MPML3D: A Reactive Framework for the
Multimodal Presentation Markup Language

Michael Nischt!, Helmut Prendinger?,
Elisabeth André', and Mitsuru Ishizuka?

! Institute of Computer Science, University of Augsburg
Eichleitnerstr. 30, D-86135 Augsburg, Germany
Michael.Rudolf.Anton.Nischt@Student.Uni-Augsburg.De,
Andre@Informatik.Uni-Augsburg.De
2 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
helmut@nii.ac.jp
3 Graduate School of Information Science and Technology, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
ishizuka@i.u-tokyo.ac. jp

Abstract. MPML3D is our first candidate of the next generation of
authoring languages aimed at supporting digital content creators in pro-
viding highly appealing and highly interactive content with little effort.
The language is based on our previously developed family of Multimodal
Presentation Markup Languages (MPML) that broadly followed the “se-
quential” and “parallel” tagging structure scheme for generating pre-
synchronized presentations featuring life-like characters and interactions
with the user. The new markup language MPML3D deviates from this
design framework and proposes a reactive model instead, which is apt to
handle interaction-rich scenarios with highly realistic 3D characters. In-
teraction in previous versions of MPML could be handled only at the cost
of considerable scripting effort due to branching. By contrast, MPML3D
advocates a reactive model that allows perceptions of other characters
or the user interfere with the presentation flow at any time, and thus
facilitates natural and unrestricted interaction. MPML3D is designed as
a powerful and flexible language that is easy-to-use by non-experts, but
it is also extensible as it allows content creators to add functionality such
as a narrative model by using popular scripting languages.

1 Introduction

Animated characters were quickly accepted as attractive and engaging media-
tors for effective human-computer interaction, initially for their mere novelty and
entertainment value, but recently more and more for their demonstrated bene-
fit as virtual sales agents, tutors, and social interaction partners, among others
[14]. However, when integrated into users’ daily life as virtual assistants, users
will assume high realism and expressivity of the characters, and more impor-
tantly, a high level of interactivity and awareness of their need for high-quality
information as well as a natural and enjoyable interaction experience.

219

The bottleneck for digital content providers typically is the lack of appropri-
ate authoring tools to meet those expectations. For this purpose, we previously
designed MPML as a support for non-professionals to create affective multi-
modal content with life-like characters easily, i.e. without assuming knowledge
in a scripting language such as JavaScript or a programming language like Java.
Depending on the character system used, including 2D and 3D cartoon-style
agents and the Honda humanoid robot ASIMO, different versions of MPML
emerged [8]. While the MPML family of markup languages shares a common
vision (simple authoring) and some core XML tagging structures, most notably
for sequential and parallel character behavior execution, versions with special-
ized functionality were necessitated by the nature of each character system used
and its operating environment (web-based, mobile, real world). In addition, the
implementation had to be adapted for each character system, by providing a
dedicated parser.

Support for authoring scenarios with frequent interaction among characters
and users were not an emphasis of previous versions of MPML, while still pos-
sible via (heavily) nested “sequential” and “parallel” tags. In response to the
high demand in providing interaction-rich scenarios, we will therefore advocate
the next generation of MPML-style markup languages, which is based on a re-
active rather than a pre-synchronized behavior model. MPML3D allows content
authors to define appropriate verbal and non-verbal responses, which are active
during the entire presentation and can therefore suspend the scripted part of the
presentation at any time. This paper gives a detailed description of and justifica-
tion for the re-design of MPML with the overall goal of providing an easy-to-use
markup language for highly interactive scenarios.

The rest of the paper is organized as follows. The next section motivates the
new language by way of our implemented scenario. Section 3 reports on related
work. Section 4 describes the system architecture of our reactive model and its
new features. Section 5 is dedicated to an overview of the used tagging structures.
Section 6 concludes the paper.

