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„Mathematik setzt ins Verhältnis, gibt Maß und Zahl und ist völlig logisch.
Aber warum die Welt so ist, wie sie ist, das kann die Mathematik auch nicht
erklären. Natürlich kann man die Sonnenstrahlung berechnen, man kann sie
genau messen, aber was daraus wird: Das Leben auf der Erde, der Sauerstoff
zum Atmen, die Wärme auf unserer Haut, davon wissen die Gleichungen nichts.
Ich bin mir ganz sicher: Mutter Natur schmunzelt, wenn sie immer wieder
sieht, wie wir versuchen, alles mögliche zu berechnen, denn sie weiß, es kommt
ein Zauber, ein Geheimnis hinzu, das sich in keiner Zahl und keiner Formel
ausdrücken lässt.“

Prof. Dr. Harald Lesch





Abstract
Waves attenuate with distance travelled into rough and randomly disordered media. This
is reminiscent of the wave localisation phenomenon, which is a product of wave scattering
and occurs in many branches of wave science. Wave localisation refers here to exponential
attenuation (on average) of waves in rough media. In this work, the attenuation of waves
travelling along rough solids is studied in the setting of strings, beams and floating plates.

Two methods for computing the complex-valued effective wavenumber of a rough beam in
the context of linear time-harmonic theory are presented. The roughness of the beam is
modelled as a continuous random process of known characteristic length and root-mean-
square amplitude for either the beam properties (beam mass or beam rigidity) or beam
thickness. The first method is based on a random sampling method, with the effective wave
field calculated as the mean of a large ensemble of wave fields for individual realisations of
the roughness. The individual wave fields are calculated using a step approximation, which
is validated for deterministic problems of mass and rigidity variations via comparison to
results produced by an integral-equation approach. The second method assumes a splitting
of the length scale of the fluctuations and an observation scale, employing a multiple-scale
approximation of the beam deflection to derive analytical expressions for the effective
attenuation rate and phase change. Numerical comparisons show agreement of the results
of the random sampling method and the multiple-scale approximation for a wide range
of parameters in the small roughness-amplitude regime. It is shown that the effective
wavenumbers only differ by a real constant between the cases of varying beam mass and
rigidity.

The numerical and semi-analytical methods are extended to describe the attenuation of
water waves in a two-dimensional fluid domain, which has its surface covered by a rough
thin elastic plate and is of finite depth. The plate roughness is modelled with similar
properties as for the in-vacuo beam problem. The numerical method is based on an
approximation of the full-linear solution in the fluid domain, the semi-analytical method
uses a multiple-scale expansion of the velocity potential, from which an equation can be
derived describing the attenuation of the effective wave field. The results obtained via the
numerical method validate the multiple-scale approach for small-amplitude plate roughness.
However, individual wave fields attenuate significantly slower that effective wave fields for
the in-vacuo beam and floating plate problems.

Localisation of individual wave fields is shown for strings with continuous density variations
for large roughness amplitudes, for which multiple-scale approaches are not valid anymore.
Individual and effective wave fields show similar attenuation behaviour in this large
roughness-amplitude regime, and a connection between strings with continuous roughness
profile and beaded strings is established. Finally, a beam with periodically located notches
is presented and our numerical method is modified to simulate wave propagation in the time
domain. It is shown that introducing disorder into the notch depths leads to localisation
in the audible frequency range.

Key words: Random media, wave attenuation, effective wave field, multiple-scale approach,
thin-elastic solids, beam in vacuo, floating plate, inhomogeneous string, localisation
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CHAPTER 1

Introduction

Wave propagation through rough media has long been a topic of interest, e.g. in acoustics
and electromagnetics, see e.g. Sheng 2006. In the last twenty years, the interest in wave
interaction with very large floating structures grew considerably, such as floating landing
platforms and offshore structures, which serve e.g. in the offshore oil and gas production.
Motivation for research in this area can be found in Kashiwagi 2000 and Watanabe et al.
2004, and an overview over future projects and applications is given by Lamas-Pardo et al.
(2015). Such very large floating structures with large horizontal dimension compared to
their vertical extent bend under incident waves, see Evans and Porter 2007. To under-
stand the influence of varying thickness profiles, imperfections and the construction of
these structures with different materials on their interaction with water waves, profile
variations have to be taken into account and studied. The research on such very large
floating structures is closely connected to modelling interactions of ocean waves with sea
ice, which exhibits non-homogeneities naturally due to cracks, pressure ridges or property
and thickness variations, see Squire 2008. Studying wave attenuation along a long beam
in vacuo plays an important role in understanding the effects of property and thickness
variations. This simpler in-vacuo beam problem has the same key features as the more
complex floating plate problem.

Beam models serve, of course, not only as simplified models, but they have been playing a
fundamental role in engineering in the last centuries and enabled generations of engineers
to solve a variety of construction problems, see e.g. Carrera et al. 2015. A beam is a
structure with one dimension much larger than the others and is designed to bear loads
transverse to its longitudinal axis. Hence, the deflections occur mainly transverse to the
longitudinal axis and the corresponding dynamic beam motion is called the flexural motion,
see Doyle 1997. Models for wave propagation along elastic beams are often based on homo-
geneous beam assumptions, i.e. constant material properties and constant thickness. Wave
propagation in a uniform beam is well understood and an extensive study of beams, plates
and corresponding vibration analysis can be found in Timoshenko and Woinowsky-Krieger
1959, Mindlin 1951, and Hagedorn and DasGupta 2007. However, the assumption of
homogeneous beam properties may not hold and the wave-propagation characteristics over
large distances may be affected by the plate roughness causing attenuation of the waves. In
Ch. 2, we model flexural wave propagation along a long, thin-elastic beam and study the
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2 Chapter 1 Introduction

influence of random fluctuations of the material density, the beam rigidity and the beam
thickness (which leads to both varying material density and rigidity). The fluctuations
shall be continuous and are incorporated as a function of the longitudinal coordinate via a
continuous random process. We model the rough, thin-elastic beams using Euler–Bernoulli
beam theory. In this beam theory, effects of bending moment of the beam are taken into
account and we assume small shear forces only such that shear deformation can be neglected.

In the case of random media, the effective wave field, i.e. the mean wave field with
respect to an ensemble of individual realisations, is often the quantity of interest, in
particular the effective wavenumber is of primary interest to describe the attenuation of
the wave field, which occurs due to the variations in the beam properties and its thickness.
However, computation of the effective wave field and/or effective wavenumber can be
numerically intensive and an analytical method is desirable. In general, analytical solutions
cannot be found for problems involving complex geometry. In our problem formulation
with a prescribed random process describing the profile fluctuations, an analytical method
can be derived. The analytical method describes the modulation of the wave propagating
along a rough thin-elastic Euler–Bernoulli beam encountering random variations of the
beam mass density, rigidity and thickness using a multiple-scale approximation. Analytical
methods allow to extract qualitative aspects like dependence on parameters and asymptotic
behaviour of the problem and its solution, which might be hard to discover with numerical
methods, see Hagedorn and DasGupta 2007. However, to validate the analytical method
and its predictions for the attenuation coefficients and phase changes, which are provided
as the imaginary and real component of the effective wavenumber, respectively, a numerical
method is used. Instead of using boundary element or finite element simulations, which
can be applied to solid structures with non-simple shapes, see e.g. Chaves et al. 1999 for
boundary element formulations and Reddy 2002 for finite element formulations, we present
a numerical method, which is based on a step approximation of the underlying continuous
roughness fluctuations, and which allows to compare results for individual and effective
wave fields. To obtain effective wave fields as the average of individual wave fields in the
numerical method, wave fields have to be calculated for a sufficiently large number of
randomly generated roughness profiles using a Monte Carlo algorithm.

After a detailed analysis of wave propagation along a thin-elastic beam in vacuo with
continuous roughness profile, we extend this model to a rough thin-elastic plate floating on
water in Ch. 3. As mentioned before, this problem setting has in particular applications
in modelling interactions of ocean waves with man-made very large floating structures as
well as sea ice (which are related closely and have been subject of extensive research). The
interaction of ocean waves with sea ice in marginal ice zones plays an important role in
our global climate. A marginal ice zone is an immense area in the polar regions consisting
of a huge number of ice floes separating continuous ice from the open ocean, and is formed
by ocean waves, which break the sea ice, see Wadhams et al. 1986. Simultaneously, the
formed marginal ice zone prevents the continuous ice from being broken further, since
the ice floes scatter the incoming ocean waves and the extent of marginal ice zones is
consequently controlled by these processes. Sizes of ice floes in the marginal ice zone vary
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from a few metres to hundreds of metres in diameter, see Dixon and Squire 2000. The sizes
are typically determined by the wavelengths of the incoming ocean waves, which range up
to several hundreds of metres. Ice floes tend to be of sizes between a quarter and half a
wavelength of the waves which induce the breaking, see e.g. Meylan 2003. Small ice floes
are induced by short waves, which are incident on the marginal ice zone close to the open
ocean, and their energy is scattered, hence small ice floes are present in this outer area of
the marginal ice zone. With increasing distance from the open ocean, fewer short waves are
present due to scattering in the outer marginal ice zone and the diameters of the ice floes
increase. Incident waves with large wavelengths can pass the outer areas of the marginal
ice zone nearly unimpeded and travel towards the continuous ice. Hence, very long ice
floes close to the continuous ice play a crucial role of preventing the continuous ice from
being broken by scattering a significant amount of energy of these long waves. The wave
energy attenuates exponentially with distance travelled into the marginal ice zone, see e.g.
Meylan et al. 2014. The topic of wave interaction in the marginal ice zones attracted huge
research interest in the last decades and the approaches are too numerous to list them here.
We refer the reader to Squire 2007, 2010 and Broström and Christensen 2008, who gave an
extensive overview over literature, models and conducted experiments in this area.

It is our aim to model and determine the attenuation of the long water waves, which already
traversed the outer marginal ice zone, by these very large floating ice floes, which exist close
to the continuous sea ice. For this, it is physically important to include thickness variations
of the ice floes, which has significant impact on the scattering and attenuation behaviour,
see e.g. Bennetts and Squire 2012. Since two length scales exist for this problem, which are
important to describe the attenuation behaviour analytically, we adopt a multiple-scale
approximation, which is based on the multiple-scale approximation for the in-vacuo beam
problem. The small scale describes locally the thickness variations, which are modelled
to be continuous, and the large scale is the observations scale, on which attenuation is
observable. A solution for the equation describing the amplitude on the large scale is
sought, which naturally depends on the small-scale behaviour. Since those very large ice
floes are only between 1 m and 2 m thick, their rigidity is relatively small and they undergo
flexural bending for large wavelengths. Hence, we model those ice floes of variable thickness
as elastic Euler–Bernoulli plates floating on water, see e.g. Meylan 2002. The model of a
long, rough thin-elastic plate floating on water is an extension of the problem for wave
propagation along a long, rough thin-elastic beam in vacuo. This extension introduces a
vertical dimension to the problem, and a 5th-order boundary condition at the interface
of water and the elastic plate has to be satisfied. The plate roughness is modelled by
small-amplitude, continuous variations in the plate thickness along the longitudinal 𝑥-axis
and is assumed to be uniform in the other horizontal direction. Variations in the plate
mass and plate rigidity can easily be incorporated as well and are studied for comparison.
Due to the uniformity along the horizontal 𝑦-axis, the problem is two-dimensional, hence
the problem is set in a two-dimensional fluid domain, which has its surface covered by
an elastic plate. To validate the (semi-)analytical multiple-scale method for the velocity
potential in the floating plate problem describing the effective wave field, the numerical
method for the in-vacuo beam problem is extended to deal with this more complicated
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problem. Similar to the study by Evans and Porter (2007), we expect qualitative features
of the in-vacuo beam problem to appear in the floating plate problem again.

Scattering and wave-localisation phenomena occur in many branches of wave science
for incident waves propagating through rough and randomly disordered media. The
phenomena have been studied extensively in the past, in particular for one-dimensional
random media. We take advantage of the previous work and consider wave propagation
along one-dimensional strings in Ch. 4, which (in contrast to beams) do not transmit or
resist bending moment and shear stress, see e.g. Hagedorn and DasGupta 2007, and no
evanescent waves occur. The motivation for this investigation is mostly derived from the
results of the in-vacuo beam problem as well as the floating plate problem, and we hope
to get a deeper understanding of the observed features in this simpler setting, for which
higher-order conditions do not have to be taken into account anymore. In the literature,
inhomogeneities are incorporated into strings via (continuously) varying density and (dis-
crete) beads located on the string, but wave propagation along strings with continuous and
discrete inhomogeneities has been studied only separately to the knowledge of the author.
A literature overview over strings with either continuous or discrete inhomogeneities as
well as fundamental and relevant scattering and localisation results is given in Ch. 4.

Our goal in Ch. 4 is to establish a connection between the continuous and discrete
problem. For this, it is necessary to study the respective problems first. After analysing
wave propagation along strings with continuously varying density, which exhibits a similar
fluctuation profile as for the previous problems, we focus on the problem of a string
beaded with point scatterers, for which the Helmholtz equation is satisfied between the
scatterers. We study wave propagation along a perturbed periodic array of point scatterers,
i.e. randomness is here incorporated as positional disorder from the underlying periodic
arrangement of the scatterers, for which the dispersion relation is well known. The setting
is called periodic if the discrete point scatterers are identical and mounted to the string
with regular spacings, see e.g. Langley 1995. Periodic structures have the advantage that
they can be analysed (computationally efficiently) by considering one periodic unit only, see
e.g. Bardell et al. 1996. We analyse the influence of positional disorder from the underlying
periodic setting for a broad regime of scattering strengths. The transition from a periodic
to a disordered setting gives insight into fundamental scattering properties, which might
be essential for understanding more complex problem formulations and applications. To
establish a connection between the continuous and the discrete problem, the (continuous)
roughness profile in the continuous problem is clustered into humps and their statistical
properties are transferred to the discrete problem, assigning the scattering strength of the
discrete scatterers and the positional disorder.

Finally, we consider wave propagation along beams in vacuo with periodic discrete scatterers
in Ch. 5. The discrete scatterers are realised as notches along the beam, where the notch
lengths are of the order of the wavelengths, and the distance between adjacent notches is
uniform and chosen to be the same as the notch lengths. Periodic beam structures have
been studied numerously with different analytical approaches and are well understood, e.g.
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simple periodic beams supported at periodic intervals are studied by Miles (1956), and
Bobrovnitskii and Maslov (1966). Bardell et al. (1996) extended the periodically supported
beam model and studied wave propagation along a periodic beam with identical, but
non-symmetric periods, which has applications e.g. in aeronautical and marine construction
due to lightening holes and suchlike along beams. It was shown that the periodic asymmetry
could be used to design structures with minimum vibration response. For a sufficiently large
number of periodic units along the beam, wave propagation along the beam typically shows
a pass- and stopband behaviour. While passbands are frequency ranges, for which waves
with these frequencies are not attenuated and energy is transmitted along the structure,
stopbands are frequency ranges, for which no energy is transmitted and the waves are fully
attenuated, see Langley 1995. In this work, we consider a finite number of periodically
located notches along a beam with otherwise uniform geometry. In contrast to Hodges and
Woodhouse 1989a,b, who showed localisation of vibrations in a bending beam for irregular
spacing between discrete scatterers, we focus on irregular notch depths. It is our goal to
investigate the effects of notch depth variations on the pass- and stopbands, and to achieve
minimum transmission and localisation of waves in the audible frequency range along the
notched beam.

Guided wave propagation in beams with structural defects attracted significant attention
in the last decades. Damages and defects such as cracks in structures can have severe
consequences in a wide range of infrastructures. Since vibrations in structures are affected
by cracks, they can be used to detect cracks, and identify their location and severity. Ultra-
sonic guided waves are easy to generate and can be used for global structure inspections,
therefore ultrasonic guided waves are commonly used in structural health monitoring to
examine structures and find damages at an early stage, see He and Ng 2017. Due to their
widespread use in structures, vibrations in beams with defects have been studied widely.
A good overview over ultrasonic guided waves in beams and solid media can be found in
Rose 2014. Typically in these studies, Lamb waves are generated at one beam end using
piezoelectric transducers, which we adapt for our simulations. For waves with frequencies in
the audible range, we do not have to deal with a variety of wave modes propagating along
the beam, since only S0 and A0 modes, i.e. symmetric and anti-symmetric Lamb modes of
the lowest-order, respectively, exist in this frequency regime, see Behzad et al. 2013, who
used this feature for waves with frequencies in the low ultrasonic range propagating along
beams with a single step. The numerical method, which is introduced in Ch. 2 and used for
solving the time-harmonic problems, is extended to describe wave propagation in the time
domain. In analogy to Montiel et al. 2012, the Fourier transform is applied, which makes
it possible to calculate dynamic wave propagation along the notched beam for waves with
a frequency spectrum directly from the frequency-domain solutions calculated with our
numerical method. This serves as the theoretical foundation for experiments, which have
to be conducted to show localisation of waves in the audible frequency range travelling
along beams with discrete notches of disordered depths.





CHAPTER 2

Wave attenuation along a rough thin-elastic beam

The effective wave field, i.e. the mean wave field with respect to an ensemble of individual
realisations, is often the quantity of interest in wave scattering problems. However, compu-
tation of the effective wave field and/or effective wavenumber can be a numerically intensive
task. The roughness is often assumed to originate from inclusions or discrete variations
of the medium properties, which induces non-smooth fluctuations. Several approaches
for simulating responses of beams with discontinuities can be found in the literature, e.g.
Failla and Santini (2007) dealt with Euler–Bernoulli beams with discontinuities in the
shear force and bending moment due to applied point forces and moments, Biondi and
Caddemi (2005) proposed closed-form solutions for Euler–Bernoulli beams with flexural
stiffness and slope discontinuities, requiring the knowledge of boundary conditions only,
Yavari et al. (2001) applied distribution theory to study beams with discontinuities in its
slope and mechanical properties. For Euler–Bernoulli plates, Weaver (1997, 1998) studied
multiple scattering at point scatterers, Evans and Porter (2007) discussed scattering by
a finite number of point scatterers, which are located arbitrarily in an infinite plate, and
Dixon and Squire (2000) used a coherent-potential approximation to describe flexural
waves scattered by (discrete) random variations in density, for which the analysis is similar,
but less complex than for random variations in Young’s modulus and the plate thickness.
However, these methods cannot be applied to problems involving continuously varying
thickness and material properties, which we focus on in this chapter. For continuous
thickness variations, Beran (1994) studied flexural waves in a plate strip with random
density fluctuations using a statistical modal analysis, and Chaves et al. (1999) extended
the existing plate bending boundary element method formulations, see e.g. Gospodinov
and Ljutskanov 1982, to incorporate plate thickness or stiffness variations, which is a
numerically expensive method. A different method is shown by Bilbao (2004), who used a
digital waveguide network method to simulate a signal along a beam with varying thickness,
a method which has been used widely with the aim of synthesising musical sound. For our
investigations of wave propagation along a long, rough beam with continuous variations,
we derive and present a numerical method as well as an analytical method.

In our problem formulation, the continuous fluctuations are defined by a Gaussian au-
tocorrelation function with a prescribed characteristic length, 𝑙G, and root-mean-square
(roughness) amplitude, 𝜖, also referred to as the roughness amplitude. Gaussian auto-
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8 Chapter 2 Wave attenuation along a rough thin-elastic beam

correlated random processes are widely used to model rough surfaces for isotropic and
homogeneous media, see Tsang et al. 2000, and are characterised with their mean and
covariance function only. More specifically, we consider the one-dimensional problem of
linear wave propagation along an infinitely long thin-elastic beam in vacuo. The underlying
differential equation is of fourth order, making the problem considerably more difficult than
related problems of second order, e.g. in standard acoustics of membrane problems. The
roughness is a long patch of either rapidly fluctuating mass or rigidity. This corresponds
to the roughness entering in the coefficients of the differential operator at zeroth or second
order, respectively. For a uniform beam, the wavenumber is real, but the effective wavenum-
ber for a rough beam is complex, with the imaginary component causing the effective wave
field to attenuate over the rough interval. The two quantities of interest are the effective
phase change and the effective attenuation coefficient (constituting the deviation of real
part of the effective wavenumber from the wavenumber of the underlying wave forcing and
the imaginary part of the effective wavenumber, respectively). The effective wavenumber
or its change from the wavenumber of the underlying uniform medium, 𝑘, is sought and
the numerical method and analytical method are applied to obtain the effective wavenumber.

Analytic theories for scattering problems include (i) asymptotic theories, often for long
waves compared to the length scale associated with the roughness (homogenisation limit,
e.g. Kohn and Vogelius (1984) considered effective plate equations for vanishing plate
thickness and rapidly varying fluctuations), (ii) perturbations from an underlying periodic
setting (as discussed for a one-dimensional acoustics problem by Maurel et al. (2010))
and (iii) closure assumptions (e.g. as mentioned before the coherent potential approxi-
mation, see e.g. Dixon and Squire 2000). Analytic solution methods have predominantly
been developed for problems in which the roughness originates from discrete scatterers
(inclusions or variations in the medium) and it is common to use analytic theories known
as Foldy’s method or the quasi-crystalline approximation, as described by Linton and
Martin (2005) for a two-dimensional acoustics problem. Direct numerical computations,
in which the effective wave field is calculated as the mean of a large ensemble of wave
fields for randomly generated realisations of the roughness, are typically based on addition
theorems, such as Graf’s formulae in two-dimensions. Often, they employ the fast mul-
tipole method (see e.g. Gimbutas and Greengard 2013) or other domain decomposition
methods (see e.g. Montiel et al. 2015) to accelerate computations for large numbers of
scatterers. The numerical methods capture the effective wave field up to an arbitrary
degree of accuracy, but rely on e.g. least-squares fitting to extract the effective wavenumber.

We derive a numerical method for our problem formulation, which is based on a ver-
sion of the step approximation outlined by Bennetts et al. (2015) for a water-wave problem.
In this approach, each individual realisation of the continuous rough profile is replaced
by discrete steps, permitting the individual wave fields to be calculated via an efficient
iterative scheme. The effective wave field is then computed by averaging a large ensemble of
realisations, and the components of the effective wavenumber are extracted by least-squares
fits. We validate the wave field produced by the step approximation for a deterministic
problem, by comparing it to the wave field obtained via an integral equation approach.
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Our analytical method is based on a multiple-scale approximation, similar to the approach
of Kawahara (1976) (again, for a water-wave problem). A separation of scales is assumed,
where the local scale is of the order of the wavelength as well as the characteristic length.
The observation scale, 𝐿ob, over which effective properties are sought, is assumed much
larger, 𝐿ob = 𝑙G/𝜖

2, with 𝜖 ≪ 1. The dependent quantities are then assumed to have a
two-scale expansion in 𝜖 and individual problems are found to be satisfied by each term in
the expansion. Passage to mean quantities allows us to derive an analytical expression for
the complex-valued effective wavenumber.

The chapter is organised as follows: We introduce the problem formulation and derive the
governing Euler–Bernoulli beam equation in Sec. 2.1. The step-approximation method to
solve the problem for beams with varying properties is described in Sec. 2.2 and validated
using integral equation approaches for deterministic mass and rigidity variations, which
are prescribed with deterministic humps, in Sec. 2.3. For the problem of deterministic
rigidity variations, different discretisation schemes in the step-approximation method are
examined. Before we focus on the problem of beams with rough profiles, we present the
underlying random process and the generation of rough profile realisations in Sec. 2.4. The
random-sampling method, which is essential to generate effective wave fields, is presented
in Sec. 2.5 together with the technique to measure the attenuation of wave fields. The
problems of wave propagation along beams with continuously varying mass, beams with
continuously varying rigidity and beams with continuously varying thickness are posed in
Secs. 2.6–2.8 and multiple-scale methods for the respective problems are derived. Numerical
results are given, comparing the results obtained via the analytical and the numerical
approach, and we discuss their advantages and disadvantages. Moreover, the relation of the
effective wave field and wave fields for individual realisations of the roughness is discussed.
A summary and discussion of the results of the chapter are given in Sec. 2.9. Results of
this chapter were partially published in Rupprecht et al. 2017.

2.1 Problem formulation

We consider an infinitely long thin beam in vacuo. The problem is one-dimensional in
the horizontal coordinate 𝑥, which allows us to describe the beam via the Euler–Bernoulli
beam equation, assuming that no deformations occur in the plane of the beam cross-section
and that during deformation, the cross-section remains plane and normal to the deformed
axis of the beam, see e.g. Bauchau and Craig 2009. One way to derive the dynamic
Euler–Bernoulli beam equation is based on a variational principle leading to the Euler–
Lagrange equation, see e.g. Debnath 2012. In the following, we briefly derive the dynamic
Euler–Bernoulli beam equation using a simple physical force balance ansatz, see Alexander
2014. We consider transverse deflection along a beam, which is exposed to an external
force, and the beam deflection is U(𝑥,𝑡). 𝑓(𝑥,𝑡) describes the external force per unit length
of the beam. The bending moment and the shear force along the beam are denoted with
𝑀(𝑥,𝑡) and 𝑉 (𝑥,𝑡), respectively. For our derivation, we concentrate on a beam element of
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length 𝛥𝑥. Then, the inertia force, which acts on this beam element, is given by

𝜌𝐴(𝑥)𝛥𝑥𝜕
2U(𝑥,𝑡)
𝜕𝑡2

,

where 𝜌 is the beam’s mass density and 𝐴(𝑥) is the cross-sectional area of the beam. The
inertia force is balanced in vertical direction with

− (𝑉 +𝛥𝑉 ) + 𝑓(𝑥,𝑡)𝛥𝑥+ 𝑉 = 𝜌𝐴(𝑥)𝛥𝑥𝜕
2U(𝑥,𝑡)
𝜕𝑡2

. (2.1)

The situation for the beam section of length 𝛥𝑥 is shown schematically in Fig. 2.1.

f

∆x

M

V

M + ∆M

V
+

∆
V

Figure 2.1: Diagram of a beam section of length 𝛥𝑥 and adjoining forces under transversal
deflection

Furthermore, balancing the moments in the beam section yields

(𝑀 +𝛥𝑀) − (𝑉 +𝛥𝑉 )𝛥𝑥+ 𝑓(𝑥,𝑡)𝛥𝑥𝛥𝑥2 −𝑀 = 0. (2.2)

When we consider the infinitesimal transition 𝛥𝑥 → 0, i.e.

𝛥𝑉 = 𝜕𝑉

𝜕𝑥
𝛥𝑥 and 𝛥𝑀 = 𝜕𝑀

𝜕𝑥
𝛥𝑥,

and neglect higher-order terms under the assumption of small deformations only, Eqns. (2.1)
and (2.2) become

−𝜕𝑉 (𝑥,𝑡)
𝜕𝑥

+ 𝑓(𝑥,𝑡) = 𝜌𝐴(𝑥)𝜕
2U(𝑥,𝑡)
𝜕𝑡2

, (2.3a)

𝜕𝑀(𝑥,𝑡)
𝜕𝑥

− 𝑉 (𝑥,𝑡) = 0. (2.3b)

Combining Eqns. (2.3), we obtain

− 𝜕2𝑀(𝑥,𝑡)
𝜕𝑥2 + 𝑓(𝑥,𝑡) = 𝜌𝐴(𝑥)𝜕

2U(𝑥,𝑡)
𝜕𝑡2

. (2.4)
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We also know from classical beam theory, see e.g. Doyle 1997, that the bending moment is
of the form

𝑀(𝑥,𝑡) = 𝐸𝐼(𝑥)𝜕
2U(𝑥,𝑡)
𝜕𝑥2 , (2.5)

where 𝐸 denotes the Young’s modulus and 𝐼 the moment of inertia of the beam cross
section. Young’s modulus is a material constant describing the linear relation between
tension and strain during an elastic deformation of a solid, see e.g. Ashby and Jones 2011.
Combining Eqn. (2.4) and Eqn. (2.5) gives the dynamic Euler–Bernoulli beam equation,
which describes the transverse deflection of a non-uniform beam with external force 𝑓 ,

𝜕2

𝜕𝑥2

(︂
𝐸𝐼(𝑥)𝜕

2U(𝑥,𝑡)
𝜕𝑥2

)︂
+ 𝜌𝐴(𝑥)𝜕

2U(𝑥,𝑡)
𝜕𝑡2

= 𝑓(𝑥,𝑡). (2.6)

The product of Young’s modulus and the moment of inertia of the beam cross section, 𝐸𝐼(𝑥),
describes the beam rigidity and will be taken together in the following as 𝑏. Furthermore,
the product of mass density and cross-sectional area, 𝜌𝐴(𝑥), appearing in Eqn. (2.6), is
the mass per unit length. We will denote the mass per unit length as 𝑔 and refer to it for
the sake of brevity as mass only in the following. Together we have

𝑏(𝑥) := 𝐸𝐼(𝑥), (2.7a)
𝑔(𝑥) := 𝜌𝐴(𝑥). (2.7b)

We treat problems in which the beams are not subject to external forces, hence 𝑓 ≡ 0 and
the right-hand side of Eqn. (2.6) vanishes.

Also, we focus on time-harmonic waves with single angular frequency travelling along the
beam. The superposition principle, which plays an important role in the theory of linear
waves, allows us in the setting of our linear model to express solutions of problems for
waves with non-single frequencies as superposition of solutions for single frequencies, see
e.g. Billingham and King 2001. Focusing on time-harmonic waves with a single angular
frequency 𝜔, we can study the steady-state behaviour of the beam deflection, U(𝑥), and its
spatial part, 𝑢(𝑥), fulfils

U(𝑥,𝑡) = Re
{︀
𝑢(𝑥)e−i𝜔𝑡

}︀
, (2.8)

where i denotes the imaginary unit, and it satisfies the linear thin-beam equation

𝜕2

𝜕𝑥2

(︂
𝑏(𝑥)𝜕

2𝑢(𝑥)
𝜕𝑥2

)︂
− 𝛼𝑔(𝑥)𝑢(𝑥) = 0, 𝑥 ∈ (−∞,∞), (2.9)

where 𝛼 = 𝜔2 is the angular frequency squared. The wavenumber is then given by

𝑘(𝑥) =
(︁𝛼𝑔
𝑏

)︁1/4
. (2.10)

We consider right-travelling waves of unit-amplitude coming from 𝑥 → −∞ and study their
attenuation along thin, elastic beams, which exhibit roughness in either their mass, rigidity
or thickness over a long interval.
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2.2 Step-approximation method

To solve the problem of wave propagation along a thin, elastic beam with a general
roughness profile (varying mass, varying rigidity or varying thickness, here), we have to
use a numerical solution procedure. We use a method, which is based on the approxi-
mation of the underlying roughness profile by piecewise constant function, the so-called
step-approximation method.

Since we are interested in the impact of the beam roughness on wave propagation along
very long beams, it is reasonable to neglect the boundaries and consider an infinitely long
beam. For this, the roughness shall extend over a long, finite interval 𝑥 ∈ (0,𝐿) and be
constant in the surrounding intervals (−∞, 0) and (𝐿,∞). In each of the problems, i.e.
varying mass, varying rigidity and varying thickness problems, the roughness profile (beam
mass, beam rigidity and beam thickness, respectively) is approximated by a piece-wise
constant function on 𝑀 ≫ 1 sub-intervals, with (−∞, 0) and (𝐿,∞) the 0th and (𝑀 + 1)th
sub-intervals, respectively. In Fig. 2.2 we can see an example realisation of a continuous
varying mass profile, 𝑔(𝑥), fluctuating about the mean mass 𝑔, and a corresponding step
approximation of the profile.

x

g

g(x)

Figure 2.2: Example realisation of continuous roughness profile (grey curve) and corresponding
step approximation with four sub-intervals per correlation length (black) for varying mass
problem

We denote the value of the mass in the 𝑚th sub-interval as 𝑔𝑚, and set it to be equal to the
value of the corresponding continuous mass profile at the mid-point. The wavenumber in the
𝑚th sub-interval is then given by 𝑘𝑚 = (𝛼𝑔𝑚/𝑏)

1
4 . The mean wavenumber corresponding

to the mean mass 𝑔, which is the constant beam mass in the semi-infinite intervals, is
denoted with 𝑘 = (𝛼𝑔/𝑏) 1

4 . This procedure can be easily transferred to the problems
of varying rigidity and varying thickness. For the problem of varying beam rigidity, the
method is applied in an identical fashion but for the step approximation of the rigidity
profile, 𝑏(𝑥) (0 < 𝑥 < 𝐿), and for the problem of varying beam thickness for the thickness
profile, ℎ(𝑥) (0 < 𝑥 < 𝐿).
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In the 𝑚th sub-interval, the wave field can be expressed as

𝑢𝑚(𝑥) = 𝑎(0)
𝑚 ei𝑘𝑚𝑥 + 𝑎(1)

𝑚 e−𝑘𝑚𝑥 + 𝑏(0)
𝑚 e−i𝑘𝑚𝑥 + 𝑏(1)

𝑚 e𝑘𝑚𝑥. (2.11)

The wave amplitudes 𝑎(0)
𝑚 and 𝑏

(0)
𝑚 correspond to right- and left-travelling waves, respec-

tively, and 𝑎
(1)
𝑚 and 𝑏

(1)
𝑚 correspond to right- and left-decaying evanescent waves. The

motion is forced by a unit-amplitude incident wave propagating in the positive 𝑥-direction
from 𝑥 → −∞, which is set via 𝑎(0)

0 = 1 and 𝑎
(1)
0 = 𝑏

(0)
𝑀+1 = 𝑏

(1)
𝑀+1 = 0.

When discretising the rough interval of the infinitely long beam with the step approximation
into 𝑀 sub-intervals, the scattering interfaces are located at 𝑥𝑚, 𝑚 = 0, 1, . . . ,𝑀, with
𝑥0 = 0 and 𝑥𝑀 = 𝐿. Since the Euler–Bernoulli beam Eqn. (2.9) has to be satisfied along
the whole interval (−∞,∞), we can pose the following one-dimensional weak formulation
for an arbitrary square-integrable test function 𝜙 with square-integrable derivatives of first
and second order to characterise the continuity conditions at each scattering interface,

ˆ ∞

−∞

[︀
𝜕2

𝑥

(︀
𝑏(𝑥) 𝜕2

𝑥𝑢(𝑥)
)︀

− 𝛼 𝑔(𝑥)𝑢(𝑥)
]︀
𝜙d𝑥 = 0, (2.12)

where the notation 𝜕𝑥 = 𝜕
𝜕𝑥 is used for convenience. Eqn. (2.12) has to hold in every

sub-interval (and ambient semi-infinite interval), hence
ˆ 𝑥𝑚+1

𝑥𝑚

[︀
𝜕2

𝑥

(︀
𝑏(𝑥) 𝜕2

𝑥𝑢(𝑥)
)︀

− 𝛼 𝑔(𝑥)𝑢(𝑥)
]︀
𝜙d𝑥 = 0 (2.13)

for 𝑚 = 0, 1, . . . ,𝑀 − 1. Using the linearity of the integral and integration by parts then
yields
ˆ 𝑥𝑚+1

𝑥𝑚

𝑏(𝑥)𝜕2
𝑥𝑢(𝑥)𝜕2

𝑥𝜙 d𝑥−
[︀
𝑏(𝑥)𝜕2

𝑥𝑢(𝑥)𝜕𝑥𝜙
]︀𝑥𝑚+1

𝑥𝑚
+

+
[︀
𝜕𝑥

(︀
𝑏(𝑥)𝜕2

𝑥𝑢(𝑥)
)︀
𝜙
]︀𝑥𝑚+1

𝑥𝑚
−
ˆ 𝑥𝑚+1

𝑥𝑚

𝛼𝑔(𝑥)𝑢(𝑥)𝜙 d𝑥 = 0. (2.14)

In order to satisfy the Euler–Bernoulli beam Eqn. (2.9), the following continuity conditions
at each scattering interface, located at 𝑥 = 𝑥𝑚, 𝑚 = 0, 1, . . . ,𝑀 , arise as natural boundary
conditions from the weak formulation in Eqn. (2.14) for arbitrary 𝜙,

⟨⟨𝑏(𝑥)𝜕2
𝑥𝑢(𝑥)⟩⟩𝑥=𝑥𝑚 = 0, (2.15a)

⟨⟨𝜕𝑥

(︀
𝑏(𝑥)𝜕2

𝑥𝑢(𝑥)
)︀
⟩⟩𝑥=𝑥𝑚 = 0, (2.15b)

where ⟨⟨ · ⟩⟩𝑥=𝑥̃ denotes the jump of the included quantity at 𝑥 = 𝑥̃. The first condition
is the continuity of the bending moment, the second the continuity of the shear stress.
As essential boundary conditions, which ensures the validity of Eqn. (2.14), we apply the
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continuity of the beam deflection and its slope at the scattering interfaces 𝑥 = 𝑥𝑚,
𝑚 = 0, 1, . . . ,𝑀 ,

⟨⟨𝑢(𝑥)⟩⟩𝑥=𝑥𝑚 = 0, (2.15c)
⟨⟨𝜕𝑥𝑢(𝑥)⟩⟩𝑥=𝑥𝑚 = 0. (2.15d)

The continuity conditions of deflection (Eqn. (2.15c)), deflection slope (Eqn. (2.15d)),
bending moment (Eqn. (2.15a)) and shear stress (Eqn. (2.15b)) are used to couple the
wave fields in adjacent sub-intervals. These continuity conditions are applied at the jumps
between the finite sub-intervals within the rough interval, and the jumps at the ends of the
rough interval and the surrounding semi-infinite intervals, i.e. at 𝑥 = 0, 𝐿. In the following,
an iterative algorithm is presented, which is used to calculate the amplitudes 𝑎(0)

𝑚 and 𝑎(1)
𝑚

(𝑚 = 1, . . . ,𝑀 + 1), and 𝑏
(0)
𝑚 and 𝑏

(1)
𝑚 (𝑚 = 0, . . . ,𝑀) for a given roughness realisation.

The Sommerfeld radiation condition is satisfied in all problem formulations in this chapter,
which is described by Sommerfeld (1949) as “the sources must be sources, not sinks of
energy. The energy which is radiated from the sources must scatter to infinity; no energy
may be radiated from infinity into [...] the field.”, i.e. the wave field far away from the
roughness interval (0,𝐿) in the far field consists of only the outgoing and the incident waves,
and the respective problems are well-defined.

To calculate the wave field in the whole domain, we derive an iterative algorithm, which is
based on a solution procedure for multiple rows of circular ice floes, presented by Bennetts
and Squire (2009). Before we devote ourselves to the final iterative algorithm, we firstly
focus on the interaction of incident waves with a single interface at adjacent sub-intervals.
We begin our investigation with a single interface at 𝑥 = 0, connecting the semi-infinite
intervals to the left and right of the origin.

Without loss of generality, we consider waves of unit-amplitude incident on the inter-
face at 𝑥 = 0, which are of the form

u(0)
inc−

= eiΛ0𝑥I0, u(0)
inc+

= e−iΛ1𝑥I0,

u(1)
inc−

= eiΛ0𝑥I1, u(0)
inc+

= e−iΛ1𝑥I1,

where I𝑛, 𝑛 = 0,1, depicts the first and second column of the two-dimensional identity
matrix, respectively, and the diagonal matrices Λ0 and Λ1 contain the wavenumbers in
the intervals left and right to the interface, respectively,

Λ0 =
(︂
𝑘0 0
0 −𝑘0

)︂
and Λ1 =

(︂
𝑘1 0
0 −𝑘1

)︂
. (2.17)

Hence, eiΛ0𝑥 and e−iΛ1𝑥 are the diagonal matrices containing the phases for the right-going
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waves left to the interface and for the left-going waves right to the interface, respectively,

eiΛ0𝑥 =
(︂

ei𝑘0𝑥 0
0 e−𝑘0𝑥

)︂
and e−iΛ1𝑥 =

(︂
e−i𝑘1𝑥 0

0 e𝑘1𝑥

)︂
. (2.18)

Using the phase matrices in Eqn. (2.18), the wave field from Eqn. (2.11) for the semi-infinite
interval to the left and the first sub-interval can be expressed in matrix-notation as

𝑢0(𝑥) = 1
T
2 eiΛ0𝑥A0 + 1

T
2 e−iΛ0𝑥B0, (2.19a)

𝑢1(𝑥) = 1
T
2 eiΛ1𝑥A1 + 1

T
2 e−iΛ1𝑥B1, (2.19b)

where 12 is the two-dimensional one-vector and the two-dimensional vectors A0, A1 and
B0, B1 contain the wave amplitudes of the right- and left-going waves, respectively, in the
zeroth and first interval, i.e.

A0 =
(︃
𝑎

(0)
0
𝑎

(1)
0

)︃
, A1 =

(︃
𝑎

(0)
1
𝑎

(1)
1

)︃
and B0 =

(︃
𝑏

(0)
0
𝑏

(1)
0

)︃
, B1 =

(︃
𝑏

(0)
1
𝑏

(1)
1

)︃
. (2.20)

Considering the incident waves from Eqns. (2.16), the solutions for the incident waves from
the left, u(0)

inc−
and u(1)

inc−
, can be expressed as

u(𝑛)
− =

{︃
u(𝑛)

inc−
+ e−iΛ0𝑥 R(𝑛)

− , 𝑥 ≤ 0,
eiΛ1𝑥 T(𝑛)

− , 𝑥 ≥ 0,
𝑛 = 0, 1, (2.21a)

where R(𝑛)
− and T(𝑛)

− denote the two-dimensional vectors of reflection and transmission
coefficients, respectively. The reflection and transmission coefficients with subscript “−”
describe the reflection and transmission of right-going waves incident on the scattering
interface from the left. Those values can be directly calculated via the boundary conditions
in Eqns. (2.15). Analogously, for the incident waves from the right, u(0)

inc+
and u(1)

inc+
, we

obtain

u(𝑛)
+ =

{︃
e−iΛ0𝑥 T(𝑛)

+ , 𝑥 ≤ 0,
u(𝑛)

inc+
+ eiΛ1𝑥 R(𝑛)

+ , 𝑥 ≥ 0,
𝑛 = 0, 1. (2.21b)

Here, the vectors R(𝑛)
+ and T(𝑛)

+ describe the reflection and transmission from left-going
waves incident on the scattering interface from the right.

The two-dimensional solution vectors u(𝑛)
± , 𝑛 = 0, 1, contain the propagating as well

as the evanescent part of the solution for the respective incident waves of unit-amplitude.
To describe the wave interactions between adjacent intervals with incident waves of am-
plitude A0 (from the left) and B1 (from the right), the solutions in Eqn. (2.21a) and
Eqn. (2.21b) are expressed in terms of the incident amplitudes, which yields

u =
(︁

u(0)
− u(1)

−

)︁
A0 +

(︁
u(0)

+ u(1)
+

)︁
B1. (2.22)
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Hence, the one-dimensional (complex) wave field is again obtained by

𝑢 = 1
T
2 u. (2.23)

The two-dimensional vectors, which contain the reflection and transmission coefficients,
can be merged to 2 × 2-matrices describing the full reflection and transmission behaviour
for left- and right-going waves, i.e.

R± =
(︁

R(0)
± R(1)

±

)︁
and T± =

(︁
T(0)

± T(1)
±

)︁
. (2.24)

The square matrices R± and T± can be combined into a single matrix S,

S :=
(︂

R− T+
T− R+

)︂
, (2.25)

the so-called scattering matrix. Comparing Eqns. (2.19), (2.21), (2.22) together with
Eqn. (2.23), it is observable that we can write the outgoing waves with amplitudes B0
and A1 in terms of the incoming waves with amplitudes A0 and B1 with the help of the
scattering matrix S ∈ C4×4, (︂

B0
A1

)︂
=
(︂

R− T+
T− R+

)︂
⏟  ⏞  

=S

(︂
A0
B1

)︂
. (2.26)

Fig. 2.3 schematically shows the scattering of the incident waves with amplitudes A0 and
B1, and the resulting scattered waves with amplitudes A1 and B0. These vectors contain
the respective entries from Eqn. (2.11) for 𝑚 = 0, 1.

k0
k1

x = 0
0th interval

1st interval

T−

S−

T+

S+

a
(0)
0 eik0x + a

(1)
0 e−k0x

b
(0)
0 e−ik0x + b

(1)
0 ek0x b

(0)
1 e−ik1x + b

(1)
1 ek1x

a
(0)
1 eik1x + a

(1)
1 e−k1x

Figure 2.3: Scheme of wave interaction in adjacent intervals

Instead of relating the outgoing waves in respect of the incoming waves, we can equivalently
write the wave amplitudes to the right of the scattering interface, A1 and B1, in terms of
the waves amplitudes to the left of the scattering interface, A0 and B0, which gives the
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transfer matrix P ∈ C4×4, (︂
A1
B1

)︂
= P

(︂
A0
B0

)︂
. (2.27)

The transfer matrix P can be calculated from the scattering matrix S with

P =
(︂

T+ − R+inv (T−) R− R+inv (T−)
−inv (T−) R− inv (T−)

)︂
. (2.28)

Similarly, once the transfer matrix is known, we can directly derive the scattering matrix
S. Writing the outgoing waves in terms of the incoming waves (or the waves to the right
of the scattering interface in terms of the waves to the left of the scattering interface) is
an important step towards the iterative algorithm for multiple scattering interfaces. This
approach is useful for combining interactions of multiple scatterers since it avoids the use
of large matrices describing the interactions (and the solution of large systems).

It is clear that the solution also satisfies the Sommerfeld radiation condition in the
far-fields, since it yields

𝑢(𝑥) ∼

{︃
𝑎

(0)
0 ei𝑘0𝑥 + 𝑏

(0)
0 e−i𝑘0𝑥, 𝑥 → −∞,

𝑎
(0)
1 ei𝑘1𝑥 + 𝑏

(0)
1 e−i𝑘1𝑥, 𝑥 → ∞.

(2.29)

After the derivation of the scattering and transfer matrices for a single scattering interface,
we now proceed to the problem of 𝑀 + 1 scattering interfaces, which arise at 𝑥𝑚, 𝑚 =
0, 1, . . . ,𝑀 , when dividing the rough interval into 𝑀 sub-intervals. Let us consider the
sub-intervals adjacent to the (𝑚+ 1)th scattering interface at 𝑥𝑚. For 𝑚 = 0, . . . ,𝑀 , we
can write the full solution in the 𝑚th and (𝑚+ 1)th interval as

u𝑚(𝑥) = eiΛ𝑚(𝑥−𝑥𝑚)A−
𝑚 + e−iΛ𝑚(𝑥−𝑥𝑚)B−

𝑚, 𝑥𝑚−1 ≤ 𝑥 ≤ 𝑥𝑚, (2.30a)
u𝑚+1(𝑥) = eiΛ𝑚+1(𝑥−𝑥𝑚)A+

𝑚 + e−iΛ𝑚+1(𝑥−𝑥𝑚)B+
𝑚, 𝑥𝑚 ≤ 𝑥 ≤ 𝑥𝑚+1, (2.30b)

where the amplitudes of the right-travelling waves, A±
𝑚, and the amplitudes of the left-

travelling waves, B±
𝑚, are normalised with respect to the interface at 𝑥𝑚. The superscripts

in the amplitude notation denote the affiliation to waves to the left (−) and to the right
(+) of the (𝑚+ 1)th scattering interface. (Note, that in contrast to the representation in
Eqn. (2.20), the vectors A±

𝑚 and B±
𝑚 do not contain the wave amplitudes from Eqn. (2.11)

anymore, but their equivalents normalised to the respective scattering interface.) For the
first and (𝑀 + 1)th scattering interface in the representation in Eqn. (2.30), the limits
denoted with 𝑥−1 and 𝑥𝑀+1 disappear, which gives the solution in the semi-infinite intervals.

Applying the continuity conditions from Eqns. (2.15) at all scattering interfaces 𝑥𝑚,
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𝑚 = 0, . . . ,𝑀 , we obtain the scattering and transfer matrices,(︂
B−

𝑚

A+
𝑚

)︂
=
(︃

R(−)
𝑚 T(+)

𝑚

T(−)
𝑚 R(+)

𝑚

)︃
⏟  ⏞  

S𝑚

(︂
A−

𝑚

B+
𝑚

)︂
(2.31a)

and (︂
A+

𝑚

B+
𝑚

)︂
= P𝑚

(︂
A−

𝑚

B−
𝑚

)︂
, (2.31b)

where the 2 × 2-matrices R(±)
𝑚 and T(±)

𝑚 are the reflection and transmission matrices
describing the full reflection and transmission behaviour for left- and right-going waves at
the (𝑚+ 1)th scattering interface, which is located at 𝑥 = 𝑥𝑚.

The scattering and transfer matrices in Eqns. (2.31) provide the basis for the iterative
algorithm in the following since they allow us to relate wave amplitudes beyond adjacent
intervals. Even though we set up the solution framework with the scattering and transfer
matrices, we lack of knowledge of the amplitudes in the inner sub-intervals. Note that
from our problem setting, we only have information about the incident waves from the
semi-infinite interval to the left of the first scattering interface, A−

0 , and the semi-infinite
interval to the right of the (𝑀 + 1)th scattering interface, B+

𝑀+1. We have an incident
wave of unit-amplitude coming from 𝑥 → −∞ only, i.e.

A−
0 = I0 and B+

𝑀+1 = 0.

We can reduce the number of unknowns appearing in the full solution in Eqn. (2.30)
significantly by equating the two expressions which appear for each of the inner sub-
intervals, i.e. we can express the amplitudes corresponding to the right of the 𝑚th and to
the left of the (𝑚+1)th scattering interface with each other for both left- and right-travelling
waves by

A−
𝑚+1 = eiΛ𝑚+1𝑙𝑚+1 A+

𝑚, (2.32a)
B−

𝑚+1 = e−iΛ𝑚+1𝑙𝑚+1 B+
𝑚 (2.32b)

for 𝑚 = 0, 1, . . . ,𝑀 , where the 2 × 2-matrix

eiΛ𝑚𝑙𝑚 =
(︂

ei𝑘𝑚𝑙𝑚 0
0 e−𝑘𝑚𝑙𝑚

)︂
(2.33)

describes the phase changes due to the distance between adjacent scattering interfaces,
𝑙𝑚 = 𝑥𝑚 − 𝑥𝑚−1.

With the approach above, we can calculate the wave interactions in adjacent sub-intervals.
However, we cannot calculate the full solution yet, since we do not know the incident waves
in the inner sub-intervals. One apparent advantage of the scattering/transfer matrices is
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their feature that applying it iteratively to all 𝑀 + 1 scattering interfaces whilst taking the
phase changes into account, we can easily calculate B−

0 and A+
𝑀+1, which give us the total

reflected and transmitted wave field, hence we can deduce how much energy is reflected
and transmitted.

Generally, we can merge transfer matrices with this and relate wave fields which are
not necessarily adjacent anymore. For this, consider the transfer matrix P𝑚, which de-
scribes the wave interaction at the (𝑚+1)th scattering interface. Writing the phase changes
arising in the (𝑚+ 1)th sub-interval from Eqns. (2.32) as

X𝑚+1 =
(︂

eiΛ𝑚+1𝑙𝑚+1 0
0 e−iΛ𝑚+1𝑙𝑚+1

)︂
, (2.34)

we can relate the wave fields in the 𝑚th and (𝑚 + 2)th sub-interval to each other with
P𝑚,𝑚+1, (︂

A+
𝑚+1

B+
𝑚+1

)︂
= P𝑚+1

(︂
A−

𝑚+1
B−

𝑚+1

)︂
= P𝑚+1X𝑚+1

(︂
A+

𝑚

B+
𝑚

)︂
= P𝑚+1X𝑚+1P𝑚⏟  ⏞  

=:P𝑚,𝑚+1

(︂
A−

𝑚

B−
𝑚

)︂
. (2.35)

We can generalise this procedure to the transfer matrix P𝑝,𝑞, which relates the wave fields
in the 𝑝th and 𝑞th sub-interval (0 ≤ 𝑝 < 𝑞 ≤ 𝑀),(︂

A+
𝑞

B+
𝑞

)︂
= P𝑝,𝑞

(︂
A−

𝑝

B−
𝑝

)︂
. (2.36)

Analogously to Eqn. (2.35), the interaction at the (𝑞 + 1)th scattering interface can be
additionally taken into account, using X𝑞+1, which describes the phase change between the
𝑞th and (𝑞 + 1)th scattering interface, and the transfer matrix for the scattering interface
at 𝑥 = 𝑥𝑞+1 only, P𝑞+1. This gives for P𝑝,𝑞+1 the relation

P𝑝,𝑞+1 = P𝑞+1X𝑞+1P𝑝,𝑞. (2.37)

As we have already seen in Eqns. (2.31), every scattering matrix has a transfer matrix,
and vice versa. This also holds for the merged transfer matrices P𝑝,𝑞 and we can write
the corresponding scattering matrix, which describes the wave interaction between the



20 Chapter 2 Wave attenuation along a rough thin-elastic beam

scattering interfaces at 𝑥 = 𝑥𝑝 and 𝑥 = 𝑥𝑞, S𝑝,𝑞, as(︂
B−

𝑝

A+
𝑞

)︂
=
(︃

R(−)
𝑝,𝑞 T(+)

𝑝,𝑞

T(−)
𝑝,𝑞 R(+)

𝑝,𝑞

)︃
⏟  ⏞  

=:S𝑝,𝑞

(︂
A−

𝑝

B+
𝑞

)︂
. (2.38)

Using the scheme to convert the scattering into the transfer matrix, Eqn. (2.28), and the
iteration instruction for the transfer matrix in Eqn. (2.37), we can calculate the scattering
matrix S𝑝,𝑞+1 via

R(−)
𝑝,𝑞+1 = R(−)

𝑝,𝑞 + T(+)
𝑝,𝑞 eiΛ𝑞+1𝑙𝑞+1

(︁
I − R(−)

𝑞+1eiΛ𝑞+1𝑙𝑞+1R(+)
𝑝,𝑞 eiΛ𝑞+1𝑙𝑞+1

)︁−1
R(−)

𝑞+1eiΛ𝑞+1𝑙𝑞+1T(−)
𝑝,𝑞 ,

(2.39a)

T(+)
𝑝,𝑞+1 = T(+)

𝑝,𝑞 eiΛ𝑞+1𝑙𝑞+1
(︁

I − R(−)
𝑞+1eiΛ𝑞+1𝑙𝑞+1R(+)

𝑝,𝑞 eiΛ𝑞+1𝑙𝑞+1
)︁−1

T(+)
𝑞+1, (2.39b)

R(+)
𝑝,𝑞+1 = R(+)

𝑞+1 + T(−)
𝑞+1eiΛ𝑞+1𝑙𝑞+1

(︁
I − R(+)

𝑝,𝑞 eiΛ𝑞+1𝑙𝑞+1R(−)
𝑞+1eiΛ𝑞+1𝑙𝑞+1

)︁−1
R(+)

𝑝,𝑞 eiΛ𝑞+1𝑙𝑞+1T(+)
𝑞+1,

(2.39c)

T(−)
𝑝,𝑞+1 = T(−)

𝑞+1eiΛ𝑞+1𝑙𝑞+1
(︁

I − R(+)
𝑝,𝑞 eiΛ𝑞+1𝑙𝑞+1R(−)

𝑞+1eiΛ𝑞+1𝑙𝑞+1
)︁−1

T(−)
𝑝,𝑞 , (2.39d)

where I is the two-dimensional identity matrix. Relations similar to those also appear in
Chamberlain and Porter 1995, Peter and Meylan 2009, and McPhedran et al. 1999 for scat-
tering of water waves by ripple beds, vast field of bodies and scattering of electromagnetic
waves by arrays of cylinders, respectively. For the simulations using the step-approximation
method in this work, we use the procedure from above to calculate the respective scattering
matrices S𝑝,𝑞+1 rather than merging the transfer matrices only (and converting them to
the respective scattering matrices) since the procedure in Eqns. (2.39) to calculate the
scattering matrices S𝑝,𝑞+1 is numerically more stable.

As mentioned above, the scattering and transfer matrices describing the wave interaction
at all 𝑀 + 1 scattering interfaces, S0,𝑀 and P0,𝑀 , respectively, can be calculated with
this iterative scheme, hence the total reflection and transmission are obtained using S0,𝑀 .
The iteration for the calculation from left to right starts at the first scattering interface
at 𝑥 = 𝑥0 and S1,1 ≡ S1 (similarly P1,1 ≡ P1). Although we can retrieve the scattering
characteristics of the whole rough interval with this iteration from left-to-right, it does
not give us the wave field within the rough interval. To achieve this, we perform the
similar iteration procedure from right to left and combine the left-to-right and right-to-left
procedures to calculate the wave amplitudes within each sub-interval.

When calculating P0,𝑀 and S0,𝑀 with the right-to-left procedure (which gives the same
total reflection and transmission as the left-to-right procedure, of course), we start with
S𝑀,𝑀 ≡ S𝑀 (or P𝑀,𝑀 ≡ P𝑀 , alternatively) and the iterative relation for the transfer
matrix in Eqn. (2.37) becomes

P𝑝−1,𝑞 = P𝑝,𝑞X𝑝P𝑝−1. (2.40)
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This leads to the following entries of the scattering matrix S𝑝−1,𝑞,

R(−)
𝑝−1,𝑞 = R(−)

𝑝,𝑞 + T(+)
𝑝,𝑞 eiΛ𝑝𝑙𝑝

(︁
I − R(−)

𝑝−1eiΛ𝑝𝑙𝑝R(+)
𝑝,𝑞 eiΛ𝑝𝑙𝑝

)︁−1
R(−)

𝑝−1eiΛ𝑝𝑙𝑝T(−)
𝑝,𝑞 , (2.41a)

T(+)
𝑝−1,𝑞 = T(+)

𝑝,𝑞 eiΛ𝑝𝑙𝑝

(︁
I − R(−)

𝑝 eiΛ𝑝𝑙𝑝R(+)
𝑝,𝑞 eiΛ𝑝𝑙𝑝

)︁−1
T(+)

𝑝−1, (2.41b)

R(+)
𝑝−1,𝑞 = R(+)

𝑝−1 + T(−)
𝑝−1eiΛ𝑝𝑙𝑝

(︁
I − R(+)

𝑝,𝑞 eiΛ𝑝𝑙𝑝R(−)
𝑝−1eiΛ𝑝𝑙𝑝

)︁−1
R(+)

𝑝,𝑞 eiΛ𝑝𝑙𝑝T(+)
𝑝−1, (2.41c)

T(−)
𝑝−1,𝑞 = T(−)

𝑝−1eiΛ𝑝𝑙𝑝

(︁
I − R(+)

𝑝,𝑞 eiΛ𝑝𝑙𝑝R(−)
𝑝−1eiΛ𝑝𝑙𝑝

)︁−1
T(−)

𝑝,𝑞 . (2.41d)

When combining the left-to-right and right-to-left procedures to calculate the wave ampli-
tudes in the 𝑚th subinterval between 𝑥𝑚−1 and 𝑥𝑚, we use the transfer matrices P0,𝑚−1
and P𝑚,𝑀 , which describe the wave interactions between the scattering interfaces at 𝑥0
and 𝑥𝑚−1 as well as 𝑥𝑚 and 𝑥𝑀 , respectively. This gives the following relations between
the wave amplitudes in the 𝑚th sub-interval and the ambient wave amplitudes,(︂

A+
𝑚−1

B+
𝑚−1

)︂
= P0,𝑚−1

(︂
A−

0
B−

0

)︂
and

(︂
A+

𝑀

B+
𝑀

)︂
= P𝑚,𝑀

(︂
A−

𝑚

B−
𝑚

)︂
, (2.42)

where the wave amplitudes to the right of the scattering interface at 𝑥𝑚−1 can be expressed
through phase change via their equivalent to the left of the scattering interface at 𝑥𝑚

analogously to Eqns. (2.32),

A+
𝑚−1 = e−iΛ𝑚𝑙𝑚A−

𝑚, (2.43a)
B+

𝑚−1 = eiΛ𝑚𝑙𝑚B−
𝑚. (2.43b)

This method is illustrated schematically in Fig. 2.4.
x0 = 0

P0

A−
0

B−
0

x1

P1

...

xm−2

Pm−2 Pm−1

xm−1
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−
m
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m−1/B

−
m

xm xm+1

Pm+1

...

xM = L

PM

A+
M

B+
M

P0,1

P0,m−1 Pm,M

Figure 2.4: Scheme of wave field calculation in 𝑚th sub-interval

Solving Eqns. (2.42) for A+
𝑚−1 and B−

𝑚 with the help of the relations in Eqns. (2.43) finally
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yields the wave amplitudes

A+
𝑚−1 =

(︁
I − R(+)

0,𝑚−1eiΛ𝑚𝑙𝑚R(−)
𝑚,𝑀 eiΛ𝑚𝑙𝑚

)︁−1 (︁
T(−)

0,𝑚−1A−
0 + R(+)

0,𝑚−1eiΛ𝑚𝑙𝑚T(+)
𝑚,𝑀 B+

𝑀

)︁
, (2.44a)

B−
𝑚 =

(︁
I − R(−)

𝑚,𝑀 eiΛ𝑚𝑙𝑚R(+)
0,𝑚−1eiΛ𝑚𝑙𝑚

)︁−1 (︁
R(−)

𝑚,𝑀 eiΛ𝑚𝑙𝑚T(−)
0,𝑚−1A−

0 + T(+)
𝑚,𝑀 B+

𝑀

)︁
. (2.44b)

Thus, the wave field in the 𝑚th sub-interval is described by the wave amplitudes, which
are normalised with respect to both scattering interfaces enclosing the sub-interval. The
corresponding wave amplitudes normalised with respect to the same scattering interface
can easily be obtained by Eqns. (2.43). With this iterative algorithm it is now possible
to calculate the interactions of waves along an elastic beam with continuous (as well as
discrete) roughness profiles, in particular the scattering characteristics of the whole rough
interval.

