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Mixing Properties of Stationary Poisson
Cylinder Models

Christian Bräu and Lothar Heinrich 1

Abstract

We study a particular class of stationary random closed sets in Rd called Poisson k-
cylinder models (short: P-k-CM’s) for k = 1, . . . , d − 1. We show that all P-k-CM’s are
weakly mixing and possess long-range correlations. Further, we derive necessary and suf-
ficient conditions in terms of the directional distribution of the cylinders under which the
corresponding P-k-CM is mixing. Regarding the P-(d − 1)-CM as union of “thick hyper-
planes" which generates a stationary process of polytopes we prove that the distribution of
the polytope containing the origin does not depend on the thickness of the hyperplanes.

Keywords : random closed set, hitting functional, random k-cylinder, inde-
pendently marked Poisson process, tail σ-algebra, typical cell, zero cell

AMS 2010 MSC : Primary: 60D05 , 37A25; Secondary: 60G55 , 60G60

1 Introduction and Preliminaries

A stationary Poisson k-cylinder model (short: P-k-CM) in the d-dimensional Euclidean space
Rd (for d ≥ 2 and some k ∈ {1, . . . , d−1}) is defined as union of randomly dilated k-flats whose
individual spatial extensions, positions and directions are determined by a stationary indepen-
dently marked Poisson process on Rd−k. In this way a random closed set (short: RACS) in Rd

with positive volume fraction (if the cylinder base in Rd−k has positive volume) is obtained
which allows explicite formulas for a number of characteristics, e.g. n-point probabilities for
any n ∈ N = {1, 2, . . .}, see [20]. Although Poisson cylinder models have been considered
already at the very beginning of the systematic study of RACSs, see [16] for k = d − 1, [17]
for any k ∈ {0, 1, . . . , d − 1}, and [5] for stereological relationships, their importance as well-
tractable model in stochastic geometry with interesting properties (partly in contrast to the
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frequently used Boolean model) was recognized just recently, see [20] and [8], [10] for central
limit theorems of the volume and surface content in expanding windows.

To be precise, some further notation is needed. In stochastic geometry, a k-cylinder in Rd is
defined as Minkowski sum B ⊕ L of a direction space L ∈ G(d, k) (= the Grassmannian of
k-dimensional subspaces of Rd) and a compact base B in the orthogonal complement L⊥, see
e.g. [19] or [20]. In the following we go along the line suggested in [8], [10] (which slightly differs
from that in [14] and [20]) and identify L with a unique element OL of the equivalence class
OL of orthogonal matrices O ∈ SOd (i.e. O ∈ Rd×d, OT = O−1 and det(O) = 1) satisfying
OEk = L (and OE⊥k = L⊥), where Ek = span{ed−k+1, . . . , ed} , E⊥k = span{e1, . . . , ed−k}
for k = 1, . . . , d − 1 with the usual orthonormal basis {e1, . . . , ed} of Rd. In other words, two
matrices O1, O2 belong to the compact set OL ⊂ SOd iff OT1 O2 belongs to the set of orthogonal
block matrices S(Od−k ×Ok) defined by

{(
A 0
0 B

)
: A ∈ R(d−k)×(d−k), B ∈ Rk×k, AT = A−1, BT = B−1, det(A) = det(B)

}
.

The element OL can be chosen in a canonical way, e.g. as lexicographically smallest element
of the set of matrices OL. In this way we get a one-to-one correspondence between SOd,k =
{OL := lex min OL : L ∈ G(d, k)} and G(d, k) up to orientation of the subspaces. Note that
for k = 1 (and analogously for k = d − 1) the orthogonal matrix OL can be chosen such that
det(OL) = 1 and OLed = u, where u ∈ Sd−1 := {x ∈ Rd : ‖x‖ = 1} is expressed in terms
of spherical coordinates and u and −u are identified. For example, in the special cases L =
span{(cosϑ, sinϑ)T } ∈ G(2, 1) and L = span{(cosϑ1 sinϑ2, sinϑ1 sinϑ2, cosϑ2)T } ∈ G(3, 1) we
take the matrices

OL(ϑ)=
(

sinϑ cosϑ
− cosϑ sinϑ

)
and OL(ϑ1, ϑ2)=


sinϑ1 cosϑ1 cosϑ2 cosϑ1 sinϑ2

− cosϑ1 sinϑ1 cosϑ2 sinϑ1 sinϑ2

0 − sinϑ2 cosϑ2

,
respectively, for 0 ≤ ϑ < π and (ϑ1, ϑ2) ∈ [0, 2π)× [0, π/2]. In the particular case
L = span{(cosϑ1 cosϑ2, sinϑ1 cosϑ2,− sinϑ2)T , (− sinϑ1, cosϑ1, 0)T } ∈ G(3, 2) it is easily
checked that O∗L(ϑ1, ϑ2)E2 = L, where O∗L(ϑ1, ϑ2) is obtained from OL(ϑ1, ϑ2) by multiplying
the first column of OL(ϑ1, ϑ2) by −1 and exchanging it with the third column.