2 DMotivating Example

As a show-case for the affordances of a highly interactive scenario, we imple-
mented a virtual sales scenario where a team of two 3D animated agents presents
MP3 players to a human user. A professional Japanese character designer for
“digital idols” created two highly realistic and expressive 3D agents (female and
male), based on the appearance of two famous Japanese actors. Each character
can perform body and facial gestures (emotional expressions), speak with proper
lip-synchronization and direct its gaze at any specified scene entity as well as
the user seated in front of the computer display screen (see Fig. 1).

The story line is that two characters present two MP3 players developed by
their enterprise. At the beginning, one character is in favor of a slim, easy to
use version and the other one prefers the high-end product with an unparalleled

220

EasyMP3Pod

I'he Easiest
MP3 Plaver

Fig. 1. Presentation of MP3 players by two Japanese-style 3D characters

feature set. During the presentation they realize, that the gadget presented by
the other character would fulfill their particular needs better than what they
have presented themselves. Both are startled by that, and try to figure out
which player would actually be most attractive to the user. Note that the first
part of our presentation is non-interactive and does not put high demands on
a markup language. It can in principle be easily dealt with by using available
synchronization languages like SMIL [18] and MPML [13,8].

However, in order to increase the level of interactivity and engagement both
between characters and between the characters and the user, each character
should have the capability to perceive the actions of its counterpart character and
the user. This capability is fundamental to lively and engaging human-human
communication where participants continuously adapt to the interlocutor’s state
of attention and emotion, and react accordingly. The new markup language
thus provides means for continuously (i) informing each character about the
current state of action execution of the other character, and (ii) informing the
characters about the state of the user. We handle inter-agent communication and
feedback by message-passing, and introduce eye tracking as an input modality to
recognize the user’s state of attention and interest. Analyzing gaze behavior (or
“eye gestures”) is a powerful method to detect a user’s interest and preference
among alternatives [4]. We also allow for simple speech input from the user,
following a keyword spotting approach. The second part of the MP3 player
presentation thus aims at a high level of interactivity among the participants of
the scenario (two characters and one user) and their mutual awareness. This kind
of interaction cannot be easily handled by currently available markup languages
since it assumes that characters may respond to the other agents (human and
virtual) at any time.

221

3 Related Work

Within the past five years, a range of markup languages and associated tech-
nologies were developed in order to direct the verbal and non-verbal behavior
of animated agents. The Character Markup Language (CML) puts an emphasis
on gesture behavior and its modulation by the agent’s emotional state and per-
sonality [3]. A similar focus is present in the Parameter Action Representation
(PAR), which allows one to specify various action parameters such as purpose,
duration, and manner that can be modulated by affect related parameters [1].
While providing effective means to express affect and associated character move-
ment, those languages were designed with professional animators rather than
non-expert content authors in mind. The Affective Presentation Markup Lan-
guage (APML) targets the representation of communicative functions between
an agent and a user that may contain the speaker’s belief state (certainty of
utterance) and intention (request, inform) as parameters [5]. Communicative
behavior is also the underlying motivation for the Behavior Expression Anima-
tion Toolkit (BEAT) that proposes an elaborate mechanism for the accurate
synchronization between speech and conversational gestures of a character [6].
The fine-grained control of parallel and sequential components of gestures was
also the motivation behind the development of MURML [9].

All of the above mentioned systems are restricted to synchronizing the behav-
ior of a single character. An interesting approach to authoring multi-character
interactions has been suggested in the Inhabited Market Place (IMP) system
that creates presentation dialogues automatically by employing a central plan-
ner [2]. Character-specific dialogue contributions (e.g. elementary presentation
acts) constitute leaf nodes in the decomposed hierarchical plan tree. The IMP
system assumes that appropriate STRIPS-style plan operators have been de-
fined, and hence might be an infeasible approach for non-scientists. The system
has also been extended to include the user as part of the conversation (and
de-centralized planning as a further option), as in the MIAU system [16]. Nev-
ertheless, creating reactive behaviors within MIAU requires basic knowledge of
planning formalisms. The Rich Representation Language (RRL) has been devel-
oped to specify the interaction between two or more virtual agents [12]. Its use
requires less training effort than, for example, the planning mechanism employed
in IMP; however, RRL does not deal with anytime user interactions.