2.3 Validation of step approximation
Before we study wave propagation along beams with long random roughness profiles in
Sec. 2.5 and the following sections of this chapter, we consider the specific cases in which
either the beam mass or the beam rigidity has a deterministic roughness profile. This
allows us to compare the solution given by the step approximation, which was introduced
in Sec. 2.2, with the solution by an integral equation approach in this section. In both
problems, the varying beam mass and beam rigidity, respectively, has a single hump-form
in the interval (0,𝐿), where 𝐿 is not as large as in the random profile cases, and is constant
in the ambient semi-infinite intervals, whereas the other quantity is constant in the whole
domain. In these semi-infinite intervals, the wave field can be expressed as

𝑢(𝑥) = ei𝑘0𝑥 +𝑅(0) e−i𝑘0𝑥 +𝑅(1) e𝑘0𝑥, 𝑥 ∈ (−∞,0), (2.45a)
𝑢(𝑥) = 𝑇 (0) ei𝑘0(𝑥−𝐿) + 𝑇 (1) e−𝑘0(𝑥−𝐿), 𝑥 ∈ (𝐿,∞), (2.45b)

where 𝑘0 is the wavenumber corresponding to the constant beam mass and rigidity in the
ambient semi-infinite intervals and 𝑅(0) ≡ 𝑏

(0)
0 , 𝑅(1) ≡ 𝑏

(1)
0 and 𝑇 (0) ≡ 𝑎

(0)
𝑀+1, 𝑇 (1) ≡ 𝑎

(1)
𝑀+1

are the reflection and transmission coefficients corresponding to travelling (0) and evanes-
cent (1) wave modes.

To validate the step approximation, we use a collocation method to solve the integral
equation numerically, which arises from the deterministic single-hump problem. For this,
the domain (0,𝐿) is discretised into a finite number of collocation points and the solution
is calculated from a finite-dimensional space, whereby the solution has to satisfy the
deterministic beam equation at the collocation points, see Ascher and Petzold 1998. Amore
(2010) applied a collocation method to solve the Helmholtz equation for a one dimensional
string with variable density and showed that it provides accurate results. Alternatively,
semi-analytical methods such as a Galerkin approach to approximate the solution of
the homogeneous beam equation or the equivalent integro-differential formulation with
orthogonal polynomials, e.g. Chebyshev polynomials, in terms of 𝑢 only (similar to e.g.
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Townsend 2014) could be used. In this case, care has to be taken in the choice of test and
trial functions owing to the presence of the higher-order derivatives.

2.3.1 Deterministic mass variation

For the first problem in this comparison investigation, we consider the case in which the
beam rigidity, 𝑏, is constant and the beam mass has the single-hump form

𝑔(𝑥) = 𝑔0
(︀
1 + 𝜇(𝐿/2)−8𝑥4(𝑥− 𝐿)4)︀, 𝑥 ∈ (0,𝐿), (2.46)

where 𝜇 is a prescribed amplitude and the beam mass takes the constant value 𝑔(𝑥) ≡ 𝑔0 in
the surrounding semi-infinite intervals. Hence, the beam mass does not have discontinuities
and the ambient wavenumber 𝑘0 in Eqns. (2.45) corresponds to 𝑔0, i.e. 𝑘0 = (𝛼𝑔0/𝑏)1/4

here. The wavelength of the ambient waves is then 𝜆 = 2𝜋
𝑘0

. Until specified at the end of
this chapter, the mean beam mass and rigidity (and 𝑔0 and 𝑏0, respectively, in this and the
next section) are, as generalisation, set to unity for the time being.

Integral equation for varying mass

To obtain comparison results for the step-approximation method in the case of deterministic
variation of beam mass, we introduce an integral equation solution based on a collocation
method. In order to avoid inconveniences originating from the higher-order derivatives, we
use a mixed method by introducing the bending moment as an auxiliary unknown and
look for the vector-valued function

ũ(𝑥) =
(︂

𝑢(𝑥)
𝑏𝜕2

𝑥𝑢(𝑥)

)︂
. (2.47)

To rewrite the beam Eqn. (2.9) for the present problem of deterministic single-hump mass
variation with solution ũ, we define

M(𝑥) =
(︂

0 1/𝑏
𝛼𝑔 0

)︂
and M0 =

(︂
0 1/𝑏
𝛼𝑔0 0

)︂
. (2.48)

This leads to the governing equation

𝜕2
𝑥ũ − Mũ = 0 (2.49)

for the unknown ũ. Using an associated matrix-valued Green’s function,

G(𝑥; 𝑥̌) =
(︂
𝐺̄(𝑥; 𝑥̌) 𝐺̂(𝑥; 𝑥̌)
𝐻̄(𝑥; 𝑥̌) 𝐻̂(𝑥; 𝑥̌)

)︂
, (2.50)

which satisfies Eqn. (2.49) with impulse at 𝑥 = 𝑥̌,

𝜕2
𝑥G(𝑥; 𝑥̌) − G(𝑥; 𝑥̌)M0 = 𝛿(𝑥− 𝑥̌)I (2.51)
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(as well as the usual radiation conditions), where I is the two-dimensional identity matrix,
Eqn. (2.49) can be converted to the integral equation

ũ(𝑥) = ũinc(𝑥) + ⟨⟨𝜕𝑥G(𝑥; · )ũ⟩⟩𝑥=0 − ⟨⟨𝜕𝑥G(𝑥; · )ũ⟩⟩𝑥=𝐿 − ⟨⟨G(𝑥; · )𝜕𝑥ũ⟩⟩𝑥=0

+ ⟨⟨G(𝑥; · )𝜕𝑥ũ⟩⟩𝑥=𝐿 +
ˆ 𝐿

0
G(𝑥; 𝑥̌) (M(𝑥̌) − M0) ũ(𝑥̌) d𝑥̌, (2.52)

where ũinc(𝑥) is the incident wave and ⟨⟨ · ⟩⟩𝑥 denotes the jump of the included quantity at
the point 𝑥 again. The components of G can be found from the standard Green’s function
for the homogeneous beam equation (Eqn. (2.A.23)), which is derived in Appendix 2.A,
and 𝑘 replaced by 𝑘0, noting that

𝜕4
𝑥𝐺̂(𝑥; 𝑥̌) − 𝑘4

0𝐺̂(𝑥; 𝑥̌) = 1
𝑏
𝛿(𝑥− 𝑥̌), (2.53a)

𝜕2
𝑥𝐺̂(𝑥; 𝑥̌) = 1

𝑏
𝐺̄(𝑥; 𝑥̌), (2.53b)

and

𝜕4
𝑥𝐻̄(𝑥; 𝑥̌) − 𝑘4

0𝐻̄(𝑥; 𝑥̌) = 𝛼𝑔0𝛿(𝑥− 𝑥̌), (2.53c)
𝜕2

𝑥𝐻̄(𝑥; 𝑥̌) = 𝛼𝑔0𝐻̂(𝑥; 𝑥̌) (2.53d)

follows from Eqn. (2.51).

For the numerical approximation of the solution of Eqn. (2.52), we discretise the in-
terval [0, 𝐿] by 0 = 𝑥𝑥 < 𝑥1 < . . . < 𝑥𝑁−1 < 𝑥𝑁 = 𝐿 and use a collocation method, in
which we discretise the integral using the compound trapezoidal rule. The jump terms
for the function are treated as essential conditions whereas the jump terms involving the
derivatives are kept in the equation as natural conditions. For this purpose, the derivatives
are approximated by difference quotients. This leads to the following system of 2(𝑁 +1)+4
equations for the 2(𝑁 + 1) + 4 unknowns

(︀
u(𝑥0), . . .u(𝑥𝑁 ), 𝑅(0), 𝑅(1), 𝑇 (0), 𝑇 (1))︀,

ũ(𝑥𝑗) =
(︂

ei𝑘0𝑥𝑗

𝑏(i𝑘0)2ei𝑘0𝑥𝑗

)︂
− G(𝑥𝑗 ;𝑥0)

(︂
(ũ(𝑥1) − ũ(𝑥0))/ℎ−

(︂(︂
i𝑘0

(i𝑘0)3

)︂
+
(︂

−i𝑘0 𝑘0
(−i𝑘0)3 𝑘3

0

)︂(︂
𝑅(0)

𝑅(1)

)︂)︂)︂
+ G(𝑥𝑗 ;𝑥𝑁 )

(︂(︂
i𝑘0 −𝑘0

(i𝑘0)3 (−𝑘0)3

)︂(︂
𝑇 (0)

𝑇 (1)

)︂
− (ũ(𝑥𝑁 ) − ũ(𝑥𝑁−1))/ℎ

)︂
+ ℎ

(︂
1
2G(𝑥𝑗 ;𝑥0)(M(𝑥0) − M0)ũ(𝑥0) + 1

2G(𝑥𝑗 ;𝑥𝑁 )(M(𝑥𝑁 ) − M0)ũ(𝑥𝑁 )

+
𝑁−1∑︁
𝑛=1

G(𝑥𝑗 ;𝑥𝑛)(M(𝑥𝑛) − M0)u(𝑥𝑛)
)︂
, 𝑗 = 0, . . . ,𝑁, (2.54a)
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and

ũ(𝑥0) =
(︂

1
(i𝑘0)2

)︂
+
(︂

1 1
(−i𝑘0)2 𝑘2

0

)︂(︂
𝑅(0)

𝑅(1)

)︂
, (2.54b)

ũ(𝑥𝑁 ) =
(︂

1 1
(i𝑘0)2 (−𝑘0)2

)︂(︂
𝑇 (0)

𝑇 (1)

)︂
, (2.54c)

where ℎ = 𝐿/𝑁 and we have used the continuity of G at 𝑥 = 0, 𝐿. Moreover, we have taken
the incident wave to be of unit amplitude, i.e. ei𝑘0𝑥, and the reflection and transmission
coefficients 𝑅(0), 𝑅(1), 𝑇 (0) and 𝑇 (1) derive from Eqns. (2.45).
Alternatively, all boundary conditions could be enforced as essential boundary conditions.
In this case, the terms in brackets behind the Green’s function in the second and the third
line of (2.54a) are set to zero as separate conditions. In turn, they drop from (2.54a), which
is then only to be satisfied for 𝑗 = 1, . . . ,𝑁 − 1. The benefits of this alternative approach
will become clear in the following section showing numerical results for the deterministic
mass variation problem.

Numerical results

After we have derived an integral equation approach for the beam in vacuo with continuous,
deterministic mass variation in (0,𝐿), we study the results for the respective problem
produced by the integral equation approach and the step-approximation method now.
Firstly, we compare an individual wave field. Fig. 2.5 shows the wave field, calculated by
the step-approximation method and integral equation approach, split into real and imaginary
part, for non-dimensional hump length 𝑘0𝐿 = 4 and hump amplitude 𝜇 = 5.0 × 10−1.
For the step approximation, 100 sub-intervals are used over 𝑥 ∈ (0,𝐿), in order to obtain
a smooth individual wave field, although much coarser resolutions provide sufficiently
accurate results in what follows. (The grid size of 100 sub-intervals over 𝑥 ∈ (0,𝐿) is kept,
though.) For the integral equation approach, 4000 sub-intervals are used.
We can observe in Fig. 2.5 that the wave fields calculated by both methods exhibit very
good agreement. The wave fields clearly deviate from the incident wave field, which is also
shown for comparison. This deviation can be detected for real and imaginary part as well
as the wave field modulus.
To obtain a more quantitative result about the approximation quality of the step-approxi-
mation method, we consider the wave field reflection for different hump lengths. Fig. 2.6
shows the moduli of the (complex-valued) reflection coefficients, |𝑅(0)|, calculated by the
step-approximation method and integral equation approach, as functions of non-dimensional
hump lengths, for amplitudes 𝜇 = 1.0 × 10−1 and 5.0 × 10−1.
We can see in Fig. 2.6 that the two solution methods produce the same reflection coefficient
moduli throughout the range of hump lengths considered, 𝑘0𝐿 ∈ (1,10). We also observe
that the reflection coefficient moduli for 𝜇 = 1.0 × 10−1 and 5.0 × 10−1 share the same
qualitative behaviour, attaining maxima at 𝑘0𝐿 ≈ 3.2 and 3.4, respectively, and zeros at
𝑘0𝐿 ≈ 8.2 and 8.5, respectively.
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Figure 2.5: Individual wave field for single-hump problem with non-dimensional hump length
𝑘0𝐿 = 4 and hump amplitude 𝜇 = 5.0 × 10−1, computed by integral equation approach (solid
line) and step-approximation method (∘), shown as its modulus (black), and split into real
part (dark grey) and imaginary part (light grey). Components of incident wave are shown for
comparison (dash-dotted line with same colour scheme).
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Figure 2.6: Reflection coefficient moduli for single-hump problem as functions of non-
dimensional hump length, for hump amplitudes 𝜇 = 1.0 × 10−1 (grey) and 𝜇 = 5.0 × 10−1

(black), computed by integral equation approach (solid line) and step-approximation method
(∘)

Next, we investigate the behaviour of the integral equation approach and the step-
approximation method throughout a wide range of hump amplitudes. Fig. 2.7 shows
the reflection coefficient moduli, calculated by the step-approximation method and integral
equation approach, as functions of (non-dimensional) hump amplitudes, for hump lengths
𝑘0𝐿 = 4.0 (left-hand panel) and 𝑘0𝐿 = 6.0 (right-hand panel). For comparison, the
reflection coefficient moduli obtained by the integral equation approach, where all boundary
conditions are enforced as essential boundary conditions, are shown.

We can observe in Fig. 2.7 a linear behaviour of the reflection coefficient moduli as functions
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Figure 2.7: Reflection coefficient moduli for single-hump problem as functions of hump
amplitudes, for non-dimensional hump lengths 𝑘0𝐿 = 4.0 (left-hand panel) and 𝑘0𝐿 = 6.0
(right-hand panel), computed by integral equation approach (�) and step-approximation
method (∘). Results for integral equation approach with enforced essential boundary conditions
(×) are shown for comparison.

of hump amplitudes, 𝜇, for large 𝜇, for both hump lengths, 𝑘0𝐿 = 4.0 and 6.0. In the case
of 𝑘0𝐿 = 4.0, this proportionality holds for all methods in the hump amplitude regime
𝜇 ≥ 10−2, where the step-approximation method and both variants of the integral equation
approach give the same results. For 𝜇 ≤ 10−2, the step-approximation method and the
integral equation approach with enforced essential boundary conditions still yield the same
reflection coefficient moduli (suggesting linearity throughout the whole hump amplitude
regime), whereas the standard integral equation approach (including natural boundary
conditions) shows a significant upper deviation. For the larger hump length, 𝑘0𝐿 = 6.0,
the step-approximation method and the integral equation approach with enforced essential
boundary conditions yield the same values for the reflection coefficient moduli again for all
hump amplitudes considered (whereas the standard integral equation approach fails for
𝜇 ≤ 5.0 × 10−2). The behaviour is linear as well for 𝜇 ≤ 10−1 and the reflection coefficient
moduli are approximately half of the values of those for 𝑘0𝐿 = 4.0, which could already
be observed in Fig. 2.6. The linear proportionality is lost for 𝜇 > 10−1 and the reflection
coefficient moduli even decrease for the two largest hump amplitudes, 𝜇 > 5.0 × 10−1.
Nevertheless, the step-approximation method and the integral equation approach with
enforced essential boundary conditions still show a very good agreement in this large hump
amplitude regime.

To investigate the discrepancy between the standard integral equation approach and
the integral equation approach with enforced essential boundary conditions, hence also the
step-approximation method, we study the convergence behaviour of both variants of the
integral equation approach. Fig. 2.8 shows the reflection coefficient moduli as functions of
the grid size 𝑁 , which is used in the calculation of the integral equation via Eqns. (2.54),
for both variants of the integral equation approach, for hump lengths 𝑘0𝐿 = 4.0 and 6.0,
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and various hump amplitudes. For comparison, Fig. 2.8 also shows the results obtained by
the step-approximation method, for which we still use 100 sub-intervals in (0,𝐿).
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Figure 2.8: Reflection coefficient moduli for single-hump problem as functions of grid size,
for non-dimensional hump lengths 𝑘0𝐿 = 4.0 (top panels) and 𝑘0𝐿 = 6.0 (bottom panels),
computed by standard integral equation approach (left-hand panels) and integral equation
approach with enforced essential boundary conditions (right-hand panels), for hump amplitudes
𝜇 = 1.0 × 10−4 (solid, green), 1.0 × 10−3 (solid, blue), 1.0 × 10−2 (solid, magenta), 1.0 × 10−1

(solid, red) and 1.0 × 100 (solid, black). Results for step-approximation method (dashed line)
are shown for comparison (with same color scheme).

We can see in Fig. 2.8 a different convergence behaviour of the two variants of the
integral equation approach. For the smaller hump length in consideration, 𝑘0𝐿 = 4.0, the
standard integral equation approach converges quickly to the values calculated by the
step-approximation method for the two largest hump amplitudes considered. For 𝜇 = 100,
it takes about 400 evaluation points, for 𝜇 = 10−1 about 600 to get converged results. For
𝑘0𝐿 = 6.0 and the largest hump amplitude, 𝜇 = 100, converged results are only visible for
more than 4000 evaluation points. The case 𝜇 = 10−1 shows an interesting behaviour since
the calculated reflection coefficient moduli are considerably underestimated for 𝑁 smaller
than 100, even though for the smallest 𝑁 (𝑁 = 10) the value is larger than calculated
by the step approximation. (Note that the exact reflection coefficient moduli for 𝜇 = 100

and 10−1 are nearly the same.) This convergence behaviour gets even more obvious for
𝜇 = 10−2, for which the standard integral equation approach gives larger values than the
step approximation for 𝑁 ≤ 200, before the values drop to underestimate the reference
value by a factor of approximately 103 for 𝑁 ≈ 1700 and start converging from below for
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larger 𝑁 , but convergence cannot be observed for 𝑁 ≤ 6000. For the two smallest hump
amplitudes, 𝜇 = 10−3 and 10−4, this overshooting convergence behaviour does not exist
anymore (at least not in the interval 𝑁 ≤ 6000) for the larger hump length in consideration,
𝑘0𝐿 = 6.0. However, for both hump lengths the convergence of the standard integral
equation approach is so slow that the reference values are not attained in the interval
𝑁 ≤ 6000 for 𝜇 = 10−3 and 10−4.

In comparison to the standard integral equation approach, the integral equation approach
with enforced essential boundary conditions shows a significantly faster convergence be-
haviour. For the two largest hump amplitudes, 𝜇 = 100 and 10−1, this variant needs less
than 200 evaluation points to yield converged results for both hump lengths. It is interesting
to observe that for this variant, the smaller hump length, 𝑘0𝐿 = 4.0, leads to the non-
monotone convergence behaviour as well and the reference values are attained from below
after overestimating them for very small 𝑁 , whereas for 𝑘0𝐿 = 6.0, it converges consistently
from above for all hump amplitudes. Despite the different convergence behaviour, the
integral equation approach with enforced essential boundary conditions provides converged
results for both hump lengths for approximately similar 𝑁 , but for the smallest hump
amplitude, 𝜇 = 10−4, for which this method needs a grid size of approximately 3000 for
𝑘0𝐿 = 4.0, but only 2000 for 𝑘0𝐿 = 6.0 (and the standard integral equation approach yields
values still significantly too large for 𝑁 = 6000). Altogether, for the integral equation
approach with enforced essential boundary conditions, the reference values are attained for
drastically smaller grid sizes 𝑁 than for the standard integral equation approach.

Concentrating on the values calculated by the integral equation approach with enforced
essential boundary conditions and the step-approximation method in Fig. 2.7, for which
this variant of the integral equation approach yields already converged results (we use
𝑁 = 4000), we can deduce that the reflection coefficient scales linearly with the hump
amplitudes for 𝜇 ≤ 2.0 × 10−1, for the hump lengths considered. We also learnt that the
standard integral equation approach requires a very large system to capture the reflection
of the incident wave for very small hump amplitudes or large hump lengths accurately.
Hence, if high accuracy in the reflection and transmission coefficients is required and the
problem is such that these are small in value, it may be advisable to enforce all boundary
conditions as essential boundary conditions. The results for the beam with deterministic
varying beam mass obtained by the integral equation approach with enforced essential
boundary conditions for sufficiently large 𝑁 showed a very good agreement with the values
obtained by the step-approximation method. As a consequence of this, the accurate integral
equation approach validates the step-approximation method for the present problem and
justifies the use of it for more complex problems.

2.3.2 Deterministic rigidity variation

After the successful validation of the step-approximation method in the previous section,
we focus on wave propagation along a beam with varying rigidity now. The variation of
the beam rigidity in (0,𝐿) shall be characterised deterministically. For this, we choose the
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beam rigidity to be of the same single-hump form as the beam mass in the previous section,

𝑏(𝑥) = 𝑏0
(︀
1 + 𝜇(𝐿/2)−8𝑥4(𝑥− 𝐿)4)︀, 𝑥 ∈ (0,𝐿), (2.55)

where 𝜇 is the hump amplitude again. The beam rigidity is constant 𝑏(𝑥) ≡ 𝑏0 in the
surrounding semi-infinite intervals, which ensures continuity of the beam rigidity, and
the beam mass, 𝑔, is constant. This leads to the ambient wavenumber 𝑘0 = (𝛼𝑔/𝑏0)1/4 here.

Dealing with the varying rigidity problem in this deterministic setting is of interest
particularly because of the higher-order derivative of the beam rigidity, which appears in
the beam Eqn. (2.9). In the discretisation of the step approximation, the beam rigidity and
its first derivative are part of the continuity condition on the shear stress, Eqn. (2.15b),
which has to be fulfilled at each scattering interface 𝑥𝑚, 𝑚 = 0, 1, . . . ,𝑀 , i.e.

𝜕𝑥𝑏
(−)(𝑥𝑚)𝜕2

𝑥𝑢𝑚(𝑥𝑚) + 𝑏(−)(𝑥𝑚)𝜕3
𝑥𝑢𝑚(𝑥𝑚) =

𝜕𝑥𝑏
(+)(𝑥𝑚)𝜕2

𝑥𝑢𝑚+1(𝑥𝑚) + 𝑏(+)(𝑥𝑚)𝜕3
𝑥𝑢𝑚+1(𝑥𝑚), (2.56)

where the superscripts (−) and (+) denote the evaluation to the left of the scattering
interface 𝑥 = 𝑥𝑚 and to the right, respectively. In the build-up of the step-approximation
method in Sec. 2.2, we evaluated the roughness profile, which is the rigidity profile here, at
the mid-point of each sub-interval and the wavenumber 𝑘𝑚 corresponds to this value in
the 𝑚th sub-interval. To be consistent with this approach, it seems natural to use

𝑏(−)(𝑥𝑚) = 𝑏𝑚 and 𝑏(+)(𝑥𝑚) = 𝑏𝑚+1. (2.57)

Note that this discretisation is also used in the continuity condition on the bending moment,
Eqn. (2.15a). This leads to the question, how to deal with the derivatives of the beam
rigidity, 𝜕𝑥𝑏

(±)(𝑥𝑚). To answer this question, we adjust the integral equation approach
for the beam mass variation in Sec. 2.3.1 to the present problem. For reasons of computa-
tional efficiency, we use the integral equation approach with enforced essential boundary
conditions here and specify the associated system.

The initial formulation of the problem is analogical to the previous one, for which the con-
stant beam rigidity 𝑏 is replaced now by the beam rigidity profile 𝑏(𝑥) in the vector-valued
function ũ in Eqn. (2.47). This replacement and replacing 𝑔(𝑥) as well as the ambient
beam mass, 𝑔0, by the constant mass 𝑔 in the matrix definition in Eqn. (2.48) and the
system for Green’s function in Eqns. (2.53) has to be done for this purpose. Note that
𝑘0 is the ambient wavenumber corresponding to the present problem, Eqn. (2.55). As
mentioned above, we enforce all boundary conditions as essential boundary conditions.
Hence, the boundary terms involving 𝑅(0), 𝑅(1), 𝑇 (0) and 𝑇 (1) in Eqns. (2.54) are set to
zero as separate conditions. Since these imply that Eqns. (2.54) holds for 𝑗 = 0, 𝑁 , we
have the following system of 2(𝑁 − 1) + 8 equations for the 2(𝑁 + 1) + 4 unknowns
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(︀
u(𝑥0), . . .u(𝑥𝑁 ), 𝑅(0), 𝑅(1), 𝑇 (0), 𝑇 (1))︀,

ũ(𝑥𝑗) =
(︂

ei𝑘0𝑥𝑗

𝑏(i𝑘0)2ei𝑘0𝑥𝑗

)︂
+ ℎ

(︂
1
2G(𝑥𝑗 ;𝑥0)(M(𝑥0) − M0)ũ(𝑥0) + 1

2G(𝑥𝑗 ;𝑥𝑁 )(M(𝑥𝑁 ) − M0)ũ(𝑥𝑁 )

+
𝑁−1∑︁
𝑛=1

G(𝑥𝑗 ;𝑥𝑛)(M(𝑥𝑛) − M0)u(𝑥𝑛)
)︂
, 𝑗 = 1, . . . ,𝑁 − 1, (2.58a)

ũ(𝑥0) =
(︂

1
(i𝑘0)2

)︂
+
(︂

1 1
(−i𝑘0)2 𝑘2

0

)︂(︂
𝑅(0)

𝑅(1)

)︂
, (2.58b)

ũ(𝑥1) = ũ(𝑥0) + ℎ

(︂(︂
i𝑘0

(i𝑘0)3

)︂
+
(︂

−i𝑘0 𝑘0
(−i𝑘0)3 𝑘3

0

)︂(︂
𝑅(0)

𝑅(1)

)︂)︂
, (2.58c)

ũ(𝑥𝑁 ) = ũ(𝑥𝑁−1) + ℎ

(︂
i𝑘0 −𝑘0

(i𝑘0)3 (−𝑘0)3

)︂(︂
𝑇 (0)

𝑇 (1)

)︂
, (2.58d)

ũ(𝑥𝑁 ) =
(︂

1 1
(i𝑘0)2 (−𝑘0)2

)︂(︂
𝑇 (0)

𝑇 (1)

)︂
. (2.58e)

In analogy to Eqns. (2.54), we have an incident wave of unit amplitude and with wavenumber
𝑘0, i.e. ei𝑘0𝑥, and ℎ = 𝐿/𝑁 in Eqns. (2.58). Solving this system gives for large 𝑁 gives an
sufficiently accurate solution to the underlying integral equation. The integral equation
approach is required to give information about the role of the rigidity slope, appearing in
the continuity of shear stress, Eqn. (2.56), in the step-approximation method for varying
rigidity. It was already mentioned that it seems to be natural to evaluate the beam
rigidity at the mid-point of each sub-interval, which is consistent with the calculation of
the wavenumber. One reasonable choice in the shear stress continuity condition would be
to neglect the rigidity slope, since the rigidity is chosen to be constant in each sub-interval
and the derivative vanishes accordingly. We denote this discretisation scheme as variant I,
i.e.

I) the underlying rigidity profile is evaluated at the mid-point of each sub-interval and
the rigidity derivative vanishes,

𝜕𝑥𝑏
(−)(𝑥𝑚) = 0 and 𝜕𝑥𝑏

(+)(𝑥𝑚) = 0. (2.59)

Two alternative ways of calculating the rigidity slope (when evaluating the beam rigidity
at the mid-point of each sub-interval) are:

II) the slope of the underlying rigidity profile is evaluated at the mid-point as well and
set as the respective value of the derivative of the beam rigidity in the respective
interval, i.e.

𝜕𝑥𝑏
(−)(𝑥𝑚) = 𝜕𝑥𝑏

(︁𝑥𝑚−1 + 𝑥𝑚

2

)︁
and 𝜕𝑥𝑏

(+)(𝑥𝑚) = 𝜕𝑥𝑏
(︁𝑥𝑚 + 𝑥𝑚+1

2

)︁
, (2.60)
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III) the rigidity slope at the scattering interface 𝑥 = 𝑥𝑚 is calculated as the difference
quotient of the point-wise evaluated rigidities in the adjacent sub-intervals, 𝑏𝑚 and
𝑏𝑚+1, i.e.

𝜕𝑥𝑏
(−)(𝑥𝑚) = 2𝑏𝑚+1 − 𝑏𝑚

𝑙𝑚 + 𝑙𝑚+1
= 𝜕𝑥𝑏

(+)(𝑥𝑚), (2.61)

where 𝑙𝑚 denotes the distance between adjacent scattering interfaces, introduced in
Eqn. (2.33).

Two additional discretisation schemes involve a linear spline interpolation of the rigidity
profile with the location of the scattering interfaces as interpolation points, i.e. 𝑥 = 𝑥𝑚,
𝑚 = 0, 1, . . . ,𝑀 , and evaluation of the splines at the mid-points of each sub-interval to
obtain the discretised beam rigidity, hence Eqn. (2.57) becomes

𝑏(−)(𝑥𝑚) = 𝑏(𝑥𝑚−1) + 𝑏(𝑥𝑚)
2 =: 𝑏̃𝑚 (2.62a)

𝑏(+)(𝑥𝑚) = 𝑏(𝑥𝑚) + 𝑏(𝑥𝑚+1)
2 =: 𝑏̃𝑚+1. (2.62b)

Using the analogue schemes of calculating the rigidity slope as in variants II and III gives
us the variants 4 and 5 (for linear spline interpolation of the rigidity profile):

IV) the slope of the underlying rigidity profile is evaluated at the mid-point and set as the
respective value of the derivative of the beam rigidity in the respective interval, hence
this is the same rigidity slope discretisation scheme as in variant II with Eqn. (2.60),
i.e.

𝜕𝑥𝑏
(−)(𝑥𝑚) = 𝜕𝑥𝑏

(︁𝑥𝑚−1 + 𝑥𝑚

2

)︁
and 𝜕𝑥𝑏

(+)(𝑥𝑚) = 𝜕𝑥𝑏
(︁𝑥𝑚 + 𝑥𝑚+1

2

)︁
,

V) the rigidity slope in each sub-interval is the slope of the interpolating spline in the
respective sub-interval, which gives the scheme

𝜕𝑥𝑏
(−)(𝑥𝑚) = 𝑏(𝑥𝑚) − 𝑏(𝑥𝑚−1)

𝑙𝑚
and 𝜕𝑥𝑏

(+)(𝑥𝑚) = 𝑏(𝑥𝑚+1) − 𝑏(𝑥𝑚)
𝑙𝑚+1

. (2.63)

These five discretisation schemes for the varying rigidity problem are shown schematically
in Appendix 2.B.

Now, we want to compare the step-approximation methods based on the five different
discretisation schemes of the beam rigidity with the integral equation approach for the
beam problem with deterministic single-hump rigidity profile. For this purpose, we use the
integral equation approach with enforced essential boundary conditions (for reasons of com-
putational efficiency, as mentioned above) and refer to this approach as the non-standard
integral equation approach for the remainder of this section. This investigation is of great
importance for the rest of our study, since it influences the choice of the discretisation
scheme in the step-approximation method, which is used from now on. Due to the desired
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accuracy, we choose a very high resolution for the non-standard integral equation approach,
𝑁 = 6000.

To get a first comparison between these different methods, we study the reflection at a
beam with a single hump for a wide range of hump amplitudes. Fig. 2.9 shows the reflection
coefficient moduli, |𝑅(0)|, calculated by the non-standard integral equation approach
and step-approximation methods based on discretisation schemes I-V, as functions of
(non-dimensional) hump amplitudes, for the hump length 𝑘0𝐿 = 4.0.
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Figure 2.9: Reflection coefficient moduli for single-hump problem as functions of hump
amplitudes, for non-dimensional hump lengths 𝑘0𝐿 = 4.0, computed by non-standard integral
equation approach (solid line) and step-approximation method with discretisation variant I
(∘), II (+), III (+), IV (×), V (×)

We can observe in Fig. 2.9 that the results obtained by the step-approximation method with
discretisation variants I, III and V exhibit a very similar behaviour for the whole domain
of hump amplitudes. These results also show a very good agreement with the reflection
coefficient moduli calculated by the non-standard integral equation approach, although
slight upper deviation of the results for discretisation variants III and V is detectable
for the largest hump amplitude. In contrast to those results, the step approximation
with discretisation variants II and IV overestimates the reflection coefficient moduli by
nearly an order of magnitude throughout the whole domain of hump amplitudes considered.
Hence, evaluating the slope of the beam rigidity point-wise in each sub-interval in the
step approximation seems to be inadequate and the variants II and IV are not considered
anymore in the following.

To get further insight into the behaviour of the step approximation with discretisation
variants I, III, V and their performance in comparison to the non-standard integral equation
approach, we extend the investigation of the reflection as function of hump amplitudes
for 𝑘0𝐿 = 4.0 in Fig. 2.9 to smaller and larger hump lengths. Fig. 2.9 shows the reflection
coefficient moduli calculated by the non-standard integral equation approach and step-
approximation methods based on discretisation schemes I, III and V, as functions of hump
amplitudes, for hump length 𝑘0𝐿 = 2.0 (left-hand panel) and 𝑘0𝐿 = 7.0 (right-hand panel).
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Figure 2.10: Reflection coefficient moduli for single-hump problem as functions of hump
amplitudes, for non-dimensional hump lengths 𝑘0𝐿 = 2.0 (left-hand panel) and 𝑘0𝐿 = 7.0
(right-hand panel), computed by non-standard integral equation approach (solid line) and
step-approximation method with discretisation variants I (∘), III (+) and V (×)

We can observe in Fig. 2.10 further aspects of the discretation variants I, III and V.
These three discretation schemes yield the same reflection coefficient moduli in the small
hump-amplitude regime 𝜇 ≤ 5.0 × 10−2 and the results start to deviate for larger hump
amplitudes. For the smaller hump amplitude, 𝑘0𝐿 = 2.0, the discretation variants III and
V produce larger reflection than variant I (and the integral equation approach), while
for the larger hump amplitude, 𝑘0𝐿 = 7.0, they give smaller reflection coefficients than
variant I (and the integral equation approach, again). The upper deviation for 𝑘0𝐿 = 2.0
is caused by the additional scattering introduced by the rigidity slope evaluations (via
difference quotient and spline slope, respectively) in the rapidly changing rigidity profile,
whereas a certain smoothing effect arises for discretisation variants III and V for large hump
lengths with only gentle rigidity variations between adjacent sub-intervals. Note that the
discretisation variants II and IV (results not shown here) yield reflection coefficients, which
overestimate the results by the non-standard integral equation approach by nearly an order
of magnitude in both cases, 𝑘0𝐿 = 2.0 and 7.0, here too, due to the artificial incorporation
of scattering by the point-wise evaluation of the rigidity slope. Most important, the
discretation variant I shows very good agreement with the non-standard integral equation
approach throughout the whole domain of hump amplitudes, 𝜇 ∈ (10−4,1), for the two
hump lengths considered, 𝑘0𝐿 = 2.0 and 7.0. This agreement could already be observed for
𝑘0𝐿 = 4.0 in Fig. 2.9. We can deduce that neglecting the rigidity slope appearing in the
shear stress continuity (Eqns. (2.15b) and (2.56) in detail), which is consistent with our
approach of using piece-wise constant rigidity in each sub-interval in the step-approximation
method, is the correct discretisation. From now on, the beam rigidity will be be discretised
using variant I, Eqn. (2.59), without further note throughout the rest of the work.

We could observe a linear scaling of the reflection coefficient moduli with the hump
amplitudes, 𝜇, for not-too-large 𝜇 in the case of varying mass in Sec. 2.3.1. For the present
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problem of rigidity variation, this linear behaviour of the reflection coefficient moduli holds
for the cases of 𝐿 considered, 𝑘0𝐿 = 2.0, 4.0 and 7.0, throughout the whole hump amplitude
regime. To get a more detailed view into the reflection at the single hump in the rigidity
profile for various hump lengths and the performance of the step-approximation method in
comparison with the integral equation approach, we consider the reflection at humps of
length 𝑘0𝐿 ∈ (1,10) now. Fig. 2.11 shows the reflection coefficient moduli, calculated by the
step-approximation method and the non-standard integral equation approach, as functions
of non-dimensional hump lengths, for amplitudes 𝜇 = 10−1 and 5.0 × 10−1 (for which the
insufficiency of the alternative discretisation variants became most evident, though).
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Figure 2.11: Reflection coefficient moduli for single-hump problem as functions of non-
dimensional hump length, for hump amplitudes 𝜇 = 10−1 (grey) and 5.0 × 10−1 (black),
computed by non-standard integral equation approach (solid line) and step-approximation
method (∘)

Fig. 2.11 confirms for the entire range of hump lengths considered, 𝑘0𝐿 ∈ (1,10), that the
step-approximation method produces the same results as the integral equation approach
for the large hump amplitudes 𝜇 = 10−1 and 5.0 × 10−1. We can also see that the reflection
coefficients feature the same qualitative and quantitative behaviour as those for the varying
mass problem. This is consistent with the reflection characteristics we could observe in
dependence of the hump amplitude, since they were of the same magnitude in both cases
we dealt with for the varying mass and rigidity problem, 𝑘0𝐿 = 2.0 and 4.0. Hence, the
deterministic single hump in the beam mass and rigidity seem to lead to the same total
reflection of incident waves in most cases.

Finally, we investigate the wave field for the deterministic hump variation in the beam
rigidity, for the same hump length and amplitude as in the mass variation case (Fig. 2.5).
Fig. 2.12 shows the wave field, calculated by the step-approximation method and integral
equation approach, split into real and imaginary part, for non-dimensional hump length
𝑘0𝐿 = 4 and hump amplitude 𝜇 = 5.0 × 10−1.

We can observe in Fig. 2.12 that the wave field shows exactly the same deviation from
the incident wave field, which is also shown for comparison, as in the varying mass case,
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Figure 2.12: Individual wave field for single-hump problem with non-dimensional hump
length 𝑘0𝐿 = 4 and hump amplitude 𝜇 = 5.0 × 10−1, computed by non-standard integral
equation approach (solid line) and step-approximation method (∘), shown as its modulus
(black), and split into real part (dark grey) and imaginary part (light grey). Components of
incident wave are shown for comparison (dash-dotted line with same colour scheme).

i.e. both the real and imaginary part of the wave field as well as the wave field modulus
are the same as in the previous problem. In addition, it should not go unmentioned that
the step-approximation method exhibits very good agreement with the integral equation
approach again. Altogether, this (qualitative) agreement of wave fields together with the
(quantitative) agreement of reflection characteristics obtained by the step-approximation
method and the integral equation approach for both varying mass and varying rigidity
problem make us confident that the step-approximation method is a good and accurate so-
lution method for wave propagation along beams with more general and complex roughness
profiles.

2.3.3 Convergence of step-approximation method

This validation section will be concluded with a numerical convergence study of the step-
approximation method. For this, we use the single-hump problem formulation and analyse
the behaviour of the step-approximation method in comparison to the solution given by
the non-standard integral equation approach, again with 𝑁 = 6000. Fig. 2.13 shows
the reflection coefficient moduli, |𝑅(0)|, calculated by the step-approximation method as
functions of the number of sub-intervals, 𝑀 , used to discretise the hump interval (0,4),
which we refer to as the resolution of the step approximation, for the hump amplitudes
𝜇 = 10−1 (top panels) and 5.0 × 10−1 (bottom panels), for both varying mass (left-hand
panels) and varying rigidity (right-hand panels). The results obtained by the integral
equation approach are shown for comparison.
We can observe in Fig. 2.13 that the step-approximation method solution converges quickly
towards the accurate integral equation approach solution. For the smaller hump amplitude,
𝜇 = 10−1, the step-approximation method already gives acceptable results for both the
varying mass and varying rigidity problem for only one sub-interval, 𝑀 = 1, in the
hump domain. For 𝑀 = 2 in both problems, the reflection coefficient modulus exhibits
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Figure 2.13: Resolution convergence of step-approximation method for single-hump problem
with non-dimensional hump length 𝑘0𝐿 = 4.0 and hump amplitudes 𝜇 = 1.0×10−1 (top panels)
and 𝜇 = 5.0 × 10−1 (bottom panels) for varying mass (left-hand panels) and varying rigidity
problem (right-hand panels). Results obtained by integral equation approach are shown for
comparison (solid line).

significantly larger deviation from the integral equation approach solution. This is due to
the evaluation of the varying quantity at the mid-point of each sub-interval which leads
in the case of two sub-intervals and the symmetric hump-problem to neglect of the hump
maximum and vanishing scattering at the interface of the two sub-intervals. Consequently,
the reflection is very small for this case. For 𝑀 = 3, we can see a slight overprediction
of the reflection coefficient modulus for the smaller hump amplitude and convergence of
the reflection coefficient moduli for 𝑀 ≥ 4 towards the solution obtained by the integral
equation approach. For 𝑀 ≥ 9, no deviations of the results are observable anymore
and |𝑅(0)| remains constant and in agreement with the integral equation approach result
throughout the larger resolution domain.

In the cases of the larger hump amplitude, 𝜇 = 5.0 × 10−1, the deviations in the very
small resolution regime are also observable and larger in their extent, but the reflection
coefficient moduli start to convergence for 𝑀 ≥ 4 and 𝑀 ≥ 5 for the varying mass and
the varying rigidity problem, respectively. To obtain results from the step-approximation
method, which nearly agree with the ones by the integral equation approach, a higher
resolution than for the smaller hump amplitude is needed, i.e. 𝑀 ≥ 15. It is interesting
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that we reached the hump amplitude regime, for which the reflection coefficient modulus,
|𝑅(0)|, is not scaled with the hump amplitude anymore for the varying mass problem, hence
the mass variations lead to less scattering than the varying rigidity problem. However, the
step-approximation method and the integral equation approach still give coinciding results
for sufficiently large resolution.

To study the convergence of the step-approximation method more quantitatively, we
use the definition of convergence rates for sequences, see e.g. Isaacson and Keller 1994,
and apply it to the present problem. For this, we denote the reflection coefficient modulus
obtained for 𝑀 sub-intervals with |𝑅(0)

𝑀 |. We say that the step-approximation method
converges linearly if |𝑅(0)

𝑀 |, 𝑀 = 1, 2, . . ., converges to the value |𝑅(0)| and if there exists a
real number 𝜆 > 0 such that

lim
𝑀→∞

⃒⃒⃒
|𝑅(0)

𝑀+1| − |𝑅(0)|
⃒⃒⃒

⃒⃒⃒
|𝑅(0)

𝑀 | − |𝑅(0)|
⃒⃒⃒𝛼 = 𝜆 (2.64)

for 𝛼 = 1. In general, 𝛼 is the convergence rate of the sequence.

Defining the error of the step-approximation method for 𝑀 sub-intervals as 𝑒𝑀 =
|𝑅(0)

𝑀 | − |𝑅(0)|, Eqn. (2.64) yields for 𝑀 → ∞

|𝑒𝑀+1| ≈ 𝜆|𝑒𝑀 |𝛼 and |𝑒𝑀 | ≈ 𝜆|𝑒𝑀−1|𝛼, (2.65)

and we can write
𝑒𝑀+1
𝑒𝑀

≈ 𝜆|𝑒𝑀 |𝛼

𝜆|𝑒𝑀−1|𝛼
=
⃒⃒⃒⃒
𝑒𝑀

𝑒𝑀−1

⃒⃒⃒⃒𝛼
. (2.66)

Eqn. (2.65) then gives the convergence rate for large 𝑀 as

𝛼 ≈ |𝑒𝑀+1|/|𝑒𝑀 |
|𝑒𝑀 |/|𝑒𝑀−1|

. (2.67)

Since we cannot compute |𝑅(0)| exactly, we do not know the ratios of consecutive errors in
Eqn. (2.67). Neglecting higher-order terms in analogy to Senning 2017, we can approximate
the ratios in Eqn. (2.67) for large 𝑀 as the ratios of the differences of consecutive |𝑅(0)

𝑀 |,
i.e.

𝑒𝑀+1
𝑒𝑀

=

⃒⃒⃒
𝑅

(0)
𝑀+1

⃒⃒⃒
−
⃒⃒
𝑅(0)⃒⃒⃒⃒⃒

𝑅
(0)
𝑀

⃒⃒⃒
−
⃒⃒
𝑅(0)

⃒⃒ ≈

⃒⃒⃒
𝑅

(0)
𝑀+1

⃒⃒⃒
−
⃒⃒⃒
𝑅

(0)
𝑀

⃒⃒⃒
⃒⃒⃒
𝑅

(0)
𝑀

⃒⃒⃒
−
⃒⃒⃒
𝑅

(0)
𝑀−1

⃒⃒⃒ . (2.68)

This approximation can be used in Eqn. (2.67), which provides us with the approximation
of the convergence rate,

𝛼 ≈
log
⃒⃒⃒
|𝑅(0)

𝑀+1| − |𝑅(0)
𝑀 |
⃒⃒⃒

log|
⃒⃒⃒
𝑅

(0)
𝑀

⃒⃒⃒
− |𝑅(0)

𝑀−1||
. (2.69)
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We can observe the approximated convergence rate via Eqn. (2.69) in the left-hand panel
of Fig. 2.14 for the hump length 𝑘0𝐿 = 4.0 and the large hump amplitude 𝜇 = 5.0 × 10−1,
for the varying rigidity problem. The approximated convergence rate clearly tends to 1 for
sufficiently large 𝑀 (𝑀 ≥ 20), which suggests linear convergence of the step approximation.
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Figure 2.14: Left-hand panel: Approximation of convergence rate for single-hump problem
with non-dimensional hump length 𝑘0𝐿 = 4.0 and hump amplitude 𝜇 = 5.0 × 10−1 for varying
rigidity problem. Right-hand panel: Validation of linear convergence of step approximation for
the same setting as in left-hand panel

The suggested linear convergence rate is now validated by the convergence definition (2.64).
Fig. 2.13 and the results in the previous section suggest that the integral equation approach
gives a very accurate approximation for the reflection coefficients modulus. Hence, the
value |𝑅(0)| shall be given by the integral equation approach now. The right-hand panel
of Fig. 2.14 shows 𝜆 from the convergence rate definition (2.64), where the convergence
rate 𝛼 is in accordance to above set equal to one. We can see that 𝜆 tends towards a
constant value, 𝜆 → 1, for high resolution of the step approximation discretisation, and
reaches 1 for 𝑀 ≥ 100. Hence, the reflection coefficient modulus fulfills the definition of
linear convergence and we can conclude that the step-approximation method exhibits linear
convergence.

2.4 Rough profile generation
The main goal of Chs. 2 and 3 is to understand and describe the attenuation of waves
propagating along rough beams in vacuo as well as attenuation of water waves by large ice
floes floating on water. As mentioned before, rough surfaces can have significant effects on
wave propagation. To study these effects for the beam problems, we incorporate roughness
into the beam properties. For this, we may consider problems of beams with varying
thickness. Since thickness variations directly influence both the beam mass and the beam
rigidity, we firstly focus on variations of each of these quantities only and investigate
their effect. In each of these respective problems, the varying quantity shall fluctuate
continuously about its mean, where the fluctuation shall be described by a random process.
We choose a random processes with Gaussian autocorrelation for this purpose, which is
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widely used to model rough surfaces, see Tsang et al. 2000. The popularity of this class of
random processes is together with other features based on the matter of fact that they are
described with their mean and covariance function only. This will prove to be beneficial
for the semi-analytical methods to describe wave attenuation over long distances.

When setting up roughness profiles for the beam problems, we want to generate an
ensemble of profiles, which share on average the same roughness characteristics. These
roughness characteristics are the roughness amplitude and the characteristic length, which
describes the correlation between nearby points of the profile (on average). The roughness
amplitude, 𝜖, can be modified by scaling the random process and can be taken into account
later when specifying the roughness profile of either the beam mass or rigidity or both
(via the beam thickness). Hence, we want to generate realisations of a random process
𝜓(𝑥), which have the same (specific) characteristic length, i.e. the relationship between the
ensemble of realisations is expressed via the autocorrelation condition

⟨𝜓(𝑥)𝜓(𝑥+ 𝜉)⟩ = 𝜌(|𝜉|), (2.70)

where ⟨ · ⟩ denotes the ensemble average of the included quantity with respect to realisations
and 𝜌 is the autocorrelation function describing the average correlation of two points with
distance 𝜉 in-between, 𝑥 and 𝑥+ 𝜉. Here, we assume stationarity of the random process 𝜓,
i.e. the distribution function, which specifies the random process, is invariant with respect
to shifts in 𝑥 and only the distance 𝜉 between the two points determines the correlation
magnitude, and the random process has mean zero, which ensures that the varying quantity
fluctuates about its mean.

To generate individual realisations of roughness profiles, we consider a (target) random
process 𝜓0(𝑥), which shall have mean zero and a not-yet specified mean-square spectral
density function 𝑆0(𝑟), describing the strength of variations as a function of frequency and
giving the standard deviation, 𝜎, of the process 𝜓0(𝑥) in the mean-square,

𝜎 =
[︂ˆ ∞

−∞
𝑆0(𝑟) d𝑟

]︂1/2
. (2.71)

The important work towards the formulation we will use later was done by Goto and Toki
(1969), who introduced a stationary random process of the form

𝜓 = 1√
𝑁

𝑁∑︁
𝑛=1

cos (𝑟𝑛𝑥+ 𝜙𝑛), (2.72)

where the frequencies 𝑟𝑛, 𝑛 = 1, . . . , 𝑁 , are independent random variables identically
distributed with probability density function 𝑓 and the phases 𝜙𝑛, 𝑛 = 1, . . . , 𝑁 , are
independently selected from a uniform distribution over the interval (0,2𝜋].

On the basis of the work by Goto and Toki (1969), Shinozuka (1971) presented the
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following series to simulate the target random process 𝜓0,

𝜓(𝑥) = 𝜎

√︂
2
𝑁

𝑁∑︁
𝑛=1

cos (𝑟𝑛𝑥+ 𝜙𝑛), (2.73)

where the frequencies 𝑟𝑛, 𝑛 = 1, . . . , 𝑁 , are independently chosen from the probability
density function 𝑓 retrieved from normalising 𝑆0(𝑟) by the process’ variance, 𝜎2, i.e.

𝑓(𝑟) = 𝑆0(𝑟)
𝜎2 . (2.74)

The extension of the series (2.72) by 𝜎
√

2, which leads to the series (2.73), ensures that
the the simulated random process has standard deviation 𝜎. Shinozuka and Kobori (1972)
used this random process e.g. for modelling the road-surface roughness of a bridge in
bridge fatigue life estimations. Based on the studies by Shinozuka (1971), it is shown in
Appendix A using the Wiener–Khinchin theorem, an important tool in the stochastic series
analysis, that the random process in Eqn. (2.73) has mean zero and (on average) the same
autocorrelation and mean-square spectral density function as the target random process
𝜓0. The Wiener–Khinchin theorem and the central-limit theorem are also applied to show
that the random process is mean-ergodic and ergodic in the mean-square spectral density,
hence ergodic in the autocorrelation, i.e. the mean as well as the autocorrelation yield the
same results regardless whether the ensemble average or the spatial average is taken, and
the ensemble quantities can be deduced from one single, random sample of the process 𝜓
over a sufficiently long interval.

A variety of different random processes could be used to describe roughness profiles
of beams both in vacuo and floating on water. Since we are mainly interested in waves trav-
elling through the rough regime, as well as their relations to the associated multiple-scale
approaches, we focus on one class of random process here. Since roughness profile varia-
tions look closely Gaussian distributed in many rough surface problems, see e.g. Thomas
1999, and Gaussian autocorrelated random processes are (mathematically conveniently)
described with their mean and covariance function only, their use is feasible in our problems.
The target autocorrelation function, 𝜌0, which describes the autocorrelation of the target
random process 𝜓0, shall be given by a squared exponential (Gaussian) autocorrelation
function, i.e.

𝜌0(|𝜉|) = e−𝜉2/𝑙2G , (2.75)

where 𝑙G denotes the characteristic length, which is referred to as the correlation length
from here on.

To simulate this target random process 𝜓0 with the analysed series 𝜓 in Eqn. (2.73),
the probability density function 𝑓 for the frequencies 𝑟 has to be specified. Because of
the relation in Eqn. (2.74), it is sufficient to find the corresponding mean-square spectral
density function 𝑆0. Based on the Wiener–Khinchin theorem (see Appendix A for details),
𝑆0 can be determined, and to simulate the target random process satisfying the Gaussian
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autocorrelation condition (Eqn. (2.75)) in the limit 𝑁 → ∞ with the series

𝜓(𝑥) =
√︂

2
𝑁

𝑁∑︁
𝑛=1

cos (𝑟𝑛𝑥+ 𝜙𝑛), (2.76)

the frequencies 𝑟𝑛, 𝑛 = 1, . . . ,𝑁, are random variables independently chosen from a Gaus-
sian distribution with zero mean and standard deviation equal to

√
2/𝑙G, and the phases 𝜙𝑛,

𝑛 = 1, . . . ,𝑁 are independently selected from a uniform distribution over the interval (0,2𝜋].
It is shown numerically in Appendix A that the random process 𝜓 indeed has vanishing
ensemble average and spatial mean, and it fulfils the ensemble and spatial autocorrelation
condition 𝜌0.

We can observe in the statistical analysis in Appendix A that using the computational
efficient choice 𝑁 = 400 terms in Eqn. (2.76) to generate the random process 𝜓 is sufficient
to meet the Gaussian autocorrelation condition satisfactorily, i.e. the generated random
process is autocorrelated squared exponentially accurately enough for our purposes in this
work. Hence, we set 𝑁 = 400 for the generation of the random process throughout the rest
of this work.

We consider wave propagation along infinitely long beams, which exhibit roughness over a
long, finite interval 𝑥 ∈ (0,𝐿). If not specified otherwise, the roughness shall extend over an
interval of length 𝑘𝐿 = 400×𝑘𝑙G for the following results. Since the (continuous) roughness
profile shall fluctuate about the mean of the respective varying quantity (beam mass,
rigidity or thickness) and the beam profile is assumed to be continuous at the boundaries
of the finite interval (0,𝐿), we use a numerical boundary step control, which ensures the
continuity at 𝑥 = 0, 𝐿. Those boundary continuity conditions between the rough and
semi-infinite intervals are ensured numerically by only considering profile realisations with
sufficiently small steps at the respective interfaces. It was approved that the boundary
step control does not influence the statistical properties of the random process 𝜓, hence
the ensemble and spatial autocorrelation condition 𝜌0 remain fulfilled.

2.5 Effective wave field via random sampling
When studying wave propagation through rough media, the effective wave field is often
the quantity of interest. The effective wave field is the mean wave field with respect to
an ensemble of individual realisations. Numerical calculations of the wave field for each
individual realisation of the roughness profile are based on the step-approximation method,
which is outlined in Sec. 2.2. To obtain the effective wave field for roughness profiles with
the same average characteristics, i.e. roughness amplitude and correlation length, (individ-
ual) wave fields are calculated for a large ensemble of randomly generated realisations of
roughness profiles, in which profiles share the same amplitude, 𝜖, and correlation length, 𝑙G.
The relationship between an ensemble of roughness profiles is expressed via the Gaussian
autocorrelation condition in Eqn. (2.75).



2.5 Effective wave field via random sampling 43

Typically, wave energy decays exponentially in these problems of waves interacting with
rough media. In particular, this also applies for wave propagation along rough beams and
water waves propagating along rough, floating beams. Hence, the absolute value of the
(complex-valued) individual wave fields, |𝑢|, and effective wave field, |⟨𝑢⟩|, are expected to
decay exponentially over the rough interval. We can measure the exponential decay, which
is denoted as the attenuation coefficient, 𝑄, using a least-squares minimisation routine.
The effective attenuation coefficient, which describes the exponential decay of the effective
wave field, is therefore defined via

|⟨𝑢⟩| ∝ e−𝑄eff𝑥, 𝑥 ∈ (0,𝐿). (2.77a)

To compare the attenuation behaviour of effective wave fields with respective individual
wave fields, we want to measure the exponential decay of the individual wave fields as well.
In order to get reliable and representative quantitative results for individual wave fields,
we retrieve the attenuation coefficients for each individual wave field in the ensemble of
generated roughness profiles and use the average of these attenuation coefficients as the
characteristic individual attenuation coefficients, 𝑄ind. In detail, the attenuation coefficient
for each roughness profile in the ensemble is accordingly to above obtained via

|𝑢𝑖| ∝ e−𝑄𝑖𝑥, 𝑥 ∈ (0,𝐿), (2.77b)

and the individual attenuation coefficient is obtained after that by averaging 𝑄𝑖, i.e.

𝑄ind = ⟨𝑄𝑖⟩. (2.77c)

After introducing the effective wave field and the formal definitions, how to describe the
exponential decay of the wave fields above, the question remains how large the ensemble
of roughness realisations/individual wave fields has to be chosen to obtain representative
effective wave fields. To answer this question, we consider beams with mass variations in
(0,𝐿), which are described by the Gaussian autocorrelated random process in Eqn. (2.76).
This problem will be analysed extensively in Sec. 2.6.

Fig. 2.15 shows box-and-whisker plots of the effective attenuation coefficients, as functions
of ensemble size (number of profile realisations used in random sampling process), for
the varying mass problem with a specified, reasonable large roughness amplitude and
non-dimensional correlation lengths 𝑘𝑙G = 0.9, 2.5 and 4.1, where 𝑘 is the mean wavenum-
ber, which corresponds to the mean mass. For each ensemble size and non-dimensional
correlation length, the effective attenuation coefficients are calculated 40 times to have a
sufficiently large sample size for the statistical analysis. The boxes indicate the intervals
containing the central 50% of the sampled data (25% to 75% quantiles), and the horizontal
lines within them denote the median values (50% quantiles). The whiskers indicate the
remaining data lying in the range of 1.5 times the height of the central box next to the
quantiles. Points outside this range are considered to be outliers and are shown as bullets.
The results are obtained using the random-sampling method based on the step approxima-
tion, which we refer to in the following for the sake of simplicity as the random-sampling
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method only. Since the results serve for qualitative illustration only, the values of the
effective attenuation coefficients on the linearly scaled ordinate axis are not specified.
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Figure 2.15: Box-and-whisker plots of attenuation coefficients as functions of ensemble size
(multiples of 50 up to 1500) for varying mass problem, for non-dimensional correlation lengths
𝑘𝑙G = 0.9 (top), 𝑘𝑙G = 2.5 (middle) and 𝑘𝑙G = 4.1 (bottom)

We can see in Fig. 2.15 that small ensemble sizes lead to an underprediction of the attenua-
tion of the respective effective wave field for all non-dimensional correlation lengths shown.
It takes an ensemble size of approximately 1000 to achieve convergence with respect to
the attenuation coefficients. Enlarging the ensemble size beyond 1000 provides greater
accuracy, which is indicated by the quantiles moving closer together. In following sections,
the ensemble used to calculate the effective wave fields consist of 1500 randomly generated
roughness profile realisations, which also ensures converged results for the individual atten-
uation coefficients.

For the step approximation in the random-sampling method, the roughness interval has to
be divided into sub-intervals in order to approximate the roughness profile by piece-wise
constant functions and calculate the wave fields afterwards. To obtain the numerical results
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in Fig. 2.15, each correlation length (embodying already a natural division of the rough
interval) was divided into four sub-intervals. Fig. 2.16 shows the effective attenuation
coefficients as functions of correlations lengths for the cases of dividing each correlation
length into four as well as 16 sub-intervals in the step approximation, for an intermediate
roughness amplitude (𝜖 = 1.0 × 10−2, left-hand panel) and large roughness amplitude
(𝜖 = 1.0×10−1, right-hand panel). Again, the values of the effective attenuation coefficients
on the linearly scaled ordinate axis are not specified.
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Figure 2.16: Effective attenuation coefficients as functions of correlation length for resolution
of four (∘) and 16 sub-intervals (+) per correlation length in the step approximation, for
intermediate (left-hand panel) and large roughness amplitude (right-hand panel)

We can see in Fig. 2.16 that the resolution of four sub-intervals per correlation length gives
the same effective attenuation coefficients as the resolution of 16 sub-intervals per correlation
length in the step approximation for both intermediate and large roughness amplitudes.
This is consistent with the resolution convergence we could observe for the deterministic
hump problem in Fig. 2.13 since the appearing humps in the autocorrelated random process
extend over multiple correlation lengths. As a matter of course, we can expect agreement
between effective attenuation coefficients calculated with four sub-intervals per correlation
length and those calculated with 16 sub-intervals per correlation length also for smaller
roughness amplitudes. For computational efficiency, the discretisation resolution of four
sub-interval per correlation length will be used for the random-sampling method in the
following sections, if not specified otherwise. The quantitative and qualitative behaviour of
the effective wave fields and attenuation coefficients are not discussed here and we refer for
this to the next sections.

2.6 Rough beam with varying mass

In the following, we consider the problems of a beam with a varying mass 𝑔(𝑥) (this section),
a beam with varying rigidity 𝑏(𝑥) (Sec. 2.7) and a beam with varying thickness leading to
variations in both its mass and rigidity (Sec. 2.8). In this section, we focus on the first
problem of wave propagation of waves along a beam with varying mass, only. Hence, the
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linear thin-beam equation (2.9) becomes

𝑏𝜕4
𝑥𝑢(𝑥) − 𝛼𝑔(𝑥)𝑢(𝑥) = 0, 𝑥 ∈ (−∞,∞) (2.78)

for the varying mass problem, for which the beam rigidity is chosen to be constant. The
mass variations are caused by density variations and the mass 𝑔(𝑥) shall fluctuate about
the mean 𝑔. The varying mass is defined as

𝑔(𝑥) = 𝑔(1 + 𝜖𝛾(𝑥)). (2.79)

The fluctuations are modelled via the Gaussian autocorrelated random process introduced
in Sec. 2.4, i.e. 𝛾 ≡ 𝜓 ∈ O(1). Hence, the fluctuations, 𝜖𝛾(𝑥), have a known characteristic
length, the correlation length 𝑙G, and root-mean-square amplitude, 𝜖, which is referred to
as the (non-dimensional) roughness amplitude. Fig. 2.17 shows the roughness character-
istics, 𝑙G and 𝜖, schematically for the varying roughness profile and corresponding step
approximation from Fig. 2.2.
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Figure 2.17: Example realisation of continuous roughness profile (grey curve) and corre-
sponding step approximation with four sub-intervals per correlation length (black) for varying
mass problem, for roughness amplitude 𝜖 = 1.0 × 10−2 and non-dimensional correlation length
𝑘𝑙G = 2.5.