In this way, to each random subspace L ∈ G(d, k) corresponds a (unique) random matrix
Θ = Θ(L) ∈ SOd,k and vice versa. Throughout this paper, all random elements are defined
on a common probability space [Ω, σ(Ω),P] and E denotes the expectation with respect to P.
Let Qd,k be a distribution on the Borel-σ-algebra of the mark space Md,k := SOd,k × K′d−k,
where K′d−k is the space of all non-empty compact sets in Rd−k equipped with the Hausdorff
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metric, see e.g. [14]. For later use, we put Kd := K′d ∪ {∅} and denote by Cd the subfamily of
convex sets in Kd, whereas Bd signifies the Borel-σ-algebra generated by the family Fd of all
closed in Rd. Further, let o` flag the origin (null vector) in R` for ` ≥ 1.

Now, we are ready to introduce a stationary independently marked Poisson point process (see
e.g. [3],[9], [19]) on Rd−k with mark space Md,k, intensity λ > 0 and mark distribution Qd,k as
locally bounded counting measure Πλ,Qd,k =

∑
i≥1 δ[Xi,(Θi,Ξi)] on the product spaceRd−k×Md,k,

i.e., for some random element (Θ0,Ξ0) in Md,k (called typical mark) with distribution Qd,k

the sequence ((Θi,Ξi))i≥1 of independent copies of (Θ0,Ξ0) is independent of the unmarked
stationary Poisson point process Πλ =

∑
i≥1 δXi on Rd−k with intensity λ = E #{i ≥ 1 : Xi ∈

[0, 1]d−k}.

Note that (Θ0,Ξ0) specifies direction and base of the typical k-cylinder Θ0({(ξ,ok)T : ξ ∈
Ξ0}⊕Ek) ( expressed in short form by Θ0( Ξ0×Rk ) ) of the corresponding stationary Poisson
k-cylinder process in Rd driven by Πλ,Qd,k and defined by the countable family of random
k-cylinders

{Θi( (Ξi +Xi)×Rk ) = Θi( {(ξ +Xi,ok)T : ξ ∈ Ξi} ⊕ Ek ) , i ≥ 1 } . (1.1)

In addition we assume that
E νd−k

(
Ξ0 ⊕Bd−k

ε

)
<∞ (1.2)

for some ε > 0, where Bd−k
ε := {x ∈ Rd−k : ‖x‖ ≤ ε} and νd−k denotes the Lebesgue measure

on Rd−k for k = 0, 1, . . . , d.

Finally, we are in a position to present the following

Definition 1.1: A stationary P-k-CM Ξλ,Qd,k in Rd is defined to be the countable union over
the Poisson-k-cylinder process (1.1),

Ξλ,Qd,k :=
⋃
i≥1

Θi((Ξi +Xi)×Rk) (1.3)

provided that (1.2) is satisfied which ensures the P-a.s. closedness of Ξλ,Qd,k .

Remark 1.1: In other words, Ξλ,Qd,k can be considered as random variable taking values in
the measurable space [Fd, σf ], where σf is the smallest σ-algebra containing all sets FC :=
{F ∈ Fd : F ∩ C 6= ∅} for C ∈ Kd, see [14] for details. The capacity or hitting functional of
Ξλ,Qd,k is then given by
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Figure 1: Realization of a planar stationary and
isotropic Poisson 1-cylinder model

Tλ,Qd,k(C) := P(Ξλ,Qd,k ∈ FC) = 1− exp
{
−λ E νd−k

(
Ξ0 ⊕ πd−k(−ΘT

0 C)
)}

(1.4)

for C ∈ Kd, see [8], [10]. Here, πd−k(B) := {πd−k(x) : x ∈ B} for any B ⊂ Rd and πd−k(x)
denotes the projection on the first d − k components of x ∈ Rd. Notice that the probability
space [Ω, σ(Ω),P] can be chosen in such way that the indicator function Rd × Ω 3 (x, ω) 7→
1(x ∈ Ξλ,Qd,k(ω)) is Bd ⊗ σ(Ω)-measurable, see Appendix in [7] and [8].

Remark 1.2:

• The degenerate case k = 0 (E0 = {od} and Θ0 = id) yields the well-studied Boolean
model, see e.g. [14], [3].

• In the special case Ξ0 = {od−k} the RACS Ξλ,Qd,k coincides with (the union of) a
stationary Poisson k-flat process, see [14], [16], [19].