There are only a few approaches that explicitly deal with reactive agent be-
haviors. BEAT accounts for time-line based as well as reactive gesture gener-
ation. Nevertheless, reactivity rather refers to events triggered by the speech
synthesizer than to user interruptions. Similarly, STEP [17] includes interaction
operators to deal with the environment in which the movements and actions
take place. ABL (A Behavior Language) is a highly sophisticated language to
coordinate multiple characters while being reactive to user input, with the core
goal of creating compelling dramatic experiences [10]. Despite its potential for
creating highly interactive presentations, generating behaviors with ABL is close
to programming in Java, which likely exceeds the skill level of the average con-
tent creator. The system most closely related to MPML3D is SceneMaker, a

222

toolkit for composing interactive performances between life-like characters that
are adaptive to user actions [7]. The scene flow is realized by a finite state ma-
chine, whereby both nodes and transitions can have playable scenes associated
with them. A scene is a pre-scripted dialogue (of variable size) between two
characters. Like the MPML3D system, SceneMaker targets non-expert content
providers. A major distinction between the two systems is that content repre-
sentation in SceneMaker is scene-based, whereas in MPML3D, each character
has its own representation of possible actions (and their conditions), which is a
prerequisite for the desired reactive behavior.

4 Multimodal Presentation Markup Language Based on
a Reactive Model

In this section, we propose a major re-design of the MPML language based on the
following core observation. Multi-character applications with frequent “barge-in
interruption” from the user by speech, gesture, or even gaze and physiological
activity will become the rule rather than the exception. MPML as currently
defined is either not able to handle such situations (e.g. continuous speech)
or cumbersome, as in the case of input-dependent branching. In the following
sections we will first describe the new system architecture and we will then
explain the new features of MPMP3D.

4.1 MPML3D System Architecture

An overview of the MPML3D system architecture is shown in Fig. 2. Its main
components are the user and developer layers, and the animation engine, for
which accessibility from the developer layer has to be created.

The main modules can be described as follows. The user layer is dedicated to
creating the content for interactive presentations. It defines the Schema for the

Fig. 2. System architecture

223

XML-based MPML3D format, to which each instance must conform. In order
to maintain a high level of flexibility, statements of a scripting language can
be embedded into the markup language. Currently, we only use Javascript (as
used in previous MPML versions), but we also envision to support other popular
languages like Ruby, Python or Groovy in the near future. Those can be either
utilized to access the functionality provided by the developer layer, or to use self-
developed Java objects (utilities), e.g. ones that encapsulate emotion or social
behavior models.

The developer layer can be seen as an intermediate layer, uncoupling the user
layer from particular implementations. It is a simple Java API, providing base
classes for an agent’s actions and its perception capabilities. Although we already
provide a basic set of classes, new ones can be easily integrated through the plug-
in architecture. By employing annotation and reflection features as offered by
languages such as Java or C#, new actions and perceptions can be used in
MPML3D without changing the parser. Moreover, this approach allows editors
to recognize the plug-ins automatically no matter whether these editors are
text based, just provide an auto-completion facility, or are completely graphical
editors like the MPML3.0 Visual Editor described in [13].

The animation engine itself is not part of the MPML3D system. It is respon-
sible for manipulating a character’s internal state and rendering it, and also has
to process the user inputs such as gaze behavior or speech. Popular animation
engines include game engines, X3D and MPEG4 players, and APIs for mobile
phones or physical robots. Currently, we use a self-created system that renders
the animated scene using OpenGL and OpenAL. Here, both the environment
and the characters are directly transferred from digital content creation tools
(Autodesk’s 3DS Max or Maya) to the application (see [11] for details).