To establish consistency with the multiple-scale method in Sec. 2.6.2, the assumption 𝜖 ≪ 1
is made, although this is not required in general, up to the point at which the variations are
large enough to produce intervals of negative mass (𝜖 ≈ 0.3) with non-negligible likelihood.
We note that the varying mass problem can be expressed as

𝜕4
𝑥𝑢(𝑥) − 𝑘4(𝑥)𝑢(𝑥) = 0, 𝑥 ∈ (−∞,∞), (2.80)

where the wavenumber 𝑘(𝑥) = (𝛼𝑔(𝑥)/𝑏) 1
4 .

Individual realisations of the random process, 𝛾(𝑥), are generated using Eqn. (2.76),
which yields ergodicity in the mean and autocorrelation, as we have seen in Sec. 2.4. Hence,
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𝛾 satisfies the Gaussian autocorrelation condition

⟨𝛾(𝑥) 𝛾(𝑥− 𝜉)⟩ = E[𝛾(𝑥) 𝛾(𝑥− 𝜉)] = e−𝜉2/𝑙2G (2.81)

for a sufficiently large number of terms in the generation of the random process. To study
the characteristic behaviour of individual and effective waves travelling along a beam
with varying mass, wave fields are calculated with the random-sampling method for a
large ensemble of randomly generated realisations of roughness profiles, in which profiles
share the same amplitude, 𝜖, and correlation length, 𝑙G, which gives robust results for the
(averaged) individual wave propagation and we directly can obtain the effective wave fields.

2.6.1 Preliminary wave field analysis
Before we derive and validate the multiple-scale method and study the wave attenuation
quantitatively in the following sections, we compare the effective wave field to the individual
wave fields that form the ensemble, first. Fig. 2.18 shows the moduli of example individual
wave fields and corresponding effective wave fields, for roughness amplitude 𝜖 = 5.0 × 10−2

and non-dimensional correlation lengths 𝑘𝑙G = 0.9 (left-hand panel) and 4.1 (right-hand
panel).
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Figure 2.18: Example individual wave fields (grey curves) and effective wave fields (black) for
varying mass problem, for roughness amplitude 𝜖 = 5.0 × 10−2 and non-dimensional correlation
lengths 𝑘𝑙G = 0.9 (left-hand panel) and 𝑘𝑙G = 4.1 (right-hand panel)

The smaller correlation length, 𝑘𝑙G = 0.9, is chosen to produce the strong attenuation
of the individual wave fields. Despite this, they attenuate weakly and less than their
corresponding effective wave fields. The larger correlation length, 𝑘𝑙G = 4.1, is chosen to
produce strong attenuation of the effective wave fields. In this regime, the fluctuations in
the beam are too mild to attenuate the individual wave fields and their moduli randomly
fluctuate around unity. It is the de-correlation of the individual wave fields that causes
attenuation of the effective wave field. These observations are consistent with those made
by Wu (1982) and Bennetts et al. (2015), who studied amplitude attenuation of seismic
waves and water waves propagating over a rough seabed in intermediate water depth,
respectively.
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2.6.2 Multiple-scale method

Since the computational expense for the random-sampling method is very high to obtain
the attenuation behaviour of effective wave fields, we now derive a semi-analytical method
to obtain an equation for the envelope of the (effective) wave field. We use a two-scale
approximation similar to that of Mei and Hancock (2003), Mei et al. (2005) and Bennetts
et al. (2015), who considered the problem of water waves travelling over a rough sea bed.
For this approach, we consider the rough interval to be unbounded, and let the correlation
length, 𝑙G, represent a local scale and 𝐿ob = 𝑙G/𝜖

2 an observation scale, for which 𝜖 ≪ 1 is
required, i.e. the roughness amplitude 𝜖 is used to relate the local scale, represented by
the correlation length, and the observation scale, over which attenuation is observed. The
coordinates 𝑥 and 𝑥2 = 𝜖2𝑥 are used to define locations on the local and observation scales,
respectively. Since the attenuation coefficients do not depend on an intermediate scale, the
coordinate 𝑥1 = 𝜖𝑥 is neglected. We adopt a multiple-scale expansion for the wave field, 𝑢,
to map the wave field into the new coordinate system, i.e.

𝑢(𝑥) = 𝑢0(𝑥,𝑥2) + 𝜖𝑢1(𝑥,𝑥2) + 𝜖2𝑢2(𝑥,𝑥2) + O
(︀
𝜖3
)︀
. (2.82)

By application of the chain rule, the expansion

𝜕𝑥𝑢 =
∑︁

𝑗

𝜖𝑗
(︀
𝜕𝑥𝑢𝑗 + 𝜖2𝜕𝑥2𝑢𝑗

)︀
(2.83)

for the derivative is obtained. The equations to be satisfied by the 𝑢𝑗 are derived by
substituting the multiple-scale expansion (2.82) into the governing equation for a beam
with varying mass, Eqn. (2.78) and separating the terms with respect to orders of 𝜖.

Order 𝜖0

The order 𝜖0 terms provide the governing equation for the leading-order wave field, 𝑢0, to
be

(𝜕4
𝑥 − 𝑘4)𝑢0(𝑥,𝑥2) = 0, 𝑥 ∈ (−∞,∞), (2.84)

where the wavenumber is given by 𝑘 = (𝛼𝑔/𝑏) 1
4 , i.e. Eqn. (2.84) is equivalent to that of a

uniform beam, Eqn. (2.A.1), with constant mass 𝑔. The solution of Eqn. (2.84) consists
of two wave components, a modulated rightward-travelling wave (depicts incident wave
travelling along the rough beam) and a random leftward-travelling wave (depicts reflected
wave). Bennetts et al. (2015) showed in the setting of water waves travelling over a rough
sea-bed in intermediate depth that only a right-travelling wave has to be considered at
leading order. We take up their analysis and apply it to the present problem to justify this
approach in our setting.

Figs. 2.19 and 2.20 give evidence for this procedure in our setting of wave propaga-
tion along a rough beam, too. Fig. 2.19 shows the left- and right-travelling components of
the effective wave fields, |⟨𝑢−⟩| and |⟨𝑢+⟩|, respectively, with ⟨𝑢−⟩ + ⟨𝑢+⟩ = ⟨𝑢⟩ (as we will
see shortly, the method only captures the effective wave field), for the roughness amplitudes
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𝜖 = 5.0 × 10−2 (left-hand panel) and 1.0 × 10−1 (right-hand panel), for non-dimensional
correlation lengths 𝑘𝑙G = 0.9, 2.5 and 4.1. The results are obtained by the random-sampling
method and the length of the roughness interval here is 𝐿 = 800. The amplitudes of the
incident (right-travelling) waves are chosen to be unity at 𝑥 = 0.
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Figure 2.19: Effective wave field, split into rightward- and leftward-travelling components
(solid and dashed line, respectively), for non-dimensional correlation lengths 𝑘𝑙G = 0.9 (light
grey), 𝑘𝑙G = 2.5 (dark grey) and 𝑘𝑙G = 4.1 (black), for roughness amplitudes 𝜖 = 5.0 × 10−2

(left-hand panel) and 𝜖 = 1.0 × 10−1 (right-hand panel)

We can observe in Fig. 2.19 that for 𝜖 = 5.0 × 10−2 and all three correlation lengths
considered, the left-travelling effective wave component is close to zero over the whole
rough interval. For the larger roughness amplitude, 𝜖 = 1.0 × 10−1, the attenuation of the
right-travelling wave is significantly larger, but the left-travelling wave component remains
smaller than the right-travelling wave component by more than an order of magnitude over
the whole rough interval and is hence insignificant. To validate the assumption of neglecting
the left-travelling effective wave component in the multiple-scale method, Fig. 2.20 shows the
ratio of the (spatial averaged) leftward- to rightward travelling effective wave components
as functions of non-dimensional correlation length, for roughness amplitudes 𝜖 = 10−4,
10−3, 10−2, 10−1 and 2 × 10−1. The ratio is calculated via

𝑈−/+ = 𝑈−
𝑈+

with 𝑈± = 1
𝐿

ˆ 𝐿

0
|⟨𝑢±⟩| d𝑥, (2.85)

where 𝑢± denotes the right- and left-going wave components, respectively. The interval
length, 𝐿, in the random-sampling method is set to be 400 times the corresponding
correlation length, i.e. 𝑘𝐿 = 400 × 𝑘𝑙G, in the following (if not specified otherwise), which
provides a sufficiently large roughness interval to allow comparisons with the multiple-
scale method (which is based on the assumption of an infinite roughness interval in our
formulation).

We can see in Fig. 2.20 that 𝜖 = 10−4 and 10−3 give very similar scaled ratios and the
maximum value of 𝑈−/+ is approximately 0.2𝜖 in the small (non-dimensional) correlation
length regime around 𝑘𝑙G ≈ 1. For very small and larger correlation lengths the scaled ratio
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Figure 2.20: Ratio of leftward- to rightward travelling components of effective wave field as
functions of non-dimensional correlation length, for roughness amplitudes 𝜖 = 10−4 (cyan),
𝜖 = 10−3 (green), 𝜖 = 10−2 (red), 𝜖 = 10−1 (blue) and 𝜖 = 2 × 10−1 (black)

decreases. Although the scaled ratio curve for 𝜖 = 10−2 tends towards a larger value in the
larger correlation length regime, it still provides evidence that 𝑈−/+ scales with 𝜖 for small
roughness amplitudes. The scaling of 𝑈−/+ with 𝜖 does not hold for 𝜖 = 10−1 and 2 × 10−1

anymore, which produce much larger values for the ratio of left- to right-travelling effective
wave components throughout the whole correlation length regime. For 𝜖 = 2 × 10−1, the
left-travelling effective wave component clearly cannot be neglected anymore. This might
indicate that the limit of validity of the multiple-scale method (with the assumption of a
right-travelling wave at leading order only) is already reached.

Under the assumption of 𝜖 ≪ 1, Fig. 2.20 supports the approach to consider only a
modulated right-travelling wave at leading order along the (infinite) rough interval, which
is chosen to be consistent with the right incident wave for the finite rough interval problem,
and the wave field can be expressed as

𝑢0(𝑥,𝑥2) = 𝐴(𝑥2) ei𝑘𝑥, (2.86)

where the (complex-valued) amplitude 𝐴 is now the principal unknown of the problem,
and is sought from the higher-order terms.

As the mean wavenumber is fixed with respect to the ensemble, the leading-order effective
wave field is

⟨𝑢0(𝑥,𝑥2)⟩ = ⟨𝐴(𝑥2)⟩ ei𝑘𝑥, (2.87)

with modulus |⟨𝑢0(𝑥,𝑥2)⟩| = |⟨𝐴(𝑥2)⟩|. It follows that

⟨𝐴(𝑥2)⟩ = 𝐴0 ei𝛥𝑘𝑥 e−𝑄𝑥, (2.88)

where 𝐴0 is a constant, and 𝛥𝑘 and 𝑄 are unknown.
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Order 𝜖1

Collecting the terms at order 𝜖 gives

(𝜕4
𝑥 − 𝑘4)𝑢1(𝑥,𝑥2) = 𝑘4𝛾(𝑥)𝑢0(𝑥,𝑥2), 𝑥 ∈ (−∞,∞), (2.89)

which is a governing equation for the first-order wave field, 𝑢1, forced by the product of
the leading-order wave field, 𝑢0, and the random fluctuation, 𝛾. The solution for a given 𝛾
is expressed as

𝑢1(𝑥,𝑥2) = 𝑘4
ˆ ∞

−∞
𝐺(|𝑥− 𝑥̌|)𝛾(𝑥̌)𝑢0(𝑥̌,𝑥2) d𝑥̌, (2.90)

where 𝐺 is the standard Green’s function for the homogeneous beam equation with an
impulse at the source point, Eqn. (2.A.23), and 𝑘 replaced by 𝑘.

Order 𝜖2

The order 𝜖2 terms give the governing equation for 𝑢2 to be

(𝜕4
𝑥 − 𝑘4)𝑢2 = −4𝜕3

𝑥𝜕𝑥2𝑢0 + 𝑘4𝛾(𝑥)𝑢1, 𝑥 ∈ (−∞,∞). (2.91)

For the solution, we have to take the ensemble average of Eqn. (2.91), which yields

(𝜕4
𝑥 − 𝑘4)⟨𝑢2⟩ = −4⟨𝜕3

𝑥𝜕𝑥2𝑢0⟩ + 𝑘4⟨𝛾(𝑥)𝑢1⟩. (2.92)

At this point, it becomes clear that due to averaging, we will obtain ⟨𝐴⟩, hence the
multiple-scale method approximates the effective wave field. To solve for ⟨𝑢2⟩, we employ
the ansatz ⟨𝑢2⟩ = ei𝑘𝑥𝐹 (𝑥2), for some function 𝐹 , so that the left-hand side of Eqn. (2.92)
vanishes. While the first term on the right-hand side of Eqn. (2.92) simplifies to

− 4⟨𝜕3
𝑥𝜕𝑥2𝑢0⟩ = 4i𝑘3𝜕𝑥2⟨𝐴⟩ei𝑘𝑥, (2.93)

the third term on the right-hand side of Eqn. (2.92) can be written of the form

𝑘4⟨𝛾(𝑥)𝑢1⟩ = 𝑘8⟨︀𝛾(𝑥)
ˆ ∞

−∞
𝐺(|𝑥− 𝑥̌|)𝛾(𝑥̌)𝑢0(𝑥̌,𝑥2) d𝑥̌

⟩︀
= 𝑘8

ˆ ∞

−∞
𝐺(|𝑥− 𝑥̌|)

⟨︀
𝛾(𝑥)𝛾(𝑥̌)𝑢0(𝑥̌,𝑥2)

⟩︀
d𝑥̌. (2.94)

Now, we can confirm our approach that only the effective component appears in the
leading-order solution 𝑢0. To show that the random components do not contribute to the
term ⟨𝛾(𝑥)𝛾(𝑥̌)𝑢0(𝑥̌,𝑥2)⟩ in Eqn. (2.94), we approximate the leading order solution 𝑢0 with
the wave field 𝑢 obtained by the random-sampling method. Fig. 2.21 shows the results for

𝜌𝑢(|𝜉|) = ⟨𝛾(𝑥)𝛾(𝑥̌)𝑢(𝑥̌)⟩ = ⟨𝛾(𝑥̌+ 𝜉)𝛾(𝑥̌)𝑢(𝑥̌)⟩ (2.95)
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as well as for the terms corresponding to the random component of the wave travelling
rightward and the (random) wave travelling leftward,

𝜌𝑢+(|𝜉|) = ⟨𝛾(𝑥̌+ 𝜉)𝛾(𝑥̌)(𝑢+(𝑥̌) − ⟨𝑢(𝑥̌)⟩)⟩, (2.96a)
𝜌𝑢−(|𝜉|) = ⟨𝛾(𝑥̌+ 𝜉)𝛾(𝑥̌)𝑢−(𝑥̌)⟩, (2.96b)

as functions of |𝜉|, where 𝜉 = 𝑥− 𝑥̌, for non-dimensional correlation length 𝑘𝑙G = 2.5 and
roughness amplitudes 𝜖 = 1.0 × 10−2 (left-hand panel) and 1.0 × 10−1 (right-hand panel).
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Figure 2.21: Correlation between wave field and mass variation for non-dimensional correlation
length 𝑘𝑙G = 2.5, for roughness amplitudes 𝜖 = 1.0 × 10−2 (left-hand panel) and 𝜖 = 1.0 × 10−1

(right-hand panel) (𝜌𝑢,–; 𝜌𝑢+ , B; 𝜌𝑢− , C)

We can clearly observe in Fig. 2.21 that for the intermediate non-dimensional correlation
length 𝑘𝑙G = 2.5, neither the random component 𝑢+(𝑥̌) − ⟨𝑢(𝑥̌)⟩ nor 𝑢−(𝑥̌) are correlated
to the roughness profile of the beam at leading order. To show that the random components
of the wave field are uncorrelated to the roughness profile for the whole range of non-
dimensional correlation lengths we will consider in Sec. 2.6.3, 𝑘𝑙G = 0.1, . . . , 4.9, we use
the approximations of the mean magnitude of the terms 𝜌𝑢± over the roughness interval,

𝐽± = 1
𝐿

ˆ 𝐿

0
|𝜌𝑢± | d𝜉, (2.97)

as functions of non-dimensional correlation length, which is shown in Fig. 2.22 for roughness
amplitudes 𝜖 = 1.0 × 10−2 (left-hand panel) and 𝜖 = 1.0 × 10−1 (right-hand panel). For
comparison, Fig. 2.22 also shows the mean magnitude of the term 𝜌𝑢 over only one
correlation length as well as the whole domain (0,𝐿),

𝐽𝑙G = 1
𝑙G

ˆ 𝑙G

0
|𝜌𝑢| d𝜉 and 𝐽𝐿 = 1

𝐿

ˆ 𝐿

0
|𝜌𝑢| d𝜉. (2.98)

We can deduce from Fig. 2.22 that the random components of the beam deflection are
uncorrelated to the roughness profile and consequently random components in the leading-
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Figure 2.22: Mean correlations of roughness profile with wave field, 𝐽𝑙G (black solid) and
𝐽𝐿 (grey solid), and random components of wave field, 𝐽+ (B) and 𝐽− (C), as functions of
non-dimensional correlation length, for roughness amplitudes 𝜖 = 1.0 × 10−2 (left-hand panel)
and 𝜖 = 1.0 × 10−1 (right-hand panel)

order term 𝑢0 are uncorrelated to the roughness profile, too. Since the correlation of the
wave field 𝑢(𝑥̌) with the roughness profile is negligible therefore, we can write

⟨𝛾(𝑥)𝛾(𝑥̌)𝑢0(𝑥̌)⟩ = ⟨𝛾(𝑥̌+ 𝜉)𝛾(𝑥̌)⟩⟨𝑢0(𝑥̌)⟩. (2.99)

This result together with the representation of the autocorrelated random process,
⟨𝛾(𝑥̌+ 𝜉)𝛾(𝑥̌)⟩ = 𝜌(|𝜉|), Eqn. (2.94) may be rewritten in the simplified form

𝑘4⟨𝛾(𝑥)𝑢1⟩ = 4𝑘3⟨𝐴(𝑥2)ei𝑘𝑥⟩ 𝑘
5

4

ˆ ∞

−∞
𝐺(|𝜉|)ei𝑘𝜉𝜌(|𝜉|) d𝜉⏟  ⏞  

=: 𝜁vm

. (2.100)

With these calculations, the governing equation for order 𝜖2, Eqn. (2.91), becomes the
following ordinary differential equation,

𝜕𝑥2⟨𝐴(𝑥2)⟩ − i⟨𝐴(𝑥2)⟩ 𝜁vm = 0, (2.101)

for the effective amplitude ⟨𝐴(𝑥2)⟩. The integral appearing in the complex constant 𝜁vm
is calculated numerically using an adaptive quadrature scheme for the results shown in
Sec. 2.6.3. Note that due to the autocorrelation condition on the random process no
averaging is required in the (as a result of this efficient) numerical calculation of the
integral. The solution of the governing ordinary differential Eqn. (2.101) is

⟨𝐴(𝑥2)⟩ = 𝐴0 ei𝜁vm𝑥2 , (2.102)

giving the effective phase change, (𝛥𝑘)eff , and attenuation coefficient, 𝑄eff , due to the
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rough mass as, respectively,

(𝛥𝑘)eff = 𝜖2Re(𝜁vm), (2.103a)

and 𝑄eff = 𝜖2Im(𝜁vm). (2.103b)

In particular, this implies that the complex constant 𝜁vm is the (complex-valued) wavenum-
ber on the observation scale. Moreover, the effective attenuation coefficient and the effective
phase change predicted by the multiple-scale approximation are proportional to 𝜖2.

2.6.3 Numerical results

After the motivation and introduction of the multiple-scale method for the beam in vacuo
with varying mass, we compare the attenuation coefficients and phase changes predicted by
the multiple-scale method with those obtained by the numerical random-sampling method
to validate the multiple-scale method for the underlying problem. Firstly, we compare the
attenuation for different roughness amplitudes throughout the (non-dimensional) correlation
length regime 𝑘𝑙G ∈ (0.1,4.9). Fig. 2.23 shows the scaled attenuation coefficients, predicted
by the multiple-scale method and obtained by the random-sampling method, as functions of
non-dimensional correlation length, for roughness amplitudes 𝜖 = 1.0×10−3 (top-left panel),
1.0 × 10−2 (top-right panel), 5.0 × 10−2 (bottom-left panel) and 1.0 × 10−1 (bottom-right
panel). The attenuation coefficient are non-dimensionalised with respect to the mean
wavenumber, i.e. 𝑄/𝑘, and scaled by the roughness amplitude squared, 𝜖2, which is used
to relate the local and observation scale to each other. For these and the following results
obtained with the random-sampling method, the rough interval length 𝑘𝐿 = 400 × 𝑘𝑙G is
used, if not specified otherwise.

We can observe in Fig. 2.23 that the agreement between the attenuation coefficients
predicted by the multiple-scale method and obtained by the random-sampling is nearly
perfect for roughness amplitudes 𝜖 ≤ 5.0 × 10−2. In this roughness amplitude regime,
only small deviations for the smallest correlation length shown are observable, which is
caused by numerical difficulties in capturing the very small attenuation coefficients from the
effective wave fields in the random-sampling method accurately. The effective attenuation
coefficients (describing the attenuation of the effective beam deflection) are close to zero
for the smallest non-dimensional correlation length, 𝑘𝑙G = 0.1, and increase with increasing
correlation length. For 𝑘𝑙G ≥ 2, the attenuation coefficients are linear with respect to 𝑘𝑙G,
for 𝜖 ≤ 5.0 × 10−2. The good agreement between the two methods shows in particular that
the attenuation coefficients obtained by the random-sampling method are also proportional
to the square of the roughness amplitude, 𝜖2, as predicted by multiple-scale approach.
Hence, the scaled attenuation coefficients are independent of the roughness amplitude. The
proportionality of the effective attenuation coefficients with the roughness amplitude is
lost in the large correlation length regime 𝑘𝑙G ≥ 3 for the largest roughness amplitude
under consideration, 𝜖 = 1.0 × 10−1, where we can observe slight down deviations of the
effective attenuation coefficients from the values predicted by the multiple-scale method.
These deviations for the largest roughness amplitude show that the limit of validity of the
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Figure 2.23: Scaled attenuation coefficients of effective wave field for varying mass problem as
functions of non-dimensional correlation length, predicted by multiple-scale method (solid line)
and random-sampling method (∘), for roughness amplitudes 𝜖 = 1.0 × 10−3 (top-left panel),
𝜖 = 1.0×10−2 (top-right panel), 𝜖 = 5.0×10−2 (bottom-left panel) and 𝜖 = 1.0×10−1 (bottom-
right panel). Corresponding individual attenuation coefficients obtained by random-sampling
method (×) are shown for comparison.

multiple-scale approach is reached.

Although this section focuses on the effective wave field and the validation of the multiple-
scale method, it is informative to compare the effective with the individual wave fields
that form the ensemble – the random-sampling method allows us to do this. Fig. 2.23 also
shows the attenuation of the individual wave fields as functions of the correlation length.
We can see that the individual attenuation coefficients (describing the attenuation of indi-
vidual wave fields) are only non-zero for 𝑘𝑙G ∈ (0.3,2). For the smallest correlation length,
𝑘𝑙G = 0.1, the individual attenuation coefficient is similarly to the effective attenuation
coefficient close to zero. From there, the individual attenuation coefficients increase to reach
its maximum between 𝑘𝑙G ≈ 0.7 and 0.9. For larger correlation lengths, the individual
attenuation coefficients decrease to vanish for correlation lengths 𝑘𝑙G ≥ 2. A hump of
similar magnitude in the same correlation length regime is also observable for the effective
attenuation coefficients, which show upper deviation from the linear scaling with the corre-
lation length in the same small correlation length regime. The results for the individual
attenuation coefficients confirm our finding from Fig. 2.18 that the mass variations are
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too mild to attenuate the individual wave fields for large correlations lengths, i.e. 𝑘𝑙G ≥ 2
here. We can also deduce that that the mass fluctuations are too rapid for the small-
est correlation length, 𝑘𝑙G = 0.1, to be seen by the waves travelling along the beam in vacuo.

Fig. 2.23 suggested that the (effective) attenuation coefficients scale with the square
of the roughness amplitude. This is investigated now. Fig. 2.24 shows the scaled (indi-
vidual and effective) attenuation coefficients, predicted by the multiple-scale method and
obtained by the random-sampling method, as functions of roughness amplitude, for the
non-dimensional correlation lengths 𝑘𝑙G = 0.9 (top-left panel), 1.5 (top-right panel), 2.5
(bottom-left panel) and 4.1 (bottom-right panel).
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Figure 2.24: Scaled attenuation coefficients for varying mass problem as functions of roughness
amplitude, for non-dimensional correlation lengths 𝑘𝑙G = 0.9 (top-left panel), 𝑘𝑙G = 1.5 (top-
right panel), 𝑘𝑙G = 2.5 (bottom-left panel) and 𝑘𝑙G = 4.1 (bottom-right panel), predicted
by multiple-scale method (solid line) and for individual (×) and effective (∘) wave fields by
random-sampling method

We can see in Fig. 2.24 that, in general, the multiple-scale method and the random-sampling
method predict the same effective attenuation coefficients, confirming that the effective
attenuation coefficients scale with 𝜖2. Some disagreement is evident for very small values of
𝜖 and the smaller values of the correlation length, 𝑘𝑙G = 0.9 and 1.5, which, as above, is at-
tributed to numerical difficulties in capturing very small attenuation coefficients. For 𝜖 ≥ 0.1
and the two larger correlation lengths considered, 𝑘𝑙G = 2.5 and 4.1, the effective attenua-
tion coefficients obtained by the random-sampling method deviate from those predicted
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by the multi-scale approximation, becoming slightly smaller than them. This was already
observable in Fig. 2.23 for 𝜖 = 1.0 × 10−1 for large correlation lengths. This is a genuine
feature and indicates the limit of validity of the multi-scale approximation with respect to 𝜖.

Fig. 2.24 also shows the individual attenuation coefficients as functions of roughness
amplitude. We can observe that the individual attenuation coefficients are not proportional
to the roughness amplitude square for all correlation lengths considered. For 𝑘𝑙G = 0.9
and 1.5, the individual attenuation coefficients are only proportional to 𝜖2 for roughness
amplitudes 𝜖 ≥ 10−3 and 𝜖 ≥ 10−2.5, respectively. For 𝑘𝑙G = 2.5 and 4.1, this does not hold
and the scaled individual attenuation coefficients decrease and move further away from the
effective attenuation coefficients for 𝜖 ≤ 10−2 and 𝜖 ≤ 10−1, respectively, before they start
to increase again. Altogether, the individual attenuation coefficients are much smaller than
the effective attenuation coefficients, the discrepancy increases with increasing correlation
length and they are not representative for each other.

In addition to the attenuation coefficients, the (real) phase change of the effective wave
field, (𝛥𝑘)eff , due to the roughness can be extracted from the ensemble of wave elevations
via

⟨𝑢⟩ ∝ e−𝑄eff𝑥 ei(𝑘+(𝛥𝑘)eff)𝑥, 𝑥 ∈ (0,𝐿). (2.104)

As we will see shortly (see Fig. 2.26), the phase change of individual wave fields is random,
hence we disregard quantitative results for them. Fig. 2.25 shows the phase changes as
functions of non-dimensional correlation length, for roughness amplitude 𝜖 = 5.0 × 10−2

(left-hand panel) and 1.0 × 10−1 (right-hand panel). Results are given for the multiple-scale
method and the random-sampling method using the very long interval length 𝑘𝐿 = 4𝑘/𝜖2
to capture the phase changes accurately.
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Figure 2.25: Scaled phase changes of the effective wave field for varying mass problem as
functions of non-dimensional correlation length, for roughness amplitudes 𝜖 = 5.0 × 10−2

(left-hand panel) and 𝜖 = 1.0 × 10−1 (right-hand panel), predicted by multiple-scale method
(solid line) and random-sampling method (∘)
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For the chosen parameter values, the two methods produce almost identical predictions
of the phase change for both roughness amplitudes, 𝜖 = 5.0 × 10−2 and 1.0 × 10−1. The
phase change tends to zero as the correlation length tends to zero (the white noise or
homogenisation limit). Thus, when the waves are far longer than fluctuations in mass, they
only perceive the mean mass. For finite values of the correlation length, the phase change
is negative, meaning that the wavelength of the effective wave field is longer than the
wavelength corresponding to the uniform beam. The phase change decreases approximately
linearly with increasing correlation length over the interval 𝑘𝑙G ≤ 1, and is approximately
constant for 𝑘𝑙G ≥ 1.5 in our correlation length regime. We can also confirm that the
proportionality of the phase changes with 𝜖2 holds for the chosen values (which is clear for
the multiple-scale method by its derivation).

As a last point in our investigation of the varying mass problem for the beam in vacuo,
we will look at phase changes over the whole roughness interval. Fig. 2.26 shows the
phase changes for example individual wave fields and corresponding effective wave fields,
for roughness amplitude 𝜖 = 5 × 10−2 and non-dimensional correlation lengths 𝑘𝑙G = 0.9
(left-hand panel) and 4.1 (right-hand panel).
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Figure 2.26: Phase changes of example individual wave fields (grey curves) and effective
wave fields (black) for varying mass problem, for non-dimensional correlation lengths 𝑘𝑙G = 0.9
(left-hand panel) and 𝑘𝑙G = 4.1 (right-hand panel), for roughness amplitude 𝜖 = 5.0 × 10−2

We can see in Fig. 2.26 that the phase changes for the effective wave fields tend (after slight
noise for small 𝑥) to the values predicted by the multiple-scale approximation shown in
Fig. 2.25 for the two correlation lengths considered, 𝑘𝑙G = 0.9 and 4.1. The phase changes
of the example individual wave fields show unpredictable behaviour for both correlation
length choices, yielding larger values than the phase changes of the effective wave fields.
For the smaller correlation length, 𝑘𝑙G = 0.9, a great variability of the phase change is
observable, in particular at the left-end of the rough interval. For the larger correlation
length, 𝑘𝑙G = 4.1, the phase change fluctuates much slower around the phase change of the
effective wave field and appears to be essentially random as well.
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2.7 Rough beam with varying rigidity
After the investigations of the influence of beam mass variations on the wave attenuation
in the previous section, we focus on continuous rigidity variations (which arise due to
varying Young’s modulus) now and compare their effects with those in the varying mass
problem. In the varying rigidity problem, the beam mass 𝑔 is set to be constant such that
the underlying beam Eqn. (2.9) becomes

𝜕2
𝑥

(︀
𝑏(𝑥) 𝜕2

𝑥𝑢(𝑥)
)︀

− 𝛼 𝑔 𝑢(𝑥) = 0, 𝑥 ∈ (−∞,∞). (2.105)

In analogy to the varying mass setting, the varying rigidity 𝑏(𝑥) shall fluctuate about the
mean 𝑏̄ with roughness amplitude 𝜖, i.e.

𝑏(𝑥) = 𝑏̄(1 + 𝜖𝛽(𝑥)), (2.106)

where 𝛽 = O(1) is modelled via the previously introduced Gaussian autocorrelated random
process and has the same properties as 𝛾 , in particular the correlation length is denoted
with 𝑙G here, too. (𝜖 ≪ 1 is assumed for consistency with the multiple-scale method, which
is derived for this problem in Sec. 2.7.1, again). Hence, the autocorrelation of 𝛽 can also
be expressed via the Gaussian autocorrelation condition

⟨𝛽(𝑥)𝛽(𝑥− 𝜉)⟩ = E[𝛽(𝑥)𝛽(𝑥− 𝜉)] = e−𝜉2/𝑙2G . (2.107)

Before we focus on the multiple-scale method for the varying rigidity problem, we compare
effective with example individual wave fields for the same average roughness properties as
in Fig. 2.18, but for the present problem. Fig. 2.27 shows the moduli of example individual
wave fields and corresponding effective wave fields, for roughness amplitude 𝜖 = 5.0 × 10−2

and non-dimensional correlation lengths 𝑘𝑙G = 0.9 (left-hand panel) and 4.1 (right-hand
panel), for the varying rigidity problem. The motion is forced by a unit-amplitude incident
wave propagating in the positive 𝑥-direction again. The random-sampling method is used
to calculate the wave fields as well as the numerical results throughout the rest of this
chapter. Note that the findings from the convergence study also hold for the varying
rigidity problem (results not shown).

We can see in Fig. 2.27 the same quantitative and qualitative behaviour as for the varying
mass problem in Fig. 2.18, i.e. only slight attenuation for the small correlation length,
𝑘𝑙G = 0.9 and a similar discrepancy between attenuation of effective and individual wave
fields for the larger correlation length, 𝑘𝑙G = 4.1, hence the effective and individual wave
fields are not representative for each other either.

2.7.1 Multiple-scale method

The multiple-scale method for the varying rigidity problem, which will be presented in the
following, is based on the derivation of the multiple-scale method for the varying mass
problem, and additional terms are expected due to the presence of derivatives of the beam
rigidity. The same local and observation scale are considered as for the varying mass
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Figure 2.27: Example individual wave fields (grey curves) and effective wave fields (black)
for varying rigidity problem, for roughness amplitude 𝜖 = 5.0 × 10−2 and non-dimensional
correlation lengths 𝑘𝑙G = 0.9 (left-hand panels) and 𝑘𝑙G = 4.1 (right-hand panels)

problem (which are connected via 𝜖2 and their coordinates are denoted with 𝑥 and 𝑥2,
respectively) and 𝜖 ≪ 1 has to assumed. We use the same multiple-scale expansion for the
wave field, 𝑢, as given in Eqn. (2.82) and derive on this basis the governing equations of
zeroth, first and second order for the varying rigidity problem.

Order 𝜖0

The governing equation for the leading-order wave field given by the order 𝜖0 terms, 𝑢0,
for the varying rigidity problem is identical to Eqn. (2.84),

(𝜕4
𝑥 − 𝑘4)𝑢0(𝑥,𝑥2) = 0, 𝑥 ∈ (−∞,∞),

where the wavenumber 𝑘 now corresponds to the mean beam rigidity, i.e. 𝑘 = (𝛼𝑔/𝑏̄) 1
4 . It

can be shown similarly to the varying mass problem that the leading-order solution only
consists of a modulated rightward-travelling wave and the intrinsic left-travelling wave can
be neglected, i.e. the solution is again expressed in the form (2.86),

𝑢0(𝑥,𝑥2) = 𝐴(𝑥2) ei𝑘𝑥, (2.108)

and the leading-order wave amplitude 𝐴, or to be more precise its components (phase
change, attenuation coefficient), is now sought from the higher-order terms.

Order 𝜖1

The order 𝜖 terms give the governing equation for 𝑢1 to be

(𝜕4
𝑥 − 𝑘4)𝑢1(𝑥,𝑥2) = −𝜕2

𝑥

(︀
𝛽(𝑥) 𝜕2

𝑥𝑢0(𝑥,𝑥2)
)︀
. (2.109)
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As in the varying mass problem, the Green’s function from Eqn. (2.A.23), again with 𝑘
replaced by 𝑘, is used to obtain the solution, with the first-order wave field in this case
expressed as

𝑢1(𝑥,𝑥2) = −
ˆ ∞

−∞
𝐺(|𝑥− 𝑥̌|)𝜕2

𝑥̌

(︀
𝛽(𝑥̌) 𝜕2

𝑥̌𝑢0(𝑥̌,𝑥2)
)︀

d𝑥̌. (2.110)

Order 𝜖2

From the order 𝜖2 terms, the governing equation for the second-order wave field is

(𝜕4
𝑥 − 𝑘4)𝑢2 = −𝜕2

𝑥

(︀
𝛽(𝑥) 𝜕2

𝑥𝑢1(𝑥,𝑥2)
)︀

− 4𝜕3
𝑥𝜕𝑥2𝑢0(𝑥,𝑥2), 𝑥 ∈ (−∞,∞), (2.111)

with ensemble average

(𝜕4
𝑥 − 𝑘4)⟨𝑢2⟩ = −4𝜕3

𝑥𝜕𝑥2⟨𝑢0(𝑥,𝑥2)⟩ − ⟨𝜕2
𝑥

(︀
𝛽(𝑥) 𝜕2

𝑥𝑢1(𝑥,𝑥2)
)︀
⟩

= 4i𝑘3𝜕𝑥2⟨𝐴(𝑥2)⟩ei𝑘𝑥 + 4𝑘3ei𝑘𝑥⟨𝐴(𝑥2)⟩𝜁vr, (2.112)

where 𝜁vr is the complex constant

𝜁vr = − 1
4𝑘3

ˆ ∞

−∞
𝜕2

𝜉

[︀
𝜕2

𝜉𝐺(|𝜉|)(𝑘2𝜕2
𝜉𝜌(|𝜉|) + 2i𝑘3𝜕𝜉𝜌(|𝜉|) − 𝑘4𝜌(|𝜉|))

]︀
ei𝑘𝜉 d𝜉. (2.113)

Here, we used that the leading-order beam deflection is uncorrelated to the roughness profile,
which can be shown analogously to the varying mass problem. Integrating Eqn. (2.113) by
parts twice gives

𝜁vr = 𝑘

4

ˆ ∞

−∞
𝜕4

𝜉𝐺(|𝜉|)𝜌(|𝜉|)ei𝑘𝜉 d𝜉. (2.114)

Using the field equation for the Green’s function, Eqn. (2.A.5) with 𝑘 replaced by 𝑘, we
can express 𝜁vr as

𝜁vr = 𝑘5

4

ˆ ∞

−∞
𝐺(|𝜉|)𝜌(|𝜉|)ei𝑘𝜉 d𝜉 + 𝑘

4

ˆ ∞

−∞
𝛿(𝜉)𝜌(|𝜉|)ei𝑘𝜉 d𝜉⏟  ⏞  

=1

. (2.115)

The first term on the right-hand side of Eqn. (2.115) is the complex constant, which
appeared in the varying mass problem (Eqn. (2.100)) and characterised the attenuation
and the phase change in this problem. Hence, the complex constant in the varying rigidity
problem, 𝜁vr, can be written in term of the complex constant from the varying mass
problem,

𝜁vr = 𝜁vm + 𝑘

4 . (2.116)

As in the varying mass problem, employing the ansatz ⟨𝑢2⟩ = ei𝑘𝑥𝐹 (𝑥2) leads us to the
ordinary differential equation for the effective amplitude ⟨𝐴(𝑥2)⟩,

𝜕𝑥2⟨𝐴(𝑥2)⟩ − i⟨𝐴(𝑥2)⟩ 𝜁vr = 0, (2.117)
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and the solution
⟨𝐴(𝑥2)⟩ = 𝐴0ei𝜁vr𝑥2 . (2.118)

Consequently, the phase change and attenuation coefficient produced by the varying rigidity
are, respectively,

(𝛥𝑘)eff = 𝜖2Re(𝜁vr) = 𝜖2
(︁

Re(𝜁vm) + 𝑘

4

)︁
, (2.119a)

and 𝑄eff = 𝜖2Im(𝜁vr) = 𝜖2Im(𝜁vm). (2.119b)

It is remarkable that the attenuation coefficients for the varying mass and varying rigidity
problem are identical, whereas the phase changes for the two problems agree up to addition
of the constant 𝑘/4.

2.7.2 Numerical results

Now, we show the numerical results for the attenuation and the phase change for the
varying rigidity problem. Again, we use the random-sampling method to validate the
multiple-scale method for this problem and to confirm the connection between the varying
mass and varying rigidity problem, which is given in Eqns. (2.119). Fig. 2.28 shows
the scaled attenuation coefficients, predicted by the multiple-scale method and obtained
by the random-sampling method, as functions of non-dimensional correlation length, for
roughness amplitudes 𝜖 = 1.0×10−3 (top-left panel), 1.0×10−2 (top-right panel), 5.0×10−2

(bottom-left panel) and 1.0 × 10−1 (bottom-right panel).

We can observe in Fig. 2.28 that the varying rigidity yields in our model problem qualita-
tively and quantitatively the same attenuation coefficients as the varying mass in Sec. 2.6.
In particular, the effective attenuation coefficients predicted by the multiple-scale method
and obtained by the random-sampling show excellent agreement for roughness ampli-
tudes 𝜖 ≤ 5.0 × 10−2, and the multiple-scale method slightly overpredicts the attenuation
coefficients in the large correlation length regime for the largest roughness amplitude
considered, 𝜖 = 1.0 × 10−1. Up to this roughness amplitude, the effective attenuation
coefficients are proportional to 𝜖2, too, and scale linearly with the correlation length in
the correlation length regime, for which no attenuation of the individual wave fields is visible.

We also examine the proportionality of the effective attenuation coefficients with the
square of the roughness amplitude for the varying rigidity problem, here. Fig. 2.29 shows
the scaled attenuation coefficients, predicted by the multiple-scale method and obtained by
the random-sampling method, as functions of roughness amplitude, for the non-dimensional
correlation lengths 𝑘𝑙G = 0.9 (top-left panel), 1.5 (top-right panel), 2.5 (bottom-left panel)
and 4.1 (bottom-right panel).

We can observe in Fig. 2.29 that the multiple-scale method and the random-sampling
method yield the same effective attenuation coefficients over the whole roughness amplitude
regime for correlation lengths 𝑘𝑙G = 0.9, 1.5 and 2.5. Again, for the largest correlation
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Figure 2.28: Scaled attenuation coefficients of effective wave field for varying rigidity problem
as functions of non-dimensional correlation length, predicted by multiple-scale method (solid
line) and random-sampling method (∘), for roughness amplitudes 𝜖 = 1.0×10−3 (top-left panel),
𝜖 = 1.0×10−2 (top-right panel), 𝜖 = 5.0×10−2 (bottom-left panel) and 𝜖 = 1.0×10−1 (bottom-
right panel). Corresponding individual attenuation coefficients obtained by random-sampling
method (×) are shown for comparison.

length under consideration, 𝑘𝑙G = 4.1, the proportionality of the effective attenuation
coefficient with 𝜖2 is lost for 𝜖 ≥ 0.1, for which they show slight lower deviation in compari-
son with the attenuation coefficients predicted by the multiple-scale method, which is in
agreement with the results for the varying mass problem and Fig. 2.28. In particular, the
limit of validity of the multi-scale method with respect to 𝜖 for the varying rigidity problem
is the same as for the varying mass problem. The individual attenuation coefficients show
a very similar behaviour to their equivalents for the varying mass problem, i.e. they are
much smaller than the effective attenuation coefficients. They are only proportional to 𝜖2
for correlation lengths 𝑘𝑙G = 0.9 and 1.5 in the not-so-small roughness amplitude regime,
and for the large correlation length choices, 𝑘𝑙G = 2.5 and 4.1, they deviate from this
proportionality throughout most of the roughness amplitude regime.

With Eqn. (2.104), we obtain the phase change of the effective wave field, (𝛥𝑘)eff , for the
varying rigidity problem, too, which we will analyse in the following. Due to the random
behaviour of the phase change of individual wave fields, we omit them in our analysis again.
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Figure 2.29: Scaled attenuation coefficients for varying rigidity problem as functions of
roughness amplitude, for non-dimensional correlation lengths 𝑘𝑙G = 0.9 (top-left panel),
𝑘𝑙G = 1.5 (top-right panel), 𝑘𝑙G = 2.5 (bottom-left panel) and 𝑘𝑙G = 4.1 (bottom-right panel),
predicted by multiple-scale method (solid line) and for individual (×) and effective (∘) wave
fields by random-sampling method

Fig. 2.30 shows the phase changes as functions of non-dimensional correlation length, for
roughness amplitude 𝜖 = 5.0 × 10−2 (left-hand panel) and 1.0 × 10−1 (right-hand panel).
Again, the interval length is chosen to be 𝑘𝐿 = 4𝑘/𝜖2 in the random-sampling method.

We can observe in Fig. 2.30 that the multiple-scale method and the random-sampling
method yield the same phase changes for the roughness amplitude 𝜖 = 5.0 × 10−2. For
the larger roughness amplitude, 𝜖 = 1.0 × 10−1, they still show the same behaviour, but
the phase changes obtained by the random-sampling method exhibit small deviations
from the values predicted by the multiple-scale method. This noise is attributed to nu-
merical difficulties in capturing the phase changes accurately. The phase changes for the
varying rigidity problem have a significantly different feature than those for the varying
mass problem. For the correlation length tending to zero, the phase change does not
tend to zero, but tends to a constant, finite offset. The offset for the varying rigidity
problem is precisely the constant 𝑘/4 from Eqn. (2.119a) and the phase change is positive
for the varying rigidity problem, meaning that the effective wavelength is shorter than
that of the uniform beam. The phase change decreases approximately linearly (with
the same slope as in the varying mass problem) with increasing correlation length over
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Figure 2.30: Scaled phase changes of effective wave field for varying rigidity problem as
functions of non-dimensional correlation length, for roughness amplitudes 𝜖 = 5.0 × 10−2

(left-hand panel) and 𝜖 = 1.0 × 10−1 (right-hand panel), predicted by multiple-scale method
(solid line) and random-sampling method (∘)

the interval 𝑘𝑙G ≤ 1, and is approximately constant for 𝑘𝑙G ≥ 1.5 in our correlation
length regime. The fact that the phase change is finite as the correlation length tends to
zero is presumably because the derivatives of the rigidity appear in the governing Eqn. (2.9).

The section showing the numerical results for the varying rigidity problem is concluded
with qualitative phase changes over the whole roughness interval. Fig. 2.31 shows the
phase changes for example individual wave fields and corresponding effective wave fields,
for roughness amplitude 𝜖 = 5 × 10−2 and non-dimensional correlation lengths 𝑘𝑙G = 0.9
(left-hand panel) and 4.1 (right-hand panel).
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Figure 2.31: Phase changes of example individual wave fields (grey curves) and effective wave
fields (black) for varying rigidity problem, for non-dimensional correlation lengths 𝑘𝑙G = 0.9
(left-hand panel) and 𝑘𝑙G = 4.1 (right-hand panel), for roughness amplitude 𝜖 = 5.0 × 10−2

We can observe in Fig. 2.31 that the phase changes of individual wave fields show similarly
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to Fig. 2.26 for the varying mass problem a random behaviour for 𝑘𝑙G = 0.9 and 4.1. In
contrast to those, the phase changes of the effective wave fields tend after noisy behaviour
for small 𝑥 to the values predicted by the multiple-scale approximation shown in Fig. 2.30
for both correlation length choices.

2.8 Rough beam with varying thickness

After we learnt the effects of a rough beam with varying mass only and varying rigidity
only on wave propagation in the previous sections, both problems are combined now to
a more realistic problem appearing due to thickness variations of thin beams. Varying
thickness leads to variations of both, the beam mass and beam rigidity, which can be seen
in Eqns. (2.7). Variations of the beam thickness, ℎ(𝑥), change the cross-sectional area of
the beam, 𝐴(𝑥), as well as the moment of inertia of the beam cross section, 𝐼(𝑥). (Note
that in the varying mass and varying rigidity problems, the variations were assumed to
be induced by variations of the beam density and Young’s modulus, respectively, which
ensured variations of the respective quantity only.) The moment of inertia describes the
resistance of a cross section to bending and buckling. It depends on the shape and size of
the cross section and is calculated about the bending axis, see e.g. Ghavami 2015. The
bending axis in our problem is the centroidal 𝑥-axis. The beam width, denoted with 𝑤, is
centred on the 𝑦-axis and is constant along the horizontal 𝑥-axis. The axis describing the
beam thickness ℎ is denoted with the vertical 𝑧-axis, which points upwards, and its mean
ℎ̄ shall be centred around 𝑧 = 0. Fig. 2.32 shows an illustration of the rectangular beam
cross section along the centroidal 𝑥-axis.

y

z

w

h

Figure 2.32: Illustration of rectangular beam cross section along centroidal 𝑥-axis

The cross-sectional area of the beam, 𝐴(𝑥), and the moment of inertia of the beam cross
section, 𝐼(𝑥), for our problem of a beam with constant width 𝑤 and varying thickness ℎ(𝑥),
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both centred around their respective axis, is then given by

𝐴(𝑥) = 𝑤 ℎ(𝑥), (2.120a)

𝐼(𝑥) = 𝑤 ℎ(𝑥)3

12 . (2.120b)

The beam thickness, ℎ(𝑥), shall fluctuate about the mean ℎ̄ with roughness amplitude 𝜖
and the variations are modelled via the same Gaussian autocorrelated random process as
in the varying mass and varying rigidity problems and we denote the random process here
with ℎ̃(𝑥). This leads us to the representation of the varying beam thickness as

ℎ(𝑥) = ℎ̄(1 + 𝜖ℎ̃(𝑥)), (2.121)

where the random process ℎ̃(𝑥) fulfils the Gaussian autocorrelation condition

⟨ℎ̃(𝑥) ℎ̃(𝑥− 𝜉)⟩ = E[ℎ̃(𝑥) ℎ̃(𝑥− 𝜉)] = e−𝜉2/𝑙2G
(︀

= 𝜌(|𝜉|)
)︀
. (2.122)

The representation of the beam mass and rigidity in Eqns. (2.7) together with Eqns. (2.120)
allow us to express the beam mass and rigidity in terms of the varying beam thickness,

𝑔(𝑥) = 𝜌𝑤 ℎ(𝑥) = 𝜌𝑤ℎ̄(1 + 𝜖ℎ̃(𝑥)) =: 𝑔 (1 + 𝜖𝛾(𝑥)), (2.123a)

𝑏(𝑥) = 𝐸
𝑤ℎ(𝑥)3

12 = 𝐸𝑤

12 ℎ̄
3(1 + 3𝜖ℎ̃(𝑥)) + O(𝜖2) =: 𝑏̄ (1 + 𝜖𝛽(𝑥)). (2.123b)

For the multiple-scale method, we seek the representation of the quantities describing
the mass and rigidity variations in terms of ℎ̄ and ℎ̃ (up to order 𝜖 only, for the sake of
simplicity), which can directly be derived from Eqns. (2.123):

𝑔 = 𝜌𝑤ℎ̄ and 𝛾(𝑥) = ℎ̃(𝑥), (2.124a)

𝑏̄ = 𝐸𝑤

12 ℎ̄
3 and 𝛽(𝑥) = 3ℎ̃(𝑥). (2.124b)

Although the beam width 𝑤 appears in the beam mass and rigidity, we do not have
to specify it in our calculations, since we assume constant beam width and hence, the
width in the governing beam equation cancels away, i.e. the model remains quasi one-
dimensional. Since the processes 𝛾(𝑥) and 𝛽(𝑥) are determined from the same underlying
(autocorrelated) random process describing the thickness fluctuations, ℎ̃(𝑥), we know the
inherent autocorrelation of the beam mass and rigidity variations, and can identify their
cross-correlation:

𝜌1(|𝜉|) := ⟨𝛾(𝑥) 𝛾(𝑥− 𝜉)⟩ = ⟨ℎ̃(𝑥) ℎ̃(𝑥− 𝜉)⟩ = 𝜌(|𝜉|), (2.125a)
𝜌2(|𝜉|) := ⟨𝛽(𝑥)𝛽(𝑥− 𝜉)⟩ = 9⟨ℎ̃(𝑥) ℎ̃(𝑥− 𝜉)⟩ = 9𝜌(|𝜉|), (2.125b)
𝜌3(|𝜉|) := ⟨𝛾(𝑥)𝛽(𝑥− 𝜉)⟩ = 3⟨ℎ̃(𝑥) ℎ̃(𝑥− 𝜉)⟩ = 3𝜌(|𝜉|). (2.125c)

Note that the cross-correlation is not used explicitly in the random-sampling method, for
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which the beam mass and rigidity are derived from the beam thickness which is given by
realisations of the underlying random process, but the autocorrelation and cross-correlation
terms are needed for the multiple-scale method to capture the complex wavenumber. Before
we introduce the multiple-scale method in the next section, we look at effective and example
individual wave fields for the same average roughness properties as in Figs. 2.18 and 2.27 for
the varying mass and rigidity problem, respectively. Fig. 2.33 shows the moduli of example
individual wave fields and corresponding effective wave fields, for roughness amplitude
𝜖 = 5.0 × 10−2 and non-dimensional correlation lengths 𝑘𝑙G = 0.9 (left-hand panel) and 4.1
(right-hand panel), for the varying thickness problem with a unit-amplitude incident, right
travelling wave, again.
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Figure 2.33: Example individual wave fields (grey curves) and effective wave fields (black)
for varying thickness problem, for roughness amplitude 𝜖 = 5.0 × 10−2 and non-dimensional
correlation lengths 𝑘𝑙G = 0.9 (left-hand panel) and 𝑘𝑙G = 4.1 (right-hand panel)

We can see in Fig. 2.33 the same qualitative behaviour as for the varying mass and rigidity
problems, but it is also observable that the effective wave fields are attenuated significantly
more. In particular, this is visible for the larger correlation length, 𝑘𝑙G = 4.1, where
log10 |⟨𝑢⟩| ≈ −1.45 at the right end of the rough interval, which suggests that the effective
wave field is attenuated approximately four times faster than the effective wave fields in
the varying mass and varying rigidity problems (log10 |⟨𝑢⟩| ≈ −0.37 at the right end of
the rough interval in both cases). Obviously, the increase in attenuation is due to the
combination of rough beam mass and rough beam rigidity, as well as the higher order
roughness appearing in the beam rigidity.

2.8.1 Multiple-scale method

The multiple-scale method for the varying thickness problem will be presented in the
following. Since mass as well as rigidity variation terms appear in this problem, the
multiple-scale method is expected to be a combination of the multiple-scale methods for the
varying mass and varying rigidity problem. For the sake of completeness, it should not go
unmentioned that the same multiple-scale expansion for the wave field, 𝑢, as for the previous
problems is used on the local and observation scale, 𝑙G and 𝐿ob, respectively, and 𝜖 ≪ 1 is
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required. The governing equations up to second order of 𝜖 are obtained by substituting the
multiple-scale expansion (2.82) into the original linear thin-beam Eqn. (2.9).

Order 𝜖0

Since the functions describing the varying mass and varying rigidity are not of order 𝜖0,
it is clear that the governing equation for the leading-order wave field given by the order
𝜖0 terms, 𝑢0, for the varying thickness problem is identical to the governing leading-order
equation in the varying mass and varying rigidity problems, i.e.

(𝜕4
𝑥 − 𝑘4)𝑢0(𝑥,𝑥2) = 0, 𝑥 ∈ (−∞,∞).

The wavenumber 𝑘 here corresponds to the mean beam mass and rigidity, i.e. 𝑘 = (𝛼𝑔/𝑏̄) 1
4 .

We could observe in Fig. 2.33 that the attenuation for the present problem is larger than
for the varying mass and varying rigidity problems. To validate our approach of neglecting
the intrinsic left-travelling wave in this case, we take up the analysis in Sec. 2.6.2, where
we showed that the leading-order solution for the varying mass problem only consists of a
modulated rightward-travelling wave, and apply it to the varying thickness problem.

The left-hand panel of Fig. 2.34 shows the effective wave fields and the corresponding left-
and right-travelling components for roughness amplitude 𝜖 = 5.0 × 10−2 and correlation
lengths 𝑘𝑙G = 0.9, 2.5 and 4.1. The right-hand panel of Fig. 2.34 shows the ratio of the
(spatial averaged) leftward- to rightward travelling effective wave components as functions
of non-dimensional correlation length, for roughness amplitudes 𝜖 = 10−4, 10−3, 10−2, 10−1

and 2 × 10−1. The ratio of leftward- to rightward travelling effective wave components is
defined in Eqn. (2.85).
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Figure 2.34: Left-hand panel: Effective wave field for roughness amplitude 𝜖 = 5.0×10−2 and
correlation lengths 𝑘𝑙G = 0.9 (solid line), 𝑘𝑙G = 2.5 (dashed line) and 𝑘𝑙G = 4.1 (dotted line),
split into rightward- and leftward-travelling components (light and dark grey, respectively).
Right-hand panel: Ratio of leftward- to rightward travelling components of effective wave field
as functions of non-dimensional correlation length, for roughness amplitudes 𝜖 = 10−4 (cyan),
𝜖 = 10−3 (green), 𝜖 = 10−2 (red), 𝜖 = 10−1 (blue) and 𝜖 = 2 × 10−1 (black).
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We can observe in the left-hand panel of Fig. 2.34 that the right-travelling wave component
clearly dominates the left-travelling effective wave component over the whole rough interval
in all three cases of non-dimensional correlation lengths considered, 𝑘𝑙G = 0.9, 2.5 and 4.1,
for roughness amplitude 𝜖 = 5.0×10−2. The dominance of the right-travelling effective wave
components is confirmed in the right-hand panel of Fig. 2.34 for the whole correlation length
regime for small roughness amplitudes (which is assumed in the multiple-scale method,
though). We can observe that the scaled ratios behave very similarly for 𝜖 ≤ 10−2 and reach
their maximum at 𝑙G ≈ 0.7, for which the left-travelling effective wave component is still
negligible. Again, for 𝜖 ≥ 10−1, the proportionality of 𝑈−/+ with 𝜖 does not hold anymore
and the left-travelling effective wave component makes a non-negligible contribution to the
effective wave field.

With the evidence from Fig. 2.34 and under the assumption of 𝜖 ≪ 1, we can deduce that
the random leftward-travelling wave can be neglected at leading order and the leading-order
solution only consists of a modulated rightward-travelling wave. Hence, the leading-order
solution is again of the form

𝑢0(𝑥,𝑥2) = 𝐴(𝑥2) ei𝑘𝑥, (2.126)

and we seek the mean leading-order wave amplitude, ⟨𝐴(𝑥2)⟩, from the higher-order terms.

Order 𝜖1

When collecting the terms of order 𝜖, the inhomogeneous right-hand side of the governing
equation for the first-order wave field, 𝑢1, consists of the respective terms of order 𝜖
appearing for the varying mass (Eqn. (2.89)) and varying rigidity problem (Eqn. (2.109)),

(𝜕4
𝑥 − 𝑘4)𝑢1(𝑥,𝑥2) = 𝑘4𝛾(𝑥)𝑢0(𝑥,𝑥2) − 𝜕2

𝑥

(︀
𝛽(𝑥) 𝜕2

𝑥𝑢0(𝑥,𝑥2)
)︀
, 𝑥 ∈ (−∞,∞). (2.127)

Using the standard Green’s function for the homogeneous beam equation (with 𝑘 replaced
by 𝑘), the solution for the first-order wave field is a linear combination of Eqns. (2.90) and
(2.110),

𝑢1(𝑥,𝑥2) =
ˆ ∞

−∞
𝐺(|𝑥− 𝑥̌|)

(︀
𝑘4𝛾(𝑥̌) − 𝜕2

𝑥̌

(︀
𝛽(𝑥̌) 𝜕2

𝑥̌

)︀)︀
𝑢0(𝑥̌,𝑥2) d𝑥̌. (2.128)

Order 𝜖2

In analogy to the first-order governing equation, the right-hand side of the governing
equation for the second-order wave field in the present problem, 𝑢2, consists of the
respective terms appearing in the formulations of the governing equation for the varying
mass (Eqn. (2.91)) and rigidity problems (Eqn. (2.111)) as well. This yields the governing
equation for the order 𝜖2 terms,

(𝜕4
𝑥 − 𝑘4)𝑢2 = −4𝜕3

𝑥𝜕𝑥2𝑢0(𝑥,𝑥2) + 𝑘4𝛾(𝑥)𝑢1 − 𝜕2
𝑥

(︀
𝛽(𝑥) 𝜕2

𝑥𝑢1(𝑥,𝑥2)
)︀
, 𝑥 ∈ (−∞,∞),

(2.129)
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which can be expressed, taking the ensemble average, as

(𝜕4
𝑥 − 𝑘4)⟨𝑢2⟩ = 4i𝑘3𝜕𝑥2⟨𝐴(𝑥2)⟩ei𝑘𝑥 + 𝑘4⟨𝛾(𝑥)𝑢1⟩ − ⟨𝜕2

𝑥

(︀
𝛽(𝑥) 𝜕2

𝑥𝑢1(𝑥,𝑥2)
)︀
⟩. (2.130)

For our solution procedure, we now have to justify that the leading-order solution, 𝑢0, and
in particular its random components are uncorrelated to the thickness variations. This
has to be done (in analogy to the investigation for the varying mass problem) here, since
the varying thickness leads to more attenuation and scattered, hence left-travelling waves.
The left-hand panel of Fig. 2.35 shows 𝜌𝑢(|𝜉|) = ⟨𝛾(𝑥̌+ 𝜉)𝛾(𝑥̌)𝑢(𝑥̌)⟩, originally defined in
Eqn. (2.95), as well as the terms corresponding to the random component of the wave
travelling rightward and the (random) wave travelling leftward, defined in Eqns. (2.96b), as
functions of |𝜉| for non-dimensional correlation length 𝑘𝑙G = 2.5 and roughness amplitude
𝜖 = 5.0 × 10−2. The right-hand panel of Fig. 2.35 shows these quantities averaged over the
whole roughness interval (and 𝐽𝑙G averaged over one correlation length, only) as functions
of the non-dimensional correlation length, for 𝜖 = 5.0 × 10−2. For reference, these averaged
functions are defined in Eqns. (2.97) and (2.98).