Next, we recall the notion of ergodicity and various mixing properties of RACSs, see [6], [10]
and [19] for details. For this we need a family of shift operators {Sx : x ∈ Rd} defined by
SxF := {y + x : y ∈ F} for F ∈ Fd, SxA := {SxF : F ∈ A} for A ∈ σf and a suitable family
of sets growing unboundedly in all directions.
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Definition 1.2: (see [4], p. 196) A sequence of sets (Wn)n∈N is called convex averaging
sequence (short: CAS) in Rd if

1. Wn ∈ Cd and Wn ⊂Wn+1 for each n ∈ N,

2. %n := sup{r > 0 : Bd
r + x ⊆Wn for a x ∈Wn}−−−→

n→∞
∞.

It can be shown that (2) is equivalent to νd−1(∂Wn)/νd(Wn) −→
n→∞

0, where νd−1(∂Wn) denotes
the surface content of Wn, see [9], p. 133.

Definition 1.2: A stationary RACS Ξ in Rd with distribution PΞ is said to be ergodic, weakly
mixing resp. mixing if, for a CAS (Wn)n∈N and all A0,A1 ∈ σf ,

1
νd(Wn)

∫
Wn

PΞ(A0 ∩ SxA1) dx−−−→
n→∞

PΞ(A0)PΞ(A1) , (1.5)

1
νd(Wn)

∫
Wn

∣∣PΞ(A0 ∩ SxA1)− PΞ(A0)PΞ(A1)
∣∣ dx−−−→

n→∞
0 (1.6)

resp. PΞ(A0 ∩ SxA1)−−−−→
‖x‖→∞

PΞ(A0)PΞ(A1) . (1.7)

Furthermore, Ξ is said to be mixing of order ` (≥ 2) if for all A0,A1, . . . ,A` ∈ σf ,

PΞ(A0 ∩ Sxn,1A1 ∩ · · · ∩ Sxn,`A`)−−−→n→∞
PΞ(A0)PΞ(A1) · · · PΞ(Ak) (1.8)

as ‖xn,i‖ −→
n→∞

∞ for i = 1, . . . , ` in such a way that ‖xn,i − xn,j‖ −→
n→∞

∞ also for all i 6= j, see
[4] (p. 215) for `th order mixing of random (counting) measures.

Obviously, mixing of order ` (≥ 2) =⇒ mixing =⇒ weak mixing =⇒ ergodic but the reverse
implications do not hold in general.

Remark 1.3: In view of Lemma 4 in [6] the sets A0,A1 in the limits (1.5) - (1.7) can be
replaced by FCi := {F ∈ Fd : F ∩ Ci = ∅} for i = 0, 1 and all C0, C1 ∈ Kd. In the same way
the condition (1.8) can be reformulated with FCi for Ci ∈ Kd instead of Ai for i = 0, 1, . . . , `.

2 Main Results on Mixing of Poisson k-Cylinder Models

Since a stationary P-0-CM can be identified with a stationary Boolean model which is always
mixing ( of any order), see [19] or [6], we only need to consider P-k-CMs for k = 1, . . . , d−1.

Theorem 2.1. For each k = 1, . . . , d − 1, the stationary P-k-CM (1.3) satisfying (1.2) is
weakly mixing (and thus also ergodic).
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Proof. Let Pλ,Qd,k denote the distribution of the RACS Ξλ,Qd,k . According to Remark 1.3 we
need to prove (1.6) only for Ai = FCi , i = 0, 1. Since FC0 ∩ SxFC1 = FC0∪SxC1 and the
relation Pλ,Qd,k(FC) = 1− Tλ,Qd,k(C) for any C ∈ Kd, which follows from (1.4), we shall show
the limit

lim
n→∞

1
νd(Wn)

∫
Wn

∣∣1− Tλ,Qd,k(C0 ∪ SxC1)− (1− Tλ,Qd,k(C0))(1− Tλ,Qd,k(C1))
∣∣ dx = 0

for all C0, C1 ∈ Kd, where (Wn)n∈N is an arbitrary CAS in Rd. For notational ease we use
here and throughout Section 2 the abbreviations

K̃i := K ⊕ πd−k(−θTCi) for all (θ,K) ∈Md,k or Ξ̃i := Ξ0 ⊕ πd−k(−ΘT
0 Ci)

for all i = 0, 1. An application of formula (1.4) expressing the capacity functional of Ξλ,Qd,k in
combination with the identity

νd−k
(
K ⊕ πd−k(−θT (C0 ∪ SxC1))

)
= νd−k

(
K̃0 ∪ (K̃1 − πd−k(θTx))

)
= νd−k

(
K̃0
)

+ νd−k
(
K̃1
)
− νd−k

(
K̃0 ∩ (K̃1 − πd−k(θTx))

)
(2.1)

reveals that the previous limiting relation is equivalent to

Rn := 1
νd(Wn)

∫
Wn

(
exp

{
λE νd−k

(
Ξ̃0 ∩ (Ξ̃1 − πd−k(ΘT

0 x))
) }
− 1

)
dx−−−→

n→∞
0 . (2.2)

The elementary inequality ey − 1 ≤ y ey for y ≥ 0 and

E νd−k
(
Ξ̃0 ∩ (Ξ̃1 − πd−k(ΘT

0 x))
)
≤ γ := min

{
E νd−k

(
Ξ̃0
)
,E νd−k

(
Ξ̃1
)}

<∞ (2.3)

yield the estimate

Rn ≤
λ eλ γ

νd(Wn)

∫
Wn

E νd−k
(
Ξ̃0 ∩ (Ξ̃1 − πd−k(ΘT

0 x))
)

dx = λ eλ γ E R̃n(Θ0,Ξ0) ,

where

R̃n(θ,K) = 1
νd(Wn)

∫
θTWn

νd−k
(
K̃0 ∩ (K̃1 − πd−k(x))

)
dx for (θ,K) ∈Md,k.