4.2 New Features of MPML3D

Today’s character-based applications demonstrate an increased demand for in-
teractivity and awareness of user input modalities. Although previous versions of
MPML were capable of dealing with user input by using conditional statements,
the resulting scripts were deeply nested and became cumbersome to extend and
read. Specificallyy, MPML was not designed for anytime interruption of a char-
acter’s behavior when the user started speaking (or provides other input, e.g. a
particular gaze behavior) or when agents interrupt each other.

The issue here is to solve the problem of permanent attendance to react to all
possible inputs from the user or another agent. Since previous versions of MPML
represent interactive presentations as a branched structure, one had to test all
possible user inputs after every action tag and create new character responses
for each of those conditional nodes, resulting in an enormous out-degree (if fre-
quent interaction was desirable). In order to overcome this limitation in MPML,
the new MPML3D language changes the organization of the presentation to a
reactive model. In particular, an agent’s behavior is determined by its percep-
tion that may trigger and interrupt actions, clustered into tasks (i.e. sequences

224

of actions). This not only simplifies the authoring of a scenario, but also allows
one to reuse attentive behaviors across different presentations and scenarios.

The design of a reactive model deviates from the design of MPML that was
derived from markup languages that govern the behavior of multiple processes
essentially by sequential and parallel execution, e.g. the popular Synchronized
Multimedia Integration Language (SMIL) [18], and thus deserves extra justi-
fication. As argued in [15], the similarity of markup languages for characters
to “easy to understand” languages such as HTML might not be of primary
importance since appropriate easy-to-use editing tools will eventually be avail-
able for them, and more importantly, those languages might fail to handle the
complexity of interaction among agents (including human agents) as observed
in human-human face-to-face communication. While the “parallel” tag used in
current markup languages assumes independence of behavior, natural communi-
cation demonstrates mutual adaptation between speaker and listener (sometimes
called “alignment”). For instance, when noticing undesired effects of their ut-
terance in the listener’s facial expression, such as irritation, speakers often take
counteractions while speaking, by adapting e.g. the politeness level of the utter-
ance. These observations suggest an approach like MPML3D that is based on
actions and (continuous) perception.

The transition from a pre-synchronized model to a reactive model obviously
assumes a revision of other aspects of the language as well, specifically the rep-
resentation of agent actions. In contrast to former versions, where the script
for all characters was defined in a single file, the behavior of each agent is now
contained in one dedicated MPML3D file, which is seen as the behavior space
of that agent. The advantage of such a distributed architecture combined with
a reactive model for executing the agents’ tasks regards the greater flexibility
in adding additional agents to the presentation. Note that individual actions of
the same character, e.g. starting a gesture when a specific word is spoken, are
synchronized in its own MPML3D file. This approach is not restrictive since a
task, consisting of such an arrangement, can be started, interrupted and resumed
upon the perception of actions performed by other agents, as well as user input.

The design principles put forth for the MPML family [13,8] also apply to the
new MPML3D language, i.e. Fase of Use (Intelligibility), Extensibility (Acces-
stbility), i.e. provision for embedded scripting statements for accessing e.g. Java
classes from code libraries, and Easy Distribution.

5 MPML3D Tagging Structures

In this section we will briefly introduce the tags being used in MPML3D. Like in
previous versions, the document is divided into a Head and Body part after the
root element noted as MPML3D. The Head element specifies general information
through HTML-like Meta tags that can be used to define the units for the
documents. For instance, the preferred distance measure may be either meters
or feet and angles could be defined in radians or degrees, depending on what the
author is most familiar with. Furthermore, the character’s action and perception

225

capabilities must be defined here, no matter whether those are included in the
standard set or are new ones available through the plug-in mechanism of the
developer layer. This is done using the Extension tag, which also defines the
action class, which can be referred in the Body part. Here are two examples:

<Extension name="Speak" type="action" class="mpml.Speak"/>
<Extension name="Listen" type="perception" class="mpml.Listen"/>