−5

−6

−7

−8

−9

−10

lo
g
1
0
ρ
u

a
n

d
lo

g
1
0
ρ
u
±

0 1 2 3 4 5

ξ/lG

ε = 1.0× 10−2

lo
g
1
0
J
±

a
n

d
lo

g
1
0
J
l G

/
L

0 1 2 3 4 5

k̄lG

Figure 2.35: Left-hand panel: Correlation between wave field and thickness variation for
non-dimensional correlation length 𝑘𝑙G = 2.5 and roughness amplitude 𝜖 = 5.0 × 10−2 (same
notation as in Fig. 2.21). Right-hand panel: Mean correlations of roughness profile with
wave field, 𝐽𝑙G (black solid) and 𝐽𝐿 (grey solid), and random components of wave field, 𝐽+
(B) and 𝐽− (C), as functions of non-dimensional correlation length, for roughness amplitude
𝜖 = 5.0 × 10−2.

We can observe in Fig. 2.35 that the correlation functions between the wave field and the
thickness variations is smaller by 4 orders of magnitude. Clearly, this scaling also holds for
the averaged correlation functions. We can deduce that the random components of the
wave fields are uncorrelated to the roughness profile, hence the correlation of the wave
field with the roughness profile is negligible and we can factor out the wave fields from the
ensemble averages as the effective wave field and apply the correlation functions.

Here, the second and third term on the right-hand side of Eqn. (2.130) do not corre-
spond one-to-one to the complex constants 𝜁vm for the varying mass and 𝜁vr for the varying
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rigidity problem because of the mixed terms ⟨𝛾(𝑥)𝛽(𝑥̌)⟩ appearing due to representation
of 𝑢1 in Eqn. (2.128). We can rewrite the second term in the simplified form

𝑘4⟨𝛾(𝑥)𝑢1⟩ = 4𝑘3ei𝑘𝑥⟨𝐴(𝑥2)⟩𝜁vm + 4𝑘3ei𝑘𝑥⟨𝐴(𝑥2)⟩ 𝑘
3

4

ˆ ∞

−∞
𝐺(|𝜉|)𝜕2

𝑥

(︀
𝜌3(|𝜉|)ei𝑘𝜉

)︀
d𝜉⏟  ⏞  

=: 𝜁mx1

,

(2.131)
where the complex constant 𝜁vm is defined for the varying mass problem in Eqn. (2.100).
The third term on the right-hand side of Eqn. (2.130) can be simplified with the complex
constant 𝜁vr for the varying rigidity problem in Eqn. (2.113),

−⟨𝜕2
𝑥

(︀
𝛽(𝑥) 𝜕2

𝑥𝑢1(𝑥,𝑥2)
)︀
⟩ = 4𝑘3ei𝑘𝑥⟨𝐴(𝑥2)⟩𝜁vr+

+ 4𝑘3ei𝑘𝑥⟨𝐴(𝑥2)⟩
(︂

−𝑘
4

)︂ˆ ∞

−∞
𝜕2

𝑥

(︀
𝜌3(|𝜉|) 𝜕2

𝑥𝐺(|𝜉|)
)︀
ei𝑘𝜉 d𝜉⏟  ⏞  

=: 𝜁mx2

.

(2.132)

For Eqns. (2.131) and (2.132), we implied the de-correlation of the leading-order wave field
and the roughness profile, which was shown for the varying mass problem in Figs. 2.21 and
2.22. Note that in the definition 𝜁vm and 𝜁vr in Eqns. (2.100) and Eqn. (2.113), respectively,
the correlation functions 𝜌(|𝜉|) have to be replaced by the correlation functions describing
the mass variations, 𝜌1(|𝜉|), and the rigidity variations, 𝜌2(|𝜉|), for the varying thickness
problem from Eqns. (2.125). This means in particular, that the factor 9, which takes the
cubic dependence of the rigidity variations from the thickness variations into account, has
to be included into the original 𝜁vr from Eqn. (2.113).

With the simplifications from Eqns. (2.131) and (2.132), combining 𝜁mx1 + 𝜁mx2 = 𝜁mx and
employing the ansatz ⟨𝑢2⟩ = ei𝑘𝑥𝐹 (𝑥2), we can write the averaged second-order governing
Eqn. (2.130) as the following ordinary differential equation for the effective amplitude
⟨𝐴(𝑥2)⟩,

𝜕𝑥2⟨𝐴(𝑥2)⟩ = i (𝜁vm + 𝜁vr + 𝜁mx) ⟨𝐴(𝑥2)⟩, (2.133)

whose solution is given by

⟨𝐴(𝑥2)⟩ = 𝐴0 ei(𝜁vm+𝜁vr+𝜁mx)𝑥2 , (2.134)

where we evaluate the integrals appearing in the complex constant 𝜁mx numerically using
an adaptive quadrature scheme in the following results section. The phase change, (𝛥𝑘)eff ,
and attenuation coefficient, 𝑄eff , produced by the varying thickness are, respectively,

(𝛥𝑘)eff = 𝜖2Re(𝜁vm + 𝜁vr + 𝜁mx), (2.135a)

and 𝑄eff = 𝜖2Im(𝜁vm + 𝜁vr + 𝜁mx). (2.135b)



2.8 Rough beam with varying thickness 73

2.8.2 Numerical results

To complete our studies of wave propagation along a beam in vacuo, we analyse the
numerical results for the attenuation and the phase change for a beam with continuously
varying thickness. This complements the elementary studies in the previous sections of
varying mass and varying rigidity only, and gives results for naturally occurring problems.
We provide results using the random-sampling method and validate the corresponding
multiple-scale method. Again, we start our investigation with the influence of the correlation
length on the attenuation. Fig. 2.36 shows the scaled attenuation coefficients, predicted by
the multiple-scale method and obtained by the random-sampling method, as functions of
non-dimensional correlation length, for roughness amplitudes 𝜖 = 1.0×10−3 (top-left panel),
1.0 × 10−2 (top-right panel), 5.0 × 10−2 (bottom-left panel) and 1.0 × 10−1 (bottom-right
panel).
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Figure 2.36: Scaled attenuation coefficients of effective wave field for varying thickness
problem as functions of non-dimensional correlation length, predicted by multiple-scale method
(solid line) and random-sampling method (∘), for roughness amplitudes 𝜖 = 1.0 × 10−3 (top-left
panel), 𝜖 = 1.0 × 10−2 (top-right panel), 𝜖 = 5.0 × 10−2 (bottom-left panel) and 𝜖 = 1.0 × 10−1

(bottom-right panel). Corresponding individual attenuation coefficients obtained by the
random-sampling method (×) are shown for comparison.

We can observe in Fig. 2.36 that the varying thickness yields qualitatively the same curve
for the effective and individual attenuation coefficients as the varying mass and varying
rigidity, i.e. in the roughness amplitude regime 𝜖 ≤ 5.0 × 10−2, the effective attenuation
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coefficients are proportional to 𝜖2, and they scale linearly with the correlation length for
𝑘𝑙G ≥ 2. On the contrary, the individual wave fields show only attenuation for 𝑘𝑙G ≤ 2,
however, they attenuate significantly slower than the corresponding effective wave fields
in this correlation length regime. Although the attenuation coefficients show the same
qualitative behaviour as in the varying mass and varying rigidity problems, they differ
quantitatively from them and are approximately four times larger than those throughout
the whole correlation length regime. This confirms our impression from the effective
wave fields in Fig. 2.33 about the increased attenuation, which is due to the simultaneous
appearance of both varying mass and rigidity as well as the cubic scaling of the rigidity
variations with the thickness variations. We can also see in Fig. 2.36 that the multiple-scale
method predicts effective attenuation coefficients, which show a very good agreement with
results obtained by the random-sampling, for roughness amplitudes 𝜖 ≤ 5.0 × 10−2. For
𝜖 = 1.0 × 10−1, the overprediction of the attenuation coefficients by the multiple-scale
method, which we could already slightly observe for the varying mass and rigidity problem,
is magnified and the results already start to deviate for 𝑘𝑙G ≥ 2.

To examine the limit of validity of the multiple-scale method, which is associated with
the loss of proportionality of the effective attenuation coefficients with 𝜖2, we study the
attenuation coefficients in dependence of the roughness amplitude now. Fig. 2.37 shows the
scaled attenuation coefficients, predicted by the multiple-scale method and obtained by the
random-sampling method, as functions of roughness amplitude, for the non-dimensional
correlation lengths 𝑘𝑙G = 0.9 (top-left panel), 1.5 (top-right panel), 2.5 (bottom-left panel)
and 4.1 (bottom-right panel).

We can observe in Fig. 2.37 that the multiple-scale approximation and the random-sampling
method yield the same effective attenuation coefficients for all correlation lengths considered,
in the roughness amplitude regime 𝜖 < 0.1 only. Whereas we obtain very good agreement
between both methods for 𝑘𝑙G = 0.9 over the whole roughness amplitude regime (with
only a small deviation for the smallest roughness amplitude due to inaccuracy in capturing
this very small attenuation coefficient), the values for the two largest roughness amplitudes
in the case 𝑘𝑙G = 1.5 already suggest that the effective attenuation coefficients become
smaller than proportionally to 𝜖2. This effect is novel for this intermediate correlation
length and this tendency is confirmed by the results for 𝑘𝑙G = 2.5, for which we could not
observe deviations in the case of varying mass or varying rigidity either. For 𝑘𝑙G = 4.1,
our previous observations are endorsed, i.e. the effective attenuation coefficients start to
deviate from the values predicted by the multiple-scale method for 𝜖 ≥ 1.0 × 10−1, and
we note that the deviations turn out to be larger than for the varying mass and varying
rigidity. We deduce that this effect occurs due to the increased scattering strength of the
varying thickness problem. The individual attenuation coefficients, which are shown for
comparison, exhibit the same qualitative behaviour as in the varying mass and varying
rigidity problem. Similarly to the effective attenuation coefficients, they are approximately
four times larger than their equivalents for mass and rigidity variations, only. Hence, they
remain smaller by the same factor than the effective attenuation coefficients and they are
only proportional to 𝜖2 for correlation lengths 𝑘𝑙G = 0.9 and 1.5 in the roughness amplitude
regime 𝜖 ≥ 10−3 and 𝜖 ≥ 10−2.5, respectively.
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Figure 2.37: Scaled attenuation coefficients for varying thickness problem as functions
of roughness amplitude, for non-dimensional correlation lengths 𝑘𝑙G = 0.9 (top-left panel),
𝑘𝑙G = 1.5 (top-right panel), 𝑘𝑙G = 2.5 (bottom-left panel) and 𝑘𝑙G = 4.1 (bottom-right panel),
predicted by multiple-scale method (solid line) and for individual (×) and effective (∘) wave
fields by random-sampling method

For the numerical results so far, the attenuation coefficients were always non-dimensionalised
with the mean wavenumber 𝑘. As a demonstration of the numerical method and its
universality with respect to incoming waves with different wavenumbers, we investigate
the attenuation for time-harmonic waves of a wide range of angular frequencies now. Note
that the wavenumber scales with the root of the angular frequency, 𝜔. Fig. 2.38 shows the
scaled attenuation coefficients, predicted by the multiple-scale method and obtained by the
random-sampling method, as functions of the angular frequency, for the non-dimensional
correlation lengths 𝑘𝑙G = 0.9 (top-left panel), 1.5 (top-right panel), 2.5 (bottom-left panel)
and 4.1 (bottom-right panel), for the roughness amplitude 𝜖 = 5.0 × 10−2.

We can observe in Fig. 2.38 that our assumption holds that the attenuation coefficient
scales with the root of the angular frequency, hence with the wavenumber. This is valid
throughout the whole regime of angular frequencies from 1 to 100000 for all correlation
lengths considered, 𝑘𝑙G = 0.9, 1.5, 2.5 and 4.1, and both the random-sampling method and
the multiple-scale method work independently from the frequency regime (and underlying
mean beam mass and rigidity), we work in, and the method is not restricted in the frequency
domain.
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Figure 2.38: Scaled attenuation coefficients for varying thickness problem as functions of
angular frequency, for non-dimensional correlation lengths 𝑘𝑙G = 0.9 (top-left panel), 𝑘𝑙G = 1.5
(top-right panel), 𝑘𝑙G = 2.5 (bottom-left panel) and 𝑘𝑙G = 4.1 (bottom-right panel), predicted
by multiple-scale method (solid line) and for individual (×) and effective (∘) wave fields by
random-sampling method, for roughness amplitude 𝜖 = 5.0 × 10−2

Finally, we investigate the phase changes of the effective wave field for the varying thickness
problem, which can be obtained via Eqn. (2.104). Fig. 2.39 shows the phase changes as
functions of non-dimensional correlation length, for roughness amplitude 𝜖 = 5.0 × 10−2

(left-hand panel) and 1.0 × 10−1 (right-hand panel). The interval length is chosen to be
𝑘𝐿 = 4𝑘/𝜖2 in the random-sampling method again.

We can observe in Fig. 2.39 that the multiple-scale method predicts (similarly to the
previous problems) essentially the same phase changes as the random-sampling method for
both roughness amplitudes, 𝜖 = 5.0 × 10−2 and 1.0 × 10−1, showing only small deviations in
few cases. We notice that the phase changes are qualitatively similar to those we obtained
for the varying rigidity problem. The phase changes tend to a constant, finite offset for the
correlation length tending to zero. The offset is approximately five times larger than the
corresponding offset for the varying rigidity problem for the smallest correlation length
considered, 𝑘𝑙G = 0.1, i.e. the varying rigidity and the corresponding cross-correlation
terms dominate the phase change. From there, the phase change decreases much more
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Figure 2.39: Scaled phase changes of effective wave field for varying rigidity problem as
functions of non-dimensional correlation length, for roughness amplitudes 𝜖 = 5.0 × 10−2

(left-hand panel) and 𝜖 = 1.0 × 10−1 (right-hand panel), predicted by multiple-scale method
(solid line) and random-sampling method (∘)

rapidly than in the previous cases to reach its minimum around 𝑘𝑙G = 1.7. The slope of
the phase-change decrease is in its absolute magnitude significantly larger than for the
varying mass and varying rigidity problem, which can be explained by the same qualitative
decreasing behaviour associated to the varying mass and rigidity in this correlation length
regime. From the minimum phase change-value on, 𝑘𝑙G ≥ 1.7, the phase change shows
a very mild increasing behaviour, which is visible only weakly for the varying mass and
varying rigidity problem. Altogether, the phase change is positive for the varying thickness
problem throughout the whole correlation length regime, which means that the effective
wavelength is shorter than that of the uniform beam.

Finally, we compare qualitative phase changes of individual and effective wave fields
in the varying thickness problem. Fig. 2.40 shows the phase changes for example individual
wave fields and corresponding effective wave fields, for roughness amplitude 𝜖 = 5 × 10−2

and non-dimensional correlation lengths 𝑘𝑙G = 0.9 (left-hand panel) and 4.1 (right-hand
panel).

We can see in Fig. 2.40 that the phase changes of individual wave fields are also random,
here for 𝑘𝑙G = 0.9 and 4.1. Hence, quantitative results for individual phase changes are
not informative for the varying thickness problem either. It is completely different for the
phase changes of effective wave fields again, which tend after noisy behaviour for small 𝑥
to the values observed in Fig. 2.39 for both correlation lengths, 𝑘𝑙G = 0.9 and 4.1.
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Figure 2.40: Phase changes of example individual wave fields (grey curves) and effective wave
fields (black) for varying thickness problem and non-dimensional correlation lengths 𝑘𝑙G = 0.9
(left-hand panel) and 𝑘𝑙G = 4.1 (right-hand panel), for roughness amplitude 𝜖 = 5.0 × 10−2

2.9 Summary and discussion
After introducing the problem formulation and deriving the governing Euler–Bernoulli
beam equation, we extended the numerical method of Bennetts et al. (2015) to waves along
a thin-elastic beam, whose roughness can be incorporated by varying thickness as well as
beam property variations leading to varying mass and varying rigidity. To validate the
step-approximation method, sample problems of thin-elastic beams with a deterministic
single hump in its mass and rigidity characteristics, respectively, were considered. With
knowledge of the Green’s function for a homogeneous beam in vacuo, which is derived in
Appendix 2.A, integral equations were formulated to describe the wave propagation along
beam with deterministically varying mass and rigidity, respectively. The deterministic
integral equations were solved using a numerical collocation method. We have seen that
keeping the appearing jump terms involving the derivatives as natural conditions leads to
very slow convergence of the method and impractical results for small hump amplitudes.
To avoid this deficiency for small hump amplitudes, the natural conditions were enforced as
essential boundary conditions, which yields much better convergence of the integral equation
method. The integral equation method with enforced essential boundary conditions was
used to produce comparing results to the step approximation and it could be observed in
the varying mass problem that both methods showed excellent agreement throughout a
wide hump-amplitude regime for different hump lengths. For the problem of deterministic
rigidity variations, different discretisation schemes for the beam rigidity and its derivatives
in the step-approximation method were examined. Comparisons with the integral equation
method pointed out the correct discretisation scheme, for which we could subsequently
validate the step approximation for varying beam rigidity, and we analysed the convergence
of the step approximation with the respective discretisation scheme.

To incorporate roughness in the beam properties and beam thickness over a very long
interval, we presented the underlying random process and the generation of rough profile
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realisations. The chosen random process is Gaussian autocorrelated and widely used to
model rough surfaces for isotropic and homogeneous media, producing roughness profiles
sharing the same roughness characteristics. Before we focused on wave attenuation along
rough thin-elastic beams, we presented the random-sampling method, which is essential to
generate effective wave fields, and the technique to measure the attenuation of wave fields.
This was followed by an investigation of the convergence of the attenuation coefficients
with respect to the size of the ensemble.

We studied effective waves along a rough thin-elastic beam, where the roughness oc-
curs over a long, finite interval, and is in the form of random fluctuations in the beam’s
mass, rigidity or thickness, with a prescribed amplitude and correlation length. The step-
approximation method was used to calculate the beam deflection for a given realisation of
the roughness, and the effective wave field was constructed as the mean wave field for an
ensemble of randomly generated realisations of the roughness for a given amplitude and
correlation length with the random-sampling method. Analytic, multiple-scale approxima-
tions for the phase changes and attenuation coefficients were derived, on the assumption
that the roughness amplitude is small. Solving the equations of higher orders using the
stationarity of the random processes, which describe the variations, lead to the respective
evolution equation of the leading-order-wave amplitude, from which the phase changes
and attenuation coefficients could be derived, where a complex-valued integral had to be
evaluated numerically. The phase changes and attenuation coefficients predicted by the
random-sampling method and the multiple-scale approximation were compared over a
range of correlation lengths and roughness amplitudes.

We showed that the multiple-scale method and the step-approximation method predict
the same phase changes and attenuation coefficients, as long as 𝜖 is small enough (less
than ∼ 0.1). Giving analytical expressions, the multiple-scale method allowed more direct
insights, e.g. we could read off directly that the effective wavenumbers scaled with the
square of the roughness amplitude. It turned out that the effective wavenumbers between
the cases of varying beam mass and rigidity only differ by a real constant. This implied
in particular that the varying mass and varying rigidity produce identical attenuation
coefficients, and identical phase changes up to the addition of a constant. One consequence
of the constant difference was that, although the phase change tends to zero in the limit
𝑘𝑙G → 0 for varying mass, it tends to a finite constant for varying rigidity. Moreover,
the effective wavelength of the rough medium was found to be longer than that of the
underlying incident wave forcing in the case of varying mass, but shorter for the case of
varying rigidity. Introducing thickness variations leads to significantly larger attenuation
than varying mass and varying rigidity only, and the effective wavelength is shorter than
the wavelength of the corresponding uniform plate, since the inherent rigidity variations
dominate the corresponding mass variations. We also found that the effective wave fields
differ from the individual wave fields, particularly in the large-correlation-length regime. It
was shown that individual wave fields attenuate at a far slower rate for small-amplitude
roughness than the effective wave fields and deduced that it is the de-correlation of the
individual wave fields that causes attenuation of the effective wave field.





Appendix

2.A Derivation of Green’s function
The Green’s function for the Euler–Bernoulli beam Eqn. (2.9) is needed for the validation
of the step approximation via an integral equation in Sec. 2.3 and the derivation of the
multiple-scale methods in Secs. 2.6–2.8. Green’s functions play an important role for solving
inhomogeneous problems, such as both inhomogeneous ordinary and inhomogeneous partial
differential equations. In our case of an ordinary differential equation, the Green’s function
is the solution for the problem, where the inhomogeneous right-hand side is a Dirac delta
distribution. Thus, with the principle of superposition the Green’s function can be used
to calculate further solutions, see e.g. Olver 2014. We now seek the solution for the
homogeneous Euler–Bernoulli beam (i.e. with constant beam mass, 𝑔, and rigidity, 𝑏),
hence, Eqn. (2.9) can be rewritten as

𝜕4
𝑥𝑢(𝑥) − 𝑘4 𝑢(𝑥) = 0, 𝑥 ∈ (−∞,∞), (2.A.1)

where the (constant) wavenumber is given by

𝑘 = (𝛼𝑔/𝑏)1/4. (2.A.2)

The Green’s function is then the solution of Eqn. (2.A.1) with the right-hand side replaced
by the Dirac delta distribution 𝛿, i.e. the Green’s function is the deflection response, which
is produced by a point load. The Dirac delta distribution is defined formally as

𝛿(𝑥) =
{︃

∞, 𝑥 = 0,
0, 𝑥 ̸= 0,

(2.A.3)

which has to satisfy ˆ ∞

−∞
𝛿(𝑥) d𝑥 = 1. (2.A.4)

Now, we replace the right-hand side of Eqn. (2.A.1), which describes the deflection of
a homogeneous beam, by the Dirac delta distribution at 𝑥 = 𝑥̌, i.e. the inhomogeneity
corresponds to a harmonic point force in Eqn. (2.6) for a homogeneous beam. Hence,
Eqn. (2.A.1) becomes under this point force

𝜕4G(𝑥; 𝑥̌)
𝜕𝑥4 − 𝑘4G(𝑥) = 𝛿(𝑥− 𝑥̌). (2.A.5)
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82 Chapter 2 Wave attenuation along a rough thin-elastic beam

Green’s functions for elastic beams and plates under e.g. impulsive and moving time-
harmonic loads are presented in Watanabe 2014. To solve Eqn. (2.A.5), we use the limit
absorption principle, which is shown in Filippi 2008. It says that

𝜕4G𝜖(𝑥; 𝑥̌)
𝜕𝑥4 − [𝑘(1 + i𝜖)]4 G𝜖(𝑥; 𝑥̌) = 𝛿(𝑥− 𝑥̌) (2.A.6)

for small 𝜖 > 0 has a unique bounded solution G𝜖 with a unique limit G for 𝜖 → 0. The
limit absorption principle follows from the knowledge that a perfectly elastic solid can be
regarded as an idealisation of a weakly absorbing material. It ensures a unique solution for
our problem.

We denote the Fourier transform of G𝜖 with

̂︁G𝜖(𝜉; 𝑥̌) =
ˆ ∞

−∞
G𝜖(𝑥; 𝑥̌) e−2𝜋i𝑥𝜉 d𝑥. (2.A.7)

Then, the Fourier transform of the fourth-order derivative of G𝜖 can be integrated by parts
four times such that we end up with

̂︂G(4)
𝜖 (𝜉; 𝑥̌) =

ˆ ∞

−∞
G(4)

𝜖 e−2𝜋i𝑥𝜉 d𝑥 =
[︁
G(3)

𝜖 e−2𝜋i𝑥𝜉
]︁∞

𝑥=−∞
+ 2i𝜋𝜉

[︁
G(2)

𝜖 e−2𝜋i𝑥𝜉
]︁∞

𝑥=−∞

+ (2i𝜋𝜉)2
[︁
G(1)

𝜖 e−2𝜋i𝑥𝜉
]︁∞

𝑥=−∞
+ (2i𝜋𝜉)3

[︁
G𝜖e−2𝜋i𝑥𝜉

]︁∞

𝑥=−∞
+ (2i𝜋𝜉)4

ˆ ∞

−∞
G𝜖e−2𝜋i𝑥𝜉 d𝑥.

(2.A.8)

Since G𝜖 and its derivatives up to order three vanish for |𝑥| → ∞ and
ˆ ∞

−∞
𝛿(𝑥− 𝑥̌) e−2𝜋i𝑥𝜉 d𝑥 = e−2𝜋i𝑥̌𝜉, (2.A.9)

applying the Fourier transform to Eqn. (2.A.6) gives

(2𝜋𝜉)4 ̂︁G𝜖(𝜉; 𝑥̌) − [𝑘(1 + i𝜖)]4 ̂︁G𝜖(𝜉; 𝑥̌) = e−2𝜋i𝑥̌𝜉. (2.A.10)

Hence, the Fourier transform of the solution of Eqn. (2.A.6) is

̂︁G𝜖(𝜉; 𝑥̌) = e−2𝜋i𝑥̌𝜉

16𝜋4𝜉4 − 𝑘4(1 + i𝜖)4 . (2.A.11)

To obtain the solution of Eqn. (2.A.6) in the original spatial domain, we have to apply the
inverse Fourier transform, i.e.

G𝜖(𝑥; 𝑥̌) =
ˆ ∞

−∞
̂︁G𝜖(𝜉; 𝑥̌)e2𝜋i𝑥𝜉 d𝜉. (2.A.12)
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Using the inverse Fourier transform then gives

G𝜖(𝑥; 𝑥̌) =
ˆ ∞

−∞

e2𝜋i(𝑥−𝑥̌)𝜉

16𝜋4𝜉4 − 𝑘4(1 + i𝜖)4 d𝜉. (2.A.13)

In order to calculate the integral in Eqn. (2.A.13), we have to deal with the four singularities
of the integrand, namely

𝜉1−4 =

⎧⎨⎩±𝑘(1+i𝜖)
2𝜋 ,

±i𝑘(1+i𝜖)
2𝜋 ,

(2.A.14)

and apply Cauchy’s residue theorem, which evaluates integrals over closed curves. For this
purpose, we find contours containing each two of the singularities for both cases, 𝑥 > 𝑥̌
and 𝑥 < 𝑥̌, respectively (𝑥 = 𝑥̌ is the trivial case).

For 𝑥 > 𝑥̌, the two singularities, 𝜉1 = 𝑘(1+i𝜖)
2𝜋 and 𝜉3 = i𝑘(1+i𝜖)

2𝜋 , lie within the inte-
gration contour C+, which includes the half-circle of radius 𝑅 → ∞ in the upper complex
half-plane, i.e. Im(𝜉) > 0, which is closed by the real 𝜉-axis. The situation is depicted in
the left-hand panel of Fig. 2.A.1.

ξ1

ξ3

Re

Im

−R R

C+

ξ2

ξ4

Re

Im

−R R

C−

Figure 2.A.1: Left-hand panel: Integration contour C+ containing 𝜉1 and 𝜉3. Right-hand
panel: Integration contour C− containing 𝜉2 and 𝜉4.

Before we can make use of Cauchy’s residue theorem to calculate the contour integral
˛
C+

𝑓(𝜉) d𝜉 :=
ˆ
C+

e2𝜋i(𝑥−𝑥̌)𝜉

(2𝜋)4
(︁
𝜉 − 𝑘(1+i𝜖)

2𝜋

)︁(︁
𝜉 + 𝑘(1+i𝜖)

2𝜋

)︁(︁
𝜉 − i𝑘(1+i𝜖)

2𝜋

)︁(︁
𝜉 + i𝑘(1+i𝜖)

2𝜋

)︁ d𝜉,

(2.A.15)
𝑓(𝜉) is decomposed into its partial fractions, i.e.

𝑓(𝜉) = 1
8𝜋𝑘3(1 + i𝜖)3 e2𝜋i(𝑥−𝑥̌)𝜉

[︃
1

𝜉 − 𝑘(1+i𝜖)
2𝜋

+ −1
𝜉 + 𝑘(1+i𝜖)

2𝜋

+ i
𝜉 − i𝑘(1+i𝜖)

2𝜋

+ −i
𝜉 + i𝑘(1+i𝜖)

2𝜋

]︃
.

(2.A.16)
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The residues of 𝑓(𝜉) for the two singularities 𝜉1 and 𝜉3 are

Res(𝑓,𝜉1) := Res
𝜉= 𝑘(1+i𝜖)

2𝜋

𝑓(𝜉) = 1
8𝜋𝑘3(1 + i𝜖)3 ei𝑘(1+i𝜖)(𝑥−𝑥̌) ,

Res(𝑓,𝜉3) := Res
𝜉=i 𝑘(1+i𝜖)

2𝜋

𝑓(𝜉) = 1
8𝜋𝑘3(1 + i𝜖)3 ie−𝑘(1+i𝜖)(𝑥−𝑥̌) .

Since C+ is a positively oriented simple closed contour, the winding number in Cauchy’s
residue theorem is unity, see e.g. Freitag and Busam 2009, and we obtain

˛
C+

𝑓(𝜉) d𝜉 = 2𝜋i
∑︁

𝑘=1,3
Res(𝑓,𝜉𝑘) = 1

4𝑘3(1 + i𝜖)3

[︁
iei𝑘(1+i𝜖)(𝑥−𝑥̌) − e−𝑘(1+i𝜖)(𝑥−𝑥̌)

]︁
.

(2.A.17)
To finally calculate the integral Eqn. (2.A.13) for 𝑥 > 𝑥̌ over the real 𝜉-axis, the contour
integral is split into the integral over the 𝜉-axis and the arc segment, i.e.

lim
𝑅→∞

ˆ 𝑅

−𝑅
𝑓(𝜉) d𝜉 =

˛
C+

𝑓(𝜉) d𝜉 −
ˆ

arc
𝑓(𝜉) d𝜉. (2.A.18)

Using the monotony of the integral and the reverse triangle inequality, it can be shown
that the arc-integral vanishes,⃒⃒⃒⃒ˆ

arc
𝑓(𝜉) d𝜉

⃒⃒⃒⃒
≤
ˆ

arc

1
|16𝜋4𝜉4 − 𝑘4(1 + i𝜖)4|

d𝜉

≤
ˆ

arc

1
16𝜋4|𝜉4| − 𝑘4 d𝜉 = lim

𝑅→∞

𝜋𝑅

16𝜋4𝑅2 − 𝑘4 = 0. (2.A.19)

This provides us with the solution of Eqn. (2.A.6) to the right of the point source 𝑥̌:

G𝜖(𝑥; 𝑥̌) = 1
4𝑘3(1 + i𝜖)3

[︁
iei𝑘(1+i𝜖)(𝑥−𝑥̌) − e−𝑘(1+i𝜖)(𝑥−𝑥̌)

]︁
, 𝑥 > 𝑥̌. (2.A.20)

For 𝑥 < 𝑥̌, the integration contour C− consists of the real 𝜉-axis closed by the half-circle
of radius 𝑅 → ∞ in the lower complex half-plane, i.e. Im(𝜉) < 0, as we can see in the
right-hand panel of Fig. 2.A.1. Hence, the contour C− contains the two singularities
𝜉2 = −𝑘(1+i𝜖)

2𝜋 and 𝜉4 = −i𝑘(1+i𝜖)
2𝜋 . Calculating the residues of 𝑓(𝜉) for both singularities 𝜉2

and 𝜉4 gives

Res(𝑓,𝜉2) := Res
𝜉=− 𝑘(1+i𝜖)

2𝜋

𝑓(𝜉) = −1
8𝜋𝑘3(1 + i𝜖)3 e−i𝑘(1+i𝜖)(𝑥−𝑥̌),

Res(𝑓,𝜉4) := Res
𝜉=−i 𝑘(1+i𝜖)

2𝜋

𝑓(𝜉) = −i
8𝜋𝑘3(1 + i𝜖)3 ie𝑘(1+i𝜖)(𝑥−𝑥̌).

Because C− is negatively oriented, the contour integral of 𝑓 over C− is the negative sum of
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the residues,
˛
C−

𝑓(𝜉) d𝜉 = 2𝜋i
∑︁

𝑘=2,4
(−1)Res(𝑓,𝜉𝑘) = 1

4𝑘3(1 + i𝜖)3

[︁
ie−i𝑘(1+i𝜖)(𝑥−𝑥̌) − e𝑘(1+i𝜖)(𝑥−𝑥̌)

]︁
.

(2.A.21)
To obtain the solution of the integral Eqn. (2.A.13) as well for 𝑥 < 𝑥̌, the integral over
the contour C− is also split into the integral over the real 𝜉-axis and an arc-segment as
it is done in Eqn. (2.A.18) with C+ replaced by C− and using the corresponding arc-integral.

With the same arguments as before, it can be shown that the integral along the lower
arc-segment vanishes such that the lower contour integral calculated with Cauchy’s residue
theorem already gives the solution of Eqn. (2.A.6) for 𝑥 < 𝑥̌,

G𝜖(𝑥; 𝑥̌) = 1
4𝑘3(1 + i𝜖)3

[︁
ie−i𝑘(1+i𝜖)(𝑥−𝑥̌) − e𝑘(1+i𝜖)(𝑥−𝑥̌)

]︁
, 𝑥 < 𝑥̌. (2.A.22)

Taking the limits 𝜖 → 0 of G𝜖 in both cases, 𝑥 > 𝑥̌ and 𝑥 < 𝑥̌, provides us with the unique
limit

G(𝑥; 𝑥̌) = 1
4𝑘3

[︁
iei𝑘|𝑥−𝑥̌| − e−𝑘|𝑥−𝑥̌|

]︁
, (2.A.23)

which is the unique solution of Eqn. (2.A.5). Fig. 2.A.2 shows the Green’s function and its
derivatives up to order three, which contains the discontinuity at the source point 𝑥̌ = 0 in
its real part, for the constant wavenumber 𝑘 scaled to unity.
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Figure 2.A.2: Green’s function (top-left panel), its first (top-right panel), second (bottom-left
panel) and third derivative (bottom-right panel) for homogeneous beam equation with point
load at source point 𝑥̌ = 0, for 𝑘 scaled to unity
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2.B Discretisation schemes for beam rigidity in step approximation
We summarise the different discretisation variants, which we consider to incorporate the
beam rigidity and its slope into the continuity conditions to obtain the scattering matrix
at each scattering interface, here. In the first discretisation variant (I), the beam rigidity is
evaluated at the mid-point of each sub-interval, which is consistent with the calculation of
the wavenumber, and set to be constantly this value in the respective sub-interval, and the
rigidity slope is neglected because of the piece-wise constant rigidity profile.

Variant I) • point-wise evaluation of beam rigidity 𝑏

• neglecting beam rigidity slope 𝜕𝑥𝑏

The discretisation variant I is schematically shown in Fig. 2.B.1 for the scattering interface at
𝑥 = 𝑥𝑚. The depicted profile variation is exaggerated for the purpose of better visualisation.
It is clear that the grid of sub-intervals is much finer when applying the step approximation.

xm−1 xm xm+1

Variant I

•

•

x

b

Figure 2.B.1: Scheme of discretisation variant I in step approximation

The discretisation variants II - V involve the evaluation or approximation of the rigidity
slope and are outlined briefly in following and shown schematically in Fig. 2.B.2.
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Variant II) • point-wise evaluation of beam rigidity 𝑏

• point-wise evaluation of beam rigidity slope 𝜕𝑥𝑏

Variant III) • point-wise evaluation of beam rigidity 𝑏

• approximation of beam rigidity slope 𝜕𝑥𝑏 by difference quotient

Variant IV) • approximation of beam rigidity 𝑏 by spline interpolation

• point-wise evaluation of beam rigidity slope 𝜕𝑥𝑏

Variant V) • approximation of beam rigidity 𝑏 by spline interpolation

• approximation of beam rigidity slope 𝜕𝑥𝑏 by spline slope

xm−1 xm xm+1

Variant II

•

•

x

b

xm−1 xm xm+1

Variant III

•

•

x

b

xm−1 xm xm+1

Variant IV

x

b

xm−1 xm xm+1

Variant V

• •

x

b

Figure 2.B.2: Scheme of discretisation variants II-V in step approximation (from top-left to
bottom-right panel)





CHAPTER 3

Wave attenuation along a rough floating thin-elastic plate

In the previous chapter, we have successfully validated a multiple-scale approach describing
the propagation of effective wave fields along rough beams in vacuo. The multiple-scale
approach yields a computationally efficient way to obtain the scattering characteristics for
long structures with continuous roughness profiles. A field of application of this approach
are water waves, which are attenuated by very long, floating rough structures. An important
example of this is the attenuation of ocean waves along very long ice floes in the marginal
ice zone.

Under the assumption that the water is an incompressible, inviscid fluid and its flow
is irrotational, we can use linear water wave theory. Due to the dimensionality of this
problem, numerical calculations are hard to perform and computationally very expensive
to obtain the attenuation behaviour of water waves along long, rough floating structures,
and our goal is to find an efficient approach describing the water wave propagation. Hence,
we want to find an analytical (or semi-analytical) solution method, which leads us to a
multiple-scale method based on the respective method for the beam in vacuo. Since large
ice floes are highly flexible and their thickness is much smaller than their horizontal extent
and the wavelengths of the incident waves, we can model them as elastic plates, see e.g.
Meylan 2002. In contrast to small ice floes in the marginal ice zone close to the open ocean,
which should be modelled as rigid plates, see Masson and LeBlond 1989, and ice floes
of the size of the incoming wave, which should be modelled as finite and flexible plates,
we focus on ice floes, which are much larger than the wavelengths of the incoming waves,
and hence can be modelled as infinite and flexible plates, see Fox and Squire 1994. With
their small thickness and provided that the wave length is not too short, it is not limiting
to neglect their submergence for this preliminary study, since the additional value of the
much more complex models is limited, see e.g. Vaughan and Squire 2008 and Williams and
Squire 2008. This is a study on a large scale, complementing the existing models of linear
wave scattering by ice floes and the extensive literature for interactions of ocean waves
with sea ice on a local scale, which has been studied extensively in the last two decades,
see for an overview e.g. Squire 2010.

Before we introduce the multiple-scale method for the present problem, we derive the
governing system of equations in Sec. 3.1 and describe the numerical method in Sec. 3.2,

89



90 Chapter 3 Wave attenuation along a rough floating thin-elastic plate

which will be used to validate the multiple-scale method. The numerical method is an
extension to the step-approximation method from Sec. 2.2. After a preliminary wave field
analysis in Sec. 3.3, we derive the multiple-scale method in Sec. 3.4 and finally validate the
multiple-scale method with the numerical method in Sec. 3.5.

3.1 Problem formulation

We extend the in-vacuo beam model from Sec. 3.1. An infinitely long thin plate shall be
floating on water of finite depth 𝐻. Since the plate is assumed to have uniform geometry
along the horizontal 𝑦-axis and waves are travelling along the (horizontal) 𝑥-axis only,
we consider a two-dimensional model, where the coordinate 𝑥 allows us to describe the
Euler–Bernoulli plate of negligible submergence, which lies flat on water. The vertical
𝑧-axis is orientated upwards and its origin coincides with the position of the plate at rest
(𝑧 = 0). In the following, we briefly derive the system of partial differential equations
(PDEs), which describes the propagation of water waves along a rough Euler–Bernoulli
plate floating on water of finite and constant depth 𝐻, in analogy to Wang 2004.

The equation of continuity for inviscid, incompressible fluids yields non-divergence for the
velocity field u, i.e.

∇ · u = 0, (3.1)

and the simplified equation of moment conservation,

𝜕u
𝜕𝑡

+ u ∇u = − 1
𝜌𝑤

∇𝑝+ gacc, (3.2)

where 𝜌𝑤 denotes the water density, 𝑝 the water pressure and gacc the gravitational field.
The gradient operates on the spatial variables only, i.e. ∇ = (𝜕𝑥, 𝜕𝑧)T. Eqns. (3.1) and
(3.2) are also known as Navier–Stokes equations for incompressible fluids and form a PDE
system for incompressible fluxes with unknowns u (velocity field) and 𝑝 (pressure). Under
the assumption that the water motion is irrotational, the velocity field can be expressed as
the gradient of the velocity potential 𝛷,

u = ∇𝛷. (3.3)

Therefore, the (time-dependent) velocity potential of the water, 𝛷(𝑥,𝑧,𝑡), fulfils the Laplace
equation in the water domain,

𝛥𝛷(𝑥,𝑧,𝑡) = 0, (3.4)

where the Laplace operator is 𝛥 = 𝜕2
𝑥 + 𝜕2

𝑧 . Eqn. (3.4) describes the water motion in the
water domain.

At the sea-floor, the vertical component of the flow velocity has to vanish, i.e. the normal
derivative of the velocity potential has to be zero, which gives the boundary condition on
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the sea-floor (for finite water depth),

𝜕

𝜕𝑧
𝛷(𝑥,−𝐻,𝑡) = 0. (3.5)

To couple the water motion with the elastic plate, which lies on its surface, we derive the
dynamic boundary condition describing the interaction between the water domain and the
plate in analogy to Billingham and King 2001. Using the identity

u × (∇ × u) = ∇
(︂

1
2u · u

)︂
− u · ∇u, (3.6)

where · denotes the inner product, and under the assumption that the flux is irrotational,
i.e. ∇ × u = 0, we can write the consecutive acceleration as

u · ∇u = ∇
(︂

1
2∇𝛷 · ∇𝛷

)︂
. (3.7)

The consecutive acceleration is the part of the substantial acceleration,

𝐷u
𝐷𝑡⏟ ⏞ 

substantial
acceleration

:= 𝜕u
𝜕𝑡⏟ ⏞ 

local
acceleration

+ u · ∇u⏟  ⏞  
convective

acceleration

, (3.8)

which arises through location change of the particles, since location change from one
location to another one in the flow field modifies the velocity. In Eqn. (3.8), 𝐷

𝐷𝑡 is the
Stokes derivative, which describes the location change of a particle with time as it flows along
its trajectory, see e.g. Batchelor 2000. The local acceleration occurs due to the temporal
change of the velocity at a fixed location, see Kümmel 2007. Since the gravitational field
acts in negative 𝑧-direction, we can express it with the help of the acceleration due to
gravity, 𝑔acc, as

gacc = ∇(−𝑔acc𝑧) (3.9)

and we can rewrite Eqn. (3.9) as

gacc = −∇(𝑔accU), (3.10)

where U(𝑥,𝑡) is the deflection of the water surface in 𝑧-direction. These considerations
allow us to express Eqn. (3.2) as

𝜕

𝜕𝑡
(∇𝛷) + ∇

(︂
1
2∇𝛷 · ∇𝛷

)︂
= − 1

𝜌𝑤
∇𝑝− ∇(𝑔accU). (3.11)

Under the assumption of a sufficiently smooth velocity potential 𝛷, we obtain

∇
(︂
𝜕𝛷

𝜕𝑡
+ 1

2∇𝛷 · ∇𝛷+ 𝑝

𝜌𝑤
+ 𝑔accU

)︂
= 0. (3.12)
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Since the gradient only depends on the spatial variables, we have

𝜕𝛷

𝜕𝑡
+ 1

2∇𝛷 · ∇𝛷+ 𝑝

𝜌𝑤
+ 𝑔accU = 𝐶(𝑡) (3.13)

for a non-specified function 𝐶(𝑡). Due to the transformation

𝛷 ↦→ 𝛷+
ˆ 𝑡

0
𝐶(𝑠) d𝑠, (3.14)

we can set 𝐶(𝑡) = 0 without influencing the velocity field. Finally, we obtain the Bernoulli
equation,

𝜕𝛷

𝜕𝑡
+ 1

2∇𝛷 · ∇𝛷+ 𝑝

𝜌𝑤
+ 𝑔accU = 0. (3.15)

Under the assumption of linear wave motion, the Bernoulli Eqn. (3.15) can be linearised
by neglecting the non-linear term 1

2∇𝛷 · ∇𝛷,

− 𝜌𝑤

(︂
𝜕

𝜕𝑡
𝛷(𝑥,0,𝑡) + 𝑔accU(𝑥,𝑡)

)︂
= 𝑝(𝑥,𝑡), (3.16)

The linearised Bernoulli Eqn. (3.16) is the dynamic boundary condition between the water
surface and the floating plate.

We also have to take into account that each particle, which is located at the water
surface at an arbitrary time, never leaves the water surface, see Sarpkaya and Isaacson
1981. This is described with the following equation, see e.g. Billingham and King 2001,

𝐷

𝐷𝑡
(𝑧 − U(𝑥,𝑡)) = 𝜕

𝜕𝑡
(𝑧 − U(𝑥,𝑡)) + u · ∇ (𝑧 − U(𝑥,𝑡)) = 0. (3.17)

To derive the kinematic boundary condition between the water surface and the floating
plate, we rewrite Eqn.(3.17) as

− 𝜕U

𝜕𝑡
+ u · ∇(𝑧 − U) = −𝜕U

𝜕𝑡
+ ∇𝛷 · (∇𝑧 − ∇U) =

= −𝜕U

𝜕𝑡
+
(︂

𝜕𝛷
𝜕𝑥
𝜕𝛷
𝜕𝑧

)︂
·
(︂(︂

0
1

)︂
−
(︂

𝜕U
𝜕𝑥
0

)︂)︂
= −𝜕U

𝜕𝑡
− 𝜕𝛷

𝜕𝑥
· 𝜕U
𝜕𝑥

+ 𝜕𝛷

𝜕𝑧
= 0. (3.18)

Hence, the general kinematic boundary condition on the water surface is

𝜕𝛷

𝜕𝑧
= 𝜕U

𝜕𝑡
+ 𝜕𝛷

𝜕𝑥
· 𝜕U
𝜕𝑥

. (3.19)

Linearising Eqn. (3.19) yields the kinematic boundary condition on the water surface for
our linear problem,

𝜕𝛷

𝜕𝑧
= 𝜕U

𝜕𝑡
on 𝑧 = 0. (3.20)
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As mentioned above, the ice sheet shall be modelled as a thin, elastic plate of negligible
submergence with varying material properties (plate mass, plate rigidity) or varying plate
thickness along the 𝑥-axis. We assume that the plate is floating on top of the water at all
times and is in contact with the water surface, hence the water surface and the plate are
described with the same deflection U(𝑥,𝑡). The deflection is described in our setting with
the slightly modified dynamic Euler–Bernoulli plate equation for a non-uniform plate,

𝜕2

𝜕𝑥2

(︂
𝐸𝐼(𝑥)𝜕

2U(𝑥,𝑡)
𝜕𝑥2

)︂
+ 𝜌ℎ(𝑥)𝜕

2U(𝑥,𝑡)
𝜕𝑡2

= 𝑝(𝑥,𝑡). (3.21)

Eqn. (3.21) essentially agrees with the Euler-Bernoulli beam Eqn. (2.6), where the pressure
𝑝 in Eqn. (3.21) corresponds to the external force 𝑓 in Eqn. (2.6). However, to take the
plate structure into account, the cross-sectional area of the beam, 𝐴(𝑥), is replaced by
the plate thickness, ℎ, only, and the width also disappears from the moment of inertia of
the beam cross section, 𝐼(𝑥), which is given in Eqn. (2.120) for the beam in vacuo, but
Poisson’s ratio is included, see e.g. Landau and Lifshitz 1986. Poisson’s ratio, denoted with
𝜈, is a measure of transverse strain due to strain in the loaded direction and is characterised
by the ratio of transverse strain to axial strain, see e.g. Boresi and Schmidt 2002. With
this, the moment of inertia becomes

𝐼(𝑥) = ℎ(𝑥)3

12(1 − 𝜈2) . (3.22)

Note for the sake of completeness that in Eqn. (3.21) 𝜌 is the mass density of the plate and 𝐸
Young’s modulus, which is a material constant for the linear, elastic deformation of the plate.

The plate Eqn. (3.21) can now be combined with the linearised dynamic boundary condition,
Eqn. (3.16), by eliminating the pressure 𝑝. We obtain a coupled equation for the elevation
of the water surface, covered with the plate,

𝜕2

𝜕𝑥2

(︂
𝐸𝐼(𝑥)𝜕

2U(𝑥,𝑡)
𝜕𝑥2

)︂
+ 𝜌ℎ(𝑥)𝜕

2U(𝑥,𝑡)
𝜕𝑡2

= −𝜌𝑤

(︂
𝜕𝛷

𝜕𝑡
+ 𝑔accU

)︂
. (3.23)

Note that external forces, such as the atmospheric pressure, are normalised to zero
when coupling the Euler–Bernoulli plate equation and the linearised kinematic boundary
condition. Taking the temporal derivative of Eqn. (3.23) and using the linearised kinematic
boundary condition, Eqn. (3.20), we can write

𝜕2

𝜕𝑥2

(︂
𝐸𝐼(𝑥) 𝜕

2

𝜕𝑥2𝜕𝑧𝛷

)︂
+ 𝜌ℎ(𝑥) 𝜕

2

𝜕𝑡2
𝜕𝑧𝛷 = −𝜌𝑤

(︂
𝜕2𝛷

𝜕𝑡2
+ 𝑔acc𝜕𝑧𝛷

)︂
. (3.24)

Collecting the governing equations, Eqn. (3.4) for the velocity potential of the water,
Eqn. (3.5) for the no-impedance condition on the sea-bed and the coupled plate Eqn. (3.24),
we obtain the following (time-dependent) PDE system for our problem of wave propagation
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along an elastic plate floating on water:

𝛥𝛷(𝑥,𝑧,𝑡) = 0, −𝐻 < 𝑧 < 0, (3.25a)
𝜕

𝜕𝑧
𝛷(𝑥,−𝐻,𝑡) = 0, 𝑧 = −𝐻, (3.25b)

𝜕2

𝜕𝑥2

(︂
𝐸𝐼(𝑥) 𝜕

2

𝜕𝑥2𝜕𝑧𝛷

)︂
+ 𝜌ℎ(𝑥) 𝜕

2

𝜕𝑡2
(𝜕𝑧𝛷) = −𝜌𝑤

(︂
𝜕2𝛷

𝜕𝑡2
+ 𝑔acc𝜕𝑧𝛷

)︂
, 𝑧 = 0. (3.25c)

The linear model allows us again to focus on incoming time-harmonic waves with angular
frequency 𝜔. Since the equations of motion are linear in our model, the plate deflection
and velocity potential depend on the same single frequency. Hence, we can factor out the
time-dependency via e−i𝜔𝑡 and the (complex-valued) spatial parts of the plate deflection,
𝑢̂(𝑥), and velocity potential, 𝜑(𝑥), fulfil

U(𝑥,𝑡) = Re
{︀
𝑢̂(𝑥)e−i𝜔𝑡

}︀
, (3.26a)

𝛷(𝑥,𝑡) = Re
{︁
𝜑(𝑥)e−i𝜔𝑡

}︁
. (3.26b)

For consistency with the in-vacuo beam problem in Ch. 2, we take up the notation from
Eqn. (2.7) and refer to the mass per unit length, 𝜌ℎ(𝑥), as the plate mass, denoted with
𝑔(𝑥), and 𝐸𝐼(𝑥) as the plate rigidity, denoted with 𝑏̂(𝑥), i.e.

𝑔(𝑥) := 𝜌ℎ(𝑥), (3.27a)
𝑏̂(𝑥) := 𝐸𝐼(𝑥). (3.27b)

Hence, the time-harmonic velocity potential, 𝜑, satisfies the following (time-independent)
PDE system for our problem of wave propagation along an elastic plate floating on water:

𝛥𝜑(𝑥,𝑧) = 0, −𝐻 < 𝑧 < 0, (3.28a)
𝜕

𝜕𝑧
𝜑(𝑥,−𝐻) = 0, 𝑧 = −𝐻, (3.28b)(︂

𝜕2

𝜕𝑥2

(︂
𝑏̂(𝑥) 𝜕

2

𝜕𝑥2

)︂
− 𝛼𝑔(𝑥) + 𝜌𝑤𝑔acc

)︂
𝜕𝑧𝜑 = 𝛼𝜌𝑤𝜑, 𝑧 = 0, (3.28c)

where 𝛼 = 𝜔2/𝑔acc is the angular frequency squared over the acceleration due to gravity.
For the sake of simplicity, we can transform this system in a similar way to Meylan and
Squire 1996. We scale the following variables,

𝑡 ↦→ √
𝑔acc𝑡 , 𝜑 = 𝜑

√
𝑔acc

, 𝑔 = 𝑔

𝜌𝑤
, 𝑏 = 𝑏̂

𝑔acc𝜌𝑤
, (3.29)
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and thereby, we obtain the PDE system (3.28) in a simplified form,

𝛥𝜑(𝑥,𝑧) = 0, −𝐻 < 𝑧 < 0, (3.30a)
𝜕

𝜕𝑧
𝜑(𝑥,−𝐻) = 0, 𝑧 = −𝐻, (3.30b)(︂

𝜕2

𝜕𝑥2

(︂
𝑏(𝑥) 𝜕

2

𝜕𝑥2

)︂
− 𝛼𝑔(𝑥) + 1

)︂
𝜕𝑧𝜑 = 𝛼𝜑, 𝑧 = 0, (3.30c)

The model of our problem of wave propagation along a elastic plate floating on water is
shown schematically in Fig. 3.1.

x

z

z = 0
[
∂2
x(b(x)∂2

x) − αg(x) + 1
]
∂zφ(x, z) − αφ(x, z) = 0

Wave
∆φ = 0

∂zφ = 0
z = −H

Figure 3.1: Two-dimensional model of water-wave propagation along rough Euler–Bernoulli
plate floating on water of finite depth 𝐻

Using the representation of the spatial plate deflection and velocity potential, Eqns. (3.26),
and the scaling of the (spatial) velocity potential, we can rewrite the linearised kinematic
boundary condition, Eqn. (3.20), as

𝜕𝑧𝜑 = −𝑖
√
𝛼𝑢, 𝑧 = 0. (3.31)

This formulation is given e.g. by Meylan (2002). Note that the (spatial) plate deflection,
𝑢, is, unlike the velocity potential, not scaled by √

𝑔acc, but the scaling is incorporated
into 𝜔/√𝑔acc =

√
𝛼. In analogy to the in-vacuo beam setting, the Sommerfeld radiation

condition is applied to all problem formulations in this chapter to ensure the well-definedness
of the problem.
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3.2 Numerical formulation
We want to solve the problem of wave propagation along a thin, elastic plate with con-
tinuously varying material properties or thickness profile. Before a multiple-scale method
for these problems is presented in Sec. 3.4, we adopt a numerical method, which solves
our problems for piecewise constant roughness profile. The numerical method represents
a natural extension of the step-approximation method, which was introduced in Sec. 2.2
for the beam in vacuo. However, the numerical method to solve the present problem is
much more expedient than the previous step-approximation method due to the additional
vertical dimension and the coupling of the water and the floating plate, which results in a
higher-order boundary condition. The numerical method was derived by Bennetts (2007)
for finite and semi-infinite ice floes of uniform and piecewise uniform geometry. We apply
it to our problem of wave propagation along very long floating plates and consider them to
be infinite with continuously varying roughness profile over a long, finite interval 𝑥 ∈ (0, 𝐿).
The continuous roughness profile of the plate is discretised similarly to the procedure in the
step-approximation method into 𝑀 + 1 sub-intervals, with (−∞, 0) and (𝐿,∞) the 0th and
(𝑀 + 1)th sub-intervals, respectively. Based on the introduction of the step-approximation
method, we briefly present the numerical method for the present problem. For details, we
refer to Bennetts 2007.
We had derived the continuity conditions for the beam in vacuo, Eqns. (2.15) (continuity
of deflection, deflection slope, bending moment and shear stress), which were used to
couple the wave fields in adjacent sub-intervals, with the help of the weak formulation
of the beam equation. To derive the continuity conditions for the present problem,
the functional formulation of the problem was used in Bennetts 2007. The functional
formulation was originally presented by Porter and Porter (2004) and a variational principle
was applied for this purpose. The boundary terms in this formulation are integrated as
jump conditions at internal boundaries of connected plate regions. Application of this
ansatz on our two-dimensional problem with plates of negligible submergence yields the
two essential conditions at each scattering interface 𝑥 = 𝑥𝑚, 𝑚 = 0, 1, . . . ,𝑀 , between
adjacent sub-intervals,

⟨⟨𝑢(𝑥)⟩⟩𝑥=𝑥𝑚 = 0, (3.32a)
⟨⟨𝜕𝑥𝑢(𝑥)⟩⟩𝑥=𝑥𝑚 = 0. (3.32b)

These continuity conditions imply continuity of the plate deflection and deflection slope,
respectively. We also obtain the following natural conditions:

⟨⟨𝑏(𝑥)𝜕2
𝑥𝑢(𝑥)⟩⟩𝑥=𝑥𝑚 = 0, (3.32c)

⟨⟨𝜕𝑥

(︀
𝑏(𝑥)𝜕2

𝑥𝑢(𝑥)
)︀
⟩⟩𝑥=𝑥𝑚 = 0, (3.32d)

⟨⟨𝜑(𝑥,𝑧)⟩⟩𝑧,𝑥=𝑥𝑚 = 0, (3.32e)
⟨⟨𝜕𝑥𝜑(𝑥,𝑧)⟩⟩𝑧,𝑥=𝑥𝑚 = 0. (3.32f)

Additionally to the four already known continuity conditions from Eqns. (2.15) for the
beam in vacuo, two more continuity conditions appear, continuity of the velocity potential
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of the fluid (Eqn. (3.32e)) and continuity of the fluid velocity (Eqn. (3.32f)). While the
continuity conditions of deflection, deflection slope, bending moment and shear stress
(Eqns. (3.32a)–(3.32d)) act at each scattering interface for 𝑧 = 0, the continuity of the
velocity and its potential must be satisfied across the whole scattering interfaces, 𝑥 = 𝑥𝑚,
𝑚 = 0, 1, . . . ,𝑀 , and −𝐻 ≤ 𝑧 ≤ 0, which is denoted with ⟨⟨·⟩⟩𝑧,𝑥=𝑥𝑚 . These continuity
conditions are used to couple the wave fields in adjacent sub-intervals and provide the
basis for the numerical method.

The full-linear solution, 𝜑(𝑥,𝑧), which solves the the governing PDE system (3.30) for
uniform geometry, can be written in the form

𝜑(𝑥,𝑧) =
∞∑︁

𝑛=−2
𝜙𝑛(𝑥)𝑤𝑛(𝑥,𝑧), (3.33)

where the functions 𝜙𝑛, 𝑛 = −2,−1, . . ., are unknown and 𝑤𝑛, 𝑛 = −2,−1, . . ., are the
vertical modes, which describe the depth dependency of the solution, see e.g. Evans and
Porter 2003. Since the configuration of our problem is (piece-wise) uniform, the vertical
dimension of the problem can be separated from the horizontal coordinate and we can
write the full-linear solution as

𝜑(𝑥,𝑧) =
∞∑︁

𝑛=−2
𝜙𝑛(𝑥)𝑤𝑛(𝑧). (3.34)

The separation of the horizontal and vertical dimension reduces the complexity greatly. The
depth dependency via the vertical modes for intermediate water depths can be expressed as

𝑤𝑛(𝑧) = cosh(𝑘𝑛(𝑧 +𝐻)), (3.35)

where 𝑘𝑛, 𝑛 = −2,−1, . . ., are the roots of the dispersion relation for fluid coupled elastic
plates of constant mass 𝑔 and rigidity 𝑏,

𝑘 tanh(𝑘𝐻) = 𝛼

𝑏𝑘4 + 1 − 𝛼𝑔
. (3.36)

The dispersion relation (3.36) has an infinite number of solutions, which are shown schemat-
ically in Fig. 3.2.

The solutions of the dispersion relation (3.36) have to be calculated numerically:

• The dispersion relation contains two real solutions with different signs, only. We
denote the positive, real solution with 𝑘0, which corresponds to the propagating wave
mode. It can be found in the interval (0,max{𝛼 coth(𝛼), 𝛼

𝐻 , (
𝛼𝑔
𝑏 ) 1

4 }).

• The dispersion relation also has four complex solutions with non-zero real part, which
appear as positives and negatives of their complex conjugates, for most combinations
of 𝛼, 𝑔, 𝑏,𝐻. We denote the complex root in the left complex plane and positive
imaginary part with 𝑘−1 and its negative complex conjugate with 𝑘−2, i.e. 𝑘−2 = −𝑘−1.
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Im
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k2

k3

k4

k5

k0

k−1 k−2

Figure 3.2: Schemata of roots of dispersion relation for elastic plates of constant mass and
rigidity

They correspond to damped propagating wave modes, i.e. for waves which attenuate
as they propagate, and it can be shown that Im(|𝑘−𝑛|) > Re(|𝑘−𝑛|), 𝑛 = 1,2. For
details about parameter combinations to produce purely imaginary 𝑘−𝑛, 𝑛 = 1,2, and
the arising bifurcations, we refer to the analyses by Williams (2006) and Bennetts
(2007).

• Moreover, the dispersion relation contains an infinite number of purely imaginary
solutions, which appear as conjugate pairs. We denote the purely imaginary solutions
with positive imaginary part with 𝑘𝑛, 𝑛 = 1, 2, . . ., ordered in ascending magnitude,
0 < −i𝑘𝑛 < −i𝑘𝑛+1. These purely imaginary roots correspond to evanescent wave
modes and can be found in i(𝑛− 1

2)𝜋/𝐻 < 𝑘𝑛 < i𝑛𝜋/𝐻, see Fox and Squire 1994. In
the case of purely imaginary 𝑘−𝑛, 𝑛 = 1,2, these roots lie in the same interval.

It was shown in Bennetts 2007 that the set of modes (one propagating, two damped
propagating, infinite number of evanescent modes) has a two-fold linear dependence. In
analogy to this study, we eliminate the two complex roots 𝑘−𝑛, 𝑛 = 1,2, from the set of
vertical modes to avoid numerical difficulties. The unknowns 𝜙−𝑛, 𝑛 = 1,2, corresponding
to the removed vertical modes are taken into account by redistributing them among the
unknowns corresponding to the remaining vertical modes.

In the numerical method, we restrict the vertical motion to a finite-dimensional subspace,
i.e. we only consider a finite number of vertical modes to approximate the full-linear
solution,

𝜑(𝑥,𝑧) ≈ 𝜑𝑁 (𝑥,𝑧) =
𝑁∑︁

𝑛=0
𝜙𝑛(𝑥)𝑤𝑛(𝑧). (3.37)

Note that the 𝜙𝑛, 𝑛 = 0, . . . ,𝑁, in Eqn. (3.37) do not correspond to the respective quantities
in Eqn. (3.34) due to the redistribution of the unknowns corresponding to the evanescent
wave modes. The described method provides an approximation to the full-linear solution
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to arbitrary accuracy by including a sufficient number of vertical modes into Eqn. (3.37).
However, a relatively small 𝑁 already gives accurate results, which is vital for our solution
procedure over the rough interval (0,𝐿) with a large number of scattering interfaces.

