
spondence with disjunctive and conjunctive predicate transformer algebras.

Using the point-wise lifting we can write formulas like 〈a〉+ 〈b〉 = 〈a+ b〉 and
([a]u [b]) = 〈a+ b〉 in a point-free style. We will strongly use point-free resoning
in the following sections. This will yield shorter specifications and simpler and
more concise proofs.

4 The Algebra of Modalities

We now develop the basic laws of an algebra of modal operators in KAD. We
further investigate their symmetries in terms of Galois connections and of duality
in order to derive further properties. But since our modal operators are not
completely characterized by the symmetries, we also present properties that are
based directly on domain and codomain. See [17] for a more technical discussion.

Expanding the definitions, we can show the following simple properties of
the units of the operator semirings.

Lemma 4.1. Let K ∈ KAD and p ∈ test(K). Then 〈0〉p = 0 = ¬[0]p and
[1] = 〈1〉.

The Galois connections (6) give us the following two theorems for free.

Lemma 4.2. Let K ∈ KAD. For all a ∈ K, we have the cancellation laws

|a〉[a| ≤ 〈1〉 ≤ [a||a〉, 〈a||a] ≤ 〈1〉 ≤ |a]〈a|. (11)

Proposition 4.3. Let K ∈ KAD and a ∈ K. Then 〈a〉 and [a] commute with
all existing suprema and infima, respectively. If test(K) is a complete Boolean
lattice then 〈a〉 is universally disjunctive and [a] is universally conjunctive, that
is, the operators commute with all suprema and infima, respectively.

Proof. By Lemma 3.2, boxes and diamonds of KAD are upper and lower adjoints
of a Galois connection. Then the results follow from general properties. ut

As special cases we obtain, for all a ∈ K and p, q ∈ test(K),

〈a〉0 = 0, 〈a〉(p+ q) = 〈a〉p+ 〈a〉q,
|a]1 = 1 |a](pq) = (|a]p)(|a]q).



Consequently, (test(K), {〈a〉 : a ∈ K}) and (test(K), {[a] : a ∈ K}) are Boolean
algebras with operators in the sense of Jónsson and Tarski [10]. This justifies
calling our boxes and diamonds modal operators.

We now collect some further natural algebraic properties of modal operators.
We restrict our attention to diamonds. Corresponding statements for boxes can
immediately be inferred by duality.

Lemma 4.4. Let K ∈ KAD. For all a, b ∈ K and p, q ∈ test(K),

〈a+ b〉 = 〈a〉+ 〈b〉, (12)
|ab〉 ≤ |a〉|b〉, (13)
〈ab| ≤ 〈b|〈a|, (14)

a ≤ b⇒ 〈a〉 ≤ 〈b〉, (15)
|paq〉 = |p〉|a〉|q〉, (16)
〈paq| = 〈q|〈a|〈p|. (17)

The properties (13) and (14) can be proved using (d1) and (d2) only; since we
additionally have (d3), they even become equalities. Spelling out (12) for box
yields, for instance, [a + b] = [a] u [b], while (13) yields |a]|b] ≤ |ab]. Moreover,
boxes are antitonic: a ≤ b implies [b] ≤ [a].

The following statements show that a star operation can be defined on a
semiring of modal operators.

Proposition 4.5. Let |K〉 be the forward diamond semiring over K ∈ KAD.
Defining a star on |K〉 by

|a〉∗(p) = |a∗〉p, (18)

for all a ∈ K and p ∈ test(K) turns |K〉 into a left Kleene algebra.

To see that (∗-1)-(∗-3) hold in the forward diamond semiring |K〉, we use that
that the identities |1〉 + |aa∗〉 = |a∗〉 and |1〉 + |a〉|a∗〉 ≥ |a∗〉 have been shown
in [4], whereas |1〉 + |a〉|a∗〉 = |a∗〉 follows using (d3). Moreover, we have the
quasi-identity p+ |a〉q ≤ q ⇒ |a∗〉p ≤ q (see again [4]) and therefore also

|b〉+ |a〉|c〉 ≤ |c〉 ⇒ |a∗〉|b〉 ≤ |c〉. (19)

For 〈K|, we obtain a right Kleene algebra by similar arguments.
In case of a complete test algebra, we obtain a full Kleene algebra.