Finally, the Head tag can contain a single Script node, defining the scripting
language. It either references an external file or lists the source code directly. Note
that in contrast to JavaScript embedded in HTML, the code is never written as a
comment. Although MPML3D authors can create presentations entirely without
using an embedded scripting language, the potential benefit is significant. The
defined functions can be used as event listeners in order to check conditions
for execution, but also every defined Task, Action and Perception given an
identifier is exposed to the script. This allows the author to access every public
property and method defined in the Java objects of the developer layer. An
example excerpt for an event-listener deactivating a task with id ‘taskl’ is:

<Script language="js">
function anEventListener() { taskl.active = false; }
.. // other variable, function and object declarations
</Script>

The Body part defines the presentation flow. In MPML3D, this is done through
a list of Tasks, which are to be performed but can be interrupted by certain
Perceptions. A Task, on the other hand, corresponds to a list of Actions
along with instructions when and how to execute them. Consequently, these
three elements can be seen as the main components of MPML3D. It is important
to notice that all of them are temporal constructs, i.e. they have a beginning
and ending state. Therefore, the user-code defined in the Script tag can be
associated with the optional node attributes onBegin and onEnd.

We now turn to describing properties of these three tags. We begin with de-
scribing the Task tag, since it contains the others. Besides the events
onInterrupt and onResume, which are fired when the task is interrupted or
resumed afterwards, there are a few other attributes as shown below — all being
optional.

<Task id="taskl" priority="100" active="true" once="true" token="tokenl">
</Task>

As mentioned before, an id can be assigned to a task to expose it to the script
engine. If none is specified, the corresponding Java object is not accessible. The
next attribute, called priority, defines how urgent a task is. It is used in the
default selection mechanism for the task that could be performed. Only a task
of higher priority can interrupt another. The default value is zero. The next
two attributes (active, once) are closely related; their specified (default) values

226

cause a task to be active at the beginning and deactivated after a successful
execution. Finally, a task can expose a public token while performing. Since this
token can be perceived by other characters, it is a convenient way to synchronize
the behavior of multiple characters in non-interactive parts of the presentation,
which was handled by the “par” tag in previous versions of MPML. By default,
a task is not visible to other characters.

Inside the Task element we provide (among others) the two command tags,
called Perform and Interrupt, as children. Both can contain perceptions upon
which the command is triggered, but before describing those, we will explain
their attributes.

<Perform interrupt="false" condition="testPerform">

</Perform>
<Interrupt resume="false" condition="testInterrupt">

</Interrupt>

If the interrupt attribute is set to true, the priority of the task is compared
to the one of the currently executed task (if there is any) to decide whether it
can be interrupted. Without the attribute, or the value set to false, the task
will compete for execution with other non-performing tasks depending on their
priority only. The resume attribute of the Interrupt node determines whether
the task should be resumed after it is interrupted. Finally, the condition at-
tribute can occur within either tag. If present, its value is evaluated along with
the perception of the child element by calling script functions. If it evaluates to
false, the command is not executed.

As stated above, the commands Perform and Interrupt contain perceptions
that may trigger them. A perception belongs to specified class. This is not
only used to classify the perception, but also defines a possible list of properties
which can be declared to narrow down the potential set of user input. Since the
character’s action and perception capabilities strongly depend on the underlying
animation engine, the MPML3D format does not require any specific classes.
However, we hope that there will be a standard set established in the future
that allows to reuse of presentation parts across individual applications.

Meanwhile, we have defined a few of them that match the requirements of our
application scenario described in Sect. 2.

<Perception class="Listen" target="NaomiWatanabe" event="end">
<Property name="text">*music collection*</Property>
</Perception>

In this example, the perception is processed as soon as an utterance containing
the phrase “music collection” is spoken, but the enclosed command is triggered
only when the sentence is finished (“x...*” refers to a ‘wildcard’ or ‘regex’
construct). In order to change this, one simply has to change the event attribute
to begin. Furthermore, the speaker must be named ‘NaomiWatanabe’, which is
specified by the target attribute. Note that by not defining this attribute, any
speaker would trigger the command.