With the help of the variational principle, the governing PDE system (3.30) can be written
as

𝜕𝑥 (F𝜕𝑥Φ𝑁 ) + D𝜕𝑥Φ𝑁 + GΦ𝑁 + 𝛼𝑢Cf = 0, (3.38a)(︀
𝜕2

𝑥(𝑏𝜕2
𝑥) − 𝛼𝑔 + 1

)︀
𝑢−

𝑁∑︁
𝑛=0

𝑤𝑛|𝑧=0 𝜙𝑛 = 0, (3.38b)

where 0 is a (𝑁 + 1)-dimensional vector with zero entries,

Φ𝑁 =
(︀
𝜙0 . . . 𝜙𝑁

)︀T,

f =
(︀
1 . . . 1

)︀T,

C = diag
(︀
𝑤0|𝑧=0 . . . 𝑤𝑁 |𝑧=0

)︀
= diag

(︀
cosh(𝑘0𝐻) . . . cosh(𝑘𝑁𝐻)

)︀
,

D𝑚,𝑛 =
ˆ 0

−𝐻
𝑤𝑚−1(𝜕𝑥, 0)𝑤𝑛−1 − 𝑤𝑛−1(𝜕𝑥, 0)𝑤𝑚−1 d𝑧,

F𝑚,𝑛 =
ˆ 0

−𝐻
𝑤𝑚−1𝑤𝑛−1 d𝑧,

G𝑚,𝑛 =
ˆ 0

−𝐻
𝑤𝑚−1

(︀
𝜕2

𝑧𝑤𝑛−1
)︀

d𝑧 − [𝑤𝑚−1 (𝜕𝑧𝑤𝑛−1)]0𝑧=−𝐻

+ (𝜕𝑥, 0) ·
ˆ 0

−𝐻
𝑤𝑚−1 ((𝜕𝑥, 0)𝑤𝑛−1) d𝑧

−
ˆ 0

−𝐻
((𝜕𝑥, 0)𝑤𝑚−1) · ((𝜕𝑥, 0)𝑤𝑛−1) d𝑧, (3.39)

for 𝑚,𝑛 = 1, . . . , 𝑁 + 1, where the overbar denotes the complex conjugate of the quantity,
a notation, which is not used after Eqn. (3.41) anymore. With the introduced notation, we
can express the continuity conditions (3.32) as

⟨⟨Φ𝑁 ⟩⟩ = 0, ⟨⟨F𝜕𝑥Φ𝑁 + JΦ𝑁 ⟩⟩ = 0,
⟨⟨FTΦ𝑁 ⟩⟩ = 0, ⟨⟨

(︀
𝜕𝑥Φ𝑁 + F−1JΦ𝑁

)︀
⟩⟩ = 0, (3.40)

⟨⟨𝑏𝜕2
𝑥𝑢⟩⟩ = 0, ⟨⟨𝜕𝑥(𝜕2

𝑥𝑢)⟩⟩ = 0,

where ⟨⟨·⟩⟩ again denotes the jump of the included quantity at the scattering interfaces and

J𝑚,𝑛 =
ˆ 0

−𝐻
−𝑤𝑚−1𝜕𝑥𝑤𝑛−1 d𝑧 (3.41)

for 𝑚,𝑛 = 1, . . . , 𝑁 + 1. We can clearly observe an essential feature of the solution proce-
dure in the problem formulation (PDE system (3.38)): The vertical motion of the fluid
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is approximated by vertical averaging. This approach decouples the vertical from the
horizontal motion of the fluid.

Since our discretisation procedure via the step approximation yields piecewise uniform
geometry, the PDE system (3.38) becomes a system of ordinary differential equations with
constant coefficients for each sub-interval, which is solved in the following analogously to
Bennetts et al. 2007 with the eigenvalue method. By introducing the compact notation

Ψ𝑁 =
(︀
Φ𝑁

T 𝑢 𝑏𝜕2
𝑥𝑢
)︀T, (3.42)

we seek solutions of the form
Ψ𝑁 (𝑥) = ĉ(𝜆) ei𝜆𝑥. (3.43)

The constant 𝜆 shall represent the eigenvalues and the constant vector, ĉ,

ĉT(𝜆) =
(︀
cT(𝜆) 𝛾(1)(𝜆) 𝛾(2)(𝜆)

)︀
(3.44)

the corresponding eigenvectors of the system. Since D𝑚,𝑛 = 0 for 𝑚,𝑛 = 1, . . . , 𝑁 + 1 and
G can be expressed via F,

G𝑚,𝑛 = F𝑚,𝑛𝑘
2
𝑛 − 𝑘𝑛 sinh(𝑘𝑛𝐻) cosh(𝑘𝑚𝐻)

for intervals of uniform geometry, the PDE system (3.38) becomes the following eigenvalue
problem (︁

F
(︀
K2 − 𝜆2I

)︀
− C f fTKS

)︁
c + 𝛼𝛾(1)Cf = 0, (3.45a)(︀

𝑏𝜆4 − 𝛼𝑔 + 1
)︀
𝛾(1) − fTCc = 0, (3.45b)

where I is the (𝑁 + 1)-dimensional identity matrix and

S =

⎛⎜⎝sinh(𝑘0𝐻)
. . .

sinh(𝑘𝑁𝐻)

⎞⎟⎠ and K =

⎛⎜⎝𝑘0
. . .

𝑘𝑁

⎞⎟⎠ .

To find the solution of the PDE system (3.38), we have to find the 2𝑁 + 6 eigenvalues 𝜆
and the corresponding eigenvectors ĉ(𝜆) from the eigenvalue problem (3.45). Note that
𝛾(2), which does not appear in the eigenvalue problem (3.45), can directly be retrieved from
𝛾(1). With some algebraic manipulations, Eqn. (3.45a) provides 2𝑁 + 2 pairs of eigenvalues
and eigenvectors (𝜆𝑛,ĉ(𝜆𝑛)) with

(𝜆2,c) = (𝜆2
𝑛,I𝑛+1) = (𝑘2

𝑛,I𝑛+1) (3.46)

and
𝛾(1)(𝜆𝑛) = 𝑘𝑛 sinh(𝑘𝑛𝐻)

𝛼
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for 𝑛 = 0, . . . , 𝑁 + 1. The remaining four eigenvalues are obtained from Eqn. (3.45b),

𝜆2 = 𝜆2
−𝑛 = 𝑘2

−𝑛 (3.47)

for 𝑛 = 1,2. The entries c from the corresponding eigenvectors can be calculated via

Fc + 𝑏 𝛾(1) (︀K2 + 𝜆2I
)︀

KSf = 0 (3.48)

and 𝛾(1) are set 𝛾(1)(𝜆−𝑛) = 1 for 𝑛 = 1,2. Hence, the 2𝑁 + 6 pairs of eigenvalues and
eigenvectors of the PDE system (3.38) are now given. The eigenvalues 𝜆𝑛 = 𝑘𝑛 with
corresponding eigenvectors I𝑛, 𝑛 = 0, . . . , 𝑁 , characterise the horizontal wave modes in
the full-linear solution. The eigenvalue–eigenvector pairs (𝜆−𝑛 = 𝑘−𝑛, c(𝜆−𝑖)), 𝑛 = 1,2,
characterise the horizontal wave modes corresponding to the vertical wave modes, which
were eliminated from the full-linear solution in Eqn. (3.34) and redistributed among the
other vertical wave modes. In the numerical method, these two eigenvalue–eigenvector pairs
try to offset the excluded vertical wave modes and as a consequence, they are adjusted, if
the number of included vertical modes, 𝑁 + 1, is changed. For 𝑁 → ∞, the eigenvalues
𝜆−𝑛, 𝑛 = 1,2, converge to the exact horizontal wave modes corresponding to the eliminated
vertical modes.

In each of the intervals with uniform geometry, the numerical method yields the ap-
proximated solution

Ψ𝑁 (𝑥) = C
(︀
eiΛ𝑥A + e−iΛ𝑥B

)︀
, (3.49)

where

Λ = diag
(︀
𝜆0 . . . 𝜆𝑁 𝜆−1 𝜆−2

)︀
,

e±iΛ𝑥 = diag
(︀
e±i𝜆0𝑥 . . . e±i𝜆𝑁 𝑥 e±i𝜆−1𝑥 e±i𝜆−2𝑥

)︀
,

C =
(︀
ĉ(𝜆0) . . . ĉ(𝜆𝑁 ) ĉ(𝜆−1) ĉ(𝜆−2)

)︀
,

and A and B are the (𝑁 + 3)-dimensional vectors containing the amplitudes of the left-
and rightward going and evanescent waves, respectively. Λ and C depend on the (constant)
plate properties and thickness in the respective interval.

To calculate the wave field and the plate deflection in the whole domain for our problem
of a plate with varying material properties or thickness variations in the interval (0,𝐿),
which is floating on water of intermediate depth, we extend the iterative algorithm for the
beam in vacuo, which was presented in Sec. 2.2. Considering a single scattering interface
at 𝑥 = 0 only, we can write the approximations in the left interval, Ψ(0)

𝑁 , and the right
interval, Ψ(1)

𝑁 , as

Ψ(0)
𝑁 (𝑥) = C(0) (︀eiΛ(0)𝑥A0 + e−iΛ(0)𝑥B0

)︀
, 𝑥 ≤ 0, (3.50a)

Ψ(1)
𝑁 (𝑥) = C(1) (︀eiΛ(1)𝑥A1 + e−iΛ(1)𝑥B1

)︀
, 𝑥 ≥ 0. (3.50b)
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Assuming we know the incoming wave amplitudes A0 (from the left) and B1 (from the
right), we want to determine the (unknown) outgoing wave amplitudes B0 and A1.

In analogy to Sec. 2.2, we can calculate a scattering matrix S by employing the continuity
conditions (3.40). The scattering matrix is now (2𝑁 + 6) × (2𝑁 + 6)-dimensional and
consists of the (𝑁 + 3) × (𝑁 + 3)-dimensional (complex) matrices describing the full
reflection and transmission behaviour for left- and right-going waves, i.e.

S :=
(︂

R− T+
T− R+

)︂
. (3.51)

The square matrices R− and T− characterise the reflection and transmission of an incident
wave from the left, respectively, and R+ and T+ the corresponding quantities for an incident
wave from the right. The scattering matrix S allows us to transcribe the amplitudes of
the outgoing waves, B0 (left-going in the left interval) and A1 (right-going in the right
interval), in terms of the amplitudes of the incoming waves, A0 (right-going in the left
interval) and B1 (left-going in the right interval),(︂

B0
A1

)︂
=
(︂

R− T+
T− R+

)︂
⏟  ⏞  

=S

(︂
A0
B1

)︂
. (3.52)

Analogously to the solution procedure for the beam in vacuo, we can derive the transfer
matrix P for this problem with the help of the scattering matrix S and Eqn. (2.27), which
allows us to write the waves to the right of the scattering interface in terms of the waves
to the left of the scattering interface.

Illustratively speaking, to obtain B0 and A1 (with 2𝑁 + 6 unknowns), we apply the four
continuity conditions on the floating plate, continuity of plate deflection, continuity of
deflection slope, continuity of bending moment and continuity of shear stress, which reduces
the degrees of freedom to 2𝑁 + 2. To get the remaining 2𝑁 + 2 unknowns, continuity
of the fluid velocity potential and the fluid velocity are applied in a weak sense with the
vertical modes as test functions. As mentioned above, two modes are linearly dependent,
hence the space of trial functions is 𝑁 + 1 and we have a unique solution for B0 and A1.

For the well-definedness of the problem, the Sommerfeld radiation condition has to be
satisfied. This is ensured by the solution Ψ𝑁 , which yields in the far-fields

𝜑𝑁 (𝑥,𝑧) ∼

⎧⎪⎨⎪⎩
(︁
𝑎

(0)
0 ei𝑘(0)

0 𝑥 + 𝑏
(0)
0 e−i𝑘(0)

0 𝑥
)︁

cosh(𝑘(0)
0 (𝑧 +𝐻)), 𝑥 → −∞,(︁

𝑎
(0)
1 ei𝑘(1)

0 𝑥 + 𝑏
(0)
1 e−i𝑘(1)

0 𝑥
)︁

cosh(𝑘(1)
0 (𝑧 +𝐻)), 𝑥 → ∞,

(3.53)

where 𝑘(0)
0 and 𝑘(1)

0 are the propagating wave modes in the left and right interval, respectively,
and 𝑎

(0)
0 and 𝑏

(0)
0 are the amplitudes of the corresponding right- and left-travelling waves

in the left interval and 𝑎
(0)
1 and 𝑏

(0)
1 in the right interval.
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To calculate the wave field in the whole domain for a floating plate with continuous
roughness variations, which are discretised by the step approximation over (0,𝐿), we
use the iterative algorithm, which was presented in Sec. 2.2 for the beam in vacuo. For
this, we proceed to the problem involving the 𝑀 + 1 scattering interfaces, located at 𝑥𝑚,
𝑚 = 0, 1, . . . ,𝑀 . We denote the approximated solutions in the 𝑚th and (𝑚+1)th intervals,
which meet at the (𝑚 + 1)th scattering interface (located at 𝑥𝑚), as Ψ(𝑚)

𝑁 and Ψ(𝑚+1)
𝑁 ,

respectively. By application of the continuity conditions (3.40) at each scattering interface,
we obtain the scattering and transfer matrices, S𝑚 and P𝑚, 𝑚 = 0, 1, . . . ,𝑀 , relating the
left- and right-going waves at the (𝑚+ 1)th scattering interface.

With the help of the diagonal matrix eiΛ𝑥 appearing in Eqn. (3.49), we can express the
amplitudes corresponding to the left of the (𝑚+1)th scattering interface, A−

𝑚+1 and B−
𝑚+1,

in terms of those right of the 𝑚th scattering interface, A+
𝑚 and B+

𝑚, via

A−
𝑚+1 = eiΛ𝑚+1𝑙𝑚+1A+

𝑚, (3.54a)
B−

𝑚+1 = e−iΛ𝑚+1𝑙𝑚+1B+
𝑚 (3.54b)

for 𝑚 = 0, 1, . . . ,𝑀 , where 𝑙𝑚+1 in the diagonal phase-change matrices e±iΛ𝑚+1𝑙𝑚+1 is the
distance between adjacent scattering interfaces, 𝑙𝑚 = 𝑥𝑚 − 𝑥𝑚−1. Hence, we can use the
same iterative procedure described in Sec. 2.2 to merge scattering matrices (numerical
more stable than merging transfer matrices), relate the wave fields in the 𝑝th and 𝑞th
sub-interval (0 ≤ 𝑝 < 𝑞 ≤ 𝑀) with S𝑝,𝑞, apply the iteration from left-to-right as well as
from right-to-left with the result that we finally obtain the wave amplitudes and thus the
wave field in each of the sub-intervals by Eqns. (2.44). Altogether, the iterative algorithm
also allows us to calculate the wave propagation along a floating plate with continuous
roughness profile over the whole domain (−∞,∞).

3.3 Preliminary attenuation analysis
Before we introduce the multiple-scale method for the floating plate problem in Sec. 3.4,
we calculate individual and effective wave fields first and compare them. To obtain wave
fields for individual roughness realisations of the plate thickness or properties (plate mass,
plate rigidity), we use the step-approximation method to approximate the continuous
roughness profile with piece-wise constant functions. The uniform plate geometry on these
sub-intervals allows us to use the numerical method to calculate the fluid potential and the
plate deflection, which is indirectly approximated by the fluid potential, over the whole
domain. Note that the plate shall extend to infinity in both horizontal directions on the
𝑥-axis again and be uniform in the 𝑦-direction. For the numerical method based on the
step approximation, the plate roughness shall extend over the long, finite interval (0,𝐿).
To obtain the effective wave field, we use the random sampling from Ch. 2, i.e. the effective
wave field is calculated as the mean wave field with respect to a large ensemble of randomly
generated realisations, which share the same average roughness characteristics (roughness
amplitude, 𝜖, and correlation length, 𝑙G). We use the same Gaussian autocorrelated random
processes as in Ch. 2 to describe the plate roughness. The roughness profiles are generated
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with Eqn. (2.76), which ensures that an ensemble of roughness profiles fulfils the Gaussian
autocorrelation condition (Eqn. (2.75)). For the results provided by the numerical method
in this chapter, the step approximation divides each correlation length in the rough interval
(0,𝐿) into four sub-intervals, which is an accurate resolution for this problem. The beam
deflections, 𝑢, which can be obtained via Eqn. (3.31) as

𝑢 = i𝜑/
√
𝛼, −∞ < 𝑥 < ∞, 𝑧 = 0, (3.55)

are calculated for large ensembles containing 1500 samples (ensemble size analogously to
the in-vacuo beam problem) of randomly generated plate realisations. For the sake of
simplicity, we denote the numerical method based on step approximation and random
sampling as random-sampling method only.

Fig. 3.3 shows the moduli of example individual plate deflections over (0,𝐿) and correspond-
ing effective plate deflections, for roughness amplitude 𝜖 = 5.0 × 10−2 and non-dimensional
correlation lengths 𝑘𝑙G = 0.9 (left-hand panel) and 4.1 (right-hand panel) for the varying
thickness problem. For computations, the number of modes in the numerical method has
to be truncated. It is shown by Bennetts (2007) that a small number of modes provides
accurate results in the numerical method. We choose 𝑁 = 1, for which it is ensured
numerically to yield accurate results in our problem formulation. The amplitude of the
monochromatic incident (right-travelling) wave is chosen now and in the following to give
unit plate deflection at 𝑥 = 0, and the plate’s thickness shall be ℎ = 1.0 m. The Young’s
modulus is chosen to be 𝐸 = 6.4 GPa = 6.4 × 109 N/m2 and we set Poisson’s ratio as
𝜈 = 0.3, which are generic values for sea ice, see Timco and Weeks 2010. According to
Lüthi 2012, the water density is 𝜌𝑤 = 999.84 kg/m3 (for 0∘C) and the density of the ice
𝜌 = 917 kg/m3. The acceleration due to gravity is set 𝑔acc = 9.81 m/s2. However, the
physical properties of sea-ice in the marginal ice zone is more complex, but for the purpose
of this theoretical study, we work with these common quantities for the remainder of this
chapter.

We can observe in Fig. 3.3 that for the smaller correlation length, 𝑘𝑙G = 0.9, the example
individual wave field attenuates. However, the individual wave field attenuates weakly only
and significantly less than the corresponding effective wave field. For the larger correlation
length, 𝑘𝑙G = 4.1, strong attenuation of the effective wave field can be noticed and we can
deduce that this is caused by the same effects as for the beam in vacuo. In the following,
the attenuation coefficients describing the exponential decay of individual and effective
wave fields are extracted via the same least-squares minimisation routine as for the in-vacuo
beam problem and Eqns. (2.77b) and (2.77a), respectively.
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Figure 3.3: Example individual plate deflections (grey curves) and effective plate deflections
(black) for varying thickness problem, for roughness amplitude 𝜖 = 5.0 × 10−2 and non-
dimensional correlation lengths 𝑘𝑙G = 0.9 (left-hand panel) and 𝑘𝑙G = 4.1 (right-hand panel)

3.4 Multiple-scale method
We present a semi-analytical approach to describe the attenuation of the effective wave fields
with low computational expense now. Following the approach for the in-vacuo beam prob-
lem, we develop a multiple-scale method for the problem of a floating plate with continuous
roughness variations, which are modelled again by the the Gaussian autocorrelated random
process. We noticed for the in-vacuo beam setting that the varying thickness problem
contains the varying mass and varying rigidity problem. Hence, we determine the multiple-
scale method for the problem of a floating plate with continuous thickness variations. This
allows us to derive the multiple-scale methods for the varying mass and varying rigidity
problems, respectively, without difficulty. The multiple-scale method is based on the work of
Bennetts and Peter (2012), who conducted a preliminary investigation of wave attenuation
in the ice-covered ocean due to ice roughness, and was published by Rupprecht (2013),
who took up this preliminary investigation and described the approach in the following form.

As mentioned above, we derive the multiple-scale method for the floating plate with
Gaussian autocorrelated thickness variations. The varying thickness leads to variations in
both the plate mass and rigidity, and the velocity potential of the water is described for
this problem via the PDE system (3.30). Once the solution is obtained, the plate deflection
can be retrieved via Eqn. (3.55). Due to this relation, the attenuation of the wave fields 𝜑
for 𝑧 = 0 corresponds to the attenuation of the plate deflections 𝑢. Analogously to the
beam in vacuo with thickness variations (Sec. 2.8), the varying plate thickness, ℎ(𝑥), for
the present problem shall be characterised by Eqn. (2.121),

ℎ(𝑥) = ℎ̄(1 + 𝜖ℎ̃(𝑥)),

i.e. the plate thickness, ℎ(𝑥), shall fluctuate about the mean ℎ̄ with roughness amplitude 𝜖
and the variations are described via the random process ℎ̃(𝑥), which fulfils the Gaussian
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autocorrelation condition (2.122) with correlation length 𝑙G.

Combining Eqns. (3.22), (3.27) and (3.29), we obtain the characterisation of the plate
mass, 𝑔(𝑥), and plate rigidity, 𝑏(𝑥), as

𝑔(𝑥) = 𝜌ℎ(𝑥)
𝜌𝑤

, (3.56a)

𝑏(𝑥) = 𝐸ℎ(𝑥)3

12𝑔acc𝜌𝑤(1 − 𝜈2) . (3.56b)

Motivated by the accurate results of the multiple-scale method for the beam in vacuo, we
express the plate mass and rigidity in terms of ℎ̄ and ℎ̃ up to order 𝜖 only,

𝑔(𝑥) = 𝜌ℎ̄

𝜌𝑤
(1 + 𝜖ℎ̃(𝑥)) =: 𝑔 (1 + 𝜖𝛾(𝑥)), (3.57a)

𝑏(𝑥) = 𝐸ℎ̄3

12𝑔acc𝜌𝑤(1 − 𝜈2)(1 + 3𝜖ℎ̃(𝑥)) + O(𝜖2) =: 𝑏̄ (1 + 𝜖𝛽(𝑥)), (3.57b)

where 𝑔, 𝛾(𝑥) are the mean plate mass and the mass variations, respectively, and 𝑏̄, 𝛽(𝑥)
are the mean plate rigidity and the rigidity variations, respectively. Eqns. (3.57) lead to
the representation of these quantities,

𝑔 = 𝜌ℎ̄

𝜌𝑤
and 𝛾(𝑥) = ℎ̃(𝑥), (3.58a)

𝑏̄ = 𝐸ℎ̄3

12𝑔acc𝜌𝑤(1 − 𝜈2) and 𝛽(𝑥) = 3ℎ̃(𝑥). (3.58b)

We adopt the multiple-scale approach from Ch. 2 to approximate the velocity potential 𝜑,
considering two scales: the local scale 𝑙G (coordinate denoted by 𝑥), which is represented
by the correlation length, and the observation scale 𝐿ob (coordinate denoted by 𝑥2), over
which attenuation is observed. It is assumed that the scales are related by 𝐿ob = 𝑙G/𝜖

2 for
small 𝜖 ≪ 1. Applying a multiple-scale expansion of the complex, time-harmonic velocity
potential 𝜑(𝑥,𝑧) to map the wave field into the new coordinate system gives

𝜑(𝑥,𝑧) = 𝜑0(𝑥,𝑥2,𝑧) + 𝜖𝜑1(𝑥,𝑥2,𝑧) + 𝜖2𝜑2(𝑥,𝑥2,𝑧) + O
(︀
𝜖3
)︀
, (3.59)

where 𝑥2 = 𝜖2𝑥. While derivatives with respect to 𝑧 remain the same, derivatives with
respect to 𝑥 become (similarly to Eqn. (2.83)) by application of the chain rule

𝜕𝑥𝜑(𝑥,𝑧) =
∑︁

𝑗

𝜖𝑗
(︀
𝜕𝑥𝜑𝑗(𝑥,𝑥2,𝑧) + 𝜖2𝜕𝑥2𝜑𝑗(𝑥,𝑥2,𝑧)

)︀
. (3.60)
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Employing the multiple-scale expansion (3.59) on the underlying PDE system (3.30) yields
the following equations. For the fluid domain, we have

𝛥𝜑 = 𝛥𝜑0 + 𝜖𝛥𝜑1 + 𝜖2 (𝛥𝜑2 + 2𝜕𝑥𝜕𝑥2𝜑0) + O(𝜖3) != 0. (3.61a)

Since differentiation with respect to 𝑧 remains unchanged, the boundary condition at the
sea-floor is trivially given by

𝜕𝑧𝜑 = 𝜕𝑧𝜑0 + 𝜖𝜕𝑧𝜑1 + 𝜖2𝜕𝑧𝜑2 + O(𝜖3) != 0. (3.61b)

Writing the plate Eqn. (3.30c), using the differential operator L̃, as

L̃𝜑 :=
[︂
𝜕2

𝜕𝑥2

(︂
𝑏(𝑥) 𝜕

2

𝜕𝑥2

)︂
− 𝛼𝑔(𝑥) + 1

]︂
𝜕𝑧𝜑− 𝛼𝜑 = 0

and plugging in the expanded potential from Eqn. (3.59), we obtain

L̃𝜑 = L𝜑0 + 𝜖

[︂
L𝜑1 +

(︂
𝜕2

𝜕𝑥2

(︂
𝑏̄𝛽

𝜕2

𝜕𝑥2

)︂
− 𝛼𝑔𝛾

)︂
𝜕𝑧𝜑0

]︂
+

+ 𝜖2
[︂
L𝜑2 +

(︂
𝜕2

𝜕𝑥2

(︂
𝑏̄𝛽

𝜕2

𝜕𝑥2

)︂
− 𝛼𝑔𝛾

)︂
𝜕𝑧𝜑1 +

(︂
4𝑏̄ 𝜕4

𝜕𝑥3 𝜕𝑥2

)︂
𝜕𝑧𝜑0

]︂
+ O(𝜖3) != 0,

(3.61c)

where the differential operator L characterises the plate equation for constant plate mass
and rigidity,

L𝜑𝑖 :=
[︂
𝑏̄
𝜕4

𝜕𝑥4 − 𝛼𝑔 + 1
]︂
𝜕𝑧𝜑𝑖 − 𝛼𝜑𝑖, 𝑖 = 0,1,2.

Separating Eqns. (3.61) with respect to orders of 𝜖 provides systems of order O(𝜖0), O(𝜖),
O(𝜖2).

Order 𝜖0

Extracting the terms of zeroth order from the PDE system (3.61), we obtain the system for
the leading-order wave field, 𝜑0, which is identical to the PDE system (3.30) for constant
plate mass and rigidity,

𝛥𝜑0 = 0, 𝑧 ∈ (−𝐻,0), (3.62a)
𝜕𝑧𝜑0 = 0, 𝑧 = −𝐻, (3.62b)

L𝜑0 =
[︂
𝑏̄
𝜕4

𝜕𝑥4 − 𝛼𝑔 + 1
]︂
𝜕𝑧𝜑0 − 𝛼𝜑0 = 0, 𝑧 = 0. (3.62c)

Since the solution of Eqns. (3.62) consists of a modulated right-travelling and a reflected
left-travelling wave, we compare these two wave components in Fig. 3.4 using the random-
sampling method for the finite roughness interval length 𝐿 = 800. Fig. 3.4 shows the
left- and right-travelling components of the effective plate deflections, |⟨𝑢−⟩| and |⟨𝑢+⟩|,
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respectively, for roughness amplitude 𝜖 = 5.0 × 10−2, for non-dimensional correlation
lengths 𝑘𝑙G = 0.9, 2.5 and 4.1.
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Figure 3.4: Effective plate deflections, split into rightward- and leftward-travelling components
(solid and dashed line, respectively), for correlation lengths 𝑘𝑙G = 0.9 (light grey), 𝑘𝑙G = 2.5
(dark grey) and 𝑘𝑙G = 4.1 (black), for roughness amplitudes 𝜖 = 5.0 × 10−2 (left-hand panel)
and 𝜖 = 1.0 × 10−1 (right-hand panel)

We can see in Fig. 3.4 that for all three correlation lengths considered, 𝑘𝑙G = 0.9, 2.5
and 4.1, the left-travelling effective wave component for the floating plate problem is only
slightly larger than zero. To show that this holds for a wide range of roughness amplitudes
over the whole correlation length regime, we consider the ratio of the (spatial averaged)
leftward- to rightward travelling effective wave components as a function of non-dimensional
correlation length, for roughness amplitudes 𝜖 = 10−4, 10−3, 10−2, 10−1 and 2 × 10−1 in
Fig. 3.5, where the ratio is calculated via Eqn. (2.85) for the right- and left-going wave
components of the plate deflection, 𝑢±. The interval length, 𝐿, in the random-sampling
method is set to be 400 times the corresponding correlation length, i.e. 𝐿 = 400 × 𝑙G, which
provides a sufficiently large roughness interval to allow comparisons with the multiple-scale
method.

We can see in Fig. 3.5 that 𝜖 = 10−4, 10−3 and 10−2 give very similar scaled ratios and
the maximum value of 𝑈−/+ is slightly larger than 0.1𝜖 in the small (non-dimensional)
correlation length regime around 𝑘𝑙G ≈ 1. For very small and larger correlation lengths, the
scaled ratios decrease similarly, so evidence is provided that 𝑈−/+ scales with 𝜖 for small
roughness amplitudes. For the two largest roughness amplitudes, 𝜖 = 10−1 and 2 × 10−1,
this scaling does not hold anymore and the left-travelling effective wave components rise
in comparison to the right-travelling effective wave component. Hence, they may not be
neglected anymore, which indicates the limit of validity of the multiple-scale method here
too.

As we have confirmed in Figs. 3.4 and 3.5, the left-travelling wave is negligible for 𝜖 < 0.1
and only the modulated right-travelling wave has to be considered at leading order. This



3.4 Multiple-scale method 109

−2.5

−2

−1.5

−1

−0.5

0

lo
g
1
0
(U

−
/
+
/
ε)

0 1 2 3 4 5

k̄lG

Figure 3.5: Ratio of leftward- to rightward travelling components of effective plate deflection
as a function of non-dimensional correlation length, for roughness amplitudes 𝜖 = 10−4 (cyan),
𝜖 = 10−3 (green), 𝜖 = 10−2 (red), 𝜖 = 10−1 (blue) and 𝜖 = 2 × 10−1 (black)

leads to the leading-order solution

𝜑0(𝑥,𝑥2,𝑧) = 𝐴(𝑥2) cosh(𝑘(𝑧 +𝐻))ei𝑘𝑥, (3.63)

where the wavenumber 𝑘 is the real positive solution satisfying the dispersion relation
for elastic plates of constant mass 𝑔 and rigidity 𝑏̄, which correspond to the mean plate
thickness, ℎ̄,

𝑘 tanh(𝑘𝐻) = 𝛼

𝑏̄𝑘4 − 𝛼𝑔 + 1
, (3.64)

i.e. the wavenumber 𝑘 is the travelling wave mode 𝑘0, and cosh(𝑘(𝑧+𝐻)) is the vertical mode
𝑤0. The (complex-valued) wave amplitude of leading order, 𝐴 = 𝐴(𝑥2), is undetermined
and sought from the higher-order systems, providing the attenuation coefficient 𝑄eff via

|⟨𝐴(𝑥2)⟩| = 𝐴0 e−𝑄eff𝑥, (3.65)

where 𝐴0 is a constant.

Order 𝜖1

The terms of order O(𝜖) lead to following governing system for the first-order wave field,
𝜑1,

𝛥𝜑1 = 0, 𝑧 ∈ (−𝐻,0), (3.66a)
𝜕

𝜕𝑧
𝜑1 = 0, 𝑧 = −𝐻, (3.66b)

L𝜑1 = −
(︂
𝜕2

𝜕𝑥2

(︂
𝑏̄𝛽

𝜕2

𝜕𝑥2

)︂
− 𝛼𝑔𝛾

)︂
𝜕

𝜕𝑧
𝜑0, 𝑧 = 0. (3.66c)
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The inhomogeneous PDE system (3.66) is solved for given 𝛿 (given 𝛾 and 𝛽, respectively)
with the help of the Green’s function, which shall satisfy the following system with a
singularity at the source point 𝑥̌ for 𝑧 = 0,

𝛥𝐺(𝑥,𝑥̌,𝑧) = 0, 𝑧 ∈ (−𝐻,0), (3.67a)
𝜕

𝜕𝑧
𝐺(𝑥,𝑥̌) = 0, 𝑧 = −𝐻, (3.67b)

L𝐺(𝑥,𝑥̌) = 𝛿(𝑥− 𝑥̌), 𝑧 = 0. (3.67c)

The solution can be found in Porter and Evans 2006, which is based on the work of Chung
(2002),

𝐺(𝑥,𝑥̌,𝑧) = 𝐺(|𝑥− 𝑥̌|,𝑧) = −
∞∑︁

𝑛=−2

sin(𝑘𝑛𝐻) cos(𝑘𝑛(𝑧 +𝐻))
2𝛼𝐶(𝑘𝑛)

e−𝑘𝑛|𝑥−𝑥̌|, (3.68)

where

𝐶(𝑘𝑛) = 1
2

(︃
𝐻 −

(︀
5𝑏̄𝑘4

𝑛 − 𝛼𝑔 + 1
)︀

sin2(𝑘𝑛𝐻)
𝛼

)︃
. (3.69)

The wave modes 𝑘𝑛, 𝑛 = −2,−1, . . ., appearing in Eqn. (3.68) are the solutions of the
dispersion relation (3.64) multiplied by −i, and ordered such that 𝑘−2 and 𝑘−1 denote the
complex solutions with positive real part corresponding to the damped travelling waves, 𝑘0
is the purely imaginary, negative wave mode corresponding to the travelling wave and 𝑘𝑛

for 𝑛 > 0 are the positive, real solutions corresponding to the evanescent waves. Fig. 3.6
shows the Green’s function and its first derivative.
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Figure 3.6: Green’s function (left-hand panel) and first derivative (right-hand panel) for
homogeneous floating plate with impulse at the source point 𝑥̌ = 0, for 𝑧 = 0

The approach with Green’s function leads to the solution of the PDE system (3.66) for
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given 𝛾 and 𝛽,

𝜑1(𝑥,𝑥2,𝑧) =
ˆ ∞

−∞
−
[︂(︂

𝜕2

𝜕𝑥̌2

(︂
𝑏̄𝛽

𝜕2

𝜕𝑥̌2

)︂
− 𝛼𝑔𝛾

)︂
𝜕𝑧𝜑0

]︂
𝐺(|𝑥− 𝑥̌|,𝑧 = 0) d𝑥̌. (3.70)

Using the leading-order solution 𝜑0 from Eqn. (3.63), 𝜑1 can be written as

𝜑1(𝑥,𝑥2,𝑧) = −𝐴(𝑥2) (𝜕𝑧𝑤0)
ˆ ∞

−∞

[︂(︂
𝜕2

𝜕𝑥̌2

(︂
𝑏̄𝛽

𝜕2

𝜕𝑥̌2

)︂
− 𝛼𝑔𝛾

)︂
ei𝑘𝑥̌

]︂
𝐺(|𝑥− 𝑥̌|,0) d𝑥̌. (3.71)

Order 𝜖2

The order 𝜖2 terms yield the governing PDE system for 𝜑2 to be

𝛥𝜑2 = −2 𝜕

𝜕𝑥2

𝜕

𝜕𝑥
𝜑0, 𝑧 ∈ (−𝐻,0), (3.72a)

𝜕𝑧𝜑2 = 0, 𝑧 = −𝐻, (3.72b)

L𝜑2 = −
(︂
𝜕2

𝜕𝑥2

(︂
𝑏̄𝛽

𝜕2

𝜕𝑥2

)︂
− 𝛼𝑔𝛾

)︂
𝜕𝑧𝜑1 −

(︂
4𝑏̄ 𝜕4

𝜕𝑥3 𝜕𝑥2

)︂
𝜕𝑧𝜑0, 𝑧 = 0. (3.72c)

We apply the same solution procedure as for in-vacuo beam problem, i.e. we take the
ensemble average of Eqns. (3.72) to find the averaged solution ⟨𝜑2⟩, which we factorise as
⟨𝜑2⟩ = ei𝑘𝑥𝐹 (𝑥2, 𝑧), for some function 𝐹 . Taking the ensemble average and using the mean
leading-order solution ⟨𝜑0(𝑥,𝑥2,𝑧)⟩ = ⟨𝐴(𝑥2)⟩𝑓(𝑧)ei𝑘𝑥, Eqn. (3.72a) becomes

− 𝑘2ei𝑘𝑥𝐹 (𝑥2, 𝑧) + ei𝑘𝑥𝜕2
𝑧𝐹 (𝑥2, 𝑧) = −2i𝑘𝑤0(𝑧)𝜕𝑥2⟨𝐴(𝑥2)⟩ei𝑘𝑥. (3.73)

This approach simplifies the impermeability condition at the sea-floor, Eqn. (3.72b), to

𝜕𝑧𝐹 = 0. (3.74)

Whereas the left-hand side of Eqn. (3.72c) can be written as

L⟨𝜑2⟩ =
[︀(︀
𝑏̄𝑘4 − 𝛼𝑔 + 1

)︀
𝜕𝑧𝐹 − 𝛼𝐹

]︀
ei𝑘𝑥, (3.75)

we give the respective expressions of the first and second term in the right-hand side of
Eqn. (3.72c) separately. Using the leading-order solution 𝜑0 and 𝜕2

𝑧𝑤0(𝑧) = 𝑘2𝑤0(𝑧), the
second term becomes

⟨−4𝑏̄𝜕3
𝑥𝜕𝑥2𝜕𝑧𝜑0⟩ = 4i𝑏̄𝑘4 sinh(𝑘𝐻) 𝜕𝑥2⟨𝐴(𝑥2)⟩ ei𝑘𝑥. (3.76)
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For the first term of the right-hand side of Eqn. (3.72c) we get with the help of the solution
𝜑1 from Eqn. (3.71)

−
(︀
𝜕2

𝑥

(︀
𝑏̄𝛽𝜕2

𝑥

)︀
− 𝛼𝑔𝛾

)︀
𝜕𝑧𝜑1 =

= ⟨𝐴⟩
⟨(︀
𝜕2

𝑥

(︀
𝑏̄𝛽𝜕2

𝑥

)︀
− 𝛼𝑔𝛾

)︀ 𝜕
𝜕𝑧

[︂
(𝜕𝑧𝑤0)

ˆ ∞

−∞

[︁(︀
𝜕2

𝑥̌

(︀
𝑏̄𝛽𝜕2

𝑥̌

)︀
− 𝛼𝑔𝛾

)︀
ei𝑘𝑥̌
]︁
𝐺(|𝑥− 𝑥̌|,0) d𝑥̌

]︂⟩
= 𝑘2𝑤0(0)⟨𝐴⟩

⟨(︀
𝜕2

𝑥

(︀
𝑏̄𝛽𝜕2

𝑥

)︀
− 𝛼𝑔𝛾

)︀ ˆ ∞

−∞

[︁(︀
𝜕2

𝑥̌

(︀
𝑏̄𝛽𝜕2

𝑥̌

)︀
− 𝛼𝑔𝛾

)︀
ei𝑘𝑥̌
]︁
𝐺(|𝑥− 𝑥̌|,0) d𝑥̌

⟩
(3.77)

Here, we assumed that the random components of the leading-order velocity potential 𝜑0
are uncorrelated to the plate mass and rigidity variations, which is shown in the following
similarly to analysis of the wave field for the in-vacuo beam problem in Ch. 2. Fig. 3.7 shows
the mean correlations of the thickness variations with the plate deflection for the whole
range of non-dimensional correlation lengths we will consider in Sec. 3.5, 𝑘𝑙G = 0.1, . . . , 4.9.
The mean correlation functions are defined in Eqns. (2.97) and (2.98).
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Figure 3.7: Mean correlations of roughness profile with plate deflection, 𝐽𝑙G (black solid) and
𝐽𝐿 (grey solid), and random components of wave field, 𝐽+ (B) and 𝐽− (C), as functions of
non-dimensional correlation length, for roughness amplitudes 𝜖 = 1.0 × 10−2 (left-hand panel)
and 𝜖 = 1.0 × 10−1 (right-hand panel)

We can observe in Fig. 3.7 that the random components of the plate deflection are
uncorrelated to the roughness profile. Hence, the assumption holds that the random
components in the leading-order velocity potential 𝜑0 are uncorrelated to the plate mass
and rigidity variations, and Eqn. (3.77) is valid. Expanding the fourth-order differential

𝜕2
𝑥(𝑏̄𝛽𝜕2

𝑥) = (𝜕2
𝑥𝑏̄𝛽)𝜕2

𝑥 + 2(𝜕𝑥𝑏̄𝛽)𝜕3
𝑥 + 𝑏̄𝛽𝜕4

𝑥,
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we can rewrite Eqn. (3.77) as

𝑘2 cosh(𝑘𝐻)⟨𝐴⟩ei𝑘𝑥

⟨(︀
𝜕2

𝑥

(︀
𝑏̄𝛽𝜕2

𝑥

)︀
− 𝛼𝑔𝛾

)︀ ˆ ∞

−∞

(︀
𝑘4𝑏̄𝛽 − 2i𝑘3𝜕𝑥̌𝑏̄𝛽 − 𝑘2𝜕2

𝑥̌𝑏̄𝛽 − 𝛼𝑔𝛾
)︀

·

· ei𝑘(𝑥̌−𝑥)𝐺(|𝑥− 𝑥̌|,0) d𝑥̌
⟩

=: 𝑘2 cosh(𝑘𝐻)⟨𝐴⟩ei𝑘𝑥 𝜁. (3.78)

The complex constant 𝜁 is calculated numerically using an adaptive quadrature scheme.
The autocorrelation of the mass variations and rigidity variations are denoted with 𝜌1 and
𝜌2, respectively, and the cross-correlation of both quantities is denoted with 𝜌3, i.e.

𝜌1(|𝜉|) = 𝜌1(|𝑥− 𝑥̌|) := ⟨𝛾(𝑥) 𝛾(𝑥̌)⟩, (3.79a)
𝜌2(|𝜉|) = 𝜌2(|𝑥− 𝑥̌|) := ⟨𝛽(𝑥)𝛽(𝑥̌)⟩, (3.79b)
𝜌3(|𝜉|) = 𝜌3(|𝑥− 𝑥̌|) := ⟨𝛾(𝑥)𝛽(𝑥̌)⟩. (3.79c)

The complex constant 𝜁 can then be written as

𝜁 =
ˆ ∞

−∞

[︁(︀
𝑘4𝑏̄2𝜌2(|𝜉|) − 2i𝑘3𝑏̄2(𝜕𝜉𝜌2(|𝜉|)) − 𝑘2𝑏̄2(𝜕2

𝜉𝜌2(|𝜉|)) − 𝛼𝑔𝑏̄𝜌3(|𝜉|)
)︀

ei𝑘̄𝜉 𝜕4
𝜉𝐺(|𝜉|,0)

+ 2
(︀
𝑘4𝑏̄2(𝜕𝜉𝜌2(|𝜉|)) − 2i𝑘3𝑏̄2(𝜕2

𝜉𝜌2(|𝜉|)) − 𝑘2𝑏̄2(𝜕3
𝜉𝜌2(|𝜉|)) − 𝛼𝑔𝑏̄(𝜕𝜉𝜌3(|𝜉|))

)︀
ei𝑘̄𝜉 𝜕3

𝜉𝐺(|𝜉|,0)

+
(︀
𝑘4𝑏̄2(𝜕2

𝜉𝜌2(|𝜉|)) − 2i𝑘3𝑏̄2(𝜕3
𝜉𝜌2(|𝜉|)) − 𝑘2𝑏̄2(𝜕4

𝜉𝜌2(|𝜉|)) − 𝛼𝑔𝑏̄(𝜕2
𝜉𝜌3(|𝜉|))

)︀
ei𝑘̄𝜉 𝜕2

𝜉𝐺(|𝜉|,0)

+ 𝛼
(︀
𝛼𝑔2𝜌1((|𝜉|) − 𝑘4𝑔𝑏̄𝜌3(|𝜉|) + 2i𝑘3𝑔𝑏̄(𝜕𝜉𝜌3(|𝜉|)) + 𝑘2𝑔𝑏̄(𝜕2

𝜉𝜌3(|𝜉|))
)︀

ei𝑘̄𝜉 𝐺(|𝜉|,0)
]︁

d𝜉. (3.80)

With the above expressions for the ensemble average of the PDE system (3.72) of order
O(𝜖2), we can derive the following PDE system, which has to be satisfied by 𝐹 :

𝜕2
𝑧𝐹 − 𝑘2𝐹 = −2i𝑘𝑤0𝜕𝑥2⟨𝐴(𝑥2)⟩, 𝑧 ∈ (−𝐻,0), (3.81a)

𝜕𝑧𝐹 = 0, 𝑧 = −𝐻, (3.81b)(︀
𝑏̄𝑘4 − 𝛼𝑔 + 1

)︀
𝜕𝑧𝐹 − 𝛼𝐹 = cosh(𝑘𝐻)𝑘2𝜁⟨𝐴(𝑥2)⟩

+ 4i𝑘4𝑏̄𝜕𝑥2⟨𝐴(𝑥2)⟩ sinh(𝑘𝐻), 𝑧 = 0. (3.81c)

Our goal now is to derive an equation for the ensemble average of the leading order wave
amplitude ⟨𝐴(𝑥2)⟩, which accordingly determines the leading order velocity potential 𝜑0
and thereof the multiple-scale approximation of the effective plate deflection. Application
of the second Green’s identity, which corresponds to integration by parts twice in 1D, leads
to

ˆ 0

−𝐻
𝐹𝜕2

𝑧𝑤0 − 𝑤0𝜕
2
𝑧𝐹 d𝑧 =

ˆ 0

−𝐻
𝑘2𝑤0𝐹 − 𝑤0

(︂
𝑘2𝐹 − 2i𝑘𝑤0

𝜕

𝜕𝑥2
⟨𝐴⟩
)︂

d𝑧

= 𝐹𝜕𝑧𝑤0 − 𝑤0𝜕𝑧𝐹 |0𝑧=−𝐻

= 𝐹 (𝑥2, 0)𝑘 sinh(𝑘𝐻) − 𝜕𝑧𝐹 (𝑥2, 0) cosh(𝑘𝐻). (3.82)
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Multiplication of Eqn. (3.81a) with 𝑤0 and integration over the interval (−𝐻,0) afterwards
gives ˆ 0

−𝐻
𝑤0𝜕

2
𝑧𝐹 − 𝑘2𝑤0⏟  ⏞  

=𝜕2
𝑧 𝑤0

𝐹 d𝑧 =
ˆ 0

−𝐻
−2i𝑘𝑤2

0𝜕𝑥2𝐴 d𝑧. (3.83)

The left-hand side of Eqn. (3.83) corresponds to the left-hand side of Eqn. (3.82) (multiplied
with the factor −1) such that the following equivalence holds,

2i𝑘 (𝜕𝑥2⟨𝐴⟩)
ˆ 0

−𝐻
𝑤2

0 d𝑧 = 𝑘𝐹 (𝑥2, 0) sinh(𝑘𝐻) − 𝜕𝑧𝐹 (𝑥2, 0) cosh(𝑘𝐻). (3.84)

Deploying the dispersion relation (3.64) on Eqn. (3.81c) yields

𝜕𝑧𝐹 (𝑥2, 0) − 𝐹 (𝑥2, 0) 𝛼

𝑏̄𝑘4 − 𝛼𝑔 + 1⏟  ⏞  
𝑘 tanh(𝑘𝐻)

= cosh(𝑘𝐻)𝑘2𝜁⟨𝐴(𝑥2)⟩ + 4i𝑘4𝑏̄𝜕𝑥2⟨𝐴⟩ sinh(𝑘𝐻)
𝑏̄𝑘4 − 𝛼𝑔 + 1

.

(3.85)
By scaling Eqn. (3.84) with cosh(𝑘𝐻) and equating with Eqn. (3.85), we obtain

2i𝑘𝜕𝑥2⟨𝐴⟩ 1
cosh2(𝑘𝐻)

ˆ 0

−𝐻
cosh2(𝑘(𝑧 +𝐻)) d𝑧⏟  ⏞  

1
2𝑘̄

(cosh(𝑘𝐻) sinh(𝑘𝐻)+𝑘𝐻)

= −𝑘2𝜁⟨𝐴⟩ + 4i𝑘4𝑏̄𝜕𝑥2⟨𝐴⟩ tanh(𝑘𝐻)
𝑏̄𝑘4 − 𝛼𝑔 + 1

.

(3.86)
Using the dispersion relation for the right-hand side of Eqn. (3.86) (multiplied with 𝛼) and
using the addition theorem

sinh(2𝑘𝐻) = 2 sinh(𝑘𝐻) cosh(𝑘𝐻), (3.87)

which can be found in Bronstein et al. 2012, gives

i 𝜕𝑥2⟨𝐴(𝑥2)⟩ 𝛼

sinh(2𝑘𝐻)
(︀
sinh(2𝑘𝐻) + 2𝑘𝐻

)︀
=

− 𝑘
[︀
⟨𝐴(𝑥2)⟩𝑘2𝜁 + 4i𝑘4𝑏̄𝜕𝑥2⟨𝐴(𝑥2)⟩ tanh(𝑘𝐻)

]︀
. (3.88)

Rewriting Eqn. (3.88) gives the following ordinary differential equation for the leading-order
(effective) wave amplitude ⟨𝐴(𝑥2)⟩,[︂

4𝑘5𝑏̄ tanh(𝑘𝐻) + 𝛼

(︂
1 + 2𝑘𝐻

sinh(2𝑘𝐻)

)︂]︂
𝜕𝑥2⟨𝐴(𝑥2)⟩ = i𝑘3𝜁⟨𝐴(𝑥2)⟩. (3.89)

The solution of this simple, linear ordinary differential equation is then obtained via
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separation of variables,

⟨𝐴(𝑥2)⟩ = 𝐴0 exp

⎛⎝i 𝑘3𝜁

4𝑏̄𝑘5 tanh(𝑘𝐻) + 𝛼
(︁

1 + 2𝑘𝐻
sinh(2𝑘𝐻)

)︁𝑥2

⎞⎠ . (3.90)

Therefore, we can describe the evolution of the leading-order wave amplitude of the effective
wave field with the help of the complex constant 𝜁 and the wavenumber 𝑘, which corresponds
to the travelling wave mode for a plate with mean mass 𝑔 and mean rigidity 𝑏̄ (obtained
via dispersion relation for elastic plates with constant rigidity and mass, Eqn. (3.64)). The
attenuation coefficient, 𝑄eff , for the floating plate problem is

𝑄eff = 𝜖2Im

⎡⎣ 𝑘3𝜁

4𝑏̄𝑘5 tanh(𝑘𝐻) + 𝛼
(︁

1 + 2𝑘𝐻
sinh(2𝑘𝐻)

)︁
⎤⎦ . (3.91)

Note that the correlation functions 𝜌𝑗(|𝜉|), 𝑗 = 1,2,3, in the calculation of the complex
constant 𝜁 in Eqn. (3.80) are not specified yet. This is done in the following yielding the
varying mass and varying rigidity problem in addition to the varying thickness problem.

Floating rough plate with varying thickness

Here, we assume that the plate density and Young’s modulus are uniform along the plate
and the plate mass and rigidity only depend on its thickness, ℎ(𝑥). The multiple-scale
method for the floating plate problem was derived for autocorrelated thickness variations
leading to varying mass and varying rigidity, hence all the terms are included to describe
the varying thickness problem. The random processes 𝛾(𝑥) and 𝛽(𝑥) describing the mass
and rigidity variations, respectively, are determined from the rough thickness profile via
Eqns. (3.58). This gives the autocorrelation of the plate mass variations, 𝛾(𝑥), and rigidity
variations, 𝛽(𝑥), and their cross-correlation for Eqn. (3.79),

𝜌1(|𝜉|) = ⟨𝛾(𝑥) 𝛾(𝑥− 𝜉)⟩ = 𝜌(|𝜉|), (3.92a)
𝜌2(|𝜉|) = ⟨𝛽(𝑥)𝛽(𝑥− 𝜉)⟩ = 9𝜌(|𝜉|), (3.92b)
𝜌3(|𝜉|) = ⟨𝛾(𝑥)𝛽(𝑥− 𝜉)⟩ = 3𝜌(|𝜉|), (3.92c)

where 𝜌 denotes the Gaussian autocorrelation condition of the thickness variations.

Floating rough plate with varying mass and varying rigidity

For each of the varying mass and varying rigidity problem, the respective quantity is
assumed to fluctuate about its mean, where the variations are described with the same
random process as in the varying thickness problem, and the respective other quantity
is chosen to be constant. Similar to the beam in vacuo, the varying mass is assumed to
be caused by plate density variations, and the varying rigidity is assumed to be caused
by variations in Young’s modulus. It is clear that the cross-correlation function 𝜌3 has
to vanish for both the varying mass and varying rigidity problem, since only one of these
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quantities is allowed to vary, whereas the other is held constant. Since the random process
describing the mass and rigidity variations, respectively, is the same as in the varying
thickness case with Gaussian autocorrelation function 𝜌, we can express the correlation
functions 𝜌𝑗 , 𝑗 = 1,2,3, for both problems as

varying mass:

⎧⎪⎨⎪⎩
𝜌1(|𝜉|) = 𝜌(|𝜉|),
𝜌2(|𝜉|) = 0,
𝜌3(|𝜉|) = 0,

varying rigidity:

⎧⎪⎨⎪⎩
𝜌1(|𝜉|) = 0,
𝜌2(|𝜉|) = 𝜌(|𝜉|),
𝜌3(|𝜉|) = 0.

(3.93)

This means in particular, that for the same roughness amplitude 𝜖 the rigidity variations are
significantly larger in the varying thickness problem than in the varying rigidity problem.
We could already observe this determining influence of the varying rigidity for the beam in
vacuo, where thickness variations lead to larger attenuation of the wave fields than varying
mass or rigidity, only.

3.5 Numerical results
To conclude this chapter about the problem of wave attenuation along a large plate floating
on water, we validate the multiple-scale method over a large range of correlation lengths
and restrict ourselves to small roughness amplitudes again. Besides showing results for
the problem of plates with continuously varying thickness, we will also show results for
plates with (continuously) varying mass and rigidity. To validate the multiple-scale method,
we apply the random-sampling method for an ensemble of 1500 randomly generated
realisations of roughness profiles, in which profiles share the same amplitude, 𝜖, and
correlation length, 𝑙G. For the interval length in the numerical method, 𝐿, we choose 400
times the corresponding correlation length, which already provided accurate results for the
previous investigations and is sufficiently large to allow comparisons with the multiple-scale
method (for which it is assumed that the plate extends to infinity). For the comparison of
the attenuation coefficients obtained by the random-sampling method with those predicted
by the multiple-scale method, 40 terms are used in the calculation of Green’s function in
Eqn. (3.68), which is sufficiently large to capture the evanescent waves accurately. Fig. 3.8
shows the attenuation coefficients, which are non-dimensionalised with 𝑘 and scaled by
the roughness amplitude squared, predicted by the multiple-scale method and obtained
by the random-sampling method, as functions of non-dimensional correlation length, for
roughness amplitudes 𝜖 = 1.0×10−3 (top-left panel), 1.0×10−2 (top-right panel), 5.0×10−2

(bottom-left panel) and 1.0 × 10−1 (bottom-right panel).

We can observe in Fig. 3.8 that the plate with varying thickness floating on water yields
qualitatively the same curve for the effective and individual attenuation coefficients as the
in-vacuo beam problem. The effective attenuation coefficients are proportional to 𝜖2, and
they scale linearly with the correlation length for 𝑘𝑙G ≥ 2. Although the numerical method
is more intricate than for the previous problem and computationally expensive (with the
computing time a multiple thereof), the results for the numerical method and the multiple-
scale method show very good agreement, in particular in the roughness amplitude regime
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Figure 3.8: Scaled attenuation coefficients of effective wave field for varying thickness problem
as functions of non-dimensional correlation length, predicted by multiple-scale method (solid
line) and random-sampling method (∘), for roughness amplitudes 𝜖 = 1.0 × 10−3 (top-left
panel), 𝜖 = 1.0 × 10−2 (top-right panel), 𝜖 = 5.0 × 10−2 (bottom-left panel) and 𝜖 = 1.0 × 10−1

(bottom-right panel). Corresponding individual attenuation coefficients obtained by the
random-sampling method (×) are shown for comparison.

𝜖 ≤ 5.0 × 10−2. For 𝜖 = 1.0 × 10−1, the attenuation coefficients from the multiple-scale
method slightly overpredict the effective attenuation coefficients obtained by the numerical
method in the large correlation length regime. This indicates that for this problem, too, the
multiple-scale method loses its validity around 𝜖 = 1.0 × 10−1. The problem formulation
does not change the behaviour of the individual wave fields, which, in contrast to the
effective wave fields, attenuate only for the small correlation length regime 𝑘𝑙G ≤ 2, and the
attenuation coefficients in this regime are significantly smaller than for the corresponding
effective wave fields.
To get an insight into the effects of plate mass variations and plate rigidity variations for
the floating plate problem, we study the respective attenuation coefficients. Fig. 3.9 shows
the scaled attenuation coefficients, predicted by the multiple-scale method and obtained
by the random-sampling method, as functions of non-dimensional correlation length, for
the varying mass problem (top panels) and varying rigidity problem (bottom panels) and
for roughness amplitudes 𝜖 = 5.0 × 10−3 (left-hand panels) and 𝜖 = 5.0 × 10−2 (left-hand
panels).
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Varying mass
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Figure 3.9: Scaled attenuation coefficients of effective wave field for varying mass (top panels)
and varying rigidity problem (bottom panels) as functions of non-dimensional correlation
length, predicted by multiple-scale method (solid line) and random-sampling method (∘), for
roughness amplitudes 𝜖 = 5.0 × 10−3 (left-hand panels) and 𝜖 = 5.0 × 10−2 (right-hand panels).
Corresponding individual attenuation coefficients obtained by the random-sampling method
(×) are shown for comparison.

Most important, we can observe a very good agreement between the multiple-scale method
and the numerical method for both the varying mass and varying rigidity problem for the
whole correlation length regime considered, and both roughness amplitudes, which are
small enough that the assumption of small 𝜖 in the multiple-scale method holds. Both
problems yield the same qualitative curves for the effective and individual attenuation
coefficients as the varying thickness problem. However, the effective attenuation coefficients
are not the same for the varying mass and the varying rigidity problem. This is due to the
non-dimensionalised problem formulation with the plate rigidity 𝑏 taking much larger values
that the plate mass 𝑔. As a result, variations in the plate rigidity lead to more variations
in an absolute sense than plate mass variations for the same (non-dimensional) roughness
amplitude, and hence, varying rigidity leads to more than four times larger attenuation
than varying mass. Added together, the attenuation coefficients for the respective problems
are still much smaller than for the varying thickness problem. This discrepancy is caused
by the derivation of the mass and rigidity variations from the varying thickness, leading to
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a cubic scaling of the rigidity variations with the thickness variations and resulting scaled
autocorrelation functions, see Eqns. (3.92).

3.6 Summary and discussion
We extended the study of wave propagation along beams in vacuo to plates floating on
water. The water was modelled as an incompressible, inviscid fluid with irrotational flow,
which are reasonable assumptions in the marginal ice zone, where the amplitudes of the
incoming ocean waves are small compared to the wavelengths, hence we can apply linear
water wave theory. Our focus lay on very large ice floes, which can be found close to the
continuous ice. Due to their small thickness (compared to their large horizontal extent)
and high flexibility, these very large ice floes can be be modelled as semi-infinite elastic
plates. Since we want to neglect the boundary interactions for the sake of simplicity in
this preliminary study, we assume the plates to be infinite. Our goal was to describe
the effects of continuous thickness variations analytically, since the thickness variations
are essential for attenuating the waves travelling along the ice floes and computations on
this large scale are very expensive. Working with infinite plates allowed us to apply a
multiple-scale method based on the one, which was successfully validated in the previous
chapter for beams in vacuo. We restricted ourselves to thickness variations, which are
uniform along the 𝑦-axis, and waves travelling straight along the 𝑥-axis, which made the
model two-dimensional. However, due to this simplification, no information about the
direction of scattered waves can be retrieved from this model, see e.g. Meylan 2002. The
problem characteristics allowed us to model the floating plate with the Euler–Bernoulli
theory, which proved to yield good results for the in-vacuo beam problem.

Under the above assumptions, the velocity potential of the water could be described
by Laplace’s equation. Furthermore, we assumed the sea-floor in intermediate depth to be
impermeable. Using the linearised version of Bernoulli’s plate equation and the linearised
kinematic surface condition at the interface between beam and water, we obtained the
PDE system for the spatial velocity potential (for time-harmonic waves) and the plate
deflection could be retrieved. To validate the multiple-scale method, a numerical method
was introduced, for which the continuous roughness profile had to be approximated by
piece-wise constant functions. Whereas the solution for the in-vacuo beam problem only
consists of one travelling and one evanescent wave mode in both directions and each subin-
terval, the full-linear solution of the the velocity potential here contains one travelling, two
damped-travelling and an infinite number of evanescent wave modes in both directions and
each subinterval. For numerical computations, the full-linear solution in each sub-interval
had to be approximated with a finite number of wave modes and an iterative algorithm
similar to the one in the previous chapter was used to obtain the solution by applying
continuity conditions at each scattering interface of adjacent sub-intervals.