Lemma 4.6. Let K ∈ KAT. Then λx.p + x on test(K) commutes with all ex-
isting suprema and λx.px on test(K) commutes with all existing infima.

Proposition 4.7. Let K ∈ KAD and let test(K) be a complete Boolean lattice.
Then for all a ∈ K, the operators 〈a〉∗ and [a]∗ exist. Moreover,

〈a〉∗ = sup(〈a〉i : i ≥ 0), [a]∗ = inf([a]i : i ≥ 0).

This follows from Proposition 4.3, Lemma 4.6 and Kleene’s fixed-point theorem.

Proposition 4.8. Let K ∈ KAD with test(K) a complete Boolean lattice. Then
the i-semiring |K〉 can uniquely be extended to a Kleene algebra.

Instead of calculating with domain and modal operator laws, we can therefore
calculate many modal properties simply in Kleene algebra at this higher level of
abstraction (see below).



5 Hoare Logic

We now apply our results to obtain completely calculational algebraic soundness
and completeness proofs for propositional Hoare logic. We first present the syntax
and semantics of Hoare logic.

Let Φ be a set of propositions built from a set Π with the usual Boolean
connectives. Let Σ be a set of statements defined by the following grammar
from a set Γ of atomic commands.

Σ ::= abort | skip | Γ | Σ ; Σ | if Φ then Σ else Σ | while Φ do Σ .

The basic formulas of Hoare logic are partial correctness assertions (PCAs) of
the form {φ} α {ψ}, with φ, ψ ∈ Φ (the pre- and postcondition) and α ∈ Σ.

To define a semantics with respect to KAD, let K ∈ KAD. We assign to each
propositional variable π ∈ Π a test [[π]] ∈ test(K) and to each atomic command
γ ∈ Γ a Kleenean element [[γ]] ∈ K. Moreover, we assign 0 to [[abort]] and 1 to
[[skip]]. The remainder is the usual homomorphic extension.

[[φ ∧ ψ]] = [[φ]][[ψ]], (20)
[[¬φ]] = ¬[[φ]], (21)

[[α ; β]] = [[α]][[β]], (22)
[[ if φ then α else β]] = [[φ]][[α]] + ¬[[φ]][[β]], (23)

[[ while φ do α]] = ([[φ]][[α]])∗¬[[φ]]. (24)

We follow [13] in defining validity of formulas and PCAs. |= φ⇔ [[φ]] = 1, for all
φ ∈ Φ. In particular, |= φ→ ψ ⇔ [[φ]] ≤ [[ψ]]. Moreover,

|= {φ} α {ψ} ⇔ [[φ]][[α]]¬[[ψ]] ≤ 0.

Using (gla) and Boolean algebra, we rewrite this definition more intuitively as

|= {φ} α {ψ} ⇔ 〈[[α]]|[[φ]] ≤ [[ψ]].

In the relational model of KAD, the expression 〈[[α]]|[[φ]] denotes the set of
all states that can be reached from states in [[φ]] through [[α]]. Therefore, the
formula 〈[[φ]]|[[α]] ≤ [[ψ]] is indeed a faithful translation of {φ} α {ψ} that, by the
exchange law of Lemma 3.1, is consistent with the standard wlp-semantics (see
also Section 7 for further details).

To shorten notation, we will henceforth confuse syntax and semantics and
use Kleene algebra notation everywhere. Thus we express validity of a PCA as

|= {p} a {q} ⇔ 〈a|p ≤ q. (25)



The Hoare calculus for partial correctness of deterministic sequential pro-
grams consists of the following inference rules.

(Abort) {p} abort {q},

(Skip) {p} skip {p},

(Assignment) {p[e/x]} x := e {p},

(Composition)
{p} a {q} {q} b {r}

{p} a ; b {r}
,

(Conditional)
{p ∧ q} a {r} {¬p ∧ q} b {r}

{q} if p then a else b {r}
,

(While)
{p ∧ q} a {q}

{q} while p do a {¬p ∧ q}
,

(Weakening)
p1 → p {p} a {q} q → q1

{p1} a {q1}
.

A rule with premises P1, · · · , Pn and conclusion P is sound if P1, . . . , Pn |= P .
Derivations are defined in the standard way.