227

In case that more than one observation is required to trigger a command —
e.g. in order to have some other character direct its gaze to a specified object, a
character might point to it and also refer to it verbally — multiple Perception
tags can be placed in a node named All. By setting its single attribute order to
true, the observation must be in the specified sequence to trigger the command.
Finally, the related Any tag allows to execute the command if at least one child
element is perceived.

Finally, the MPML3D content author has to define the sequence of actions
to be executed while performing the task. Due to their generic structure Action
nodes and their children have a similar syntax to the Perception tag. As shown
in the example below, all actions are enclosed by the well known Sequential and
Parallel tags. Observe that when considering the behavior of a single character
(rather than the behavior of multiple characters), the meaning of those tags
corresponds exactly to the meaning in previous versions of MPML.

<Sequential>
<Action class='"gesture">
<Property name="type">BowVeryPolite</Property>
</Action>
<Parallel>
<Action class="speak">
<Property name="text">Hi, my name is Naomi Watanabe.</Property>
</Action>
<Action class="focus">
<Property name="target">User</Property>
<Property name="angle">-5.0</Property>
</Action>
</Parallel>
</Sequential>

According to this example, the character first performs a (very polite) bow ges-
ture and then starts introducing itself by the specified sentence. Concurrently to
speaking, the character directs its gaze to the location slightly beside the user
(whose exact position can be determined by the eye tracker).

6 Conclusions

This paper describes and justifies a major re-design of the Multimodal Presenta-
tion Markup Language (MPML) [8] that was successful in providing non-expert
digital content creators an easy-to-use tool for authoring multimodal content
with life-like characters. However, MPML was not designed to accept frequent
or continuous input from either other characters or the user. Since interaction-
rich scenarios are of considerable interest for engaging and natural communi-
cation with characters, we propose our new MPML3D language that provides
perception (of the behavior of other characters and the user) as a key function-
ality. The transition from an essentially pre-synchronized model (MPML) to a

228

reactive model (MPML3D) enables adaptation of character behavior whenever
trigger conditions are met throughout the interactive presentation.

The characters in the application scenario described in this paper are able
e.g. to attend to the gaze behavior of the user by processing data from a non-
contact video based eye tracker. If a relevant gaze pattern is detected, the char-
acters will respond accordingly. For instance, if a user shows (visual) interest in
any one of the two MP3 players, the character assigned to promote this product
will display happiness about the user’s interest, and provide more detailed prod-
uct information, or even interrupt the other character in its presentation when
not currently holding the turn.

MPML3D provides the technology for highly interactive presentations, but
currently, resuming a presentation after user interruption is handled in an ad
hoc fashion; for instance, incomplete tasks are resumed where they were halted
by the interaction. However, it is important to emphasize that typically, interac-
tion (including interruption) between characters is intentionally inserted by the
content author to increase the liveliness of the conversation and a resumption
strategy is declared. In order to guarantee the overall cohesion and attractive-
ness of the presentation, a (interactive) narrative model might be added. We also
consider adjusting the virtual camera in a gaze-contingent way, e.g. by zooming
into the screen area that corresponds to the user’s point of interest, or based on
some cinematographic principles. MPML3D can be extended by those function-
alities in a transparent way while preserving its core purpose as an easy-to-use
and powerful authoring language for digital content creators.

Acknowledgments

The first author was supported by an International Internship Grant from NII
under a Memorandum of Understanding with the Faculty of Applied Informatics
at the Univ. of Augsburg. We would like to thank Dr. Ulrich Apel (NII) for
scripting the dialogues and Nikolaus Bee (Univ. of Augsburg, NII) for creating
the speech files. The research was supported by the Research Grant (FY1999-
FY2003) for the Future Program of the Japan Society for the Promotion of
Science (JSPS), by a JSPS Encouragement of Young Scientists Grant (FY2005-
FY2007), and an NIT Joint Research Grant with the Univ. of Tokyo (FY2005).

References

1. J. Allbeck and N. Badler. Representing and parameterizing agent behaviors. In
Prendinger and Ishizuka [14], pages 19-38.