The numerical method allowed us to confirm the assumptions made in the derivation
of the multiple-scale method, which is more elaborate than the multiple-scale method for
the in-vacuo beam problem and the corresponding Green’s function presented by Porter
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and Evans (2006) is used to find the higher-order solutions. It is clear from the derivation
of the multiple-scale method that it captures the attenuation of the effective wave fields
only and therefore, conclusions about wave attenuation by sea ice cannot directly be
drawn from this semi-analytical method. The continuous variations were modelled via the
Gaussian autocorrelation process described in Ch. 2 and the multiple-scale method was
derived for thickness variations. By setting the autocorrelation functions for the mass and
rigidity variations, which are derived from the underlying process describing the varying
thickness, zero, respectively, the multiple-scale methods for varying mass and varying
rigidity could then directly be obtained. Finally, the attenuation coefficients predicted
by the multiple-scale method and the numerical method were compared over a range
of correlation lengths for small roughness amplitudes, which the multiple-scale method
inherently assumes. The two methods showed a very good agreement, which validates the
multiple-scale method and allows to calculate the attenuation of effective wave fields in a
very efficient way.



CHAPTER 4

Wave attenuation along inhomogeneous strings:
From continuous to discrete scatterers

The attenuation of effective wave fields in the problems of a beam in vacuo and a floating
plate in Chs. 2 and 3 is predominantly a statistical effect caused by wave cancellation
in the averaging process of an ensemble of different realisations. Hence, the effective
wave field is not representative for individual realisations in these cases and, in particular,
powerful analytic theories approximating the effective wave fields are not applicable to
describe attenuation of individual wave fields. This discrepancy does not necessarily exist
for discrete scatterers though, which was demonstrated e.g. in Bennetts and Peter 2013,
where individual and effective wave fields showed the same attenuation behaviour in their
problem setting of waves propagating through rows of discrete scatterers. To get a deeper
understanding of these fundamental differences, we focus on wave propagation along one-
dimensional strings and the relation between continuous and discrete scattering problems.
Focusing on the string setting has the advantage not to have to deal with higher-order
conditions and results from this fairly simple setting might be extended to more complex
problems. In the case of large deflections, very thin plates can be considered as membranes,
see Timoshenko and Woinowsky-Krieger 1959, hence very thin beams can for the sake of
simplicity be considered (in the setting of non-linear theory) as strings.

Studying vibrations in strings and membranes has a long history, see e.g. Morse 1948, who
gave an overview over applications of strings and membranes with varying density. Analysis
of reflection and transmission behaviour can be found in Morin 2016 for non-uniform strings
and Dall’Agnol 2011 for a two-string problem with two different mass densities. In contrast
to homogeneous string problems, exact solutions cannot be found in general for inhomoge-
neous string problems. It needs additional assumptions, such as assumptions on density
distributions, to obtain exact solutions, e.g. Wang and Wang (2013) studied homogeneous
as well as inhomogeneous strings, deriving exact solutions for non-homogeneous strings
with a power law density distribution and an exponential density distribution. Further
examples for density distributions, which give closed-form exact solutions, are given in
Horgan and Chan 1999. An approach using functional-analysis techniques was used by
Limaco et al. (2008) to give estimates for the attenuation of energy for non-homogeneous
elastic strings. To study wave propagation along an inhomogeneous string with varying
densities of no particular distribution, for which no closed-form solutions can be obtained,
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numerical methods have to be adopted. A Chebyshev expansion method was used for
solving integral equations describing oscillating inhomogeneous strings by Rawitscher and
Liss (2011). Amore (2010, 2011) adopted a perturbation theory and collocation method
for an inhomogeneous string with fixed ends. Work on vibrations of a non-homogeneous
string under non-linear time-periodic forcing can be found in Baldi and Berti 2008.

Problems with disordered discrete scatterers received significant attention in the sec-
ond half of the last century. The main reason for this is the work of Anderson (1958), who
proposed localisation of electrons in disordered systems for sufficiently large randomness.
This phenomenon can be observed e.g. for quantum, electromagnetic or acoustic waves.
Research about electrons in crystal lattices dates from the fundamental work of de L.
Kronig and Penney (1931), who described one-dimensional propagation of pressure fields
through resonant point scatterers and observed pass- and stopband behaviour of electrons.
The pass- and stopband behaviour is also a well known feature of classical (i.e. acoustic
and electromagnetic) waves in periodic media, see e.g. Figotin and Kuchment 1995a,b
for acoustic and 2D-periodic dielectric structures. It was observed in Figotin and Klein
1996 that Anderson localisation happens in those passbands in vicinity of the transition
edge to the stopband. They also showed that similarities exist between localisation of
quantum-mechanical electrons and localisation of classical waves, but it is more challenging
to localise classical waves. A broad investigation of Anderson localisation can be found in
Sheng 2006 and Richoux et al. 2007, who give a good overview of localisation in different
contexts.

Localisation occurs in beaded strings as shown by Ottarsson and Pierre (1997), who
studied effects of disorder on both bead mass and bead spacing for the beaded-string
problem. They showed that bead-mass disorder produces only enhanced backscattering,
whereas spacing disorder produces both enhanced scattering and localisation, where the
localisation factor depends on disorder coupling and strength. Bead-mass disorder also leads
to a conflict between disorder-induced localisation and periodicity-induced constructive
interferences in passbands. The localisation behaviour for spacing disorder could also be
observed experimentally by He and Maynard (1986). The one-dimensional model described
by the Helmholtz equation for point scatterers represents not only vibrations in beaded
strings, but also propagation of waves through an acoustic duct with Helmholtz resonators,
see e.g. Richoux and Pagneux 2002, which is also an important application of guided waves
with one propagating mode in the low frequency regime, see Richoux et al. 2015. A good
introduction into vibration analysis of a finite number of masses on a taut string is given
by Gladwell (2005). Besides the already mentioned experimental literature about this
problem, agreement between theory and measurements for vibrations in beaded strings
with nearly periodic structure is shown by Hodges and Woodhouse (1983). In addition,
agreement between theoretical and experimental results for the cases with one and two
concentrated masses on a homogeneous string fixed at both ends is shown by Gómez et al.
(2007).

The perturbed periodic problem has been studied extensively over the last decades and
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analytical theories have been adopted to describe the effective wave field, i.a. a quasi-
crystalline assumption considering perturbations from an underlying periodic setting (see
Parnell and Abrahams 2008) and the coherent potential approximation based on closure
assumptions (see Maurel et al. 2010). Maurel et al. (2010) also compared those approaches
with direct calculations presented in Maurel 2010. A Monte Carlo method for vibrations in
beaded strings was shown in Romack and Weaver 1990, who studied effective waves in one-
dimensional random media composed of uncorrelated point scatterers with exponentially
distributed scatterer spacings. Maurel and Martin (2013) showed that localised modes
appear not only in infinite disordered media, but also in disordered media of finite size
(using perturbation theory), and additionally studied compositional disorder. Perturbation
theory was also used by Martin (2014) to study finite beaded strings with perturbations of
the masses from their periodic structure by a small distance.

The two problems of strings with continuous and discrete inhomogeneities have been
studied only separately to the knowledge of the author. To get an understanding why
localisation does not happen in the problems of waves travelling along beams in vacuo and
plates floating on water in Chs. 2 and 3, where the (continuous) beam and plate roughness
are modelled via a Gaussian process, we will firstly introduce the continuous problem
of wave propagation along a string with a (continuous) Gaussian correlated roughness
profile in Sec. 4.1. The numerical method to calculate the wave fields for the continuous
problem is based on the step-approximation method, which was introduced in Sec. 2.2.
Each roughness realisation of the profile is approximated by discrete steps, which allows
to use an efficient iterative scheme to calculate individual and effective wave fields. The
iterative scheme also serves as the basis for the computations for the discrete beaded-string
problem, for which evidently localisation will be observed for positional disorder of the
scatterers. This problem setting is introduced in Sec. 4.2. For both problem settings, the
attenuation behaviour of individual and effective wave fields will be investigated distinctly.
The attenuation analysis for the beaded-string problem is conducted in dependence of
positional disorder of the beads on the string for a broad regime of scattering strengths
and we compare the results with the theoretical Berry–Klein limit. The Berry–Klein limit,
which is derived by Berry and Klein (1997), is the attenuation coefficient determined
originally for a stack of transparent plates and calculated on the assumption that all phases
are included in wave interactions between adjacent plates. Bennetts and Peter (2013)
showed that this limit is reached for waves travelling through a perturbed periodic array of
point scatterers for large disorder from the underlying periodic setting.

To establish a connection between the continuous and discrete problem in Sec. 4.3, a
numerical method is adopted to cluster a very long roughness realisation into single
humps and their statistical properties (i.e. reflection coefficient moduli and arguments)
are examined. The mean reflection coefficient modulus is then transferred to the discrete
problem and assigned as the scattering strength. Furthermore, the distribution of phase
angles obtained for the continuous problem is fitted with a non-parametric distribution
and then used as the distribution of positional disorder in the discrete problem, before
comparing the attenuation of the continuous and the adjusted discrete problem. A summary
and discussion of the results of the chapter are given in Sec. 4.4.
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4.1 String with continuously varying density
4.1.1 Problem formulation

We consider an infinitely long, one-dimensional string and denote the horizontal coordinate
with 𝑥. The spatial part 𝑢(𝑥) of the time-harmonic string deflection Re{𝑢(𝑥)e−i𝜔𝑡} satisfies
the (spatial) Helmholtz equation

𝜕2
𝑥𝑢(𝑥) + 𝑘2𝑢(𝑥) = 0, 𝑥 ∈ (−∞,∞), (4.1)

where 𝜔 is the angular frequency and 𝑘 the wavenumber. The one-dimensional Helmholtz
equation can be derived from the wave equation with one spatial dimension,(︂

𝜕2

𝜕𝑥2 − 1
𝑐2
𝜕2

𝜕𝑡2

)︂
U(𝑥,𝑡) = 0, (4.2)

where 𝑐 is depends on the string density and U is the (time-dependent) string deflection.
Assuming that U is separable into a factor only depending on 𝑥 and one only on 𝑡 (which is
e.g. possible for a time-harmonic string deflection with angular frequency 𝜔), the Helmholtz
equation results from using separation of variables and substituting 𝑘 = 𝜔/𝑐.

In the following, we consider a string with a varying density profile. These variations in
the string density lead to a varying wavenumber 𝑘(𝑥), such that the varying wavenumber
fluctuates about the mean wavenumber 𝑘 and is defined as 𝑘(𝑥) = 𝑘(1 + 𝜖𝜅(𝑥)), with
𝜅 = O(1). In analogy to the continuous roughness profiles in the previous chapters, the
fluctuations, 𝜖𝜅(𝑥), have a known characteristic length, 𝑙G, and (non-dimensional) roughness
amplitude, 𝜖, and are prescribed by the Gaussian autocorrelated random process given
in Sec. 2.4. The ergodicity of the random process 𝜅(𝑥) ensures the spatial and ensemble
Gaussian autocorrelation conditions,

E[𝜅(𝑥)𝜅(𝑥− 𝜉)] = ⟨𝜅(𝑥)𝜅(𝑥− 𝜉)⟩ = 𝜌(|𝜉|), (4.3)

where E[·] denotes the spatial average and ⟨·⟩ the ensemble average of the included quantity,
respectively. Note that the frequencies and phases in the generation of the random process
via Eqn. (2.76) are not random variables, but sample values in the case of the spatial
Gaussian autocorrelation condition dealing with individual process realisations over long
intervals.

For numerical computations, let the string roughness similarly to the previous problems
extend over the long, finite interval 𝑥 ∈ (0,𝐿) and be constant in the surrounding intervals
(−∞, 0) and (𝐿,∞). The roughness profile is approximated by a piece-wise constant
function on 𝑀 ≫ 1 sub-intervals, with (−∞, 0) and (𝐿,∞) the 0-th and (𝑀 + 1)-th
sub-intervals, respectively. We continue to use the discretisation method introduced in
Sec. 2.2, for which each correlation length is divided into four sub-intervals to obtain the
numerical results involving the step approximation in this chapter. For the numerical
results, an interval length, 𝐿, of 400 times the correlation length is chosen to be sufficiently
large to capture attenuation coefficients accurately.
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We hold on our scheme to denote the value of the wavenumber in the 𝑚-th sub-interval as
𝑘𝑚, and set it to be equal to the value of the corresponding continuous wavenumber profile
at the mid-point. In the 𝑚-th sub-interval, the wave field can be expressed as

𝑢𝑚(𝑥) = 𝑎𝑚 ei𝑘𝑚𝑥 + 𝑏𝑚 e−i𝑘𝑚𝑥. (4.4)

The wave amplitudes 𝑎𝑚 and 𝑏𝑚 correspond to right- and left-travelling waves, respectively,
and no damped-travelling or evanescent waves appear here. Setting 𝑎0 = 1 and 𝑏𝑀+1 = 0
ensures the motion forcing by a unit-amplitude incident wave propagating in the positive
𝑥-direction from 𝑥 → −∞.

To couple wave fields in adjacent sub-intervals in this second-order problem, only two conti-
nuity conditions are needed: continuity of deflection (𝑢) and deflection slope (𝜕𝑥𝑢). Those
are applied in the same fashion as described in Sec. 2.2 (see Eqns. (2.15)) and the iterative
algorithm calculating the amplitudes 𝑎𝑚 (𝑚 = 1, . . . ,𝑀 + 1) and 𝑏𝑚 (𝑚 = 0, . . . ,𝑀) for a
given roughness realisation is based on the familiar step-approximation method.

4.1.2 Numerical results

Since we do not focus on analytical approaches and the investigation of their validity in
this chapter anymore, we can suspend the restriction on the upper bound of the roughness
amplitude, which automatically ensured that the beam mass, beam rigidity and beam
thickness, respectively, did not become negative in the previous problems. To avoid un-
physical negative wavenumbers here, which might appear for roughness amplitudes larger
than about 𝜖 ≈ 0.2, a numerical scheme is used, which sets the wavenumbers smaller than
10−2 to this value in the respective sub-intervals. The numerical cut-off scheme leads
to a relaxation of the autocorrelation conditions in Eqn. (4.3) for large roughness amplitudes.

Fig. 4.1 shows individual and effective attenuation coefficients, calculated by the random-
sampling method, scaled by 𝜖2 as functions of non-dimensional correlation length, for
the roughness amplitudes 𝜖 = 1.0 × 10−3 (top-left panel), 1.0 × 10−2 (top-right panel),
1.0 × 10−1 (bottom-left panel) and 5.0 × 10−1 (bottom-right panel). To obtain the atten-
uation coefficients in Fig. 4.1, we use an ensemble size of 1500 in analogy to our studies
in the previous chapters. A semi-analytical solution using a multiple-scale approach for
wave propagation along a string with continuously varying string density is shown for
comparison. The derivation can be found in Appendix 4.A. The attenuation coefficients
describing the exponential decay of individual and effective wave fields are calculated via
the previously used least-squares minimisation routine and Eqns. (2.77).

We can see in Fig. 4.1 that the attenuation coefficients of individual wave fields are close
to zero for the smallest non-dimensional correlation length considered, 𝑘𝑙G = 0.1, and for
correlation lengths greater than two. Similarly to the results in Chs. 2 and 3, the fluctuations
for 𝑘𝑙G = 0.1 are too rapid to affect the wave propagation and, for the larger correlation
length regime, the roughness is too mild to attenuate the waves. In between those two
regimes, the attenuation coefficients increase significantly with a maximum attenuation
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Figure 4.1: Individual (×) and effective (∘) attenuation coefficients for continuous non-
homogeneous string problem as functions of correlation length, for roughness amplitudes
𝜖 = 1.0 × 10−3 (top-left panel), 𝜖 = 1.0 × 10−2 (top-right panel), 𝜖 = 1.0 × 10−1 (bottom-
left panel) and 𝜖 = 5.0 × 10−1 (bottom-right panel). Attenuation coefficients predicted by
multiple-scale method (dashed line) are shown for comparison.

coefficient 𝑄ind ≈ 0.4𝜖2 for 𝑘𝑙G = 0.7 for the smaller roughness amplitudes 𝜖 = 1.0 × 10−3

and 1.0 × 10−2. For the largest roughness amplitude considered, 𝜖 = 5.0 × 10−1, the
attenuation coefficient maximum decreases to 𝑄ind ≈ 0.27𝜖2 (again for 𝑘𝑙G = 0.7).

In comparison to this, the effective attenuation coefficients show significantly different
properties, both qualitatively and quantitatively. While the effective attenuation coefficient
is also close to zero for the non-dimensional correlation length 𝑘𝑙G = 0.1, it increases
with increasing correlation length and for 𝑘𝑙G ≥ 2, the attenuation coefficients are linear
with respect to 𝑘𝑙G for the smaller roughness amplitudes. This different attenuation
behaviour of individual and effective wave fields is due to wave cancellation again, which
arises for the de-coherent individual wave fields. For the two larger roughness amplitudes
considered, 𝜖 = 1.0 × 10−1 and 5.0 × 10−1, this behaviour is notably different. For
𝜖 = 1.0 × 10−1, the effective attenuation coefficients are of the same magnitude as for the
smaller roughness amplitude cases for 𝑘𝑙G ≤ 0.7. Instead of exhibiting larger attenuation
for increasing correlation lengths then, the effective attenuation coefficients decrease
similarly to the individual attenuation coefficients, but are still larger. For 𝑘𝑙G ≥ 3.5, the
effective attenuation coefficients are close to zero. For the largest roughness amplitude
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case, 𝜖 = 5.0 × 10−1, the effective attenuation coefficients also show a hump in the small
correlation length regime, but the values are even smaller than their individual counterparts.

Furthermore, the attenuation coefficients predicted by the multiple-scale method show a
good agreement with the effective attenuation coefficients obtained by the random-sampling
method for the two smaller roughness amplitude cases up to the large correlation length
regime, where small lower deviations are especially observable for 𝜖 = 1.0 × 10−2. Since
the attenuation coefficients predicted by the multiple-scale method are perfectly scaled
with 𝜖2, the agreement between them and the effective attenuation coefficients is lost and
they clearly overpredict the latter for large roughness amplitudes. While for the largest
roughness amplitudes, 𝜖 = 5.0 × 10−1, the limit of validity for the multiple-scale method
is clearly exceeded, the attenuation coefficients predicted by the multiple-scale method
still agree with the effective attenuation coefficients in the small correlation length regime
𝑘𝑙G ≤ 0.7 for 𝜖 = 1.0 × 10−1.

For the largest roughness amplitude, 𝜖 = 5.0 × 10−1, the effective attenuation coefficients
are smaller than the corresponding individual attenuation coefficients for 𝑘𝑙G ≥ 0.5, which
is due to the averaging process to calculate the effective wave field. Under the assumption of
exponential decay of the wave fields with comparable attenuation and the triangle inequality,
|⟨𝑢(𝑥)⟩| ≤ ⟨|𝑢(𝑥)|⟩ must hold and we can deduce that the average of individual attenuation
coefficients represent a lower limit of the effective attenuation coefficients. However, for
roughness amplitudes larger than 𝜖 ≈ 0.2, individual wave fields exist which attenuate
much slower than the vast majority of the other wave fields. These wave fields dominate
when averaging all individual wave fields in the random-sampling method to calculate the
effective wave field and distort the results. This can be clearly observed when calculating
the attenuation coefficient of the averaged wave field modulus, i.e. ⟨|𝑢(𝑥)|⟩, which gives
significantly smaller results than the average of attenuation coefficients calculated for each
individual wave field. To overcome the sensitivity to outliers for large roughness amplitudes
in the averaging process, only wave fields with individual attenuation coefficients lying
between the 25% and 75% quantiles of all individual attenuation coefficients are taken into
account for the averaging process to obtain the effective wave field. To ensure that effective
wave fields are calculated using an ensemble size of 1500 randomly generated roughness pro-
file realisations, for which the effective attenuation coefficients are converged with respect
to the ensemble size as shown for the in-vacuo beam problem in Fig. 2.15, an ensemble
size of 3000 roughness profile realisations is used before applying the quantile approach to
obtain the effective attenuation coefficient. We will refer to this approach as the quantile
approach in the following. It should be noted that due to the strong scattering in the large
roughness amplitude regime, individual wave field realisations might exist, which do not
necessarily attenuate clearly exponentially such that the least-squares approach to extract
the attenuation coefficients might not be adequate anymore. These individual wave field
realisations are inherently disregarded by the quantile approach. (Note that the individual
attenuation coefficients are calculated for the ensemble with respect to the quantiles as well.)

Fig. 4.2 shows the same quantities as in Fig. 4.1, i.e. individual and effective attenu-
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ation coefficients, calculated by the random-sampling method, together with attenuation
coefficients predicted by the multiple-scale method, but now the quantile approach is used.
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Figure 4.2: Individual (×) and effective (∘) attenuation coefficients with quantile approach for
continuous non-homogeneous string problem as functions of correlation length, for roughness
amplitudes 𝜖 = 1.0 × 10−3 (top-left panel), 𝜖 = 1.0 × 10−2 (top-right panel), 𝜖 = 1.0 × 10−1

(bottom-left panel) and 𝜖 = 5.0 × 10−1 (bottom-right panel). Attenuation coefficients predicted
by multiple-scale method (dashed line) are shown for comparison.

By comparisons with the results shown in Fig. 4.1, we can see in Fig. 4.2 that the quantile
approach has only marginal effects on the effective attenuation coefficients for 𝜖 = 1.0×10−3,
1.0 × 10−2 and 1.0 × 10−1, for which slightly larger attenuation coefficients are obtained
in the large correlation length regime (only visible in the two small roughness amplitude
cases due to the scaling). As a result, the effective attenuation coefficients obtained by the
random-sampling method move closer to the attenuation coefficients predicted with the
multiple-scale method. For the largest roughness amplitude in consideration, 𝜖 = 5.0×10−1,
we can observe that the effective attenuation coefficients nearly coincide with the individ-
ual attenuation coefficients using the quantile approach for 𝑘𝑙G ≥ 0.5, i.e. the effective
attenuation coefficients are of the same magnitude as the individual attenuation coefficients
and share the same qualitative features with both attenuation coefficients attaining their
maxima at 𝑘𝑙G = 0.7. Furthermore, we can see that the individual attenuation coefficients
give the same values using the quantile approach as in Fig. 4.1, for which all attenuation
coefficients in the ensemble of size 1500 realisations were used, throughout the whole
correlation length regime. Also, wave field outliers do not affect the individual attenuation
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coefficients since the obtained attenuation coefficients of individual wave fields in the aver-
aging process are all of the same order. This does not hold for averaging the wave fields to
obtain the effective wave field without the quantile approach for large roughness amplitudes.

The behaviour of individual and effective attenuation coefficients over a regime of roughness
amplitudes is investigated now. With the numerical scheme of cutting off unphysical
values in rough-profile realisations, it is now possible to study regimes of large roughness
amplitudes. To capture effective attenuation coefficients for large roughness amplitudes
accurately, it is necessary to use the quantile approach to calculate effective wave fields as
explained above. Hence and for matters of consistency, the effective attenuation coefficients
are calculated using the quantile approach throughout the whole roughness amplitude
regime.

Fig. 4.3 depicts the scaled attenuation coefficients as functions of roughness amplitude,
for the non-dimensional correlation lengths 𝑘𝑙G = 0.7 (top-left panel), 1.5 (top-right
panel), 2.5 (bottom-left panel) and 4.1 (bottom-right panel). The results predicted by the
multiple-scale method are shown for comparison.
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Figure 4.3: Individual (×) and effective (∘) attenuation coefficients for continuous non-
homogeneous string problem as functions of roughness amplitude, for non-dimensional corre-
lation length 𝑘𝑙G = 0.7 (top-left panel), 𝑘𝑙G = 1.5 (top-right panel), 𝑘𝑙G = 2.5 (bottom-left
panel) and 𝑘𝑙G = 4.1 (bottom-right panel). Attenuation coefficients predicted by multiple-scale
method (dashed line) are shown for comparison.
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The top-left panel of Fig. 4.3 shows for the non-dimensional correlation length 𝑘𝑙G = 0.7,
which produces maximum attenuation of individual wave fields, that the individual and
effective attenuation coefficients are proportional to the roughness amplitude squared
for roughness amplitudes less than 10−0.8. The effective attenuation coefficients are
significantly greater than the individual attenuation coefficients in this regime. The
proportionality of the attenuation coefficients disappears for larger roughness amplitudes
and both attenuation coefficients increase with increasing roughness amplitudes slower
than the roughness amplitude squared. It is most remarkable that the effective attenuation
coefficients are very close to the individual attenuation coefficients in this regime. This
qualitative behaviour is confirmed for the non-dimensional correlation length 𝑘𝑙G = 1.5,
but the proportionality to the roughness amplitude squared is lost for 𝜖 > 10−1.2.
The bottom panels of Fig. 4.3 show the behaviour of the attenuation coefficients as functions
of the roughness amplitude for the cases 𝑘𝑙G = 2.5 and 4.1. The discrepancy between the
effective and individual attenuation coefficients is larger for the small roughness amplitude
regime in these cases due to the smoother roughness profile leading to less attenuation
and a fortified wave cancellation effect (for the effective wave field). For 𝑘𝑙G = 2.5, the
proportionality of both the effective and individual attenuation coefficients is already lost
for 𝜖 > 10−1.4, and for the largest correlation length, 𝑘𝑙G = 4.1, the proportionality of
the effective attenuation coefficients is lost slightly earlier and the individual attenuation
coefficients do not exhibit this proportionality in the small roughness amplitude regime,
which is due to numerical difficulties in capturing these very small attenuation coefficients.
The attenuation coefficients predicted by the multiple-scale method show a very good
agreement with the effective attenuation coefficients for small roughness amplitudes in all
cases considered. We can see that with increasing correlation length the limit of validity
of the multiple-scale method is reached earlier. It is also remarkable that the scaled
attenuation coefficients do not only decrease for large roughness amplitudes for the two
large correlation lengths considered, 𝑘𝑙G = 2.5 and 4.1, but the effective attenuation coeffi-
cients show a small increasing hump in these cases and the (scaled) individual attenuation
coefficients start to increase for the not-so-small roughness amplitude 𝜖 ≈ 10−1 to meet
the effective attenuation coefficients for 𝜖 ≈ 10−0.5 and decrease together with them in
the large roughness amplitude regime. Again, for the considered regime 𝜖 > 10−0.6, the
individual and effective attenuation coefficients are representative of each other.

Fig. 4.4 shows example individual wave fields and corresponding effective wave fields,
for non-dimensional correlation length 𝑘𝑙G = 0.7 and roughness amplitudes 𝜖 = 5.0 × 10−2

(left-hand panel), 1.0 × 10−1 (middle panel) and 2.0 × 10−1 (right-hand panel).
We can observe in Fig. 4.4 the qualitative transitional behaviour of individual and effective
wave fields from small to large roughness amplitudes. For the smallest roughness amplitude,
𝜖 = 5.0 × 10−2, the discrepancy between individual and effective wave fields is obvious and
the individual wave field attenuates only weakly and less than its corresponding effective
wave field. For 𝜖 = 1.0 × 10−1, the attenuation is significantly larger for both individual
and effective wave fields, but the attenuation of the effective wave field still dominates the
attenuation of the individual wave field. This changes for 𝜖 = 2.0 × 10−1, for which both
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Figure 4.4: Example individual wave fields (grey curves) and effective wave fields (black) for
continuous non-homogeneous string problem for roughness amplitudes 𝜖 = 5.0×10−2 (left-hand
panel), 𝜖 = 1.0 × 10−1 (middle panel) and 𝜖 = 2.0 × 10−1 (right-hand panel), for correlation
length 𝑘𝑙G = 0.7

wave fields attenuate at a comparable rate and the wave fields vanish almost completely
after half of the rough interval.

The agreement of individual and effective attenuation coefficients for large continuous
scattering enhances the understanding of the results not only for the in-vacuo beam and
floating beam problems in Chs. 2 and 3, but also for previous works on attenuation with
continuous scatterers only dealing with small roughness amplitude regimes, for which the
individual and effective wave fields are not representative for each other. This changes
observably in our problem for large roughness amplitudes. Before connecting this problem
of wave attenuation along a string with varying density with the discrete problem of wave
attenuation along a beaded string in Sec. 4.3, we focus in the following section on the
one-dimensional beaded-string problem with a perturbed periodic arrangement of point
scatterers, i.e. the roughness is incorporated via positional disorder of the discrete point
scatterers.

4.2 Beaded string
4.2.1 Problem formulation

We model time-harmonic wave propagation along a beaded string with 𝑁 scatterers of the
same scattering strength 𝜂, positioned at 𝑥 = 𝑥𝑛, 𝑛 = 1, . . . , 𝑁 , which is described by the
following Helmholtz equation for point scatterers,

𝜕2
𝑥𝑢(𝑥) + 𝑘2𝑢(𝑥) = 2i𝑘𝜂

𝑁∑︁
𝑛=1

𝛿(𝑥− 𝑥𝑛)𝑢(𝑥), (4.5)

where 𝛿 is the Dirac delta distribution. In contrast to Eqn. (4.1) the wavenumber 𝑘
is constant here and the scattering properties are incorporated via the inhomogeneous
right-hand side. This equation is obtained for the case that the string, which is described
by the one-dimensional wave equation, Eqn. (4.2), is loaded with point masses −2i𝜂/(𝜔𝑐).
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For a string with a single bead at the position 𝑥 = 𝑥𝑛, the wave equation becomes

𝜕2

𝜕𝑥2U(𝑥,𝑡) =
(︂

1
𝑐2 − 2i𝜂

𝜔𝑐
𝛿(𝑥− 𝑥𝑛)

)︂
𝜕2

𝜕𝑡2
U(𝑥,𝑡). (4.6)

To describe wave propagation along 𝑁 masses positioned at 𝑥𝑛, 𝑛 = 1, . . . , 𝑁 , Eqn. (4.6)
has to be extended to

𝜕2

𝜕𝑥2U(𝑥,𝑡) =
(︃

1
𝑐2 − 2i𝜂

𝜔𝑐

𝑁∑︁
𝑛=1

𝛿(𝑥− 𝑥𝑛)
)︃
𝜕2

𝜕𝑡2
U(𝑥,𝑡). (4.7)

The underlying equation for the beaded-string problem, Eqn. (4.5), is obtained for time-
harmonic waves with angular frequency 𝜔 and substituting 𝑘 = 𝜔/𝑐.

The position of the scatterers, 𝑥𝑛, is perturbed around the distance between adjacent
scatterers in periodic position, 𝑑. (Note that 𝑥𝑛 = (𝑛− 1)𝑑 would be the position of the
𝑛-th scatterer in the periodic case.) The positional disorder is introduced with random
variables 𝜈𝑛, 𝑛 = 1, . . . ,𝑁 , which describe the positional offset of the 𝑛-th scatterer from the
underlying periodic case, i.e. 𝑥𝑛 = (𝑛−1+𝜈𝑛)𝑑. The random variable 𝜈𝑛 is randomly chosen
from a prescribed distribution such that the 𝑛-th scatterer does not leave its imaginary
cell 𝑥𝑛+1 ∈ ((𝑛 − 1/2)𝑑, (𝑛 + 1/2)𝑑). It follows that for all realisations of disorder each
of these imaginary cells contains a single scatterer, hence the scatterers stay in ordered
position with ascending index. Restricting the positional disorder in this way ensures that
all scatterers are distributed around their mean, i.e. periodic, positions. Loosening this
restriction and allowing all scatterers to be located randomly in the whole space would
lead to Poisson distributed distances between nearest scatterers, which can be observed
in Maurel and Pagneux 2008. Note that the choice 𝜈𝑛 = 0 for all 𝑛 = 1, . . . , 𝑁, gives the
periodic problem. Fig. 4.5 schematically shows the configuration of discrete scatterers for
the beaded-string problem.
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Figure 4.5: Configuration of discrete scatterers located at 𝑥𝑛, 𝑥𝑛+1 and 𝑥𝑛+2 in beaded-string
problem

The wave field between each scatterer can be written as

𝑢(𝑥) = 𝑎𝑛ei𝑘(𝑥−𝑥𝑛) + 𝑏𝑛e−i𝑘(𝑥−𝑥𝑛), 𝑥𝑛−1 ≤ 𝑥 ≤ 𝑥𝑛, (4.8)

where 𝑎𝑛 and 𝑏𝑛 are the wave amplitudes corresponding to the right- and left-travelling
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wave, respectively, between the (𝑛− 1)-th and 𝑛-th scatterer. Again, the motion is forced
by a unit-amplitude incident wave propagating in the positive 𝑥-direction from 𝑥 → −∞,
which is set via 𝑎0 = 1 and 𝑏𝑁+1 = 0. The wave fields in the interval left and right to the
𝑛-th scatterer are coupled via a continuity of deflection and a continuity of force condition,

⟨⟨𝑢⟩⟩𝑥𝑛 = 0, (4.9a)
⟨⟨𝜕𝑥𝑢⟩⟩𝑥𝑛 = 2i𝑘𝜂𝑢(𝑥𝑛), (4.9b)

where ⟨⟨·⟩⟩𝑥𝑛 denotes the jump of the included quantity at 𝑥 = 𝑥𝑛. The force continuity
condition arises from the equivalence of the slope difference across the bead and the force
exerted on the bead positioned at 𝑥 = 𝑥𝑛 for time-harmonic waves (see Barnwell 2014), i.e.
Newton’s law gives for the underlying time-dependent problem

⟨⟨𝜕𝑥U(𝑥,𝑡)⟩⟩𝑥𝑛 = −2i𝜂
𝜔𝑐

𝜕2U(𝑥,𝑡)
𝜕𝑡2

⃒⃒⃒⃒
𝑥=𝑥𝑛

. (4.10)

This force balance corresponds to the jump condition for a single point mass at the origin,
which is obtained by integrating Eqn. (4.6) over 𝑥 ∈ (−𝜖,𝜖) for 𝜖 → 0 and using that the
integral of the Dirac delta distribution over this vanishingly region is unity.

To calculate the wave field 𝑢(𝑥) for 𝑁 scatterers, a discrete iterative scheme corresponding
to the numerical method in Sec. 4.1 is used and the scattering matrices at the interfaces of
adjacent intervals are obtained by the continuity conditions (4.9). This approach can be
transferred to the direct numerical scheme used by Maurel et al. (2010).

4.2.2 Validation of numerical approximation
The direct numerical scheme in Maurel et al. 2010 is based on a recurrence relation for
the amplitudes of left-travelling waves in each interval between scatterers. This approach
is presented in Appendix 4.B. The left-hand panels in Fig. 4.6 show the individual wave
fields calculated by the direct numerical scheme and the discrete iterative scheme for the
parameter combinations used in Maurel et al. 2010, i.e. (a) 𝑘𝑑 = 14.2𝜋 and 𝜂 = 0.67/(2i),
(b) 𝑘𝑑 = 14.2𝜋 and 𝜂 = 3/(2i), (c) 𝑘𝑑 = 2𝜋/5.1 and 𝜂 = 1.45/(2i). The right-hand panels
depict the error of the wave field moduli between both methods at each scatterer.
We can see in Fig. 4.6 that the direct numerical scheme (used in Maurel et al. 2010) and
the discrete iterative scheme (which will be used in the following) yield individual wave
fields, which are very close to each other. This is confirmed by the wave field moduli
differences at each scatterer, which indicate that both methods produce results and agree
nearly up to machine precision. This agreement is expected since both methods can be
converted into one another. The one-dimensional string problem allows to simplify the
more elaborate method using the full iterative scheme in this easy manner and results in
the computationally more efficient direct numerical scheme.

To study the pass- and stopband behaviour of the beaded-string problem, we investi-
gate the eigenvalues of the transfer matrix at each scatterer (see Fig. 4.8). We consider
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Figure 4.6: Left-hand panels: Wave field moduli obtained by direct numerical scheme (grey
line) and discrete iterative scheme (black dotted line) for (a) 𝑘𝑑 = 14.2𝜋 and 𝜂 = 0.67/(2i), (b)
𝑘𝑑 = 14.2𝜋 and 𝜂 = 3/(2i), (c) 𝑘𝑑 = 2𝜋/5.1 and 𝜂 = 1.45/(2i) (parameters from Maurel et al.
2010). Right-hand panels: Absolute error of wave fields obtained by those two methods for
same parameters as in left-hand panels.

a single point scatterer, which is located at the origin, and write the wave fields left and
right of the scatterer, 𝑢− and 𝑢+, respectively, with the help of the cell’s reflection and
transmission coefficients, 𝑅(±) and 𝑇 (±). The superscript − corresponds to the reflection
and transmission properties for waves incident on the scatterer from the left and the
superscript + for waves from the right. Considering a wave incident from the left, the wave
field can be written as

𝑢(𝑥) =
{︃

ei𝑘𝑥 +𝑅(−)e−i𝑘𝑥, 𝑥 < 0,
𝑇 (−)ei𝑘𝑥, 𝑥 > 0.

(4.11)

For a wave incident from the right, we have

𝑢(𝑥) =
{︃
𝑇 (+)e−i𝑘𝑥, 𝑥 < 0,
e−i𝑘𝑥 +𝑅(+)ei𝑘𝑥, 𝑥 > 0.

(4.12)

Using the wave field representation from Eqn. (4.8), the relationship between amplitudes
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in the adjacent intervals at the scatterer 𝑥𝑛 can be written via a scattering matrix S as(︂
𝑏𝑛

𝑎𝑛+1

)︂
=
(︂
𝑅(−) 𝑇 (+)

𝑇 (−) 𝑅(+)

)︂
⏟  ⏞  

=:S

(︂
𝑎𝑛

𝑏𝑛+1

)︂
. (4.13)

The point scatterers are assumed to be energy conserving, which yields

𝑇 (−) = 𝑇 (+) ≡ 𝑇, (4.14a)
1 − |𝑇 |2 = |𝑅±|2 ≡ |𝑅|2, (4.14b)
(𝑅(−))*𝑇 +𝑅(+)𝑇 * = 0, (4.14c)

where the complex conjugation is denoted by the asterisk, see Martin et al. 2015. The
entries of the scattering matrix S are then given by

𝑅(−) = 𝜂

𝜂 − 1 , (4.15a)

𝑅(+) = 𝜂 e−2i𝑘(𝑥𝑛−𝑥𝑛+1)

𝜂 − 1 , (4.15b)

𝑇 (−) = e−i𝑘(𝑥𝑛−𝑥𝑛+1)

𝜂 − 1 = 𝑇 (+). (4.15c)

For a point scatterer with scattering strength 𝜂 located at the origin, the following
representation of reflection and transmission coefficients can be obtained,

𝑅(𝜂) = 𝜂

1 − 𝜂
, (4.16a)

𝑇 (𝜂) = 1
1 − 𝜂

= 1 +𝑅(𝜂). (4.16b)

Now, we show in analogy to Maurel et al. 2010 that the scattering strength 𝜂 has to be
purely imaginary to obtain energy-conserving solutions for the scattering problems. It
follows from Eqn. (4.14b) that

|𝑅|2 + |1 +𝑅|2 = 1 =⇒ |𝑅|2 + Re(𝑅) = 0. (4.17)

The solution to Eqn. (4.17) is shown in Fig. 4.7.

Thus, the solution has to be of the form

𝑅 = iei𝜙 sin(𝜙) (4.18)

for some real 𝜙. With this, the scattering strength can be written as

𝜂 = 𝑅

1 +𝑅
= i tan(𝜙), (4.19)
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Figure 4.7: Reflection coefficient in energy-conserving setting

which implies that the scattering strength 𝜂 has to be purely imaginary in our energy-
conserving setting. Note that the reflection and transmission coefficients are complex and
involve a phase shift. The phase shift is caused by the slope discontinuity at the point
scatterers to provide the force balance, see Barnwell 2014.

We analyse the eigenvalues of the transfer matrix in order to study the pass- and stopband
behaviour. The transfer matrix, which is associated to the scattering matrix S in analogy
to the previous problem formulations (Secs. 2.2 and 3.2), describing(︂

𝑎𝑛+1
𝑏𝑛+1

)︂
= P

(︂
𝑎𝑛

𝑏𝑛

)︂
, (4.20)

is defined by

P =
(︂
𝑇 (+) −𝑅(+)𝑅(−)/𝑇 (−) 𝑅(+)/𝑇 (−)

−𝑅(−)/𝑇 (−) 1/𝑇 (−)

)︂
. (4.21)

The top panels in Fig. 4.8 show the the eigenvalues of the transfer matrix, 𝜆, for i𝜂 = 0.2
(top-left panel) and additionally for i𝜂 = 0.4 (top-right panel) over the interval 𝑘𝑑 ∈ (0,11𝜋).
The bottom panel shows the moduli of the eigenvalues of the transfer matrix, which lie
within the unit circle, as functions of 𝑘𝑑/𝜋 for the scattering strengths i𝜂 = 0.2 0.4, 0.6,
. . . , 2.0.

We can observe in the top panels that the eigenvalues pass along the unit circle and form
conjugate pairs. As soon as the eigenvalues get close to the real axis, they leave the unit
circle and appear as (real) reciprocal pairs. For i𝜂 = 0.2, the eigenvalues with the larger
modulus of the reciprocal pairs depart up to approximately ±0.54 from the unit circle for
𝑘𝑑/𝜋 ≈ 1/8 + 2𝑙 and 𝑘𝑑/𝜋 ≈ 9/8 + 2𝑙, with 𝑙 ∈ N. The top-right panel shows additionally
the eigenvalues for i𝜂 = 0.4, for which we can observe that the eigenvalues with the larger
modulus depart up to approximately ±1.1 from the unit circle for 𝑘𝑑/𝜋 ≈ 0.2 + 2𝑙 and
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Figure 4.8: Top panels: Eigenvalues of transfer matrix in interval 𝑘𝑑 ∈ (0,11𝜋) for i𝜂 = 0.2
(blue, top-left panel) and i𝜂 = 0.4 (red, top-right panel). Bottom panel: Eigenvalue moduli of
transfer matrix as functions of distance between adjacent scatterers for i𝜂 = 0.2 (blue), i𝜂 = 0.4
(red), i𝜂 = 0.6 (green), i𝜂 = 0.8 (magenta), i𝜂 = 1.0 (cyan), i𝜂 = 1.2 (yellow), i𝜂 = 1.4 (brown),
i𝜂 = 1.6 (violet), i𝜂 = 1.8 (orange) and i𝜂 = 2.0 (black).

𝑘𝑑/𝜋 ≈ 1.2 + 2𝑙 with 𝑙 ∈ N. It could be shown analytically that the scattering strength and
the maximum departure of the eigenvalues with the larger modulus from the unit circle
are directly proportional.

We can observe in the bottom panel of Fig. 4.8 that the shown eigenvalue moduli are
unity for non-dimensional spacings between scatterers around multiples of 𝜋, i.e. at the
Bragg resonances 𝑘𝑑 = 𝑝𝜋, 𝑝 integer, see e.g. Le Bas and Conoir 2005 and Aristégui and
Angel 2002. The shown eigenvalues are simply the inverses of the eigenvalues with the
larger modulus, hence the eigenvalues are equal to unity in the passbands and less than
unity in the stopbands. While the intervals indicating the passband state get smaller
for increasing scattering strength, the eigenvalue moduli diminish in the stopbands for
increasing scattering strength, revealing stronger total reflection and attenuating wave
fields. For a fixed scattering strength, the eigenvalues in the stopbands are of the same
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magnitude suggesting that the maximum attenuation in each stopband is equal in this
undamped system, which was already suggested by the top panels, since the eigenvalues
depart equally far from unity in each circulation.

To study the influence of the scattering strength and the positional disorder on the
attenuation of wave fields, the distance between scatterers in the underlying periodic
structure is chosen to be in a passband throughout the rest of this chapter. This implies
that the wavenumber of the Floquet mode has to be imaginary, see e.g. John 1991. The
wavenumber of the Floquet mode, 𝑄̃, is given by the dispersion relation

cos(𝑄̃𝑑) = cos(𝑘𝑑) + i𝜂 sin(𝑘𝑑). (4.22a)

The dispersion relation in Eqn. (4.22a) simplifies to

cos(𝑄̃𝑑) cos(𝜙) = cos(𝑘𝑑+ 𝜙). (4.22b)

in our energy-conserving setting.

Fig. 4.9 shows the imaginary parts of the wavenumbers of the Floquet modes as functions
of the non-dimensional spacing between periodic scatterers for purely imaginary, negative
scattering strengths (top-left panel) and the corresponding attenuation coefficients calcu-
lated by the discrete iterative scheme (bottom-left panel). The right-hand panels show the
respective quantities for purely imaginary, positive scattering strengths. To investigate the
exponential attenuation of individual wave fields, we extract the attenuation coefficients
for single realisations via Eqn. (2.77b) and average the obtained individual attenuation
coefficients for a large ensemble size.

We can see in Fig. 4.9 that the imaginary part of the wavenumber of the Floquet mode,
which describes the attenuation of the wave field, vanishes in the case of negative scattering
strengths at the Bragg resonances, i.e. for non-dimensional spacings between scatterers
around multiples of 𝜋. Between these passbands, the attenuation coefficients get larger with
increasing scattering strength moduli and the curves broaden indicating larger stopbands.
This pass- and stopband behaviour was already visible in Fig. 4.8, where the eigenvalues
of the transfer matrix were analysed. Furthermore, the maximum attenuation in each
stopband is equal which confirms the finding in Fig. 4.8.

Choosing scattering strengths with positive imaginary part (top-right panel) gives a
segmentation into pass- and stopbands shifted towards larger spacings by 𝜋/4 and the
wavenumbers of the Floquet mode are of the same magnitude as for scattering strengths
with negative imaginary part. Furthermore, the attenuation coefficients calculated by the
discrete iterative scheme (shown in bottom panels of Fig. 4.9) agree with the analytical
results from the dispersion relation Eqn. (4.22) in both cases of scattering strengths with
negative and positive scattering strengths. Note that we will use purely imaginary, neg-
ative scattering strengths throughout the rest of this chapter, which is motivated in Sec. 4.3.
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Figure 4.9: Top panels: Wavenumbers (imaginary part) of Floquet mode as functions of
non-dimensional spacing between scatterers for scattering strengths with negative imaginary
part (top-left panel) and positive imaginary part (top-right panel), ±i𝜂 = 0.2 0.4, . . . , 2.0 (same
colour scheme as in Fig. 4.8). Bottom panels: Corresponding attenuation coefficients calculated
by discrete iterative scheme as functions of non-dimensional spacing between scatterers for
scattering strengths with negative imaginary part (bottom-left panel) and positive imaginary
part (top-right panel), ±i𝜂 = 0.2 0.4, . . . , 2.0 (same colour scheme as in Fig. 4.8).

For the remainder of this chapter, the underlying periodic structure shall consist of
scatterers with spacings chosen numerically to be at the centre of the global passband, i.e.
the resulting range of spacings ensures passbands for all different scattering strengths in
consideration. Choosing the midpoint of the global passband is necessary to obtain robust
results for all considered scattering strengths. It was shown by Godin et al. (2007) that
wave propagation in a one-dimensional periodic medium becomes highly sensitive to small
deviations from the periodic structure near the band edges, which we avoid with the choice
above.

4.2.3 Numerical results

Before we analyse the influence of the scatterers’ distance, the positional disorder and
the scattering strength on the attenuation of both individual and effective wave fields
quantitatively in this section, we look at example wave fields for individual beaded-string
realisations. For the numerical simulations of the beaded-string problem, we use 𝑁 = 200 in
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the following, which provides a similar number of scatterers as number of humps appearing
in the roughness profiles for the continuous problem configuration with roughness profile
lengths of 400 correlation lengths.

Fig 4.10 shows example individual wave field moduli calculated by the discrete iterative
scheme for values of positional disorder 𝑘𝜈 = 0.01, 0.05 and 0.10, for the non-dimensional
distance between scatterers chosen to be at the global passband around 8𝜋 and scattering
strength i𝜂 = 0.14. The values of positional disorder are chosen to produce different
attenuation behaviours.
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Figure 4.10: Example individual wave fields for beaded-string problem for values of positional
disorder 𝑘𝜈 = 0.01 (light grey), 𝑘𝜈 = 0.05 (dark grey) and 𝑘𝜈 = 0.10 (black), for scattering
strength i𝜂 = 0.14

We can observe in Fig. 4.10 that the example individual wave field for the smallest positional
disorder value, 𝑘𝜈 = 0.01, shows only a slightly attenuating behaviour, whereas the wave
field modulus for 𝑘𝜈 = 0.05 drops significantly over the interval of 200 beads on a string.
For the largest value of positional disorder here, 𝑘𝜈 = 0.10, strong attenuation can be
noticed and most of the wave energy is attenuated after only half of the beaded string
interval. Furthermore, we can see that the deflection close to the left end of the beaded
string is largest for the intermediate value of positional disorder, 𝑘𝜈 = 0.05, for which the
scattering is strong enough to produce significant reflection (in contrast to the case of
𝑘𝜈 = 0.01), but not too strong to lead to large attenuation (as for 𝑘𝜈 = 0.10).

It was shown e.g. in Hodges and Woodhouse 1983 for a stretched string with masses
attached to it that exponential attenuation is induced by positional disorder when the
underlying periodic setting is in a passband. Choosing 𝑘𝑑 as discussed above ensures the
passband state and positional disorder is introduced via uniformly distributed random
variables 𝜈𝑛 ∈ U(−𝜈/2,𝜈/2), where 𝜈 ∈ [0,1), for the following results.

The attenuation coefficients calculated with the discrete iterative scheme are compared with
the analytical Berry–Klein limit derived by Berry and Klein (1997). Here, the Berry–Klein
limit is given by − ln|𝑇 (𝜂)|, where 𝑇 (𝜂) is the transmission coefficient for a single scatterer
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of scattering strength 𝜂. With the representation of the transmission coefficient from
Eqn. (4.16b), we can write the Berry–Klein limit as

𝛤BK = − ln|𝑇 (𝜂)| = − ln|1 +𝑅(𝜂)| = − ln
⃒⃒⃒ 1
1 − 𝜂

⃒⃒⃒
. (4.23)

All phases to be included in wave interactions between two adjacent scatterers requires
𝜈𝑘𝑑 ≥ 𝜋, to which we will refer as the positional-disorder threshold.

Fig. 4.11 shows the Berry–Klein limit as a function of the scattering strength 𝜂. Further-
more, the individual attenuation coefficients calculated by the discrete iterative scheme are
depicted as functions of the scattering strength for values of positional disorder 𝑘𝜈 = 0.01,
0.05 and 1.00, for the non-dimensional distance between scatterers chosen to be at the
global passband around 8𝜋.
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Figure 4.11: Berry–Klein limit as function of scattering strength (dotted line). Attenuation
coefficients for beaded-string problem as functions of scattering strength for 𝑘𝜈 = 0.01(×),
𝑘𝜈 = 0.05(×) and 𝑘𝜈 = 1.0(×), for 𝑘𝑑 ≈ 8𝜋, are shown for comparison.

We can observe in Fig. 4.11 that the Berry–Klein limit is close to zero for very small
scattering strengths and increases with increasing scattering strength. This can also be
directly derived from its definition, since the transmission at a single scatterer naturally
decreases for increasing scattering strength. The individual attenuation coefficients for each
value of positional disorder also exhibit an increasing behaviour with increasing scattering
strength. Whereas the attenuation coefficients for the smallest value of positional disorder,
𝑘𝜈 = 0.01, are very small throughout the whole scattering strength regime, the attenuation
coefficients for 𝑘𝜈 = 0.05 already reach values half of those suggested by the Berry–Klein
limit, e.g. for i𝜂 = 2.0, the attenuation coefficient for 𝑘𝜈 = 0.05 is 0.4, the Berry–Klein
limit gives 0.8. This holds for all scattering strengths in the regime considered, i𝜂 ∈ [0,2].
Since for the largest value of positional disorder, 𝑘𝜈 = 1.0, the positional-disorder threshold
is obviously exceeded, all phases are included in the wave interaction between adjacent
scatterers and the attenuation coefficients should meet the Berry–Klein limit. This certainly
holds for all scattering strengths and the attenuation coefficients agree with the predicted
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limit. The behaviour of the attenuation coefficients for the values of positional disorder
considered suggest that they are proportional to the Berry–Klein limit. For large |𝜂|
(remember that 𝜂 is purely imaginary to ensure that energy is conserved), the Berry–Klein
limit behaves asymptotically like

𝛤BK = − ln
⃒⃒⃒ 1
1 − 𝜂

⃒⃒⃒ |𝜂|≫1
≈ ln|𝜂| . (4.24)

We can deduce from Eqn. (4.24) that the nearly linear scaling of the Berry–Klein limit
with the scattering strength in Fig. 4.11 for i𝜂 > 0.8 is elusive and it actually increases
logarithmically for large |𝜂|. The possible proportionality of the attenuation coefficients
and the Berry–Klein limit (indicated in Fig. 4.11) is investigated together with the influence
of the distance between scatterers on the attenuation in Fig. 4.13. Before we get to this
analysis, the Berry–Klein limit is explained in more detail now.

Fig. 4.12 shows the probability density function of the uniform distribution, from which all
random variables 𝜈𝑛, 𝑛 = 1, . . . ,𝑁 , are chosen, in dependence of the value of positional
disorder (left-hand panel). The right-hand panel of Fig. 4.12 depicts all phases which
are included in wave interactions between adjacents scatterers if their positions are (as
used above) perturbed around their periodic positions with uniformly distributed random
variables 𝜈𝑛 ∈ U(−𝜈/2,𝜈/2), where 𝜈 ∈ [0,1).
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Figure 4.12: Left-hand panel: Uniform probability density function of random variables
𝜈𝑛. Right-hand panel: Included phases in wave interactions between positionally disordered
adjacent scatterers for positional disorder below positional-disorder threshold (blue) and
exceeding positional-disorder threshold (red).

The concept of the positional disorder threshold for the Berry–Klein limit is visualised in
the right-hand panel of Fig. 4.12. If the positional-disorder threshold is not attained yet,
i.e. 𝜈𝑘𝑑 < 𝜋 and hence −𝜋/2 < 𝜈𝑛𝑘𝑑 < 𝜋/2 for the 𝑛th scatterer, a single scatterer can
change the phase of an incoming wave by −𝜈𝑘𝑑/2 up to 𝜈𝑘𝑑/2. This means in particular
that between two positionally disordered adjacent scatterers the included phases in wave
interactions stretch from −𝜈𝑘𝑑 and 𝜈𝑘𝑑. If the positional-disorder threshold is reached
though, i.e. 𝜈𝑘𝑑 = 𝜋, a single scatterer can change the phase of an incoming wave by
−𝜋/2 up to 𝜋/2. For this value of positional disorder, two adjacent scatterers are then
able to change the phase of an incoming wave by −𝜋 to 𝜋. However, if the positional-
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disorder threshold is exceeded, i.e. 𝜈𝑘𝑑 > 𝜋, the two adjacent scatterers cannot change
the phase of an incoming wave more than by −𝜋 to 𝜋 (which might already be reached
for the positional-disorder threshold case), since all phases are already included in wave
interactions between adjacent scatterers. This is the fundamental idea of the Berry–Klein
limit predicting maximum attenuation if all phases are included. Fig. 4.11 already showed
that exceeding the positional disorder threshold (as it is the case for the choice 𝜈 = 1.0 in
the setting of Fig. 4.11) does not lead to a deviation from the Berry–Klein limit.

To study the relation between the attenuation coefficients for different values of posi-
tional disorder and the Berry–Klein limit, we look at the attenuation coefficients scaled
with the Berry–Klein limit. Furthermore, to get insight into the influence of the distance
between scatterers in the underlying periodic structure on the attenuation of the perturbed
problem, we consider the cases of perturbing the scatterers in different passbands. Fig. 4.13
shows the individual attenuation coefficients calculated by the discrete iterative scheme as
functions of scattering strength for values of positional disorder 𝑘𝜈 = 0.01, 0.05, 0.10 and
1.00, for the non-dimensional distance between scatterers in the passbands around 𝑘𝑑 ≈ 2𝜋
(top-left panel), 𝑘𝑑 ≈ 4𝜋 (top-right panel), 𝑘𝑑 ≈ 8𝜋 (bottom-left panel) and 𝑘𝑑 ≈ 12𝜋
(bottom-right panel). As mentioned, the attenuation coefficients shown are scaled by the
Berry–Klein limit which is also shown (scaled to unity).

We can observe in Fig. 4.13 that the attenuation coefficients for the beaded-string problem
show proportionality to the Berry–Klein limit and only small deviations due to numerical
difficulties in capturing very small attenuation coefficients can be detected. For the largest
value of positional disorder, 𝑘𝜈 = 1.00, the attenuation coefficients again coincide with
the values predicted by the Berry–Klein limit, for all non-dimensional distances between
scatterers, 𝑘𝑑 ≈ 2𝜋, 4𝜋, 8𝜋 and 12𝜋. The same level of (relative) positional disorder leads
to larger attenuation for the larger non-dimensional distances between scatterers. While
in fact the scaled attenuation coefficients for 𝑘𝜈 = 0.10 are between 0.10 and 0.15 for
𝑘𝑑 ≈ 2𝜋 with slightly increasing tendency with increasing i𝜂, they increase to around 0.5
for 𝑘𝑑 ≈ 4𝜋 and 0.9 for 𝑘𝑑 ≈ 8𝜋, before the maximum attenuation is already close to be
reached for 𝑘𝑑 ≈ 12𝜋. This behaviour also holds for the other values of positional disorder
and follows directly from the fact that the positional disorder threshold, 𝜈𝑘𝑑 = 𝜋, for which
all phases are included in the wave interactions of adjacent scatterers, is attained sooner for
large 𝑘𝑑. The slightly increasing behaviour of the attenuation coefficients for small 𝑘𝜈 and
small i𝜂 cannot be observed for large positional disorder and larger scattering strengths
(leading to more attenuation) anymore, and we can deduce that this is due to numerical
difficulties for extracting the attenuation coefficients if they are very small. It is confirmed
that exceeding the positional disorder threshold still leads to the Berry–Klein limit since
all phase changes remain in the wave interactions (although the distribution of phase
changes changes). For the remainder of this chapter, the spacing between scatterers in
the underlying structure is chosen to be at the centre of the global passband around 𝑘𝑑 ≈ 8𝜋.

Next, we want to compare the attenuation coefficients of the effective wave fields with the
individual attenuation coefficients. The effective attenuation coefficients are extracted from
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Figure 4.13: Scaled individual attenuation coefficients (×) for beaded-string problem as
functions of scattering strength for values of disorder 𝑘𝜈 = 0.01 (green), 𝑘𝜈 = 0.05 (blue),
𝑘𝜈 = 0.10 (red) and 𝑘𝜈 = 1.00 (black) for different distances between scatterers in the
underlying periodic problem, 𝑘𝑑 ≈ 2𝜋 (top-left panel), 𝑘𝑑 ≈ 4𝜋 (top-right panel), 𝑘𝑑 ≈ 8𝜋
(bottom-left panel) and 𝑘𝑑 ≈ 12𝜋 (bottom-right panel). Scaled Berry–Klein limit (dotted line)
is shown for comparison.

the effective wave fields via Eqn. (2.77a). Since the effective wave field is similarly to the
continuous problem sensitive to outliers, we again use an ensemble size of 3000 individual
beaded-string realisations and average the calculated wave fields with respect to the 25%
and 75% attenuation coefficients quantiles afterwards to obtain the effective wave field.

Fig. 4.14 enhances the bottom-left panel of Fig. 4.13 by the effective attenuation co-
efficients and shows the scaled individual and effective attenuation coefficients as functions
of scattering strength for values of positional disorder 𝑘𝜈 = 0.01, 0.05, 0.10 and 1.00.
We can observe important features of the attenuation coefficients for the beaded-string
problem in Fig. 4.14. The effective attenuation coefficients also increase with increas-
ing level of disorder and agree with the individual attenuation coefficients for the large
scattering strengths considered. While the individual attenuation coefficients are propor-
tional to the Berry–Klein limit for the whole scattering strength regime considered, the
effective attenuation coefficients are proportional to the Berry–Klein limit in the large
scattering strength regime only. They show a qualitative different behaviour compared
to the individual attenuation coefficients in the smaller scattering strength regime, which
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Figure 4.14: Scaled individual (×) and effective (∘) attenuation coefficients for beaded-string
problem as functions of scattering strength for values of disorder 𝑘𝜈 = 0.01 (green), 𝑘𝜈 = 0.05
(blue), 𝑘𝜈 = 0.10 (red) and 𝑘𝜈 = 1.00 (black), for non-dimensional distance between scatterers
𝑘𝑑 = 8𝜋. Scaled Berry–Klein limit (dotted line) is shown for comparison.

complements e.g. the observations of Bennetts and Peter (2013), who studied perturbed
periodic arrays of point scatterers and found similar attenuation coefficients of individual
and effective wave fields in this setting. The effective attenuation coefficients exceed the
individual attenuation coefficients for scattering strengths i𝜂 < 0.45 for the largest value
of positional disorder, 𝑘𝜈 = 1.0. In the small scattering strength regime, the effective
attenuation coefficients increase for increasing scattering strength until i𝜂 ≈ 0.2, where
they reach their maximum, and decrease afterwards until hitting the Berry–Klein limit. For
smaller positional disorder, the limit from where on the effective attenuation coefficients
are proportional to the Berry–Klein limit is shifted to the right.

The agreement of individual and effective attenuation coefficients for large i𝜂 deepens our
understanding of the attenuation coefficients’ behaviour for the continuous problem in
Sec. 4.1. It confirms the finding that significantly different individual and effective wave
field attenuation due to wave cancellation only appears up to certain strengths of scatterers.
For large scattering strengths, the individual and effective wave fields are representative
for each other.