(Assignment) is a non-propositional inference rule that deals with the internal
structure of states. We therefore do not encode it directly into our framework,
but instead use the set Γ of atomic commands as a parameter in our approach.
The requirement of sufficient expressiveness on Γ that ensures completeness of
the calculus will be discussed in Section 7. Following [13], we call this abstract
form of Hoare logic propositional Hoare logic (PHL).

6 Soundness of Propositional Hoare Logic

We now prove soundness of PHL with respect to the KAD-semantics. More pre-
cisely, we show that the encoded inference rules of PHL are theorems of KAD.
This subsumption is a popular exercise for many logics and algebras of programs,
among them propositional dynamic logic [8] and KAT [13], which are both sub-
sumed by KAD. However our result is interesting for two reasons, a syntactic and
a semantic one. First, our encoding of PHL is more simple, abstract and direct,
and Hoare-style reasoning in KAD is more flexible than in previous approaches.
However we do not sacrifice algorithmic power. Second, the properties of our
modal operators defined in terms of abstract image and preimage operations
reflect precisely those of the standard partial correctness semantics [1,15] and
show that KAD provides a natural abstract algebraic semantics for PHL.

A first point-wise encoding of the soundness conditions for the Hoare rules
is rather straightforward from (25). (Composition), for instance, becomes

〈a|p ≤ q ∧ 〈b|q ≤ r ⇒ 〈ab|p ≤ r.



This is a theorem of KAD, since

〈ab|p ≤ 〈b|〈a|p ≤ 〈b|q ≤ r

by (decomposition). As a second example, (While) becomes

〈a|(pq) ≤ q ⇒ 〈(pa)∗¬p|q ≤ ¬pq.

This is also a theorem of KAD. Using (induction), we calculate

〈a|(pq) ≤ q ⇒ 〈(pa)∗|q ≤ q ⇒ ¬p(〈(pa)∗|q) ≤ ¬pq ⇔ 〈(pa)∗¬p|q ≤ ¬pq.

Point-wise encodings and proofs for the remaining PHL-rules are similar. Conse-
quently, soundness of PHL can be proved literally in one line per inference rule
from natural properties of KAD. In KAT, (Composition), for instance, must be
encoded quite indirectly as

pa ≤ aq ∧ qb ≤ br ⇒ pab ≤ abr

and the proof of theoremhood is based on rather syntactic commutation prop-
erties (cf. [13]). We can obtain this encoding also in KAD, using (llp). More
generally, (llp) and (gla) provide translations of all PHL-rules into KAT and,
using a result from [9], connect validity with respect to PHL with PSPACE
automata-theoretic decision procedures. See [17] for a deeper discussion.

Compared with standard textbooks (cf. [1,15]), our proof is about ten times
shorter. In addition, the textbook proofs are only semi-formal, since many logical
and set-theoretic assumptions are left implicit. A complete formalization would
produce further overhead.

We now give another point-free soundness proof of PHL in KAD that is even
more abstract and concise. In particular, the properties expressed by the Hoare
rules now correspond to natural algebraic properties of the algebra of modal
operators.

Proposition 6.1. Let K ∈ KAD. Then the soundness conditions for the infer-
ence rules of PHL can be encoded as follows. For all a, b ∈ K and p ∈ test(K),

(Abort) 〈0| ≤ 〈q|,

(Skip) 〈1| ≤ 〈1|,

(Composition) 〈ab| ≤ 〈b|〈a|,

(Conditional) 〈pa+ ¬pb| ≤ 〈a|〈p|+ 〈b|〈¬p|,

(While) 〈a|〈p| ≤ 〈1| ⇒ 〈¬p|〈(pa)∗| ≤ 〈¬p|,

(Weakening) 〈p1| ≤ 〈p| ∧ 〈p|〈a| ≤ 〈q| ∧ 〈q| ≤ 〈q1| ⇒ 〈q1|〈a| ≤ 〈q1|.

The point-free encoding is derived from the point-wise one using the principle
of indirect inequality : p ≤ q iff q ≤ r implies p ≤ r for all r.



(Skip) and (Abort) now reflect natural or even trivial semiring properties.
(Conditional) expresses (additivity) and (import/export) of the operator semir-
ing, (While) expresses a variant of (induction). (Composition) expresses (de-
composition); it becomes an equality when (d3) is assumed on the underlying
KAD. (Weakening) is the only rule where at first sight, nothing has be gained by
the lifting. However, its correctness proof can now be based entirely on semir-
ing properties, instead of expanding to properties of domain. These facts are
immediately reflected by the following subsumption result.