2. E. André, T. Rist, S. van Mulken, M. Klesen, and S. Baldes. The automated design
of believable dialogue for animated presentation teams. In J. Cassell, J. Sullivan,
S. Prevost, and E. Churchill, editors, Embodied Conversational Agents, pages 220—
255. The MIT Press, Cambridge, MA, 2000.

3. Y. Arafa, K. Kamyab, and E. Mamdani. Towards a unified scripting language.
Lessons learned from developing CML & AML. In Prendinger and Ishizuka [14],
pages 39-63.

10.

11.

12.

13.

14.

15.

16.

17.

18.

229

N. Bee, H. Prendinger, A. Nakasone, E. André, and M. Ishizuka. AutoSelect: What
You Want Is What You Get. Real-time processing of visual attention and affect.
In Tutorial and Research Workshop on Perception and Interactive Technologies
(PIT-06). Springer, 2006. In press.

. B. D. Carolis, C. Pelauchaud, I. Poggi, and M. Steedman. APML: Mark-up lan-

guage for communicative character expressions. In Prendinger and Ishizuka [14],
pages 65-85.

. J. Cassell, H. Vilhjalmsson, and T. Bickmore. BEAT: the Behavior Expression

Animation Toolkit. In Proceedings of SIGGRAPH-01, pages 477486, 2001.

. P. Gebhard, M. Kipp, M. Klesen, and T. Rist. Authoring scenes for adaptive,

interactive performances. In Proceedings of 2nd International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS-08), pages 725732, New
York, 2003. ACM Press.

. M. Ishizuka and H. Prendinger. Describing and generating multimodal contents

featuring affective lifelike agents with MPML. New Generation Computing, 24:97—
128, 2006.

. S. Kopp, B. Jung, N. Lessmann, and I. Wachsmuth. Max — a multimodal assis-

tant in virtual reality construction. KI Zeitschift (German Magazine of Artificial
Intelligence), Special Issue on Embodied Conversational Agents, 4:11-17, 2003.
M. Mateas and A. Stern. A Behavior Language: Joint action and behavioral idioms.
In Prendinger and Ishizuka [14], pages 19-38.

M. Nischt, H. Prendinger, E. André, and M. Ishizuka. Creating three-dimensional
animated characters: An experience report and recommendations of good practice.
Upgrade. The European Journal for the Informatics Professional, VII(2), 2006,
pages 36—41.

P. Piwek, B. Krenn, M. Schroder, M. Grice, S. Baumann, and H. Pirker. RRL:
a rich representation language for the description of agent behavior in NECA.
In Proceedings AAMAS-02 Workshop on Embodied conversational agents—let’s
specify and evaluate them!, 2002.

H. Prendinger, S. Descamps, and M. Ishizuka. MPML: A markup language for
controlling the behavior of life-like characters. Journal of Visual Languages and
Computing, 15(2):183-203, 2004.

H. Prendinger and M. Ishizuka, editors. Life-Like Characters. Tools, Affective
Functions, and Applications. Cognitive Technologies. Springer Verlag, Berlin Hei-
delberg, 2004.

T. Rist. Issues in the design of scripting and representation languages for life-like
characters. In Prendinger and Ishizuka [14], pages 463-468.

T. Rist, E. André, S. Baldes, P. Gebhard, M. Klesen, M. Kipp, P. Rist, and
M. Schmitt. A review of the development of embodied presentation agents and
their appication fields. In Prendinger and Ishizuka [14], pages 377—404.

Z. Ruttkay, Z. Huang, and A. Eliens. Reusable gestures for interactive web agents.
In Proceedings of the 4th International Working Conference on Intelligent Virtual
Agents (IVA-03), pages 80-87. Springer LNAI 2792, 2003.

SMIL. Synchronized Multimedia Integration Language. URL: http://www.
w3.org/AudioVideo.

	Introduction
	Motivating Example
	Related Work
	Multimodal Presentation Markup Language Based on a Reactive Model
	MPML3D System Architecture
	New Features of MPML3D

	MPML3D Tagging Structures
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