It is easily seen that R̃n(θ,K) is bounded by min{νd−k(K̃0), νd−k(K̃1)} for all (θ,K) ∈ Md,k

and this bound is integrable with respect to Qd,k. Thus, in order to obtain (2.2) via Lebesgue’s
dominated convergence theorem it remains to show R̃n(θ,K) −→

n→∞
0 for any fixed (θ,K) ∈Md,k.

6



Since the support of the function Rd 3 x 7→ νd
(
K̃0 ∩ (K̃1 − πd−k(x))

)
is unbounded, we split

Rd into the orthogonal subspaces E⊥k and Ek. For this purpose, let νL denote the Lebesgue
measure on an affine subspace L of Rd which can be identified with νp if p = dimL. By
applying Fubini’s theorem we obtain that

R̃n(θ,K) =
∫
E⊥
k

∫
E
k

1θTWn(y + z)
νd(Wn) νd−k

(
K̃0 ∩ (K̃1 − πd−k(y + z))

)
νEk(dz) νE⊥

k
(dy)

=
∫
E⊥
k

νEk
(
(θTWn − y) ∩ Ek

)
νd(Wn) νd−k

(
K̃0 ∩ (K̃1 − y)

)
νE⊥
k

(dy).

Although it seems to be intuitively clear that νEk((θTWn−y)∩Ek)/νd(θTWn) −→ 0 as n→∞,
we give a rigouros reasoning for this by employing the following result proved in [15]: For any
C ∈ Cd and affine subspaces L1, . . . ,Lm of Rd with dimLj = dj ≥ 1 such that d1+· · ·+dm = d ,
the inequality

νd(C) ≥ d1! · · · dm!
d! νd1(C ∩ L1) · · · νdm(C ∩ Lm)

holds so that

νEk
(
(θTWn − y) ∩ Ek

)
νd(θTWn) ≤

(d
k

)
νE⊥
k

(
(θTWn − y) ∩ E⊥k

) =
(d
k

)
νd−k(θTWn ∩ E⊥k )

for all y ∈ E⊥k and θ ∈ SOd,k. Since θTWn is a CAS in Rd it follows from Definition 1.2 that

νd−k(θTWn ∩ E⊥k ) ≥ νd−k(Bd−k
%n ) −→∞ as n→∞.

Finally, together with∫
E⊥
k

νd−k
(
K̃0 ∩ (K̃1 − y)

)
νE⊥
k

(dy) = νd−k
(
K̃0)νd−k

(
K̃1)

we arrive at

R̃n(θ,K) ≤
(
d

k

)
νd−k

(
K̃1) νd−k

(
K̃2)

νd−k(Bd−k
%n )

−−−→
n→∞

0 .

This completes the proof of Theorem 2.1.

It is well-know, see Theorem 10.5.3 in [19], that a stationary Poisson hyperplane process (=
P-(d − 1)-CM with Ξ0 = {od−1}) is mixing if its spherical directional distribution (defined
on Sd−1) vanishes on every great subsphere Sd−1 ∩ L for L ∈ G(d, d − 1). A corresponding
generalization of this result for any stationary P-k-CMs is given in the following
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Theorem 2.2. For each k = 1, . . . , d−1, the stationary P-k-CM (1.3) satisfying (1.2) is mixing
if and only if the directional distribution Q(0)

d,k( · ) := Qd,k( · × K′d−k) fulfills the condition

Q
(0)
d,k

(
{θ ∈ SOd,k : u ∈ θEk}

)
= 0 for all u ∈ Sd−1. (2.4)

Proof. We use the notation introduced in the proof of Theorem 2.1. Taking into account
Remark 1.3, the shape of the capacity functional (1.4), the decomposition (2.1), and (2.2) we
recognize that Ξλ,Qd,k is mixing if and only if

exp
{
λE νd−k

(
Ξ̃0 ∩ (Ξ̃1 − πd−k(ΘT

0 xn))
) }
− 1−−−→

n→∞
0 for all C0, C1 ∈ Kd

and any sequence (xn)n∈N ⊂ Rd satisfying ‖xn‖ −→
n→∞

∞, or equivalently

lim
n→∞

∫
Md,k

νd−k
(
K̃0 ∩ (K̃1 − πd−k(θTxn))