Theorem 6.2. The point-free encodings of the PHL-rules are theorems in KAD.

Proof. The point-free variants of (Abort) and (Skip) are trivial consequences
of Lemma 4.1. The point-free variant of (Composition) is nothing but (14).
The point-free variant of (Conditional) is evident from (12) and (14). (While)
follows immediately from (19) and isotonicity. (Weakening) holds by isotonicity
of multiplication in i-semirings. ut

Theorem 6.3. PHL is sound with respect to the KAD semantics.

Proof. By induction on the structure of PHL derivations, using Theorem 6.2. ut

As observed in [13], all Horn clauses built from PCAs in PHL that are valid with
respect to the standard semantics are theorems of KAT; whence a fortiori of
KAD. PHL is too weak to derive all such formulas. Consequently, KAT and KAD
have not only the derivable, but also the admissible rules of PHL as theorems.

7 Completeness of Propositional Hoare Logic

In this section we provide a novel algebraic completeness proof for the inference
rules of PHL, using modal Kleene algebra as a semantics. Conventional com-
pleteness proofs use the weakest liberal precondition semantics. For a set S of
program states, a relational program P ⊆ S × S and set T ⊆ S of target states
one defines

wlp(P, T ) = {s ∈ S : P (s) ⊆ T}, (26)

where P (s) is the image of s under P . Equivalently, wlp(P, T ) is the largest
subset U ⊆ S such that P (U) ⊆ T . In a modal setting the wlp-operator can then
of course be identified with the forward box operator. Confusing again syntax
and semantics, the Galois connection (6) and (25) immediately imply that

|= {p} α {q} ⇔ p ≤ |a]q. (27)

On the one hand, this Galois connection connects PHL syntax and semantics in
a very concise way. One the other hand, we get the entire wlp-calculus for free
by dualizing our results from Section 4.

For the standard completeness proofs (see e.g. [1]) it is crucial that the un-
derlying assertion language is sufficiently expressive. This implies that for all



statements α ∈ Σ and all postconditions ψ ∈ Φ there is an assertion φ ∈ Φ that
expresses the weakest liberal precondition for ψ under α, i.e.,

[[φ]] = wlp([[α]], [[ψ]]). (28)

Using (28) we can continue working semantically in KAD. We extend the original
calculus so that all predicates are denoted by propositional variables. Complete-
ness of this extension will then imply completeness of the former calculus.

For every atomic command γ ∈ Γ and test q we add an axiom

{|g]q} g {q}, (29)

where g = [[γ]]. (Assignment) has precisely this form.
Before the completeness proof, we state some technical properties of boxes

in connection with conditionals and loops. Logical variants appear in [1].

Proposition 7.1. Let K ∈ KAD. Let a, b, c, w ∈ K and p, q ∈ test(K).

(i) For c = if p then a else b,

p (|c]q) = p (|a]q), (30) ¬p (|c]q) = ¬p (|b]q). (31)

(ii) For w = while q do a,

p (|w]q) = p|a](|w]q), (32) ¬p (|w]q) ≤ q. (33)

The proofs need a few lines of calculus using the properties from Section 4. Now
we can proceed, as for instance in [1].

Lemma 7.2. Let K ∈ KAD. For all a ∈ K that are denotable by PHL commands
and all q ∈ test(K), the PCA {|a]q} a {q} is derivable in PHL.

Proof. Let ` {p} a {q} denote that {p} a {q} is derivable in PHL. The proof is
by induction on the structure of command a.

(i) a is either skip or abort or denotes an atomic command. Then the claim is
trivial, since PHL contains the respective PCA as an axiom.

(ii) Let a = b and c = bc. By the induction hypothesis,

` {|b](|c]q)} b {|c]q}, ` {|c]q} c {q}.

Now (Composition) shows ` {|b](|c]q)} bc {q}, which by the additional assump-
tion of (d3) and the dual of (13) is equivalent to ` {|bc]q} bc {q}. Note that this
is the only part of the proof where (d3) is used.

(iii) Let a = if p then b else c. By the induction hypothesis,

` {|b]q} b {q}, ` {|c]q} c {q}.