To complete the analysis of the beaded-string problem, we study the impact of posi-
tional disorder now. Fig. 4.15 shows individual and effective attenuation coefficients scaled
with the Berry–Klein limit as functions of scaled positional disorder for scattering strengths
i𝜂 = 0.2 (top-left panel), 0.6 (top-right panel), 1.2 (bottom-left panel) and 2.0 (bottom-right
panel). The positional disorder is scaled such that the same value of 𝜈 leads to the same
absolute positional disorder, independent of the choice of 𝑘𝑑. Here, the positional disorder
threshold is positioned at the origin, i.e. 𝜈𝑘𝑑 = 𝜋 ⇐⇒ log10(𝜈𝑘𝑑/𝜋) = 0. The results can
be compared with the coherent potential approximation (CPA) derived by Maurel et al.
(2010), which yields the effective wavenumber. To avoid cluttered figures and distraction
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from the essential findings in Fig. 4.15, the effective attenuation coefficients obtained
without using the quantile approach and predicted by the CPA are shown for i𝜂 = 2.0 only.
The derivation for the CPA is outlined in Appendix 4.C.
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Figure 4.15: Scaled individual (×) and effective (∘) attenuation coefficients for beaded-string
problem as functions of scaled positional disorder for scattering strength i𝜂 = 0.2 (top-left
panel), i𝜂 = 0.6 (top-right panel), i𝜂 = 1.2 (bottom-left panel) and i𝜂 = 2.0 (bottom-right
panel). Berry–Klein limit and its positional disorder threshold is shown as horizontal and
vertical dotted line, respectively. Results with CPA (dashed line) and effective attenuation
coefficients without quantile approach (∘) are shown for comparison for i𝜂 = 2.0 (bottom-right
panel).

We can observe in Fig. 4.15 that the attenuation coefficients are negligible for small values
of positional disorder. Hence, small deviations do not affect the passband state significantly.
For values of log10(𝜈𝑘𝑑/𝜋) slightly smaller than −1, the attenuation coefficients start
increasing until the attenuation coefficients reach the Berry–Klein limit for the positional
disorder threshold. As soon as the limit is attained, the attenuation coefficients level
off and remain there even for larger positional disorder, which confirms the finding in
Fig. 4.13 quantitatively that exceeding the positional disorder threshold does not lead to
deviations from the maximum value predicted by the Berry–Klein limit. The individual
and effective attenuation coefficients agree throughout the whole positional disorder regime
for the three larger scattering strengths, i𝜂 = 0.6, 1.2 and 2.0. For i𝜂 = 0.2, the effective
attenuation coefficients are visibly larger than the individual attenuation coefficients in the
regime log10(𝜈𝑘𝑑/𝜋) ≥ −0.3. This is due to the wave cancellation, which could already be
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observed in Fig. 4.14 in the small scattering strength regime.

For comparison, the effective attenuation coefficients without using the quantile approach
are depicted for the largest scattering strength, i𝜂 = 2.0. Although these attenuation coef-
ficients are very small for small positional disorder and increase with increasing positional
disorder as well, they show great deviations from the individual attenuation coefficients
in the large positional disorder regime. They are significantly shifted down by about
20% from the Berry–Klein limit and effective attenuation coefficients calculated with the
quantile approach. The attenuation coefficients predicted by the CPA behave similarly to
the individual and effective attenuation coefficients with the quantile approach, i.e. they
are also negligible for small values of positional disorder and start increasing for values
of log10(𝜈𝑘𝑑/𝜋) greater than −1 until the attenuation coefficients reach the Berry–Klein
limit for the positional disorder threshold, where they level off and remain there for larger
positional disorder. So, the attenuation coefficients predicted by the CPA agree with the
numerical results obtained with the quantile approach.

Before we establish a connection between the attenuation behaviour of the continuous and
the beaded-string problem in Sec. 4.3, we conclusively study the impact of the scattering
strength and the level of positional disorder on the attenuation coefficient of individual and
effective wave fields in a detailed illustration. Fig. 4.16 shows heatmaps of the individual
and effective attenuation coefficients (left-hand panel and right-hand panel, respectively)
in dependence of the scattering strength and the scaled positional disorder.
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Figure 4.16: Heatmap of scaled individual (left-hand panel) and effective (right-hand panel)
attenuation coefficients for beaded-string problem as functions of scattering strength and scaled
positional disorder

We can observe in Fig. 4.16 that the individual attenuation coefficients (left-hand panel)
are proportional to the Berry–Klein limit throughout the whole scattering strength regime
considered. Increasing the positional disorder leads to larger attenuation coefficients of the
individual wave fields. The magnitude of the increase in the scaled attenuation coefficients
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depends on the positional disorder only and is the same for all scattering strengths. We can
also see that the transition zone for the positional disorder from small to large attenuation
is narrow and located between log10(𝜈𝑘𝑑/𝜋) ∈ (−0.4,− 0.2). The right-hand panel, which
depicts the effective attenuation coefficients, shows that the individual and the effective
attenuation coefficients agree for all considered combinations of 𝜈 for i𝜂 ≥ 0.5. In the
scattering strength regime i𝜂 < 0.5, the effective attenuation coefficients exceed their
individual equivalents due to wave cancellation, which can be observed for sufficiently large
positional disorder.

To complement the insights for the scaled individual and effective attenuation coefficients,
Fig. 4.17 shows the heatmap of the non-scaled individual and effective attenuation coeffi-
cients (left-hand panel and right-hand panel, respectively) in dependence of the scattering
strength and the scaled positional disorder. The quantile approach is used again for these
simulations.
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Figure 4.17: Heatmap of individual (left-hand panel) and effective (right-hand panel) atten-
uation coefficients for beaded-string problem as functions of scattering strength and scaled
positional disorder

Fig. 4.17 confirms that increasing scattering strength as well as increasing positional
disorder lead to larger attenuation for the whole considered regime of disorder and scattering
strengths for both individual and effective wave fields. As firstly observed in Fig. 4.11,
both a large scattering strength and positional disorder are necessary to produce large
attenuation.

In Secs. 4.1 and 4.2, we could observe agreement of individual and effective attenuation
coefficients in the beaded-string problem and especially found large roughness regimes
for the continuous problems providing agreement of individual and effective attenuation
coefficients, too. This behaviour might indicate similarity of both problems. We move
on from investigating individual and effective attenuation coefficients for the respective
problems and put our focus on individual wave fields only in the next section, in which we
map the continuous problem into the beaded-string problem.
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4.3 Connection between continuous and discrete problem
We establish a connection between the attenuation behaviour of the (continuous) non-
homogeneous string and the (discrete) beaded-string problem in the following. To achieve
this, we convert the continuous roughness profile into discrete scatterers. As it will be
shown schematically in Sec. 4.3.1, we cluster the roughness profile into humps, denote the
(complex) total reflection coefficient of the 𝑖-th hump with 𝑅𝑖 and use the mean reflection
coefficient modulus of these clustered humps, E[|𝑅𝑖|], to calculate the equivalent scattering
strength modulus of the discrete point scatterers as

|𝜂| = E[|𝑅𝑖|]
1 + E[|𝑅𝑖|]

, (4.25a)

which directly follows from the relation for single scatterers in Eqn. (4.16a). Since our
problem formulation shall be energy-conserving, the scattering strength has to be purely
imaginary and we choose the corresponding scattering strength with negative imaginary
part, which can be shown is closer to the reflection coefficient arguments of the clustered
humps (see Fig. 4.25 for further details).

Fig. 4.18 shows the individual attenuation coefficients scaled by the Berry–Klein limit for
the discrete problem as functions of scaled non-dimensional positional disorder for i𝜂 = 0.14
(top panels) and i𝜂 = 0.26 (bottom panels). The individual attenuation coefficient for the
continuous problem is shown for comparison. The roughness amplitude in the continuous
problem is chosen such that the mean reflection coefficient modulus of the clustered humps
matches with the reflection coefficient modulus of a single scatterer in the discrete problem,
i.e.

E[|𝑅𝑖|] = |𝜂|
1 − |𝜂|

. (4.25b)

The individual attenuation coefficient for the continuous problem is constant since no
positional disorder appears in this problem. We consider the non-dimensional correlation
lengths 𝑘𝑙G = 0.7 (left-hand panels), which gives maximum attenuation, and 𝑘𝑙G = 2.5
(right-hand panels).

We can see in Fig. 4.18 for both cases, 𝜂 = 0.14/i and 𝜂 = 0.26/i, that the scaled
individual attenuation coefficients of the discrete problem show the same qualitative
and quantitative behaviour with increasing positional disorder as we could observe in
Fig. 4.15, reaching the Berry–Klein limit for the positional disorder threshold. The scaled
attenuation coefficients for the continuous problem are significantly smaller than the
Berry–Klein limit for the considered cases and for the larger scattering strength, i𝜂 = 0.26,
it is observably smaller than for 𝜂 = 0.14/i. The cases i𝜂 = 0.14 and i𝜂 = 0.26 sug-
gest that the attenuation coefficients of both the continuous and the discrete problem
intersect at log10(𝜈𝑘𝑑/𝜋) ≈ −0.3. This positional disorder value, for which the atten-
uation of continuous and discrete problem yield the same attenuation, is studied next.
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Figure 4.18: Scaled individual attenuation coefficients for continuous non-homogeneous string
problem (solid line) and beaded-string problem (×) as functions of scaled non-dimensional
positional disorder for i𝜂 = 0.14 (top panels) and i𝜂 = 0.26 (bottom panels), for non-dimensional
correlation lengths 𝑘𝑙G = 0.7 (left-hand panels) and 𝑘𝑙G = 2.5 (right-hand panels). Berry–
Klein limit and its positional disorder threshold (horizontal dotted and vertical dashed line,
respectively) are shown for comparison.

Fig. 4.19 shows the required positional disorder values for the discrete problem to obtain
at least the same attenuation as in the continuous problem as functions of the scattering
strength, for the non-dimensional correlation lengths 𝑘𝑙G = 0.7 and 2.5.

It can be observed in Fig. 4.19 that the required positional disorder to obtain the same
attenuation in the discrete and continuous problem for correlation length 𝑘𝑙G = 0.7 is
situated in the small range log10 𝜈𝑘𝑑/𝜋 ∈ (−0.3,−0.2) for scattering strengths i𝜂 ≤ 0.3. For
i𝜂 > 0.3, the required positional disorder decreases to approximately log10 𝜈𝑘𝑑/𝜋 ≈ −0.4.
The observable decrease in the required positional disorder is due to the loss of propor-
tionality of the individual attenuation coefficients in the continuous problem with the
roughness amplitude squared for large roughness amplitudes (corresponding to large scat-
tering strength), which we have seen in Fig. 4.3. This is confirmed for the larger correlation
length under consideration, 𝑘𝑙G = 2.5. As we noticed in Fig. 4.3, the scaled individual
attenuation coefficients in the continuous problem for 𝑘𝑙G = 2.5 show an increase for
log10 𝜖 ∈ (−1,− 0.4) (whereas the attenuation coefficients for the discrete problem remain
proportional to i𝜂), hence less positional disorder is required to obtain the same attenua-
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Figure 4.19: Required scaled positional disorder (×) for beaded-string problem to obtain
at least same attenuation as in continuous non-homogeneous string problem as function
of scattering strength for non-dimensional correlation lengths 𝑘𝑙G = 0.7 (left-hand panel)
and 𝑘𝑙G = 2.5 (right-hand panel). Positional disorder threshold (dashed line) is shown for
comparison.

tion. This can be observed in the right-hand panel of Fig. 4.19 for i𝜂 < 0.2, for which the
required positional disorder increases slightly with the scattering strength. For i𝜂 ≥ 0.2,
the required positional disorder then decreases with the scattering strength (similar to
the case 𝑘𝑙G = 0.7), which is backed up by the decrease of the individual attenuation
coefficients in the continuous problem for log10 𝜖 ≥ −0.4.

Before we connect the continuous and the discrete problem, we turn our attention solely
to the properties of the clustered humps in Sec. 4.3.1. This investigation is crucial for
understanding the clustering process and the effects of the underlying continuous profile
characteristics, i.e. roughness amplitude and correlation length, on the clustered humps.

4.3.1 Clustering humps

For the first comparison of the continuous and the discrete problem shown in Fig. 4.18, we
already used the approach of clustering the continuous roughness profile into humps in
order to retrieve a quantification of the characteristic, i.e. mean, hump. In the following,
we analyse the statistical properties of the clustered humps, which are extracted from
roughness profile realisations with length 𝐿 = 40000 × 𝑙G giving approximately 14000
to 16000 humps per realisation. Fig. 4.20 illustrates the clustering of an extract from
a continuous roughness profile realisation into humps schematically. The clustering is
completed via a numerical scheme splitting the domain by finding the local minima of the
roughness profile and identifying each patch between two minima as a single hump. The
total reflection coefficient of a single hump is then calculated by merging all respective
scattering matrices appearing in the step approximation of the single hump. We refer to
the total reflection coefficient of a single hump as the clustered reflection coefficient.
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Figure 4.20: Schemata of clustering

The reflection (as well as the transmission) coefficients are complex numbers. Writing
the reflection coefficient 𝑅 in polar form gives 𝑅 = |𝑅|ei𝜑𝑅 , where |𝑅| is the modulus
and 𝜑𝑅 the argument of the reflection coefficient 𝑅. The key quantities arising from the
clustering process are the moduli and the arguments of the clustered reflection coefficients.
To study the attenuation behaviour, we firstly turn our attention to the clustered reflection
coefficient moduli of clustered humps and the influence of the two main parameters in the
continuous problem (roughness amplitude and correlation length) on them.

Fig. 4.21 shows the mean clustered reflection coefficient moduli scaled by the roughness
amplitude 𝜖 as functions of the correlation length for the roughness amplitude 𝜖 = 1.0×10−1

(left-hand panel) and the mean clustered reflection coefficient moduli as functions of the
roughness amplitude 𝜖 for the non-dimensional correlation length 𝑘𝑙G = 0.7 (right-hand
panel).
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Figure 4.21: Left-hand panel: Mean reflection coefficient moduli of clustered humps (extracted
from realisation with non-dimensional length 𝐿 = 40000 × 𝑙G) as functions of correlation length,
for roughness amplitude 𝜖 = 1.0 × 10−1. Right-hand panel: Mean reflection coefficient moduli
of clustered humps as functions of roughness amplitude, for non-dimensional correlation length
𝑘𝑙G = 0.7.
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We can see in the left-hand panel of Fig. 4.21 that the non-dimensional correlation length
𝑘𝑙G = 0.7 produces the maximum mean clustered reflection coefficient modulus. Especially
in the small correlation length regime 𝑘𝑙G < 2.0, clustered humps exhibit large reflection
coefficient moduli, which become smaller for 𝑘𝑙G ≥ 2.0. In the large correlation length
regime, the clustered reflection coefficient moduli get very small and tend to zero. This
behaviour is similar to the deterministic hump analysis for the in-vacou beam problem
in Sec. 2.3, where humps of intermediate length provided the largest reflection coefficient
moduli. The reflection coefficient behaviour in dependence of the underlying correlation
length is consistent with the attenuation behaviour of individual wave fields. It could be
observed in Fig. 4.2 that the individual attenuation coefficients are only non-zero in the
small correlation length regime and are negligible for 𝑘𝑙G ≥ 2.0.

We can observe in the right-hand panel of Fig. 4.21 that the mean clustered reflection
coefficient moduli scale with the roughness amplitude for the non-dimensional correlation
length 𝑘𝑙G = 0.7 in the regime 𝜖 ≤ 0.4. Slight deviations from the linear scaling can be
observed for 𝜖 ≈ 0.3 and roughness amplitudes larger than 0.4. Overall, the correlation
length is a key parameter for wave field attenuation since it is decisive for the reflection
ability of the humps appearing in roughness profiles with the same roughness amplitudes.

Before we analyse the second important quantity in the clustering process, the argu-
ment of the clustered reflection coefficients, we analyse the reflection coefficient moduli
distributions. Fig. 4.22 shows histograms of the clustered reflection coefficient moduli,
scaled with 𝜖, for non-dimensional correlation lengths 𝑘𝑙G = 0.1 (top-left panel), 0.7
(top-right panel), 1.5 (bottom-left panel) and 2.5 (bottom-right panel), for the roughness
amplitude 𝜖 = 1.0 × 10−1. The histograms approximate the distributions of the reflection
coefficient moduli of clustered humps.

The histograms exhibit a very similar behaviour of clustered reflection coefficient moduli
for all correlation lengths considered, 𝑘𝑙G = 0.1, 0.7, 1.5 and 2.5. We can deduce that
the clustered reflection coefficient modulus distributions are asymmetric and skewed to
the right, which is due to the small magnitudes of the (non-negative) described quanti-
ties. Although the histogram shapes are very much alike, their widths differ significantly.
The clustered reflection coefficient moduli attain larger values for the non-dimensional
correlation length 𝑘𝑙G = 0.7 than for the other correlation lengths and are spread wider.
While the (scaled) clustered reflection coefficient moduli for 𝑘𝑙G = 0.7 reach values up
to 4.0, the maximum values for 𝑘𝑙G = 0.1 and 1.5 are smaller than 2.5 and only approx-
imately 1.0 for 𝑘𝑙G = 2.5. A more detailed distribution analysis for 𝑘𝑙G = 0.7 is given below.

Fig. 4.23 displays the statistical distribution of the scaled clustered reflection coefficient
moduli for roughness amplitudes 𝜖 = 5.0×10−3, 1.0×10−2, 5.0×10−2, 1.0×10−1, 2.0×10−1

and 5.0 × 10−1 in a box-and-whisker plot, where the non-dimensional correlation length
is chosen to be 𝑘𝑙G = 0.7, which yields maximum clustered reflection coefficient moduli.
The boxes and whiskers represent the same statistical quantities as in Fig. 2.15. For better
visibility, points regarded as outliers are shown as pluses here.
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Figure 4.22: Histograms of reflection coefficient moduli of clustered humps, for roughness
amplitude 𝜖 = 1.0 × 10−1 and non-dimensional correlation lengths 𝑘𝑙G = 0.1 (top-left panel),
𝑘𝑙G = 0.7 (top-right panel), 𝑘𝑙G = 1.5 (bottom-left panel) and 𝑘𝑙G = 2.5 (bottom-right panel)

The results in Fig. 4.23 suggest that the mean clustered reflection coefficient moduli for
the non-dimensional correlation length 𝑘𝑙G = 0.7 scale with the roughness amplitude. The
medians of the clustered reflection coefficient moduli scaled by the roughness amplitude
are of similar magnitude for all roughness amplitudes considered. The remaining features
(quantiles, skewness towards larger clustered reflection coefficients indicated by the whiskers
and outliers) characterising the distribution of the clustered reflection coefficient moduli
for the different roughness amplitudes show a very similar behaviour up to 𝜖 = 2.0 × 10−1

as well. For 𝜖 = 5.0 × 10−1, no outliers appear for the respective clustered reflection
coefficient moduli. This is due to the numerical scheme cutting off very small and negative
wavenumbers. Although the existence of very large clustered reflection coefficient moduli
is impeded as a result of the numerical cut-off, the 25% quantile remains similar to the
statistics for smaller roughness amplitudes. However, the assimilated clustered reflection
coefficient moduli lead to an increase of the mean and 75% quantile, which are slightly
larger than the statistics for smaller roughness amplitudes. Even though the underlying
distribution is asymmetric, using the mean reflection coefficient moduli of the clustered
humps as typical reflection coefficient of a single hump to calculate the corresponding
scattering strength in the discrete problem via Eqn. (4.25a) is still reasonable, since the
outliers are not located far off the quantiles, and therefore, the mean includes these large
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Figure 4.23: Box-and-whisker plot of scaled reflection coefficient moduli of clustered humps
for roughness amplitudes 𝜖 = 0.005, 0.01, 0.05, 0.1, 0.2 and 0.5, for non-dimensional correlation
length 𝑘𝑙G = 0.7

values in a sensible way.

After we have studied the influence of the correlation length and the roughness am-
plitude on the reflection coefficient moduli of clustered humps, we want to investigate their
impact on the reflection coefficient arguments of clustered humps now. The arguments of
the clustered reflection coefficients correspond to a phase shift in the solution and hence
specify the phases in wave interactions of adjacent humps. Fig. 4.24 shows the clustered
reflection coefficient arguments in an angle histogram plot for the roughness amplitude
𝜖 = 1.0 × 10−1 and non-dimensional correlation lengths 𝑘𝑙G = 0.3, 0.5, 0.7, 0.9, 1.1, 1.5,
2.5 and 4.1.

We can see in Fig. 4.24 that the mean clustered reflection coefficient argument is slightly
below 𝜋 for the non-dimensional correlation length 𝑘𝑙G = 0.3 and increases with increasing,
but small correlation lengths. It reaches its maximum (value closest to 𝜋) for the non-
dimensional correlation length 𝑘𝑙G = 0.7, which leads to the largest clustered reflection
coefficient modulus and the largest individual attenuation coefficient for the continuous
problem. From 𝑘𝑙G = 0.7 on, the mean clustered reflection coefficient arguments diminish
for increasing correlation lengths. Beyond that, the clustered phase change spread is
obviously smaller for 𝑘𝑙G ≤ 1.5 than for the larger correlation lengths and is widest for the
largest correlation length considered, 𝑘𝑙G = 4.1.

The mean reflection coefficient arguments of clustered humps are illustrated quantita-
tively as functions of correlation length for 𝜖 = 1.0 × 10−1 in Fig. 4.25. For comparison, the
reflection coefficient arguments of single discrete scatterers, which have scattering strengths
corresponding to a typical hump in the continuous problem with the respective correlation
length for 𝜖 = 1.0 × 10−1, are shown as well. The reflection coefficient arguments for the
discrete problem are already given by the constraint that the scattering strength has to be
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Figure 4.24: Angle histogram plot of reflection coefficient arguments of clustered humps, for
roughness amplitude 𝜖 = 1.0 × 10−1 and non-dimensional correlation lengths 𝑘𝑙G = 0.3, 0.5,
0.7, 0.9, 1.1, 1.5, 2.5 and 4.1 (from left to right, top to bottom panel)

purely imaginary. Fig. 4.25 shows them for both choices, positive and negative imaginary
part.
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Figure 4.25: Mean arguments of reflection coefficients of clustered humps as functions of
correlation length, for 𝜖 = 1.0×10−1 (×). Arguments of reflection coefficients for single discrete
scatterers with corresponding scattering strength with positive (dash-dotted line) and negative
(dashed line) imaginary part, respectively, are shown for comparison.

The results in Fig. 4.25 confirm the findings from Fig. 4.24. The mean reflection coefficient
arguments increase with increasing correlation lengths for 𝑘𝑙G ≤ 2. They increase more



4.3 Connection between continuous and discrete problem 157

rapidly in the small correlation length regime before they level off and remain at about
7/4𝜋 for 𝑘𝑙G > 2. The maximum phase change of 𝜋 is attained between 𝑘𝑙G = 0.5 and
0.7. Both reflection coefficient arguments of single discrete scatterers (with positive and
negative imaginary part of scattering strength, respectively) exhibit the same distance
to the maximum phase change 𝜋 and do not show significant variability throughout the
correlation length regime considered. While discrete scatterers with purely imaginary posi-
tive scattering strength have reflection coefficient arguments slightly larger than 𝜋/2, their
equivalents with purely imaginary negative scattering strength have reflection coefficient
arguments slightly smaller than 3/2𝜋 (or −𝜋/2, respectively).

Although the results for the discrete scatterers with purely imaginary negative scat-
tering strength might suggest a certain similarity between the continuous and the discrete
problem, this choice of negative imaginary parts of the scattering strength is not substantial
and discrete scatterers with purely imaginary positive scattering strength could be used
alternatively (as long as a passband state in the underlying periodic setting is ensured for
the purpose of our study). The important quantity is the positional disorder, which leads
to wave interactions between adjacent scatterers with different phases in the perturbed
setting. The great impact of positional disorder and the distribution inducing it becomes
clear throughout the next section, where representative attenuation between the continuous
and the discrete problem will be obtained.

4.3.2 Representative attenuation

As we can observe in Fig. 4.24, the distributions of clustered phase changes for the contin-
uous problem are skewed for the non-dimensional correlation lengths 𝑘𝑙G = 0.3 and 0.5,
and are shaped close to a bell curve for the larger correlation lengths. The derivation of
the Berry–Klein limit is based on the assumption of uniformly distributed phase changes
between adjacent scatterers. This assumption is fulfilled for the first comparison shown in
Fig. 4.18 (and all numerical results in Sec. 4.2.3), where the positional disorder for all 𝑁
discrete scatterers is realised by the uniformly distributed random variables 𝜈𝑛, 𝑛 = 1, . . . ,𝑁 .
To assimilate the continuous and the discrete problem, we adjust the distribution of the
random variables 𝜈𝑛 to match with the clustered phase change distribution in the continuous
problem. For this, our focus is on the continuous problem with non-dimensional correla-
tion length 𝑘𝑙G = 0.7, which gives maximum attenuation. A non-parametric probability
density function is fitted numerically using a kernel density estimator with a normal kernel
smoothing function to the distribution of clustered reflection coefficient arguments for this
case, see e.g. Silverman 1986. We refer to this probability density function for 𝜈𝑛 as kernel
distribution from now on.

Fig. 4.26 shows the kernel distribution, which is scaled to fit to the histogram of clus-
tered reflection coefficient arguments, for the roughness amplitude 𝜖 = 1.0 × 10−1 and
non-dimensional correlation length 𝑘𝑙G = 0.7 (left-hand panel). We also show the results
for the non-dimensional correlation length 𝑘𝑙G = 2.5 (right-hand panel).



158 Chapter 4 Wave attenuation in inhomogeneous strings: From continuous to discrete scatterers

k̄lG = 0.7

0

500

1000

1500

2000

#

0 π/2 π 3/2π 2π

arg(R)

k̄lG = 2.5

0 π/2 π 3/2π 2π

arg(R)

Figure 4.26: Scaled kernel distribution of reflection coefficient arguments of clustered humps,
for roughness amplitude 𝜖 = 1.0 × 10−1 and non-dimensional correlation lengths 𝑘𝑙G = 0.7
(left-hand panel) and 𝑘𝑙G = 2.5 (right-hand panel). Histogram plots of clustered reflection
coefficient arguments are shown for comparison.

We can see in Fig. 4.26 that the scaled kernel distribution for the non-dimensional cor-
relation length 𝑘𝑙G = 0.7 slightly deviates from a bell-shaped curve with its mode just
above 1.1𝜋. The curve is skewed to positive phase changes between 0.3𝜋 and 0.8𝜋 with
very light tails, which indicates that significant phase changes occur throughout the whole
rough interval. For the larger non-dimensional correlation length, 𝑘𝑙G = 2.5, the mode
of the kernel distribution moves to approximately 3/2𝜋 and the distribution is broader
compared to 𝑘𝑙G = 0.7. The clustered reflection coefficient arguments are more spread and
the tails are significantly heavier, i.e. all phases are included in wave interactions between
adjacent humps for 𝑘𝑙G = 2.5, even though the vast majority of phase changes still appear
around the distribution’s mode. In both cases it is better to avoid parametric distribution
functions to describe the phase changes for the purpose of a good fit. We can observe that
the kernel distributions constitute a good fit to the histograms (shown in Fig. 4.24 as polar
histograms) and are representative for the phase changes.

Instead of choosing 𝜈𝑛 from U(−𝜈/2,𝜈/2) with 𝜈 ∈ [0,1), positional disorder of the
𝑁 discrete scatterers from the underlying periodic setting is now introduced with 𝜈𝑛

being selected from the respective kernel distribution for the corresponding correlation
length. The parameter 𝜈 is chosen to be the positional disorder threshold, 𝜈 = 𝜋/𝑘𝑑, which
ensures that all phases are included in the wave interaction between two adjacent scatterers.

Fig. 4.27 shows the individual attenuation coefficients for the discrete problem as functions
of the scattering strength with positional disorder distributed according to the kernel dis-
tribution and uniformly, for non-dimensional correlation lengths 𝑘𝑙G = 0.5 (top-left panel),
0.7 (top-right panel), 1.1 (bottom-left panel) and 2.5 (bottom-right panel). Furthermore,
the individual attenuation coefficients for the continuous problem and the Berry–Klein
limit are shown for comparison. For the sake of brevity, we refer throughout the remainder



4.3 Connection between continuous and discrete problem 159

of this section to the individual attenuation coefficients of the continuous problem and the
individual attenuation coefficients of the discrete problem as continuous and discrete atten-
uation coefficients, respectively. Also, the constant wavenumber for non-dimensionalisation
of the attenuation coefficients is denoted with 𝑘 for both the discrete and continuous
problem now.
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Figure 4.27: Scaled individual attenuation coefficients for continuous non-homogeneous
string problem (×) and for beaded-string problem as functions of scattering strength for
𝜈 = 𝜋/𝑘𝑑, with positional disorder distributed uniformly (�) and with kernel distribution (◇),
for non-dimensional correlation lengths 𝑘𝑙G = 0.7 (top-left panel), 𝑘𝑙G = 0.9 (top-right panel),
𝑘𝑙G = 1.1 (bottom-left panel) and 𝑘𝑙G = 2.5 (bottom-right panel). Berry–Klein limit (dotted
line) is shown for comparison.

We can see in Fig. 4.27 that the continuous attenuation coefficients are clearly smaller
than the discrete attenuation coefficients with uniformly distributed positional disorder
for all scattering strengths and correlation lengths considered. The discrete attenuation
coefficients with uniformly distributed positional disorder coincide with the Berry–Klein
limit. The continuous attenuation coefficients are proportional to the Berry–Klein limit
for scattering strengths up to i𝜂 ≈ 0.3 for 𝑘𝑙G = 0.7 and 0.9, before they level off for large
moduli of 𝜂 compared to the Berry–Klein limit. This is induced by the falling tendency of
the continuous attenuation coefficients scaled by 𝜖2 for large 𝜖 (visible in Fig. 4.3), whereas
the clustered reflection coefficient moduli show no deviation from the scaling with the
roughness amplitude for large 𝜖 (see Fig. 4.23).

The most remarkable result in Fig. 4.27 is given by the discrete attenuation coefficients for
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the positional disorder distributed with the respective kernel distribution. The discrete
attenuation coefficients are of the same magnitude as the continuous attenuation coefficients
in the small correlation length cases, 𝑘𝑙G = 0.5, 0.7 and 1.1. For the large correlation
length, 𝑘𝑙G = 2.5, the continuous attenuation coefficients are significantly smaller than for
the smaller correlation length cases, while the discrete attenuation coefficients increase
compared to the other cases, and the agreement between these attenuation coefficients
ceases. The (continuous) rough profiles for this large correlation length are comparably
smooth and lead to smaller attenuation coefficients than less correlated profiles with humps
of similar reflection coefficient moduli, which is due to the different phase-change distri-
butions. It is the broader phase-change distribution for 𝑘𝑙G = 2.5, which leads to larger
discrete attenuation coefficients. Also note that in contrast to the continuous attenuation
coefficients, the discrete attenuation coefficients for the kernel distribution do not level off
for large 𝜂 and are scaled with the discrete attenuation coefficients for uniform distribution
(and hence the Berry–Klein limit) for all cases considered.

The results for the comparison between the continuous and discrete problem in Fig. 4.27
are only shown for a selection of correlation lengths. To show the effect of using the same
phase-change distribution in both problems throughout the whole correlation length regime
(and hence a great variety of different phase-change distributions), we compare the results
for the continuous problem from Figs. 4.1 and 4.2 with the attenuation in the discrete
problem with corresponding scattering strengths and assimilated phase-change distributions.

Fig. 4.28 shows the attenuation coefficients as functions of correlation length for the
continuous problem and the discrete problem with positional disorder distributed both
uniformly and with kernel distribution, for roughness amplitudes 𝜖 = 1.0 × 10−2 (left-hand
panel) and 1.0 × 10−1 (right-hand panel).
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Figure 4.28: Scaled individual attenuation coefficients for continuous non-homogeneous
string problem (black solid line) and for beaded-string problem as functions of underlying
correlation length for 𝜈 = 𝜋

𝑘𝑑 , with positional disorder distributed uniformly (�) and with kernel
distribution (◇), for roughness amplitudes 𝜖 = 1.0 × 10−2 (left-hand panel) and 𝜖 = 1.0 × 10−1

(right-hand panel). Berry–Klein limit (grey dotted line) is shown for comparison.
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We can see in Fig. 4.28 the important influence of the phase-change distribution on
the comparability of the continuous and discrete problem. For the discrete problem
with uniformly distributed positional disorder, the attenuation coefficients show a hump
behaviour for increasing correlation lengths, which is qualitatively similar to the attenuation
coefficient curve for the continuous problem, but exceed these values significantly throughout
the correlation length regime 𝑘𝑙G ≤ 2, for which significant attenuation is observable.

Adjusting the positional-disorder distribution using the kernel distribution, which describes
the phase-change distribution in the continuous problem, results in discrete attenuation
coefficients, which leave the Berry–Klein limit and approach the continuous attenuation
coefficients. For both roughness amplitudes, 𝜖 = 1.0 × 10−2 and 1.0 × 10−1, the attenuation
coefficients of the continuous and adjusted discrete problem share the same qualitative
and quantitative features and we get attenuation of the same magnitude. For the smaller
roughness amplitude, 𝜖 = 1.0 × 10−2, the hump of the adjusted discrete problem is slightly
shifted towards the larger correlation lengths. In the intermediate correlation length regime,
the attenuation coefficients for the discrete problem with adjusted positional disorder exceed
the continuous attenuation coefficients and are (due to the broad phase-change distribu-
tions) close to the Berry–Klein limit again. For large correlation lengths, the discrepancy
between continuous and discrete attenuation coefficients is not visible anymore, since the
attenuation coefficients tend to zero for the small clustered reflection coefficient moduli.
Altogether, Fig. 4.28 confirms the finding from Fig. 4.27 that the phase-change-adjustment
approach only leads to representative attenuation for the continuous and discrete problem in
the small correlation length regime, for which the phase-change distribution is not too broad.

In conclusion, assimilating the scattering strength and the phase-change distribution
for the (continuous) non-homogeneous string problem and the (discrete) beaded-string
problem yields similar attenuation for the cases of narrow phase-change distributions
around 𝜋. The phase-change distribution is decisive for the agreement of the attenuation
coefficients for both problems. This finding leads to the conclusion that, apart from the
scattering strength, the phases included in wave interactions of adjacent scatterers play
the key role for attenuation. With the phase-change assimilation, we obtained a regime for
which discrete and continuous scatterers are representative for each other.

4.4 Summary and discussion
After introducing the problems of waves travelling along an inhomogeneous string with a
continuous roughness profile, the step approximation and random-sampling method were
applied to solve the problem in the same way as the in-vacuo beam and floating plate
problems. A numerical cut-off scheme ensured for large roughness amplitudes that the
problem did not become unphysical and allowed larger roughness amplitudes than in the
solution procedure for the previous problems. The transition to large roughness amplitudes
lead to agreement of individual and effective attenuation coefficients, which enhanced our
understanding of the problem, in particular individual and effective wave fields can be
representative for each other even for continuous scattering problems if the scattering is
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strong enough. It should be noted that due to the strong scattering, the effective wave field
is subject to statistical artefacts in the large roughness amplitude regime, since the wave
fields are fully attenuated over the interval under consideration. We circumvented this
by introducing a quantile approach to remove non-representative individual wave fields,
i.e. wave fields which attenuate much slower than the other wave fields and subsequently
dominate the corresponding effective wave field. However, the statistical characteristics of
the random process are lost in the large roughness regime by introducing the numerical
cut-off scheme and the analytical multiple-scale method is not applicable anymore.

Before investigating the connection between wave propagation along strings with con-
tinuous and discrete inhomogeneities, we studied the discrete problem in the setting of a
string beaded with point scatterers. To study the influence of disorder on the attenuation
of waves travelling along a beaded string, we focused on disordering the position of the
beads only and started in passbands for the underlying periodic beads configuration. The
numerical method used for the continuous problem was modified such that it could be
used for solving the discrete problem for given point scatterer configurations. Again, an
averaging routine was used to calculate the effective wave field as average of individual wave
fields for randomly generated point scatterer configurations. We could observe that in this
problem setting, individual and effective wave fields correspond throughout a large regime
of scattering strengths and their attenuation coefficients coincide with the Berry–Klein
limit for sufficiently large positional disorder. For small scattering strengths, effective wave
fields attenuate faster due to wave-cancellation effects (which were responsible for the
discrepancy between the effective and individual wave fields for the continuous problems).

To connect the continuous and discrete string problems, a numerical routine was used to
cluster continuous roughness profiles into single humps and we studied their statistics. We
have seen that the phase-change distribution is important for the attenuation magnitude in
the discrete problem. The maximum attenuation in the discrete problem occurs for phase
changes distributed around 𝜋. We used the phase-change distribution for the continuous
problem to fit a non-parametric distribution. This distribution was employed to describe
the positional disorder in the discrete problem (mean scattering strength was obtained from
clustered humps) and we compared the results with the underlying continuous problem.
The key finding was that the phase-change distribution is decisive. For phase-change
distributions in the correlation-length regime producing maximum attenuation for the
continuous problem, agreement between the attenuation in the continuous and discrete
problem was reached.



Appendix

4.A Multiple-scale method
In the following, we derive the multiple-scale method, which was used in Figs. 4.1–4.3. In
analogy to the multiple-scale methods for the in-vacuo beam and floating plate problems in
Chs. 2 and 3, the coordinates 𝑥 and 𝑥2 denote the coordinates on the local and observation
scales, respectively. Using the multiple-scale expansion from Eqn. (2.82) for the wave
field, 𝑢, describing the string deflection in Eqn. (4.1), and the derivative expansion from
Eqn. (2.83), we obtain the equations, which have to be satisfied by the 𝑢𝑗 , 𝑗 = 0,1,2, by
separating the terms with respect to orders of 𝜖. Here, the representation of the varying
wavenumber from Sec. 4.1, 𝑘(𝑥) = 𝑘(1 + 𝜖𝜅(𝑥)), is used.

Order 𝜖0

The governing equation for the leading-order wave field, 𝑢0, is the spatial Helmholtz
equation for the constant wavenumber 𝑘,

𝜕2
𝑥𝑢(𝑥,𝑥2) + 𝑘2𝑢(𝑥,𝑥2) = 0, 𝑥 ∈ (−∞,∞), (4.A.1)

which describes the propagation of a wave along an uniform string.
To be consistent with the right incident wave for the finite roughness interval problem
in Sec. 4.1 and in analogy the multiple-scale approximations for the in-vacuo beam and
floating plate problems, we only consider a right-travelling wave at leading order and
neglect the left-travelling wave. This gives the wave field at leading order,

𝑢0(𝑥,𝑥2) = 𝐴(𝑥2) ei𝑘𝑥. (4.A.2)

To determine the complex-valued amplitude 𝐴, the higher-order equations have to be
solved.

Order 𝜖1

The order 𝜖 terms give the governing equation for 𝑢1 to be

𝜕2
𝑥𝑢1(𝑥,𝑥2) + 𝑘2𝑢1(𝑥,𝑥2) = −2𝑘2𝜅(𝑥)𝑢0(𝑥,𝑥2). (4.A.3)

To solve Eqn. (4.A.3), the force on the first-order wave field, 𝑢1, described by the product
of the leading-order wave field, 𝑢0, and the random fluctuation, 𝜅, is replaced by a point

163
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load with the Dirac delta distribution at the source point 𝑥̌, i.e.

𝜕2
𝑥𝐺(|𝑥− 𝑥̌|) + 𝑘2𝐺(|𝑥− 𝑥̌|) = 𝛿(𝑥− 𝑥̌), 𝑥 ∈ (−∞,∞). (4.A.4)

The Green’s function solving Eqn. (4.A.4) can easily be derived to be

𝐺(|𝑥− 𝑥̌|) = i
2𝑘

ei𝑘|𝑥−𝑥̌|. (4.A.5)

Fig. 4.A.1 shows the Green’s function (left-hand panel) from Eqn. (4.A.5) and its first
derivative (right-hand panel), for the constant wavenumber 𝑘 scaled to unity.
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Figure 4.A.1: Green’s function (left-hand panel) and its first derivative (right-hand panel)
for Helmholtz equation with point load at source point 𝑥̌ = 0, for 𝑘 scaled to unity

The approach with Green’s function leads to the solution of Eqn. (4.A.3) for a given 𝜅 to
be

𝑢1(𝑥,𝑥2) = −2𝑘2
ˆ ∞

−∞
𝐺(|𝑥− 𝑥̌|)𝜅(𝑥̌)𝑢0(𝑥̌,𝑥2) d𝑥̌. (4.A.6)

Order 𝜖2

Collecting the terms at order 𝜖2 gives for 𝑥 ∈ (−∞,∞)

𝜕2
𝑥𝑢2(𝑥,𝑥2) + 𝑘2𝑢2(𝑥,𝑥2) = −2𝑘2(𝜅(𝑥))2𝑢0(𝑥,𝑥2) − 2𝜕𝑥𝜕𝑥2𝑢0 − 2𝑘2𝜅(𝑥)𝑢1(𝑥,𝑥2), (4.A.7)

which is the governing equation for the second-order wave field, 𝑢2. Taking the ensemble
average of Eqn. (4.A.7) leads to

𝜕2
𝑥⟨𝑢2(𝑥,𝑥2)⟩ + 𝑘2⟨𝑢2(𝑥,𝑥2)⟩ = −2𝑘2⟨(𝜅(𝑥))2𝑢0(𝑥,𝑥2)⟩ − 2⟨𝜕𝑥𝜕𝑥2𝑢0⟩ − 2𝑘2⟨𝜅(𝑥)𝑢1(𝑥,𝑥2)⟩.

(4.A.8)
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The averaged solution ⟨𝑢2⟩ can be found by employing the ansatz ⟨𝜑2⟩ = 𝐹 (𝑥2)ei𝑘𝑥. The
left-hand side of Eqn. (4.A.8) vanishes, hence Eqn. (4.A.8) can be written as

−𝑘2ei𝑘𝑥⟨𝐴(𝑥2)𝜅(𝑥)𝜅(𝑥)⟩−2i𝑘ei𝑘𝑥⟨𝜕𝑥2𝐴(𝑥2)⟩+4𝑘4ei𝑘𝑥

∞̂

−∞

⟨𝜅(𝑥)𝜅(𝑥̌)𝐴(𝑥2)⟩𝐺(|𝑥−𝑥̌|) d𝑥̌ = 0.

(4.A.9)
Under the assumption of independence of the leading-order wave amplitude, 𝐴(𝑥2), from
𝜅(𝑥)𝜅(𝑥̌) appearing on the local scale, i.e. ⟨𝐴(𝑥2)𝜅(𝑥)𝜅(𝑥̌)⟩ = ⟨𝐴(𝑥2)⟩⟨𝜅(𝑥)𝜅(𝑥̌)⟩, the
correlation length representation from Eqn. (2.70) for 𝜅 can be used to simplify Eqns. (4.A.8)
and (4.A.9) to

⟨𝜕𝑥2𝐴(𝑥2)⟩ = i
(︂
𝑘

2 + 2𝑘3𝜁

)︂
⏟  ⏞  

=:𝜁

𝐴(𝑥2), (4.A.10)

where the complex constant 𝜁 is given by

𝜁 =
ˆ ∞

−∞
𝐺(|𝜉|)ei𝑘𝜉𝜌(|𝜉|) d𝜉. (4.A.11)

For the calculation of 𝜁, the integral is calculated numerically using an adaptive quadrature
scheme. The solution of the ordinary differential equation describing the averaged leading-
order wave amplitude in Eqn. (4.A.10) is

⟨𝐴(𝑥2)⟩ = 𝐴0 ei𝜁𝑥2 , (4.A.12)

where 𝐴0 is a constant and the complex constant 𝜁 is defined in Eqn. (4.A.10). Hence, the
effective attenuation coefficient, 𝑄eff , is given by

𝑄eff = 𝜖2Im(𝜁). (4.A.13)



166 Chapter 4 Wave attenuation in inhomogeneous strings: From continuous to discrete scatterers

4.B Direct numerical scheme
In Maurel et al. 2010, a direct numerical scheme is presented to calculate the wave field 𝑢(𝑥)
along a string with a finite number of discrete scatterers of the same scattering strength.
We apply this approach to our problem of 𝑁 discrete scatterers of scattering strength 𝜂,
positioned at 𝑥 = 𝑥𝑛, 𝑛 = 1, . . . ,𝑁 , and an incident right-travelling wave of unit amplitude.
Replacing the amplitude of the left-travelling waves in the wave field representation in
Eqn. (4.8) by 𝑏𝑛 = 𝑎𝑛𝑍𝑛, the wave field between adjacent scatterers can be written as

𝑢(𝑥) = 𝑎𝑛

(︁
ei𝑘(𝑥−𝑥𝑛) + 𝑍𝑛e−i𝑘(𝑥−𝑥𝑛)

)︁
, 𝑥𝑛−1 ≤ 𝑥 ≤ 𝑥𝑛. (4.B.1)

To derive a recurrence relation for 𝑍𝑛, a ghost scatterer is appended at the position of
the last scatterer, 𝑥𝑁+1 = 𝑥𝑁 . It follows that 𝑍𝑁+1 has to be zero to meet the radiation
condition for 𝑥 → ∞. Applying the continuity of deflection and continuity of force
conditions (4.9), the (backwards) recurrence relation for 𝑍𝑛 is

𝑍𝑛 = −𝜂e−i𝑘(𝑥𝑛+1−𝑥𝑛) + (1 + 𝜂) ei𝑘(𝑥𝑛+1−𝑥𝑛)𝑍𝑛+1
(𝜂 − 1) 𝑒−i𝑘(𝑥𝑛+1−𝑥𝑛) + 𝜂ei𝑘(𝑥𝑛+1−𝑥𝑛)𝑍𝑛+1

, 𝑛 = 𝑁, . . . , 0, (4.B.2)

where 𝑍𝑁+1 = 0. Starting with 𝑎0 = ei𝑘𝑥, which describes the incident wave of unit
amplitude, the recurrence relation in Eqn. (4.B.2) allows to calculate the wave amplitudes
of the right-travelling waves,

𝑎𝑛+1 = (𝜂𝑍𝑛 + 𝜂 + 1) e−i𝑘(𝑥𝑛+1−𝑥𝑛)𝑎𝑛, 𝑛 = 1, . . . , 𝑁, (4.B.3)

and the full wave field is determined. Comparisons between this direct numerical scheme
and the discrete iterative scheme, we used throughout Ch. 4, are presented in Fig. 4.6.
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4.C Coherent potential approximation
The coherent potential approximation (CPA) is a widely used method in describing effective
wave propagation in random media, see Sheng 2006. It is based on the assumption that a
cell, which is embedded in the effective medium, is transparent to the propagating wave
if the cell has the same properties as the effective medium. A CPA method to describe
the effective wave propagation along an one-dimensional perturbed periodic structure was
developed by Maurel et al. (2010). In the following, we introduce this method without
firstly dealing with the perfectly periodic case (as done in Maurel et al. 2010). Therefore, we
focus on the derivation of the CPA for the perturbed periodic setting from the beginning on.

We assume that the cell [(𝑛− 1)𝑑+ 𝑧, 𝑛𝑑+ 𝑧], which contains the (𝑛+ 1)-th scatterer at
𝑥𝑛 = (𝑛+ 𝜈𝑛+1)𝑑, is embedded in the effective medium. The effective medium is obtained
by averaging over all realisations of the scatterers but the scatterer in the isolated cell.
The location of the embedded cell is specified with the parameter 𝑧, which can be varied as
long as it contains the (𝑛+ 1)-th scatterer in the inside, i.e. 𝜈𝑛+1𝑑 < 𝑧 < 𝑑− 𝜈𝑛+1𝑑. The
parameter 𝑧 can be set to any value in this interval without the problem to be changed.
The perturbation of the single scatterer in the embedded cell from the underlying periodic
position leads to reflection and transmission at the cell interfaces. (Note that 𝜈𝑛+1 = 0
gives no reflection or transmission at the interfaces since the cell is then equivalent to the
effective medium and hence transparent for the incident wave.) In the effective medium,
right- and left-going waves appear propagating as 𝑔𝜈(𝑦)ei𝑄̃𝑥 and 𝑓𝜈(𝑦)e−i𝑄̃𝑥, respectively.
In the case of 𝜈𝑛 := 𝜈𝑛+1 ̸= 0, the wave field 𝜈(𝑥) is

𝜈(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑔𝜈(𝑦)ei𝐾𝑥 +𝑅𝜈(𝜈𝑛)𝑓𝜈(𝑦)e−i𝐾𝑥, 𝑥 < (𝑛− 1)𝑑+ 𝑧,

𝑎1ei𝑘𝑥 + 𝑏1e−i𝑘𝑥, (𝑛− 1)𝑑+ 𝑧 ≤ 𝑥 < (𝑛+ 𝜈𝑛)𝑑,
𝑎2ei𝑘𝑥 + 𝑏2e−i𝑘𝑥, (𝑛+ 𝜈𝑛)𝑑 ≤ 𝑥 < 𝑛𝑑+ 𝑧,

𝑇𝜈(𝜈𝑛)𝑔𝜈(𝑦)ei𝐾𝑥, 𝑥 ≥ 𝑛𝑑+ 𝑧,

(4.C.1)

where 𝐾 is the wavenumber in the effective medium. Using the continuity of 𝜈(𝑥) and
𝜕𝑥𝜈(𝑥) at the cell interfaces 𝑥 = (𝑛− 1)𝑑+ 𝑧 and 𝑥 = 𝑛𝑑+ 𝑧 as well as the continuity of
𝜈(𝑥) and force conditions at the scatterer position 𝑥𝑛 = (𝑛+ 𝜈𝑛)𝑑, we obtain[︁

(1 − 𝜂)𝐴𝜈 − 𝜂𝐵𝜈e−2i𝜈𝑛𝑘𝑑
]︁
𝑇𝜈(𝜈𝑛) −𝐵𝜈e−2i𝐾𝑛𝑑𝑅𝜈(𝜈𝑛) = 𝐴𝜈ei(𝑘−𝐾)𝑑, (4.C.2a)[︁

𝜂𝐴𝜈e2i𝜈𝑛𝑘𝑑 + (1 + 𝜂)𝐵𝜈

]︁
𝑇𝜈(𝜈𝑛) −𝐴𝜈e−2i𝐾𝑛𝑑𝑅𝜈(𝜈𝑛) = 𝐵𝜈e−i(𝑘−𝐾)𝑑 (4.C.2b)

with

𝑔𝜈(𝑦) = 𝐴𝜈ei(𝑘−𝐾)𝑦 +𝐵𝜈e−i(𝑘−𝐾)𝑦, (4.C.3a)
𝑓𝜈(𝑦) = 𝑔𝜈(𝑑− 𝑦) (4.C.3b)
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and

𝑎1 = 𝑇𝜈(𝜈𝑛)ei(𝐾−𝑘)𝑛𝑑
[︁
(1 − 𝜂)𝐴𝜈 − 𝜂𝐵𝜈e−2i𝜈𝑛𝑘𝑑

]︁
, 𝑎2 = 𝐴𝜈𝑇𝜈(𝜈𝑛)ei(𝐾−𝑘)𝑛𝑑, (4.C.3c)

𝑏1 = 𝑇𝜈(𝜈𝑛)ei(𝐾+𝑘)𝑛𝑑
[︁
𝜂𝐴𝜈e2i𝜈𝑛𝑘𝑑 + (1 + 𝜂)𝐵𝜈

]︁
, 𝑏2 = 𝐵𝜈𝑇𝜈(𝜈𝑛)ei(𝐾+𝑘)𝑛𝑑. (4.C.3d)

To determine the effective wavenumber 𝐾 from Eqns. (4.C.2), we have to apply the CPA
assumption now, which was not used in the derivation of Eqns. (4.C.2) yet. The CPA
idea here is that the embedded cell is transparent in the effective medium, if the scatterer
position inside the cell is averaged with respect to all realisations, i.e.

⟨𝑅𝜈⟩ = 0, (4.C.4a)
⟨𝑇𝜈⟩ = 1, (4.C.4b)

where the average with respect to all scatterer positions is ⟨·⟩ = 2/𝜈
´ 𝜈

−𝜈 · d𝜈𝑛. Taking the
average of Eqns. (4.C.2) and comparisons with the solution for the 𝑑-periodic host medium
result in (︁

1 − 𝜂 − ei(𝑘−𝐾)𝑑
)︁
𝐴𝜈 − 𝜂 sinc(𝜈𝑘𝑑)𝐵𝜈 = 0, (4.C.5a)

𝜂 sinc(𝑘𝑑𝜈)𝐴𝜈 +
(︁

1 + 𝜂 − e−i(𝑘+𝐾)𝑑
)︁
𝐵𝜈 = 0. (4.C.5b)

Eqns. (4.C.5) can be solved for 𝐾 using the dispersion relation for the wavenumber of the
Floquet mode, Eqn. (4.22a). Hence, the dispersion relation for the effective wavenumber is

cos(𝐾𝑑) = cos(𝑄̃𝑑) + 1
2𝜂

2ei𝐾𝑑
(︀
1 − sinc2(𝜈𝑘𝑑)

)︀
. (4.C.6)

For a detailed derivation of the dispersion relation for the effective wavenumber, we refer
to Maurel et al. 2010.



CHAPTER 5

Localisation of waves in the audible frequency range travelling
along a beam with discrete notches

We focused on beams in vacuo with continuous profile variations in Ch. 2 and established a
connection between continuous and discrete scattering for inhomogeneous string problems
in Ch. 4. We have seen that discrete scatterers consistently lead to attenuation, if their
positions, which ensure passband states in the periodic configuration, are disordered. Now,
we change over to a beam in vacuo again. Instead of dealing with continuous profile
variations, we deal with discrete scatterers, which are realised by discrete notches cut
into the beam. The length of the notches shall be of the order of the waves travelling
along the beam and we focus on a beam with several notches (of uniform depth) located
periodically, such that the distance between adjacent notches is the same as the (uniform)
notch length. It is well known that this geometry yields a pass- and stopband behaviour
for uniform notch depth of all notches, see Langley 1995. Our goal in this study is to
achieve localisation of the travelling wave by notch depth variations. This corresponds to
scattering strength variations in an underlying periodic structure, for which in the string
problem only enhanced scattering and no localisation is observed, see Ottarsson and Pierre
1997 for the study of bead-mass disorder in a beaded string.

After introducing the problem setting in Sec. 5.1, we will show the pass- and stopband
behaviour for the periodic problem in Sec. 5.2. The beam is modelled in analogy to Ch. 2
as an Euler–Bernoulli beam. The numerical calculations to obtain the wave fields and
the scattering characteristics are performed with the step-approximation method from
Sec. 2.2. After this preliminary study, we will introduce disorder into the notch depths and
investigate the effect of disorder in the notch depths on the wave propagation along the
beam.

Comparisons with results from computationally expensive finite element (FE) simulations
performed with Abaqus FEA, a software suite for computer-aided design, engineering and
finite element analysis, motivate the transition from the Euler–Bernoulli beam model to a
Timoshenko beam model in Sec. 5.4. This transition is due to the frequency range of the
waves in the audible kHz-regime, which we consider in our problem setting and for which
the Timoshenko beam theory yields more accurate results than the Euler–Bernoulli beam
theory. We will investigate the pass- and stopband behaviour in the periodic setting for

169
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the Timoshenko beam then as well as the effect of disordered notch depths. To lay the
theoretical foundation of experiments in order to confirm the localisation of waves in the
audible frequency range travelling along the beam with discrete notches, we extend the
problem formulation to be time-dependent. For this, we use the Fourier transform to allow
incoming waves with a frequency spectrum and use our numerical method for the analysis.
Finally, a summary and discussion of the results are given in Sec. 5.5.

5.1 Problem formulation
For the localisation investigations in this chapter, we consider a non-uniform beam. Unlike
in the studies of the beam in vacuo in Ch. 2, the non-uniformity is not induced by continuous
variations in the material properties or its geometry, but by discrete thickness variations.
A long Aluminium beam with a small, rectangular cross-section serves as a model, and we
choose the constant beam width to be 𝑤 = 12 mm and the beam thickness for the uniform
beam to be ℎ = 6 mm. The cross-sectional area of the beam, 𝐴(𝑥), and the moment of
inertia of the beam cross section, 𝐼(𝑥), are then given by Eqns. (2.120), i.e.

𝐴(𝑥) = 𝑤 ℎ(𝑥),

𝐼(𝑥) = 𝑤 ℎ(𝑥)3

12 .

The Aluminium beam has a Young’s modulus of 𝐸 = 69.5 GPa = 69.5 × 109 N/m2 and den-
sity 𝜌 = 2.7 × 103 kg/m3 = 2.7 g/cm3, see e.g. Ostermann 2014. These material properties
shall be uniform along the beam. The beam mass per unit length, 𝑔(𝑥), is then given by the
product of mass density and cross-sectional area, and the beam rigidity, 𝑏(𝑥), is the prod-
uct of Young’s modulus and the moment of inertia of the beam cross section, see Eqns. (2.7).

The discrete thickness variations are included by notches over the whole beam width,
which are cut vertically into beam, reducing the beam thickness ℎ. A finite number of
notches, 𝑁 , is used and each notch shall be of a constant notch depth. The depth of the
𝑛th notch is denoted with 𝑑𝑛. We restrict ourselves to notches of constant length 𝑙 and
constant distance between adjacent notches, which is chosen to be of the same length, 𝑙.
The coordinate of the left end of the 𝑛th notch is denoted with 𝑥𝑛, 𝑛 = 1, . . . , 𝑁 . Fig. 5.1
shows a section of the beam with discrete notches schematically.
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dn−1

l

l
xn

dn

l

l
xn+1

dn+1

l
h

Figure 5.1: Schematical section of beam model with discrete notches

We consider two problems in the following. Firstly, we have a periodic notch configuration,
which means that all 𝑁 notches are of the same depth 𝑑0, i.e. 𝑑𝑛 = 𝑑0, 𝑛 = 1, . . . , 𝑁 . This
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periodic configuration helps us to understand the influence of the notch geometry on the
wave propagation along the beam and the pass- and stopband behaviour for the frequency
spectrum. It also serves as a starting point for our studies of the impact of deviations
from the periodic configuration with notch depth variations. For practical feasibility with
experiments, we only consider deviations leading to increasing notch depths. The notch
depth disorder is introduced with random variables 𝜖𝑛, 𝑛 = 1, . . . , 𝑁 , which describe the
relative increase of the 𝑛th notch depth from the underlying periodic configuration, i.e.

𝑑𝑛 = (1 + 𝜖𝑛) 𝑑0, 𝑛 = 1, . . . , 𝑁. (5.1)

The random variables 𝜖𝑛, 𝑛 = 1, . . . , 𝑁 , are randomly chosen from the uniform distribution,
𝜖𝑛 ∈ U(0,𝜖). (Note that the choice 𝜖𝑛 = 0, 𝑛 = 1, . . . , 𝑁, gives the periodic problem.) The
initial depth in the periodic configuration, 𝑑0, is restricted not to be larger than 2.5 mm
for this randomisation scheme, which ensures that the beam thickness does not get smaller
than 1 mm at any point for 𝜖 = 1.

5.2 Time-harmonic setting with Euler–Bernoulli beam
We start the investigation of the posed problem with the Euler–Bernoulli beam model,
which we studied thoroughly in Ch. 2. Since we assume to have a long beam with a finite
number of notches placed far away from the ends of the beam, we can use, similarly to the
previous problems, an infinite beam, for which we do not have to deal with interferences
by the beam boundaries. We can use the step-approximation method for the in-vacuo
beam problem, which was introduced in Sec. 2.2, to perform the numerical calculations to
obtain the wave fields and the scattering characteristics. This method is computationally
very efficient, since we do not have to approximate the stepped thickness profile and use
a resolution as high as in the continuous problem. Each interval length in the numerical
method is determined by the respective notch length, since only each jump in the beam
thickness corresponds to a scattering interface.

5.2.1 Periodic notch configuration

Firstly, we study the pass- and stopband behaviour of the notched beam problem. For this,
we analyse the eigenvalues of the transfer matrix P. The transfer matrix for the in-vacuo
beam problem is defined in Eqns. (2.27) and (2.28). To take the periodicity into account, we
analyse the transfer matrix, which describes the propagation of a wave along one notch and
the subsequent beam section of length 𝑙 separating adjacent notches. This arrangement de-
fines the periodic structure of the underlying problem with the periodic notch configuration.

Fig. 5.2 shows the eigenvalues of the transfer matrix, 𝜆, for 𝑑0 = 1.0 mm (left-hand
panel) and 2.0 (right-hand panel) for frequencies 𝑓 ∈ (0, 50 kHz). The ordinary frequency
𝑓 is associated with the angular frequency 𝜔 via

𝑓 = 𝜔

2𝜋 . (5.2)
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Until specified again, the notch length is set to 𝑙 = 3.0 cm.

d0 = 1.0mm
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Figure 5.2: Eigenvalues of transfer matrix for 𝑑0 = 1.0 mm (left-hand panel) and 𝑑0 = 2.0 mm
(right-hand panel), for frequencies 𝑓 ∈ (0 kHz, 50 kHz)

We can observe in Fig. 5.2 that the eigenvalues pass along the unit circle, form conjugate
pairs and leave the unit circle, appearing as (real) reciprocal pairs, as the eigenvalues get
close to the real axis, for both periodic notch depths, 𝑑0 = 1.0 mm and 2.0 mm. We could
already observe this behaviour for the beaded-string problem in Fig. 4.8. For 𝑑0 = 1.0 mm,
the eigenvalues depart around the frequencies 𝑓 ≈ 12 kHz and 48 kHz, suggesting the
existence of stopbands around these frequencies, see Sec. 4.2. It is interesting to note and
novel compared to the beaded-string problem that the maximum deviation from the unit
circle depends on the frequency regime. The reciprocal pairs for 𝑓 ≈ 12 kHz depart farther
away from the unit circle than for 𝑓 ≈ 48.5 kHz. The larger moduli of the reciprocal pairs
for 𝑓 ≈ 12 kHz deviate from the unit circle by about 0.1 and for 𝑓 ≈ 48.5 kHz by about
0.05 only.