)
Qd,k(d(θ,K)) = 0. (2.5)

Let us first show that (2.4) implies (2.5). By (2.3) and Lebesgue’s dominated convergence
theorem it suffices to show that, for any fixed K ∈ K′d−k and C0, C1 ∈ Kd

lim
n→∞

νd−k
(
K̃0 ∩ (K̃1 − πd−k(θTxn))

)
= 0 for Q

(0)
d,k − almost all θ ∈ SOd,k. (2.6)

Obviously, due to K̃0, K̃1 ∈ K′d−k, (2.6) holds true if ‖πd−k(θTxn)‖ → ∞ as n → ∞ for Q(0)
d,k-

almost all θ ∈ SOd,k. Suppose there is some Borel set B ⊂ SOd,k such that Q(0)
d,k(B) > 0 and

lim infn→∞ ‖πd−k(θTxn)‖ < ∞ for θ ∈ B. Thus, putting un := xn/‖xn‖ ∈ Sd−1 it follows
together with πd−k(θTun) = πd−k(θTxn)/‖xn‖ that lim infn→∞ ‖πd−k(θTun)‖ = 0 for θ ∈ B.
Since Sd−1 ∈ K′d there exists a subsequence (unm)m∈N having the limit u ∈ Sd−1 as m → ∞
satisfying πd−k(θTu) = od−k (i.e. u ∈ θEk) for θ ∈ B. But this is a contradiction to condition
(2.4). Hence, (2.4) implies the mixing property of the RACS Ξλ,Qd,k .

To prove the reverse direction we assume the contrary of (2.4), i.e. there exists an u0 ∈ Sd−1

such that Q(0)
d,k

(
{θ ∈ SOd,k : πd−k(θTu0) = od−k}

)
= ε > 0. Choosing C0 = C1 = Bd

1 and
xn = nu0 for all n ∈ N we conclude that∫

Md,k

νd−k
(
K̃0 ∩ (K̃1 − nπd−k(θTu0))

)
Qd,k(d(θ,K))

≥
∫
{θ:πd−k(θTu0)=od−k}×K′d−k

νd−k
(
K̃0 ∩ (K̃1 − nπd−k(θTu0))

)
Qd,k(d(θ,K))

=
∫
{θ:πd−k(θTu0)=od−k}×K′d−k

νd−k
(
K ⊕Bd−k

1
)
Qd,k(d(θ,K))

≥ε νd−k
(
Bd−k

1
)
> 0 for all n ∈ N .
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But this means that (2.5) does not hold and thus the P-k-CM Ξλ,Qd,k is not mixing. In other
words, (2.4) is necessary to ensure the mixing property (1.7) for Ξλ,Qd,k . This completes the
proof of Theorem 2.2.

Theorem 2.3. For each 1 ≤ k ≤ d− 1, the stationary P-k-CM (1.3) satisfying (1.2) and the
condition (2.4) is mixing of any order ` ≥ 2.

Proof. First, we rewrite (1.8) according to Remark 1.3 in terms of the hitting functional
Tλ,Qd,k(C) = 1 − exp{−µ(C)} with µ(C) := λ E νd−k

(
Ξ0 ⊕ πd−k(−ΘT

0 C)
)
. This means we

need to prove that, for any C0, C1, . . . C` ∈ Kd and sequences xn,0 ≡ od, xn,1, . . . , xn,` satisfy-
ing ‖xn,i − xn,j‖ −→

n→∞
∞ for 0 ≤ i < j ≤ ` ,

∆n(C0, . . . , C`) := 1− Tλ,Qd,k
(⋃̀
i=0

Sxn,iCi
)
−
∏̀
i=0

(
1− Tλ,Qd,k(Ci)

)
−−−→
n→∞

0 .

It is easily seen that ∆n(C0, . . . , C`) ≥ 0 and

∆n(C0, . . . , C`) = exp
{
−µ
(⋃̀
i=0

Sxn,iCi
)}
− exp

{
−
∑̀
i=0

µ(Ci)
}

≤ exp
{∑̀
i=0

µ(Ci)− µ
(⋃̀
i=0

Sxn,iCi
)}
− 1

≤ exp
{ ∑

0≤i<j≤`
λ E νd−k

(
Ξ̃i ∩

(
Ξ̃j − πd−k(Θ0(xn,j − xn,i))

))}
− 1 ,

where Ξ̃j := Ξ0 ⊕ πd−k(−ΘT
0 Cj) for j = 0, 1, . . . , `. The last bound results from the additivity

of the Lebesgue measure νd−k combined with its translation-invariance yielding, among others,
µ(Sxn,i Ci) = µ(Ci). Finally, repeating the proof of (2.5) leads to the limits

E νd−k
(
Ξ̃i ∩ (Ξ̃j − πd−k(ΘT

0 (xn,j − xn,i)))
)
−−−→
n→∞

0 if ‖xn,i − xn,j‖ −→
n→∞

∞

for 0 ≤ i < j ≤ ` . Thus, ∆n(C0, . . . , C`)−−−→
n→∞

0 for any ` ≥ 2 which provides the assertion of
Theorem 2.3.