Hence, by (Weakening), also

` {p(|b]q)} b {q}, ` {¬p(|b]q)} b {q}.



By (30) and (31) these statements are equivalent to

` {p(|a]q)} b {q}, ` {¬p(|a]q)} c {q},

so that (Conditional) shows the claim.

(iv) Let a = while p do b. Let c = |a]q. By the induction hypothesis,

` {|a]c} b {c}.

By (32) this is equivalent to ` {pc} b {c}. (While) shows that ` {c} a {¬pc} and
(33) and (Weakening) yield ` {|a]q} a {q}, as required, ut

We are now prepared for the main theorem of this section.

Theorem 7.3. PHL is relatively complete for the partial correctness semantics
of deterministic programs in KAD.

Proof. We must show that |= {p} a {q} implies ` {p} a {q}. This follows from
(27), Lemma 7.2 and (Weakening). ut

Alternatively, we could also use our encodings of PCAs in KAD in the complete-
ness proof. We could write 〈a|`p ≤ q instead of ` {p} a {q} to further stress
the fact that our proof is entirely in Kleene algebra and to denote that only
the encodings of PHL-rules are allowed for transforming the indexed diamonds.
Using this encoding, the statement 〈a|`(|a]p) ≤ p, or even 〈a|`|a] ≤ |1], looks
very much like a cancellation property of a Galois connection. This fact certainly
deserves further consideration.

8 Conclusion and Outlook

We have investigated Kleene algebra with domain as a modal Kleene algebra.
Modal operators have been defined as abstractions of relational image and preim-
age operations. Their symmetries have been formalized in terms of Galois con-
nections and dualities. We have also studied the semirings induced by the modal
operators. This additional level of abstraction yields very concise state-free spec-
ifications and proofs of modal properties.

Our results show the usefulness of modal Kleene algebra both as a calculus
for cross-theoretic reasoning with various calculi for imperative programs and
state transition systems, and as a unifying semantics for modal, relational and
further algebraic approaches. While an analogous claim has already been verified
for relational approaches [4] and for propositional dynamic logic [7], we provide
algebraic soundness and completeness proofs for Hoare logic that use modal
Kleene algebra both at the syntactic and at the semantic side. In particular the
state-free soundness proof and the completeness proof exhibit very nicely the
natural algebraic properties that are implicit in the partial correctness assertions
and Hoare rules.



Compared with other formalisms, modal Kleene algebra is also very flexible.
E.g., in [17], we show that several inference rules that are derivable in PHL are
theorems of modal Kleene algebra. There, it is not always preferable to reason
entirely using the modalities. Especially when the rules encode commutativity
conditions, the subtheory KAT may provide more direct proofs.

It is also interesting to investigate in how far modalities can be eliminated
from KAD formulas. In combination with hypothesis elimination techniques, we
obtain a linear translation of certain KAD-expression into identities over KAT,
whose validity can be decided by automata in PSPACE [17].

Modal Kleene algebra also subsumes Hoare logic for programs with bounded
nondeterminism. Guarded commands, for instance, can be encoded as

if p1 → a1 dc · · · dc pn → an fi = sup(piai : 1 ≤ i ≤ n),
do p1 → a1 dc · · · dc pn → an od = (sup(piai : 1 ≤ i ≤ n))∗ inf(¬pi : 1 ≤ i ≤ n).

Program termination can also be modelled in modal Kleene algebra [4,6]. This
suggests extending our approach to Hoare logics for total correctness. Moreover,
since modal Kleene algebra allows the specification of syntax and relational
semantics of modal calculi in one single formalism, one can use it to develop
a calculational modal correspondence theory; see [4,5,18] for first results. To
further establish modal Kleene algebra as a unifying framework, we also plan to
consider temporal logics like LTL or CTL; for LTL an account of this along the
lines of [21] is contained in [5]. Recently, the modal operators have also been
incorporated into Lazy Kleene Algebra [16], a framework that extends the work
of Cohen [3] and von Wright [22] and is designed to deal with both terminating
and non-terminating computations and hence also with reactive systems. It is
a challenging task to apply the framework of modal Kleene algebra to other
problems and structures for further extending its practical relevance.

Acknowledgment: We would like to thank Jules Desharnais, Thorsten Ehm
and Joakim von Wright for valuable discussions and comments.
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