Remark 2.1: The shape of the hitting functional (1.4) with µ(C) ∈ [0,∞) (being a completely
alternating semicontinuous capacity on Kd such that µ(∅) = 0) reveals that every P-k-CM
Ξλ,Qd,k (satisfying (1.2)) is an union-infinite divisible stationary RACS in Rd without fixed
points, see Theorem 2.3.3 in [19] and Chapt. 4.1 in [18].
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Corollary 2.4. For each k = 1, . . . , d− 1, the P-k-CM Ξλ,Qd,k is not mixing if the directional
distribution Q(0)

d,k has atoms.

Proof. Let Q(0)
d,k({ϑ0}) > 0 for some ϑ0 ∈ SOd,k. Then Q

(0)
d,k

(
{θ ∈ SOd,k : u ∈ θEk}) ≥

Q
(0)
d,k({ϑ0}

)
> 0 for all u ∈ Sd−1 ∩ ϑ0Ek.

Now, let µd,k denote the restriction of the unique normalized rotation invariant (Haar) measure
µd on SOd , see Chapt. 13.2 in [19], to SOd,k. Two linear subspaces L and L′ of Rd are said to
be in special position (in general position otherwise) if

span(L ∪ L′) 6= Rd and dim(L ∩ L′) > 0 .

Corollary 2.5. For each k = 1, . . . , d − 1, the stationary P-k-CM (1.3) satisfying (1.2) is
mixing iff

Q
(0)
d,k

(
{θ ∈ SOd,k : θEk and L are in special position}

)
= 0 for all L ∈ G(d, 1) .

In particular Ξλ,Qd,k is mixing if Q(0)
d,k is absolute continuous w.r.t. µd,k.

Proof. It is easily seen that, for all u ∈ Sd−1 and θ ∈ SOd,k,

u ∈ θEk iff span(u) and θEk are in special position .

On the other hand, from Lemma 13.1.2 in [19] we know that
µd
(
{θ ∈ SOd : θEk and L are in special position }

)
= 0.

In general, condition (2.4) turns out to be stronger than Q
(0)
d,k({θ}) = 0 for all θ ∈ SOd,k.

However, in the particular case d = 2, k = 1 both conditions are equivalent.

Example: Let Q(d)
0 denote the image measure of Q(0)

d,d−1 under the mapping
SOd 3 θ 7→ θ e1 ∈ Sd−1. Then Q(d)

0 is a probability measure on the sphere Sd−1 and condition
(2.4) can be expressed as

Q
(d)
0
(
Sd−1 ∩ L

)
= 0 for all L ∈ G(d, d− 1) (2.7)

confirming once more the above-mentioned result in [19], p. 517.

To study weak dependence properties of a stationary RACS Ξ in Rd which go beyond mix-
ing, see e.g. [12], [13] in case of STIT tessellations, we consider the tail-σ-algebra σ∞f (Ξ) :=
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⋂
n∈N σf (Ξ∩ {x ∈ Rd : ‖x‖ ≥ n}), where σf (Ξ′) is the smallest σ-algebra containing all events
{Ξ′ ∈ FC} = {Ξ′ ∩ C 6= ∅} for C ∈ Kd .

It is a well-known fact, see [4] for stationary point processes, that the triviality of the tail-
σ-algebra σ∞f (Ξ), i.e. P(A) ∈ {0, 1} for all tail events A, implies that Ξ is mixing (even of
any order). On the other hand, the reverse implication is false in general. Following the
terminology in [11], a stationary RACS Ξ in Rd having (non-)trivial tail-σ-algebra σ∞f (Ξ) is
said to have (long) short range correlations or (long) short range dependences.

Remark 2.2: For each k = 1, . . . , d − 1, the stationary P-k-CM Ξλ,Qd,k has long range
correlations. It is easily checked (and already mentioned in [10]) that the events Aε :={
Ξλ,Qd,k ∩ Bd

ε = ∅
}
belong to σf (Ξλ,Qd,k ∩ {x ∈ Rd : ‖x‖ ≥ n}) for all n ∈ N and ε > 0,

but P(Aε) = 1− Tλ,Qd,k(Bd
ε ) ∈ (0, 1).

3 A Remarkable Property of Cells Generated by a P-(d-1)-CM

Throughout, in this section we consider exclusively P-(d− 1)-CMs satisfying P(Θ0 e1 ∈ L) =
Q

(d)
0
(
Sd−1 ∩ L

)
< 1 for all L ∈ G(d, d − 1) (in particular if (2.7) holds) with typical base

Ξ0 ∈ C1 satisfying (1.2) for k = d − 1, i.e. Ξ0 is a closed interval with finite mean length
E ν1(Ξ0) so that the (d − 1)-cylinders can be regarded as randomly dilated hyperplanes in
Rd and the complement of their union Ξcλ,Qd,d−1

consists of pairwise disjoint open bounded
convex polytopes. By taking the closure of each of these open polytopes we we obtain a family
{Zi, i ≥ 1} of random compact convex polytopes satisfying Zi ∩ Zj = ∅ or νd(Zi ∩ Zj) = 0
otherwise for all i 6= j. Let P ′d denote the subset of non-empty polytopes in Cd.

To start with, we derive a formula for the contact distribution function 0 ≤ r 7→ HS(r) of
Ξ := Ξλ,Qd,d−1 , see e.g. [3],

HS(r) := P(Ξ ∩ r S 6= ∅ |od /∈ Ξ) = 1− 1−P(od ∈ Ξ⊕ (−r S))
1−P(od ∈ Ξ) (3.1)

where the “structuring element” S ∈ K′d is star-shaped w.r.t. od ∈ S. Straightforward
calculations carried out in [8] and [10], see also [20] for a different approach, yield that
p(r) := P(od ∈ Ξ ⊕ (−r S)) = 1 − exp{−λ E ν1(Ξ0 ⊕ r π1(−ΘT

0 S))} and the expression
p(0) = E νd(Ξ ∩ [0, 1]d) = 1 − exp{−λ E ν1(Ξ0)} for the volume fraction of Ξ. Inserting
these formulas in (3.1) and taking into account that π1(−ΘT

0 S) is an intervall we arrive at
HC(r) = 1 − exp{−r λ E ν1(π1(−ΘT

0 S))} for r ≥ 0 which shows an exponential distribution
function being always the same regardless of how ν1(Ξ0) is distributed. This interesting ob-
servation proves useful in the statistical analysis of Ξλ,Qd,d−1 and is the consequence of an
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invariance property of the so-called zero cell Zo which coincides with the unique polytope Zi
whose interior int(Zi) contains the origin od conditional on od /∈ Ξλ,Qd,d−1 .

A simple statistical application is the following: Let Ξ be observed in a CASWn, see Definition
1.2. Then p̂n(r) := νd(Wn ∩Ξ⊕ (−r S))/νd(Wn) is unbiased and strongly consistent estimator
for p(r), where the consistency results from Theorem 2.1 and the spatial ergodic theorem, see
Chapt. 12.2 in [4]. Hence, the empirical contact distribution function ĤS,n(r) turns out to be
strongly consistent (even uniformly),

ĤS,n(r) := 1− 1− p̂n(r)
1− p̂n(0)

P−a.s.
−−−−→
n→∞

HS(r) for r ≥ 0

such that, for S = Bd
1 and r > 0, λ̂n := − log(1− ĤS,n(r))/2 r

P−a.s.
−−−−→
n→∞

λ.

The above-mentioned invariance property was already mentioned in [16] and [17]. But neither
there nor elsewhere – to the best of authors’ knowledge – this rather surprising property of the
stationary particle process {Zi, i ≥ 1} has been precisely formulated and rigorously proved.

The family {Zi, i ≥ 1} can be regarded as a stationary tessellation / mosaic, see Chapt. 10
in [19], with “thick boundaries”. In Figure 1 the white polygons coincide with the interior of
the closed cells Zi and the black strips form their boundaries. In accordance with the above
definition the zero cell Zo is a random element in P ′d with (conditional) distribution

Po(A) := P ∗o (A ∩ {F ∈ Fd : od ∈ F})
P ∗o ({F ∈ Fd : od ∈ F})

for A ∈ σf ∩ P ′d , (3.2)

where P ∗o denotes the distribution of the random compact convex polytope

Z∗o :=


⋃
i≥1 1(od ∈ int(Zi))Zi if od /∈ Ξλ,Qd,d−1

∅ if od ∈ Ξλ,Qd,d−1

.

On the other hand, the typical cell Ẑo associated with the tessellation {Zi, i ≥ 1} is defined via
the Palm mark distribution P̂o of the stationary marked point process Ψα :=

∑
i≥1 δ[α(Zi),Zi−α(Zi)]

on Rd with measurable mark space [P ′d, σf ∩P ′d], where α | K′d 7→ Rd is some measurable map-
ping with α(K + x) = α(K) + x for all x ∈ Rd and K ∈ K′d, for example α(K) = lex max(K)
in what follows. From the theory of stationary marked point process, see Chapt. 3.2 in [19] or
[4], we use the factorization of the intensity measure E Ψα(·) which implies the existence of a
unique probability measure

P̂o(A) = 1
γd

E Ψα([0, 1)d ×A) for A ∈ σf ∩ P ′d,o (3.3)

12



concentrated on P ′d,o := {C ∈ P ′d : lex max(C) = od} with the intensity γd := E #{i ≥ 1 :
lex max(Zi) ∈ [0, 1)d}. Now, we are ready to formulate the announced properties of Zo and
Ẑo:

Theorem 3.1. Under the assumptions made at the beginning of Sect. 3, it holds:

1. The distribution Po of the zero cell Zo does not depend on the distribution of Ξ0.

2. For any translation-invariant functional h : P ′d 7→ [0,∞) the expectation
Eh(Ẑo) =

∫
P ′
d,o
h(C) P̂o(dC) does not depend on the distribution of Ξ0.

Proof. For all i ≥ 1, the sets Zi and thus the zero cell are regular closed RACS, i.e. Zo =
cl(intZo) P-a.s. As shown in [18], Chapt. 1.4.2, the distribution Po is therefore determined
if the inclusion functional I(L) := Po({F ∈ Fd : L ⊆ F}) is known for every finite set L.
By the definition (3.2) and P ∗o ({F ∈ Fd : od ∈ F}) = P(od /∈ Ξλ,Qd,d−1) = 1 − p(0) =
exp{−λE ν1(Ξ0)}, it follows that

I(L) = Po({F ∈ Fd : L ⊆ F}) = P ∗o ({F ∈ Fd : L ⊆ F , od ∈ F})/(1− p(0))

= P(L ⊆ Z∗o , od /∈ Ξλ,Qd,d−1)/(1− p(0)). (3.4)

Since Z∗o ∈ P ′d iff od /∈ Ξλ,Qd,d−1 , it is obvious that L ⊆ Z∗o for a finite set L implies that Z∗o
contains the convex hull CL := conv(L ∪ {od}) and vice versa. Hence, it suffices to show that
I(CL) does not depend on the distribution of Ξ0. It is immediately clear that CL ⊆ Z∗o iff the
relative interior relint(CL) of the polytope CL is contained in the (P-a.s.) open set Ξcλ,Qd,d−1

.
Further, due to the stationarity of the P-(d−1)-CM Ξλ,Qd,d−1 , the probability that at least one
of the at most #L+ 1 vertices of CL lies in the boundary ∂Ξλ,Qd,d−1 is zero so that the events
{CL = cl(relint(CL)) ⊂ Ξcλ,Qd,d−1

} and {CL ⊆ Z∗o} have the same probability. Therefore, by
applying (1.4) and noting that π1(−ΘT

0 CL) is an interval, we have

P(CL ⊆ Z∗o , od /∈ Ξλ,Qd,d−1) = P(CL ∩ Ξλ,Qd,d−1 = ∅) = 1− Tλ,Qd,d−1(CL)

= (1− p(0)) exp
{
−λ E ν1(π1(−ΘT

0 CL))
}
.

This combined with (3.4) gives I(L) = I(CL) = exp{−λ E ν1(π1(−ΘT
0 CL))} for any finite set

L ⊂ Rd. Thus, the first part of Theorem 3.1 is proved.

To prove the second part, we note that the intensity γd of Ψα with α(Zi) = lex max(Zi) can
be expressed as product γd = (1− p(0)) νd(Z(λ,Q(d)

0 )), where

νd(Z(λ,Q(d)
0 )) = λd

d!

∫
(Sd−1)d

| det(u1, . . . , ud)|Q
(d)
0 (du1) · · ·Q(d)

0 (dud) (3.5)
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and Z(λ,Q(d)
0 ) denotes the associated zonoid connected with a stationary Poisson hyperplane

process with intensity λ and spherical directional distribution Q(d)
0 , see [19]. A detailed proof of

the above shape of γd can be found among others in [2], see also [1]. Now, for any translation-
invariant functional g : P ′d 7→ [0,∞) we integrate g(·) w.r.t. the probability measure (3.2). For
doing this, we need to apply the Campbell theorem for stationary marked point processes, see
Chapt. 3.5 in [19], which implies that

E g(Zo) = 1
P(od /∈ Ξλ,Qd,d−1) E

[∑
i≥1

1(od ∈ int(Zi)) g(Zi)
]

= γd
1− p(0)

∫
P ′
d,o

∫
Rd
g(C) 1(od ∈ x+ C) dx P̂o(dC) = γd

E
[
g(Ẑo) νd(Ẑo)

]
1− p(0)

Finally, replacing g(·) by h(·)/νd(·) for an arbitrary translation-invariant functional h : P ′d 7→
[0,∞) reveals that

Eh(Ẑo) = 1− p(0)
γd

E
[
h(Zo)/νd(Zo)

]
= 1
νd(Z(λ,Q(d)

0 ))
E
[
h(Zo)/νd(Zo)

]
. (3.6)

The first part of Theorem 3.1 and (3.5) show that the right-hand side of (3.6), and thus also
the expectation on the left-hand side, does not depend on the distribution of Ξ0. Hence, the
proof of Theorem 3.1 is complete.
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