For 𝑑0 = 2.0 mm, the maximum deviation from the unit circle is attained for slightly
smaller frequencies, 𝑓 ≈ 10 kHz and 𝑓 ≈ 43 kHz for the negative and positive real axis,
respectively. We can see that the larger notch depth does not only lead to an increase of
deviation of the eigenvalues with the larger modulus from the unit circle close to the real
axis, but the eigenvalues for 𝑓 ≈ 43 kHz deviate farther from the unit circle than those for
𝑓 ≈ 10 kHz now (with maximum deviations of 0.25 and 0.19, respectively). To give us a
better understanding of this phenomenon, the left-hand panel of Fig. 5.3 shows the moduli
of the eigenvalues of the transfer matrix, which lie within the unit circle, as functions of
the frequency 𝑓 , for notch depths 𝑑0 = 1.0 mm, 2.0 mm and 3.0 mm. The right-hand panel
of Fig. 5.3 shows the same moduli of the eigenvalues of the transfer matrix as functions of
the frequency 𝐾 = 2𝑘𝑙/𝜋, which is used to characterise Bragg resonances, also for notch
depths 𝑑0 = 1.0 mm, 2.0 mm and 3.0 mm.
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Figure 5.3: Left-hand panel: Eigenvalues of transfer matrix as functions of frequency, for
𝑑0 = 1.0 mm (light grey), 𝑑0 = 2.0 mm (dark grey) and 𝑑0 = 3.0 mm (black). Left-hand panel:
Eigenvalues of transfer matrix as functions of Bragg’s value, for 𝑑0 = 1.0 mm (light grey),
𝑑0 = 2.0 mm (dark grey) and 𝑑0 = 3.0 mm (black).

We can observe in the left-hand panel of Fig. 5.3 that the eigenvalue moduli shown are
unity for most of the frequency regime, for 𝑑0 = 1.0 mm, i.e. we have a passband there. The
eigenvalues only depart from unity for 𝑓 ≈ 12 kHz and slightly less for 𝑓 ≈ 48 kHz, which
could already be observed in Fig. 5.2, defining the stopband in this regime. For increasing
notch depth, the deviation from unity increases and the frequency bands, for which this
is evident, become broader and travel towards the lower end of the frequency regime.
In particular for 𝑑0 = 3.0 mm, the considered eigenvalue moduli are only 0.8 and 0.6,
respectively, and they depart from unity for 𝑓 ∈ (7 kHz,12 kHz) and 𝑓 ∈ (30 kHz,43 kHz),
respectively, which define the stopbands. The minima are attained for 𝑓 ≈ 9 kHz and
𝑓 ≈ 36 kHz, indicating that the attenuation is strongest for these values. It is clear that
this behaviour is confirmed in the right-hand panel of Fig. 5.3, since the same eigenvalue
moduli are shown, only as functions of 𝐾. For 𝑑0 = 1.0 mm, the eigenvalue moduli
shown depart from unity for values of 𝐾 around the integers 1 and 2, which are the
Bragg resonances, see Sec. 4.2.1. The Bragg resonances are generated by the underlying
periodic structure with moderate scattering strength. For increasing 𝑑0, the resonances
move to the left of the values, known as Bragg resonances. Whereas the second Bragg
resonance leads to smaller deviation of the eigenvalue moduli from unity than the first
Bragg resonance for the smallest periodic notch depth under consideration, 𝑑0 = 1.0 mm,
it is clearly visible that the second Bragg resonance leads to more deviation than the first
one for increasing notch depth, such that the deviation is twice as much as for the first
resonance for 𝑑0 = 3.0 mm. In particular, the eigenvalues in the stopbands are not of
the same magnitude suggesting that the maximum attenuation differs for the two stopbands.

In addition to the studies in Ch. 4, we do not only start with passband states and
analyse the behaviour when introducing disorder, but we also take stopbands into account
for our analysis. The audible range with the frequency spectrum 𝑓 ≤ 25 kHz provides us
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with two large passbands, which are separated by a stopband, and we use this frequency
spectrum for the following analysis. Before we get to the results for disordered notch
depths, we use our numerical method to get quantitative results for the periodic problem.
Fig. 5.4 shows the moduli of the total reflection coefficients (reflection over whole domain
with notches) and the attenuation coefficients, 𝑄 (measuring the exponential decay via
the least-squares minimisation routine and Eqn. (2.77b) over the domain with notches),
of the wave fields as functions of the frequency in the audible range, for notch depths
𝑑0 = 1.0 mm, 1.5 mm, 2.0 mm and 2.5 mm. The number of notches is set to 24, which is
sufficiently large for capturing the pass- and stopbands accurately, hence the notches (with
length 𝑙 = 3.0 cm) occupy a domain of 141 cm in total.
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Figure 5.4: Total reflection coefficient moduli (black) and attenuation coefficients (blue) as
functions of frequency for periodic notch configuration, for notch depths 𝑑0 = 1.0 mm (top-left
panel), 𝑑0 = 1.5 mm (top-right panel), 𝑑0 = 2.0 mm (bottom-left panel) and 𝑑0 = 2.5 mm
(bottom-right panel)

We can observe in Fig. 5.4 that the stopbands for 𝑑0 = 1.0 mm and 2.0 mm (characterised
by full reflection) exist for the same values as suggested by the non-unity eigenvalues of
the transfer matrix in Fig. 5.3. As seen previously, the stopbands move towards smaller
frequencies for increasing notch depth and become broader. The oscillatory resonances,
which are visible for the total reflection coefficient moduli, correspond to resonating
harmonics of lower frequencies. These can be found in a variety of problems, e.g. in plate-
fluid interactions, see Montiel et al. 2012. The attenuation coefficients, which are shown for
comparison, reproduce the stopbands predicted by the eigenvalues of the transfer matrix
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for 𝑑0 = 1.0 mm and 2.0 mm, showing maximum attenuation for exactly the frequencies as
predicted by the eigenvalues. The attenuation coefficients provide a good measurement since
they are less sensitive to the resonating harmonics, which lead to only small attenuation
over the whole domain with notches.

5.2.2 Random variations
After the detailed investigation of the pass- and stopband behaviour for the periodic notch
configuration, we now come to the main topic of this study. By introducing disorder into
the notch configurations, we seek for disappearing passbands, i.e. minimising transmitted
wave energy, and localisation of the incoming waves. As explained in Sec. 5.1, disorder
will be induced by the uniformly distributed random variables 𝜖𝑛, 𝑛 = 1, . . . , 𝑁 , leading
to relative increases of the notch depths from the underlying periodic configuration (see
Eqn. (5.1)).

For the first result, we investigate the effect of different magnitudes of notch depth
variations for underlying periodic notch configurations with different periodic notch depths
𝑑0. Fig. 5.5 shows total reflection coefficient moduli as functions of the frequency in the
audible range for increasing 𝜖 and underlying periodic notch depths 𝑑0 = 1.0 mm (top-left
panel), 1.5 mm (top-right panel), 2.0 mm (bottom-left panel) and 2.5 mm (bottom-right
panel). Results are shown using 100 different notch depth configurations from the underly-
ing periodic configuration (𝜖 = 0) and only the notch depths are increased for increasing 𝜖,
i.e. we use 100 different realisations of standard uniformly distributed random variables
and only scale them with 𝜖 for each case of 𝜖 shown. We then take the median of the
calculated total reflection coefficient moduli to visualise the results. Due to possibly very
strong scattering at single notches, attenuation coefficients describing the exponential decay
of wave energy might be inaccurate and are therefore not shown for comparison anymore.
We can observe in Fig. 5.5 that in the case of the underlying periodic notch configuration
with the smallest notch depth, 𝑑0 = 1.0 mm, introducing notch depth disorder does not
lead to significantly different results. Whilst the notch depth disorder does only produce
slightly larger total reflection in the passbands for frequencies smaller than in the stopband,
they shift the appearing resonating harmonics in the second passband slightly to the left.
This shift is also noticeable for the stopband, which slightly moves towards the smaller
frequencies for increasing notch depth disorder.
For 𝑑0 = 1.5 mm, we can observe that the largest notch depth variation already leads to a
significant increase of the reflection. For 𝑓 = 25 kHz the full reflection coefficient increases
to approximately 0.6, but nevertheless, still most of the wave energy can travel along the
beam for frequencies in the original passbands away from the stopband. In comparison to
the first case, the stopband shift to the left for large notch depth variations is larger. It is
remarkable that for higher frequencies in the original stopband, the stopband feature does
not exist anymore and waves can travel along the beam, although they are partly reflected.
Note that 𝜖 = 1.0 here already might lead to configurations, for which notches are as deep
as half of the beam thickness. However, this is still not sufficient to yield full reflection in
the original passbands. But this is achieved for 𝑑0 = 2.0 mm.
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Figure 5.5: Total reflection coefficient moduli as functions of frequency for 𝜖 = 0 (black),
𝜖 = 0.05 (cyan), 𝜖 = 0.1 (magenta), 𝜖 = 0.2 (green), 𝜖 = 0.5 (blue) and 𝜖 = 1.0 (red), for
underlying periodic notch depths 𝑑0 = 1.0 mm (top-left panel), 𝑑0 = 1.5 mm (top-right panel),
𝑑0 = 2.0 mm (bottom-left panel) and 𝑑0 = 2.5 mm (bottom-right panel)

In the large frequency regime, 𝜖 = 1.0 provides enough disorder that incoming waves are
fully reflected for 𝑑0 = 2.0 mm. In contrast to this observation, for small frequencies the
reflection is indeed larger than in the underlying periodic configuration, but the reflection
coefficient moduli only reach up to 0.7 and diminish rapidly for frequencies smaller than
1 kHz. Interestingly, the original stopband fully vanishes, but for frequencies in the original
stopband only a small proportion of the incoming waves is transmitted for 𝜖 = 1.0. But we
also note that 𝜖 = 0.5 is far away from achieving full reflection in the original passbands
and leads to reflection of the same magnitude as 𝜖 = 1.0 for 𝑑0 = 1.5 mm.

For 𝑑0 = 2.5 mm, 𝜖 = 0.5 is already sufficient to lead to full reflection for high frequencies,
𝑓 ≥ 20 kHz. For smaller frequencies, this values of disorder leads to full reflection only for
frequencies from the shifted original stopband. But we can see that increasing the disorder
to 𝜖 = 1.0 yields full reflection for frequencies larger than 𝑓 > 5 kHz.

We want to study the influence of the notch depth disorder magnitude, 𝜖, more thor-
oughly in the following. For this, we focus on beams with an underlying periodic notch
configuration with notch depths 𝑑0 = 2.0 mm, since they provide full reflection of the
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original passband in the high frequency regime for 𝜖 ≤ 1.0.Fig. 5.6 shows the statistical
distribution of the total reflection coefficient moduli as functions of the notch depth disorder
magnitude 𝜖 in a box-and-whisker plot, for 𝑑0 = 2.0 mm. Results are shown for 𝑓 = 5 kHz
(top-left panel), 10 kHz (top-right panel), 15 kHz (bottom-left panel) and 20 kHz (bottom-
right panel). This yields frequencies from the first passband (5 kHz), the stopband (10 kHz)
and the second passband (15 kHz and 20 kHz) in the underlying periodic configuration. In
analogy to the previous box-and-whisker plots, the boxes indicate the intervals containing
the central 50% of the data (25% to 75% quantiles), and the horizontal lines within them
denote the median values (50% quantiles), which were used in Fig. 5.5 to visualise the
results. The whiskers indicate the remaining sampled data lying in the range of 1.5 times
the height of the central box next to the quantiles. Data points outside this range are
considered to be outliers and are shown as pluses.
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Figure 5.6: Box-and-whisker plot of total reflection coefficient moduli as functions of notch
depth disorder magnitude for 𝑑0 = 2.0 mm and 𝑓 = 5 kHz (top-left panel), 𝑓 = 10 kHz (top-right
panel), 𝑓 = 15 kHz (bottom-left panel) and 𝑓 = 20 kHz (bottom-right panel)

Fig. 5.6 gives a good impression of the effects of introducing disorder on the first and second
passband as well as the stopband. The top-left panel shows the total reflection coefficient
moduli for 𝜖 = 0, 0.1, . . . , 1.4 for 𝑓 = 5 kHz. For the underlying periodic configuration,
𝜖 = 0, the reflection coefficient moduli are close to zero, hence we are in a passband. When
increasing the disorder magnitude, the reflection coefficient moduli increase. For 𝜖 ≈ 0.7,
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the first notch depth configurations exist, for which |𝑅| reaches up to 0.9 and for 𝜖 ≥ 1.0,
full reflection occurs. However, the distributions of the reflection coefficient moduli are
broad for 𝑓 = 5 kHz, which lies in the first passband, and the median value does not
exceed 0.8, not even for the largest disorder magnitude under consideration, 𝜖 = 1.4, and a
non-negligible number of configurations exist, for which barely any attenuation is apparent.
For 𝑓 = 10 kHz, we are in a stopband. This state in the stopband is robust with respect to
small disorder magnitudes and the reflection coefficient moduli remain one for 𝜖 ≤ 0.5. For
𝜖 = 0.6, the first configurations exist, for which the full reflection over the notched domain
is lost, and increasing the disorder further, the characteristic configuration (yielding the
median total reflection) gives |𝑅| ≈ 0.8 for 𝜖 = 0.8 and 0.9. In this medium disorder
magnitude regime, the disorder provides notch depth configurations, for which most of the
wave energy travels along the whole notched domain, see the whisker for 𝜖 = 0.8 reaching
down to |𝑅| ≈ 0.2 and the outliers for 𝜖 ≤ 1.3. On average, disorder magnitudes larger
than one lead to configurations, which fully reflect the incoming waves on average again,
and for 𝜖 ≥ 1.3, we obtain fully reflected waves for all configurations up to few outliers.
For 𝑓 = 15 kHz and 20 kHz, we are in the second passband. Although for the small disorder
magnitudes 𝜖 ≤ 0.6 the median reflection coefficient moduli are smaller than for 𝑓 = 5 kHz,
which is located in the first passband, the behaviour for larger disorder is significantly
different. In contrast to 𝑓 = 5 kHz, the reflection coefficient moduli for 𝑓 = 15 kHz and
20 kHz do not reach a saturated state, but they increase until full reflection is reached on
average for 𝜖 ≥ 1.2 and 1.1, respectively. Increasing the disorder magnitude even further
leads to the quantiles moving closer together, which indicates that fewer configurations
exist, which allow waves of the respective frequency to pass the notched domain (partly).

After we have seen again that the second passband provides frequencies in the audi-
ble range, for which waves with those frequencies fully attenuate in contrast to waves with
frequencies from the first passband, we finally merge the results shown in Figs. 5.5 and
5.6. Fig. 5.7 shows heatmaps of the total reflection coefficient moduli in dependence of
the frequency in the audible range and the notch depth disorder magnitude for underlying
periodic notch configurations of depth 𝑑0 = 1.0 mm (top-left panel), 1.5 mm (top-right
panel), 2.0 mm (bottom-left panel) and 2.5 mm (bottom-right panel). This also gives a
good insight into the behaviour of the stopband for large disorder, which was omitted for
the beaded-string problem in Sec. 4.2, where we put our focus on underlying passbands
only.
We can see the reflection coefficient moduli for starting notch depths 𝑑0 = 1.0 mm, 1.5 mm,
2.0 mm and 2.5 mm side by side in Fig. 5.7. As we observed previously, the stopband in
the audible frequency range extents from 11 kHz to 13 kHz for the periodic configuration
with the smallest notch depths, 𝑑0 = 1.0 mm. It broadens and slightly moves towards the
smaller frequencies for increasing notch depths in the periodic configuration, and it contains
frequencies between 7 kHz and 11 kHz for 𝑑0 = 2.5 mm. For the smallest notch depths,
𝑑0 = 1.0 mm, introducing notch depth disorder up to notches, which are twice as large as in
the underlying periodic configuration (𝜖 = 1.0), does not produce remarkable attenuation
for the frequencies in the passband and the stopband moves towards the lower frequencies
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Figure 5.7: Heatmaps of total reflection coefficient moduli as functions of frequency and
notch depth disorder magnitude, for 𝑑0 = 1.0 mm (top-left panel), 𝑑0 = 1.5 mm (top-right
panel), 𝑑0 = 2.0 mm (bottom-left panel) and 𝑑0 = 2.5 mm (bottom-right panel)

only slightly. This shift gets already a bit more obvious for 𝑑0 = 1.5 mm, but still, the
reflection coefficient moduli are small in the original passbands and significant attenuation
in those is only attained for the largest frequency under consideration, 𝑓 = 25 kHz, for the
largest disorder magnitude. We can clearly see that full reflection in original passbands for
𝜖 ≤ 1 needs a starting notch depth in the underlying periodic configuration of 𝑑0 = 2.0 mm.
Large disorder magnitudes yield full reflection in the second passband for 𝑓 ≥ 15 kHz.
However, the first passband exhibits increasing reflection coefficient moduli for large disorder
magnitude, but full reflection is not nearly reached. For 𝑑0 = 2.0 mm, we can also identify
the original stopband clearly throughout the whole disorder regime, as it is shifted to the
left. It defines the boundary between the two original passbands. On the other hand for
𝑑0 = 2.5 mm, the shifted stopband blurs for 𝜖 ≥ 0.8, and the significant difference between
the two passbands emerges in the large disorder magnitude regime. Even for very large
notch depth disorder, the first passband does not lead to full attenuation. This is contrast
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to the second passband, for which in the large frequency regime disorder magnitudes of
only 0.5 are already sufficient to obtain full reflection. The heatmap visualises nicely the
decreasing disorder magnitude, which is necessary for full attenuation.

5.3 Towards model validation
We would like to validate the qualitative results, which we obtained with our numerical
method, by experiments to establish the finding from the previous section that localisation
of waves travelling a long beam with discrete notches occurs. An experimental setup-up
for this might be a beam, which is excited purely in vertical direction at one end and a
laser vibrometer is used to measure the vibrations of the beam at several locations, while
the excited signal travels along the beam. Signals in frequency dependent experiments and
measurements are often excited as a toneburst with an excitation frequency to achieve
high accuracy, see e.g. Liang et al. 1986. We generate a (Hanning-windowed) sinusoidal
toneburst at 𝑥 = 0 via

U(0,𝑡) = 𝐴0
2

(︂
1 − cos

(︂
2𝜋𝑓c𝑡

𝑁c

)︂)︂
cos(2𝜋𝑓c𝑡), (5.3)

where 𝐴0 is the amplitude of the pulse, 𝑁c is the number of cycles, 𝑡 is the time and 𝑓c is
the central frequency of the pulse. The toneburst defined in Eqn. (5.3) is used to excite the
anti-symmetrical 𝐴0 Lamb wave, i.e. the zeroth mode of the anti-symmetrical motion with
respect to the 𝑥𝑦-plane. A schemata of the beam cross section is given in Fig. 2.32. Due
to its perpendicular-to-the-plane motion characteristic, this mode is also called the flexural
mode, see Achenbach 1984. Lamb waves are often used in non-destructive structural
health monitoring since they can travel long distances without much attenuation and allow
measurements with high accuracy, see e.g. Bao 2003 and Sause 2016.

Fig 5.8 shows the toneburst pulses of unit amplitude for 𝑓c = 5 kHz, 10 kHz and 15 kHz
(top panels) in the time-domain. The number of cycles is set to 𝑁c = 5, which ensures
good responses of the zeroth anti-symmetrical mode for the small central frequencies in
the low ultrasonic frequency regime, see Michaels et al. 2011. The bottom panels display
the respective spectral distributions of the signals, obtained via Fourier transformations
(which will be explained shortly).

We can see in Fig. 5.8 that it takes about 1.0 ms to excite the toneburst for 𝑓c = 5 kHz and
it evolves symmetrically. The pulses for 𝑓c = 10 kHz and 15 kHz are of exactly the same
shape, but they only cover approximately 50 ms and 35 ms, respectively. We can also see
the spectral distribution of those pulses in the bottom panels. The spectral distributions
are symmetrically centred around the central frequency 𝑓c for all three choices of 𝑓c. While
the distribution for 𝑓c = 5 kHz yields non-zero values in the regime between 0 and 10 kHz,
only, the distributions are more spread out for the pulses with higher central frequencies
and the distribution magnitudes decrease.

We now have to solve the (time-dependent) dynamic Euler–Bernoulli beam Eqn. (2.6), for
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Figure 5.8: Top panels: Toneburst pulses of unit-amplitude in the time-domain for 𝑓c = 5 kHz
(top-left panel), 𝑓c = 10 kHz (top-middle panel) and 𝑓c = 15 kHz (top-right panel) and 5 number
of cycles. Bottom panels: Respective spectral distribution of toneburst pulses for 𝑓c = 5 kHz
(bottom-left panel), 𝑓c = 10 kHz (bottom-middle panel) and 𝑓c = 15 kHz (bottom-right panel),
split into real (black solid line) and imaginary part (grey solid line). The absolute value is
shown for comparison (black dashed line).

which the toneburst might be induced with the external force at 𝑥 = 0. Solution methods
for the problem in the time-domain have been studied extensively in the last two centuries
of the last decade for the design and dynamic behaviour of railway tracks and bridges and
various methods can be found in the literature. A solution method for a beam under a
dynamic moving force using a double Laplace transformation can be found in Hamada
1981. Similar problems including dynamic moving loads were solved on the basis of finite
element formulations and the following integrations in time accomplished with implicit
direct integration and Runge–Kutta integration methods, see e.g. Hino et al. 1985 and Kin
and Trethewey 1990. Modal superposition methods to transform the dynamic problem into
a set of ordinary differential equations can be found e.g. in Lee 1996a,b and Law and Chan
1997. Gutierrez and Laura (1997) studied vibrations of a beam of non-uniform cross section,
which is traversed by a dynamic force and used the Galerkin–Kantorovich method to solve
this problem. A good overview over dynamic and static behaviour of solids and structures
under loads is given by Frýba (1999). We want to determine the temporal evolution of
the signal by performing the calculations in the frequency-domain, i.e. for time-harmonic
excitations. This allows us to use the numerical method we used in the previous section.
We want to map the frequency- and the time-domain into each other by standard Fourier
transformations, which is e.g. used in Montiel et al. 2012 for floating plates excited by a
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wavemaker. The solution in the time-domain is obtained by transforming the excitation
signal into the frequency-domain, solving the time-harmonic problem for the involved
frequencies with our numerical method and mapping the solutions for the time-harmonic
problem back into the time-domain with the inverse Fourier transformation.

In our solution procedure for the response of the beam to a toneburst, we use the fast
Fourier transform algorithm, which computes the discrete Fourier transformation of a
signal and its inverse, see Brigham 1988. In particular, the fast Fourier transformation
converts the toneburst pulse from the time-domain into the frequency-domain. The fast
Fourier transformation was already used in Fig. 5.8 to show the spectral distributions
of the toneburst pulses. Hence, the spectral distribution describes the toneburst in the
frequency-domain and we can use our numerical method to calculate the time-harmonic
solution for each of the frequencies characterising the toneburst pulse in the spectral
distribution together with their corresponding amplitudes. Since the toneburst signal is
real, we know that the second half of the transformed values are the complex conjugates of
the first half of transformed values. This comes from the phenomenon that 𝑀 real points
can be transformed into 𝑀/2 complex points without losing any information. This implies
that for the sampling frequency 𝑓sampl only half of the frequency range provides useful
information, i.e.

𝑓Nyquist = 𝑓sampl
2 , (5.4)

which is the so-called Nyquist frequency, see e.g. Doyle 1997. The sampling frequency
𝑓sampl describes the number of samples obtained in one second (samples per second), i.e.

𝑓sampl = 1
𝛥𝑇

, (5.5)

where 𝛥𝑇 denotes the sampling time, see e.g. Haykin and Veen 2002. To achieve high
accuracy in the time-domain, 𝛥𝑇 has to be small. To take this into account, the sampling
frequency shall be ten times higher than the largest non-negligible frequency in the toneb-
urst for central frequency 𝑓c = 25 kHz, which is about 48 kHz, i.e. we set the sampling
frequency to be 𝑓sampl = 480 kHz. Hence, the Nyquist frequency is 𝑓Nyquist = 240 kHz,
and it is clearly ensured that all occurring frequencies are smaller than 𝑓Nyquist. The high
sampling frequency guarantees to capture interactions with the appearing ultrasonic frequen-
cies and tests were run to ensure that the used sampling frequency provides accurate results.

For validation of the results obtained with our numerical method for the Euler–Bernoulli
beam (short EBBM method in the following), we first want to compare the wave speed
along the homogeneous beam without notches for our model and FE simulations. The
FE simulations are performed with Abaqus FEA using a solid element formulation. The
formulation of the elements involves rotations and strains. In our problem with small
beam deflections, the strain is defined via the Lagrangian strain tensor, E, which is the
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symmetric part of the spatial gradient of the wave field, i.e.

E = 1
2

(︁
∇Xu + (∇Xu)T + (∇Xu)T∇Xu

)︁
≈ 1

2

(︁
∇Xu + (∇Xu)T

)︁
, (5.6)

where X is the spatial position of the considered point in the original configuration and u
is the total displacement, see Hibbitt et al. 2015. The second-order terms are neglected
in the linearised finite strain tensor, which holds for small strains and rotations. The
strain definition can be found e.g. in Slaughter 2002. It would go beyond the scope of this
thesis to go into details of the solid element formulation and we refer the reader to the
extensive literature on this topic, see e.g. Oñate 2009, 2013 and Zienkiewicz and Taylor 2013.

The Aluminium beam in the FE simulations has the same cross-section dimensions as
in our model in the EBBM method with constant beam width 𝑤 = 12 mm and beam
thickness ℎ = 6 mm in the uniform case. We choose the beam length to be 𝐿 = 2.0 m,
which is sufficiently long to incorporate the desired number of notches for the full analysis
in the beam model without having to place a notch too close to the beam ends. The beam
mesh, which is used for the FE simulations, is chosen very fine for accurate results. The
beam width is divided into 30 sub-intervals of length 0.4 mm and the beam height into
15 sub-intervals of length 0.4 mm, hence 450 elements are generated along the beam cross
section in our very fine mesh. The beam length is divided into 5000 sub-intervals of length
0.4 mm, which gives us in total more than two million rectangular elements in our solid
element formulation. A convergence analysis was performed to ensure that the grid is fine
enough and we obtain accurate simulation results. For our simulations, eight nodes per
element and three degrees of freedom per node are used.

To extract the speed of waves travelling along the homogeneous beam from both the
EBBM method and FE simulations, we use an envelope around the wave packet, observed
at various locations. Since the flexural waves travelling along the beam are dispersive and
the envelopes around the waves level off, we choose the first and second observation point,
𝑥 = 30.0 cm and 52.0 cm, respectively, to calculate the wave speed as distance travelled
(22.0 cm) per time. The travelling time is determined by the time, which lies between the
envelope maxima passing the first and second observation point. Fig. 5.9 shows the signal,
which is excited by the toneburst pulse with central frequency 𝑓c = 15 kHz at 𝑥 = 0, in the
simulation for the EBBM method at the first and second observation point. The envelope
is calculated using the Hilbert transform, see Ulrich 2006.

An elementary difference between the EBBM method (for the one-dimensional beam model)
and the solid element formulation (for the three-dimensional beam model) in the present
problem is the beam length. While the cross-section is equivalent in both formulations, we
neglect the finite length of the beam in the EBBM method, i.e. we have no boundary condi-
tions, we only have conditions in the far-field, and the toneburst is excited as an occurring
pulse at 𝑥 = 0. This could be interpreted as an incoming wave from 𝑥 → −∞, which is of
the form of the toneburst at 𝑥 = 0. As opposed to this, the beam in the FE simulations
is indeed of finite dimension with length 𝐿 = 2.0 m. The beam shall not be clamped and
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Figure 5.9: Simulated signal (solid line) excited by toneburst pulse with 𝑓c = 15 kHz in
homogeneous beam and wave packet envelope (dashed line), measured at first (left-hand panel)
and second observation point (right-hand panel)

the ends shall be free, which gives free-end boundary conditions. This can be achieved
in experimental setups by placing the beam on foam support, see e.g. Ernst and Dual
2014. In an experimental setup, the pulse could be excited by a piezoelectric transducer,
which is applied to the left end of the beam at 𝑥 = 0. Piezoelectric material undergoes
mechanical strain when an electric field is applied, hence a piezoelectric transducer can
convert an electric current into a pressure field, see e.g. COMSOL Multiphysics 5.2 User’s
Guide (Acoustics Module Application Library) 2015. Piezoelectric transducers have a wide
range of applications including structural health monitoring and bioimaging. Elaborate
FE models exist for piezoelectric transducers, see e.g. Abboud et al. 1998 and Kocbach
2000, but to simplify matters, we do not include the piezoelectric transducer in the FE
simulations and only imitate it by applying nodal deformation in the vertical direction at
𝑥 = 0, exciting flexural waves with the toneburst pulse. The FE beam model was created
under the guidance of Dr. Ching-Tai Ng.

After this short introduction into the FE beam model, we want to compare the wave speeds
from the EBBM method with those from the FE beam model. This shall serve as a first
step of validation of the EBBM method. Fig. 5.10 shows the comparison of wave speeds of
the signals in the homogeneous beam, which are excited by toneburst pulses with central
frequency 𝑓c, as functions of 𝑓c, for the EBBM method and the FE method. To extract
the speed of the wave packets from the FE simulations, the envelope of the wave packet is
also calculated via the Hilbert transform and the travelling time between the same two
observations points as for the EBBM method (𝑥 = 30.0 cm and 52.0 cm) is measured.

We can observe in Fig. 5.10 that a large discrepancy exists between the speed of the wave
packets for the EBBM method and the FE simulations. For the smallest central frequency
under consideration in the FE model, 𝑓c = 5.0 kHz, the wave travels with approximately
1.0 m/ms in the FE model. This is overestimated by the EBBM method significantly, where
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Figure 5.10: Comparison of wave speeds in homogeneous beam as functions of central
frequency 𝑓c of tone burst pulse, for numerical method for Euler–Bernoulli beam model (+)
and FE method (∘)

the wave travels nearly twice as fast. The wave speeds get larger for increasing frequencies
in both models, but the slope of increase is clearly larger for our Euler–Bernoulli beam
model. Hence, for larger frequencies, the deviation between the two models becomes even
larger. Good agreement between FE simulations and the behaviour of beams with similar
dimensions in experiments was shown e.g. by He and Ng (2017), so it seems likely that the
EBBM method is inadequate to solve the problem.

5.4 Transition to Timoshenko beam model
By using the Euler–Bernoulli beam theory, we not only assumed small and transverse
deflection, but we neglected shear deformation, even though we assumed that a transverse
shear force exists, see e.g. Doyle 1997. Neglecting the shear deformation is of negligible
consequence for small frequencies under the assumption of small and transverse deflection,
but it becomes an issue in the frequency regime we consider here. To take this effect into
account for our model, we have to modify the Euler–Bernoulli beam theory, for which wave
speed is unbounded with increasing frequencies, see Bilbao 2004. For example Ernst and
Dual (2014) considered in their studies of acoustic emission localization in beams frequencies
larger than 10 kHz and showed good agreement of phase speeds for the Timoshenko beam
theory and experiments. The agreement motivates us to adopt our numerical method to
Timoshenko beams. We derive the governing equations for the Timoshenko beam theory in
the following in analogy to Doyle (1997). The derivation of the Timoshenko beam model
complements the derivation of the Euler–Bernoulli beam model from Sec. 2.1.

5.4.1 Timoshenko beam model

By neglecting the shear deformation in the Euler–Bernoulli beam theory, the horizontal
(longitudinal) deflection, which we denote with Ũlon(𝑥,𝑧,𝑡), could directly be expressed with
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the vertical (flexural) deflection, which we denote with Ũfle(𝑥,𝑧,𝑡) now. Both deflections are
now linearised by using a Taylor expansion about their mid-plane deflections, Ufle(𝑥,𝑡) =
Ũfle(𝑥,0,𝑡) and Ulon(𝑥,𝑡) = Ũlon(𝑥,0,𝑡), respectively, up to the first order,

Ũfle(𝑥,𝑧,𝑡) ≈ Ufle(𝑥,𝑡) + 𝑧
𝜕Ũfle
𝜕𝑧

⃒⃒⃒⃒
𝑧=0

+ O(𝑧2), (5.7a)

Ũlon(𝑥,𝑧,𝑡) ≈ Ulon(𝑥,𝑡) + 𝑧
𝜕Ũlon
𝜕𝑧

⃒⃒⃒⃒
𝑧=0

+ O(𝑧2). (5.7b)

To simplify the notation, we write

Vfle(𝑥,𝑡) := 𝜕Ũfle
𝜕𝑧

⃒⃒⃒⃒
𝑧=0

and Vlon(𝑥,𝑡) := 𝜕Ũlon
𝜕𝑧

⃒⃒⃒⃒
𝑧=0

.

Since we excite the beam in our problem formulation in a way that only flexural waves
appear, we can neglect the horizontal deflection around the mid-plane, i.e. we can set
Ulon(𝑥,𝑡) = 0. Under the assumption that the horizontal deflection is linear and the vertical
deflection is vertical only, the deflections from Eqns. (5.7) simplify to

Ũfle(𝑥,𝑧,𝑡) ≈ Ufle(𝑥,𝑡), (5.8a)
Ũlon(𝑥,𝑧,𝑡) ≈ −𝑧Vlon(𝑥,𝑡). (5.8b)

Using the simplified representation of both deflections, we can write the axial strains, 𝜖𝑥𝑥

and 𝜖𝑧𝑧, and the shear strain, 𝛾𝑥𝑧, as

𝜖𝑥𝑥 = 𝜕Ũlon
𝜕𝑥

= −𝑧 𝜕Vlon
𝜕𝑥

, (5.9a)

𝜖𝑧𝑧 = 𝜕Ũfle
𝜕𝑧

= 0, (5.9b)

𝛾𝑥𝑧 = 𝜕Ũlon
𝜕𝑧

+ 𝜕Ũfle
𝜕𝑥

=
(︂

−Vlon + 𝜕Ufle
𝜕𝑥

)︂
. (5.9c)

In our problem formulation of flexural waves travelling along a thin beam, we can neglect the
stress in 𝑧-direction, i.e. 𝜎𝑧𝑧 = 0, and following Hooke’s law, the axial stress is 𝜎𝑥𝑥 = 𝐸𝜖𝑥𝑥

and the shear stress is 𝜎𝑥𝑧 = 𝐺𝛾𝑥𝑧. 𝐺 is the shear modulus, which characterises the
response of the material to shear stress, see e.g. Crandall et al. 1999. The stresses can then
be written as

𝜎𝑥𝑥 = −𝑧𝐸𝜕Vlon
𝜕𝑥

, (5.10a)

𝜎𝑥𝑧 = 𝐺

(︂
−Vlon + 𝜕Ufle

𝜕𝑥

)︂
. (5.10b)

At this point we can go into the difference of the Timoshenko beam theory to the Euler–
Bernoulli beam theory. In the Euler–Bernoulli beam theory, it is assumed that no shear
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deformation occurs, i.e. Vlon = 𝜕𝑥Ufle. This implies in particular that the shear strain, 𝛾𝑥𝑧,
and the shear stress, 𝜎𝑥𝑧, vanish, hence the only non-zero strains and stresses are 𝜖𝑥𝑥 and
𝜎𝑥𝑥, respectively, in which Vlon can be replaced by 𝜕𝑥Ufle. The bending moment can then
directly be obtained by integrating 𝜎𝑥𝑥 and be used in Eqns. (2.3) to derive the governing
beam equation.

To derive the system of equations for the Timoshenko beam, we have to apply a variational
principle, the so-called Hamilton’s principle, which gives us the variational form of the
problem. Hamilton’s principle says that, see Doyle 1997,

“Among all motions that will carry a conservative system from a given configuration at
time 𝑡1 to a second given configuration at time 𝑡2, that which actually occurs provides
a stationary value of the integral

ˆ 𝑡2

𝑡1

(𝑇tot − (𝑆tot + 𝑉load)) d𝑡.” (5.11)

𝑇tot is the total kinetic energy in the beam, 𝑆tot is the total strain energy and 𝑉load is the
potential of the loads. Hamilton’s principle can be written as

𝛿

ˆ 𝑡2

𝑡1

(𝑇tot − (𝑆tot + 𝑉load)) d𝑡 = 0, (5.12)

where 𝛿 is the variation.

The kinetic energy for a point object is well-known from classical mechanics as half
of the mass of an object times its velocity squared, and we can extend this to the kinetic
energy of the whole beam as

𝑇tot = 1
2

ˆ 𝐿

0

ˆ
𝐴
𝜌
(︀
(𝜕𝑡Ulon(𝑥,𝑡))2 + (𝜕𝑡Ufle(𝑥,𝑡))2)︀ d𝐴 d𝑥

= 1
2

ˆ 𝐿

0

ˆ
𝐴
𝜌𝐾2

(︀
𝑧2(𝜕𝑡Vlon(𝑥,𝑡))2 + (𝜕𝑡Ufle(𝑥,𝑡))2)︀ d𝐴 d𝑥

= 1
2

ˆ 𝐿

0
𝜌𝐼𝐾2(𝜕𝑡Vlon(𝑥,𝑡))2 + 𝜌𝐴(𝜕𝑡Ufle(𝑥,𝑡))2 d𝑥. (5.13)

The parameter 𝐾2 is introduced to take into account that the horizontal deflection distri-
bution was approximated only. We assumed the horizontal deflection to be linear, but this
only holds approximately. For the exact deflection distributions, we refer the reader to
Doyle 1997. The variational principle allows us to include the parameter 𝐾2, since it will
we be incorporated correctly.

The total strain energy, 𝑆tot, describes the stored energy in the elastically deformed
beam for small strains. It can be calculated as the integral of the scalar product of the
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stresses and strains over the whole beam, i.e. for our problem we obtain

𝑆tot = 1
2

ˆ 𝐿

0

ˆ
𝐴
𝜎𝑥𝑥𝜖𝑥𝑥 + 𝜎𝑥𝑧𝛾𝑥𝑧 d𝐴 d𝑥

= 1
2

ˆ 𝐿

0

ˆ
𝐴
𝐸𝜖2𝑥𝑥 +𝐺𝛾2

𝑥𝑧 d𝐴 d𝑥. (5.14)

Since the shear strain and shear stress are subject to the approximation of the horizontal
deflection distribution (and the second term in Eqn. (5.14) is similarly to the total kinetic
energy case quadratically as well), we modify the associated term in the total strain energy
by adding the adjustable parameter 𝐾1. With the parameter 𝐾1 and the strains from
Eqns. (5.9), we now get the total strain energy in terms of the deflections,

𝑆tot = 1
2

ˆ 𝐿

0

ˆ ℎ/2

−ℎ/2

(︃
𝐸𝑧2

(︂
𝜕Vlon
𝜕𝑥

)︂2
+𝐺𝐾1

(︂
Vlon − 𝜕Ufle

𝜕𝑥

)︂2
)︃
𝑤 d𝑧 d𝑥

= 1
2

ˆ 𝐿

0
𝐸𝐼

(︂
𝜕Vlon
𝜕𝑥

)︂2
+𝐺𝐴𝐾1

(︂
Vlon − 𝜕Ufle

𝜕𝑥

)︂2
d𝑥. (5.15)

The potential of the loads, 𝑉load, which takes the bending moments, 𝑀 , and shear forces,
𝑉 , from Sec. 2.1 at the beam ends into account as well as the external force 𝑓 , is given by

𝑉load = −
ˆ 𝐿

0
𝑓(𝑥,𝑡)Ufle d𝑥−𝑀(𝐿,𝑡)Vlon(𝐿,𝑡) +𝑀(0,𝑡)Vlon(0,𝑡) (5.16)

+ 𝑉 (𝐿,𝑡)Ufle(𝐿,𝑡) − 𝑉 (0,𝑡)Ufle(0,𝑡)

= −
ˆ 𝐿

0
𝑓(𝑥,𝑡)Ufle d𝑥− [𝑀(𝑥,𝑡)Vlon(𝑥,𝑡)]𝐿𝑥=0 + [𝑉 (𝑥,𝑡)Ufle(𝑥,𝑡)]𝐿𝑥=0 . (5.17)

Now, applying Hamilton’s principle and integrating by parts yields the variational Timo-
shenko beam formulation,ˆ 𝑡2

𝑡1

{︃ˆ 𝐿

0

(︂
𝐺𝐴𝐾1

(︂
𝜕Ufle
𝜕𝑥

− Vlon

)︂
+ 𝐸𝐼

𝜕2Vlon
𝜕𝑥2 − 𝜌𝐼𝐾2𝜕

2
𝑡 Vlon

)︂
𝛿Vlon d𝑥

+
ˆ 𝐿

0

(︂
𝐺𝐴𝐾1

𝜕

𝜕𝑥

(︂
𝜕Ufle
𝜕𝑥

− Vlon

)︂
− 𝜌𝐴𝜕2

𝑡 Ufle + 𝑓

)︂
𝛿Ufle d𝑥

+
[︂(︂
𝐸𝐼

𝜕Vlon
𝜕𝑥

−𝑀

)︂
𝛿Vlon

]︂𝐿

𝑥=0
+
[︂(︂
𝐺𝐴𝐾1

(︂
𝜕Ufle
𝜕𝑥

− Vlon

)︂
+ 𝑉

)︂
𝛿Ufle

]︂𝐿

𝑥=0

}︃
d𝑡 = 0.

(5.18)

Since this has to hold for all 𝑡1 and 𝑡2 as well as variations 𝛿Ufle and 𝛿Vlon, the integrands
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have to be zero. This gives us the system of equations for the Timoshenko beam,

𝐺𝐴𝐾1
𝜕

𝜕𝑥

(︂
𝜕Ufle
𝜕𝑥

− Vlon

)︂
= 𝜌𝐴𝜕2

𝑡 Ufle − 𝑓, (5.19a)

𝐸𝐼
𝜕2Vlon
𝜕𝑥2 +𝐺𝐴𝐾1

(︂
𝜕Ufle
𝜕𝑥

− Vlon

)︂
= 𝜌𝐼𝐾2𝜕

2
𝑡 Vlon. (5.19b)

The variational formulation also provides us with the boundary conditions at both beam
ends (which have to be imposed separately in the classical form of the problem), which
can directly be derived from Eqn. (5.18). Since we assume to have an infinite beam in our
model again, we only have to impose the well-known far-field conditions. It is also clear
from our problem formulation that the external force, 𝑓 , is set to zero.

There exists an extensive literature about the determination of the Timoshenko shear
coefficients 𝐾1 and 𝐾2. A first investigation can be found in Cowper 1966. This study was
extended to arbitrary cross-section shapes by Gruttmann and Wagner (2001) and an alter-
native variational principle was employed by Hutchinson (2001) to derive new expressions
for the Timoshenko shear coefficients. But these studies are mainly based on analytical
considerations, less on experimental results. In preparation of possible experiments backing
up this study, we intend to use parameters close to values, which have been determined in
experiments. For this we refer to the work of He and Ng (2015), who used the Timoshenko
shear coefficient 𝐾1 = 0.922 in their parametric investigations. The second Timoshenko
shear coefficient can then be obtained via 𝐾2 = 12𝐾1/𝜋

2, see Doyle 1997. The shear
modulus 𝐺 is given by

𝐺 = 𝐸

2(1 + 𝜈) , (5.20)

see e.g. Crandall et al. 1999, where we set Poisson’s ratio to be 𝜈 = 0.33. (Note that the
dynamic Euler–Bernoulli beam Eqn. (2.6) can be recovered from the dynamic Timoshenko
beam Eqns. (5.19) by taking the limits 𝐺𝐴𝐾1 → ∞, i.e. neglecting shear deformations,
and 𝜌𝐼𝐾2 → 0, i.e. neglecting rotational inertia.)

For our numerical method it is essential to obtain the wavenumbers in each sub-interval.
For the Euler–Bernoulli beam, the wavenumbers were given by Eqn. (2.10). This implied in
particular that the evanescent wave modes in each sub-interval were already characterised
by the travelling wave modes. This changes for the Timoshenko beam and we have to derive
the characteristic equation to obtain the wavenumbers. With constant beam properties in
each sub-interval, we assume the flexural deflection and rotation to be of the form

Ufle = 𝑢0ei(𝑘𝑥+𝜔𝑡), (5.21a)
Vlon = 𝑣0ei(𝑘𝑥+𝜔𝑡), (5.21b)
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which yield the following system of equations, when substituting them into Eqns. (5.19),(︂
𝐺𝐴𝐾1𝑘

2 − 𝜌𝐴𝜔2 −i𝑘𝐺𝐴𝐾1
i𝑘𝐺𝐴𝐾1 𝐸𝐼𝑘2 +𝐺𝐴𝐾1 − 𝜌𝐼𝐾2𝜔

2

)︂(︂
𝑢0
𝑣0

)︂
= 0. (5.22)

The characteristic equation is then given by

𝐺𝐴𝐾1𝐸𝐼𝑘
4 −

(︀
𝐺𝐴𝐾1𝜌𝐼𝐾2𝜔

2 + 𝐸𝐼𝜌𝐴𝜔2)︀ 𝑘2 +
(︀
𝜌𝐼𝐾2𝜔

2 −𝐺𝐴𝐾1
)︀
𝜌𝐴𝜔2 = 0, (5.23)

which is quadratic in 𝑘2 and we can easily obtain the four roots describing the right-
and left-going travelling and evanescent wave modes in each sub-interval. Since the
characteristic Eqn. (5.23) is quadratic in 𝑘2, it is clear that we have two sets of mode
pairs and the left-going wave modes are the negative right-going wave modes. Fig. 5.11
shows the wavenumbers in the homogeneous Timoshenko beam model with ℎ = 6.0 mm
as functions of frequency. The wavenumbers are calculated by solving the characteristic
Eqn. (5.23).
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Figure 5.11: Left-hand panel: Real part of wavenumbers in Timoshenko beam model
for homogeneous beam as functions of frequency. Right-hand panel: Imaginary part of
wavenumbers in Timoshenko beam model for homogeneous beam as functions of frequency
(same line and color scheme as in left-hand panel).

We can see that the four wavenumbers in Fig. 5.11 form two sets of pairs. The wavenumbers
in each pair differ by the sign only. The first pair, which is coloured black, is real and starts
at the origin, increasing superlinearly for small frequencies until approximately 𝑓 ≈ 50 kHz,
from where on it increases linearly. However, the second pair of wavenumbers shows a
behaviour, we could not observe in the Euler–Bernoulli beam theory, where the non-real
pair of wavenumbers is purely imaginary and of the same modulus as the real pair of
wavenumbers. The second pair in the Timoshenko setting is purely imaginary (again, the
wavenumbers in the pair differ by sign solely) only up to 𝑓 ≈ 260 kHz, which is called
the critical frequency. Up to the critical frequency, the imaginary wavenumbers form a
semi-ellipse, increasing for small frequencies and decreasing from approximately 130 kHz
again. When the critical frequency is reached, the imaginary part vanishes completely, and
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the wavenumbers become real and show from there on a qualitatively similar behaviour as
the first pair of wavenumbers, although their slope is slightly smaller. Hence, the evanescent
wave modes disappear for large frequencies and give place for a second pair of propagating
wave modes. Note that the critical frequency depends on the beam properties of course and
in the transition to the Euler–Bernoulli beam (𝐺𝐴𝐾1 → ∞ and 𝜌𝐼𝐾1 → 0), the critical
frequency moves to infinity.

The comparison of the wavenumbers in the Timoshenko and Euler–Bernoulli beam model
is shown in the left-hand panel of Fig. 5.12, where the real, positive wavenumber in
the Timoshenko beam model is shown as black, solid line and the imaginary, positive
wavenumber is shown as black, dashed line. The real, positive (and imaginary, positive)
wavenumber in the Euler–Bernoulli beam model is shown for comparison as grey solid line.
The right-hand panel of Fig. 5.12 shows the respective phase speeds of the Timoshenko
and Euler–Bernoulli beam model (black and grey solid line, respectively), which can be
calculated as the angular frequency over the real, positive wavenumber, i.e. 𝜔/𝑘.
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Figure 5.12: Left-hand panel: Comparison of wavenumbers in Timoshenko beam model
(travelling mode as solid black line and evanescent mode as dashed black line) and Euler–
Bernoulli beam model (grey line) as functions of frequency. Right-hand panel: Comparison of
phase speeds in Timoshenko beam model (black) and Euler–Bernoulli beam model (grey line)
as functions of frequency.

We can see in the left-hand panel of Fig. 5.12 that for the lower frequencies in the audible
range, the real and purely imaginary wavenumbers in the Timoshenko beam theory have
the same modulus (which holds in the Euler–Bernoulli beam theory for all frequencies).
For 𝑓 ≥ 5 kHz, they start to deviate and the real wavenumber is larger than the modulus
of the imaginary wavenumber, which was already suggested in Fig. 5.11. The wavenumbers
for both the Timoshenko and Euler–Bernoulli beam theory tend to zero for very small
frequencies, but in comparison with the Euler–Bernoulli beam, the real wavenumber for
the Timoshenko beam is significantly larger throughout the rest of the frequency regime
and nearly twice as large in the high end of the audible range. This discrepancy is also
reflected in the resulting phase speeds, where the real wavenumber appears as an inverse.
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Hence, the phase speed in the Euler–Bernoulli model exceeds the phase speed in the
Timoshenko beam model significantly. While phase speeds in both models tend to zero for
𝑓 → 0 kHz, they increase with increasing frequency qualitatively similarly to the increase
of the wavenumbers, and phase speeds in the Timoshenko beam model are only half of the
corresponding phase speeds in the Euler–Bernoulli beam model for large frequencies in the
audible range.

5.4.2 Validation with finite element simulations
Before focusing on the wave speeds in our numerical method for the Timoshenko beam
model (short TBM method in the following) and the FE simulations, we first compare the
propagation of the excited signals in both methods. Fig. 5.13 shows the signals, which
are excited by toneburst pulses with central frequencies 𝑓c = 5 kHz (top panels) and
𝑓c = 15 kHz (bottom panels) at 𝑥 = 0 in the homogeneous beam calculated with the TBM
method and the FE method, measured at the observations points at 𝑥 = 52.0 cm (left-hand
panels) and 𝑥 = 106.0 cm (right-hand panels). The pulses are normalised with respect to
their maximum value.
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Figure 5.13: Simulated signal excited by toneburst pulse with 𝑓c = 5 kHz (top panels) and
𝑓c = 15 kHz (bottom panels) in homogeneous beam with numerical method for Timoshenko
beam model (blue) and FE method (red), measured at 𝑥 = 52.0 cm (left-hand panels) and
𝑥 = 106.0 cm (right-hand panels)

We can observe in Fig. 5.13 a good agreement between the simulated signal with the TBM
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method and the FE method for both toneburst pulses. For 𝑓c = 5 kHz, we can see the good
agreement in the deflections obtained by both methods and measured at 𝑥 = 52.0 cm in the
first wave packet, where only small differences appear towards the edges of the pulse. The
first wave packet, which is measured at 𝑥 = 52.0 cm, is the right-going wave along the beam
and passes this observation point between 0.5 ms and 1.7 ms after begin of the toneburst
pulse excitation. The second wave packet, which is observable at both observations points,
characterises the wave, which is reflected at the right-end of the beam. Naturally, the
reflected wave is only observable in the FE simulations. (The beam in our numerical
method is assumed to be of infinite horizontal extent to neglect the boundary interactions
in our localisation study.) Moreover, the shape of the toneburst is clearly apparent at
both observation points, since the dispersive effect is still small for this comparably small
frequency over the distance between the two observation points. For 𝑓c = 15 kHz, the good
agreement between the TBM method and the FE method holds, which can be observed at
the first (right-going) wave packet. Additionally, two further wave packets passing the two
observations points can be detected during the same time interval as for 𝑓c = 5 kHz. This
is due to the higher wave speed for 𝑓c = 15 kHz. The second wave packet identifies the
wave (again), which is reflected at the right-end of the beam, and the third wave packet
characterises the wave, which is reflected at the left-end of the beam and right-going again,
after it was already reflected at the right-end of the beam, i.e. we can see the wave, which
was reflected at each end of the beam. The dispersive effect becomes visible most obviously
at this third wave packet, which is of smaller amplitude than the other wave packets and
broader than the excited toneburst pulse.

We observed in Fig. 5.13 good agreement of the simulated signals in the homogeneous
beam with the TBM method and the FE method for 𝑓 = 5 kHz and 15 kHz at two different
observations points. This suggests that the wave speeds in the cases of both central
frequencies agree between the two methods. We want to validate this by comparing the
wave speeds using the envelope of the wave packets, which is also calculated via the Hilbert
transform, at the two observations points 𝑥 = 30.0 cm and 52.0 cm again. For this, we
expand Fig. 5.10 by the wave speeds in the homogeneous beam, obtained with the TBM
method. Fig. 5.14 shows the comparison of wave speeds of the signals, which are excited
by toneburst pulses with central frequency 𝑓c, in the homogeneous beam as functions of 𝑓c
for the TBM method and the FE method. Results with the EBBM method are shown for
comparison.

We can observe in Fig. 5.14 that the wave speeds in the TBM method and the FE method
(for central frequencies 𝑓c = 5 kHz, 10 kHz, 15 kHz, 20 kHz and 25 kHz) nearly coincide. The
wave speeds for the Timoshenko beam model are much smaller than for the Euler–Bernoulli
beam model and the discrepancy between the results in the EBBM method and the FE
method does not exist anymore. Hence, Fig. 5.14 provides the quantitative evidence that
using the Timoshenko beam model in our numerical method is much more suitable for
this study with frequencies in the audible range than the Euler–Bernoulli beam model.
However, in the limit for small frequencies, the wavenumbers for the Timoshenko and the
Euler–Bernoulli beam model agree (so do the wave speeds) and the Euler–Bernoulli beam
theory remains as well as our results in Chs. 2 and 3 valid.
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Figure 5.14: Comparison of wave speeds in homogeneous beam as functions of central
frequency 𝑓c of tone burst pulse for numerical method for Timoshenko beam model (+) and
FE method (∘). Results for Euler–Bernoulli beam model (×) are shown for comparison.

Before we study the localisation behaviour in the TBM method, we validate the TBM
method with the help of the FE method for a beam with two notches. Note that, whereas
for the Euler–Bernoulli beam only the deflection is the basic unknown, we either have the
deflection, Ufle, or the rotation, Vlon, as basic unknown for the TBM method. We can
solve for one and the other can directly be derived from Eqn. (5.22). To remain consistent
with our numerical method, we use the deflection as our basic unknown again and use
the continuity conditions from Eqns. (2.15) at each scattering interface, i.e. we neglect
shear deformation and rotational inertia in the continuity conditions in the TBM method.
This means in particular that the rotation can be obtained from the the beam deflection
via Vlon = 𝜕𝑥Ufle. For the following comparison between the TBM method and the FE
method, the beam shall have two notches of depth 2.0 mm and respective length 2.25 mm,
located between 90.00 mm and 96.75 mm. In the beam model in Abaqus FEA, the notch
is modelled to be symmetric with respect to the mid-plane of the beam, which ensures
that we only have to deal with pure flexural waves in the FE simulations. For asymmetric
notches, mode conversion effects occur for both reflected and transmitted waves, and the
anti-symmetrical 𝐴0 Lamb wave is (partly) converted into the symmetrical 𝑆0 Lamb wave,
which propagates much faster, see Behzad et al. 2013. Fig. 5.15 shows the schematic model
of the dual-notched beam with 𝑑0 = 2.0 mm, modelled in Abaqus FEA, illustrating the
dimension of the beam and the notches.

X

Y

Z

Figure 5.15: Schematic model of dual-notched beam in Abaqus FEA illustrating dimension
of beam and notches
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Fig. 5.16 shows the signals, which are excited by toneburst pulses with central frequencies
𝑓c = 5 kHz (top panels) and 𝑓c = 15 kHz (bottom panels) at 𝑥 = 0 in the dual-notched
beam, calculated with the TBM method and the FE method, measured at the observations
points at 𝑥 = 52.0 cm (left-hand panels) and 𝑥 = 106.0 cm (right-hand panels).
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Figure 5.16: Simulated signal excited by toneburst pulse with 𝑓c = 5 kHz (top panels) and
𝑓c = 15 kHz (bottom panels) in dual-notched beam with numerical method for Timoshenko
beam model (blue) and FE method (red), measured at 𝑥 = 52.0 cm (left-hand panels) and
𝑥 = 106.0 cm (right-hand panels)

The good agreement between the TBM method and the FE method, which we noticed in
Fig. 5.13 for the homogeneous beam, can also be observed in the dual-notch problem. For
𝑓c = 5 kHz, the excited wave and the wave reflected at the notches merge into each other
at the first observation point, 𝑥 = 52.0 cm. Slight deviations between the signals from both
methods are visible in the transition zone (of the right-travelling excited wave and the wave,
which was reflected at the notches) at 𝑡 ≈ 1.5 ms. After the transition between the two
waves only the wave reflected at the notches can be seen and the TBM method reproduces
it nearly perfectly. The oscillations in the FE simulations afterwards correspond to the
waves, which are first reflected at the notches and afterwards at the left-end of the beam
travelling towards the notches as well as the wave, which propagates through the notches
and is subsequently reflected at the right-end of the beam. At the second observation
point, which is located after the two notches, no additional pulses can be observed in the
TBM method and the additional wave in the FE simulations corresponds to the first wave
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packet, which was reflected at the right end of the beam. We also notice that for the
right-going wave pulse at the second observation point slight deviations between the two
methods appear. For 𝑓c = 15 kHz, the wave is fast enough that the excited pulse and the
wave, which is reflected at the notches, can be distinguished at the observation point at
𝑥 = 52.0 cm. Most important, both methods yield very similar results again, not only for
the excited pulse, but also for the reflected wave. Several additional pulses can be observed
in the FE simulations, which arise due to the reflections at the notches and the beam ends.
At the second observation point, 𝑥 = 106.0 cm, the deflections show only small deviations
again between the two solution methods.

In all cases, the amplitudes of the excited waves and waves reflected at the notches
as well as the arrival times at the observation points show a very good agreement between
the TBM method and the FE method. Altogether, the results produced with both methods
show a very good agreement for this dual-notch problem, in particular the waves, which are
reflected at the notches and hence of high importance for our study, are reproduced in a
reliable manner. The results indicate that the TBM method can simulate wave propagation
along a notched beam. The positive validation of the TBM method with the FE simulations,
which reflect experiments in a realistic way, makes us confident that the following results
on the localisation behaviour of waves in the audible frequency range with our numerical
method on basis of the Timoshenko beam model can be established experimentally.

5.4.3 Numerical results for localisation along a Timoshenko beam
Before we study the localisation behaviour for disordered notch depths, we analyse the pass-
and stopbands for the periodic Timoshenko beam model in the time-harmonic setting. This
shall serve as the basis for our following studies in the frequency-domain and afterwards
for the time-dependent problem. We possibly want to change the notch configurations to
obtain an expedient experimental setup. Fig. 5.17 shows the moduli of the total reflection
coefficients and the attenuation coefficients of the wave fields as functions of the frequency
in the audible range, for notch lengths 𝑙 = 3.00 cm (left-hand panel) and 2.25 cm (right-hand
panel). The notch depths are chosen to be 𝑑0 = 2.0 mm and the number of notches is set
to be 24 in both cases.
We can observe in Fig. 5.17 that for 𝑙 = 3.00 cm in addition to the pass- and stopband
configuration in Fig. 5.4 an additional stopband appears here for the Timoshenko beam
model. The original stopband around 𝑓 = 10 kHz moved in this setting towards the
lower end of the audible range and is now located between 2.5 kHz and 3.5 kHz. The
second stopband appears between 11 kHz and 12.5 kHz, which leads to larger attenuation.
This is the stopband, which was visible in Fig. 5.3 and was originally located above the
audible range. Since the Timoshenko theory leads to larger wavenumbers for the same
beam geometry, it was expected that the pass- and stopbands move towards the smaller
frequencies for the Timoshenko beam model. We also notice that the frequencies in the
first stopband for the Timoshenko beam model lead to the same attenuation as those in
the respective stopband in the Euler–Bernoulli beam model.
We keep 𝑑0 = 2.0 mm as the underlying notch depth in our periodic configuration, from
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Figure 5.17: Total reflection coefficient moduli (black) and attenuation coefficients (blue) as
functions of frequency for periodic notch configuration for Timoshenko beam model, for notch
lengths 𝑙 = 3.00 cm (left-hand panel) and 𝑙 = 2.25 cm (right-hand panel) with respective notch
depths 𝑑0 = 2.0 mm

where on notch depth disorder is introduced, since it produces reasonably large attenuation
and clear pass- and stopband behaviour is provided. Also, the passbands are completely
turned into stopbands for positional disorder magnitudes of 𝜖 ≈ 1, which corresponds to
beams, whose notches are not deeper than 4.0 mm and consequently the beam thickness does
not have to come below 2.0 mm. We learnt that deeper notches only broaden stopbands and
leave us less freedom to increase notches, hence we choose 𝑑0 = 2.0 mm as the underlying
notch depth in our periodic configuration. Because experiments might be difficult to be
conducted for frequencies of 5 kHz and smaller due to the restricted beam lengths, we are
interested in an underlying periodic configuration, for which a large passband exists in the
audible range above 5 kHz. We notice the perfect passband for 𝑙 = 3.00 cm between the
two stopbands. By decreasing the notch length 𝑙, the Bragg value is naturally decreased,
too, and hence, the stopbands move towards higher frequencies.

For 𝑙 = 2.25 cm, the first stopband is located around 5 kHz now and the second stopband
moved towards the upper end of the audible range and is located around 20 kHz. This
configuration provides us with a large passband in the audible range between 7 kHz and
17 kHz. The two stopbands at the edges of the frequency regime, for which simulations
and experiments with time-dependent signals such as toneburst pulses are possible (also
possible for frequencies larger than 20 kHz, which are, however, not in the audible range
anymore then), will provide us with qualitatively different behaviours in the disordered
problem. Note that the second stopband is significantly stronger than the first one, i.e.
the attenuation coefficient is approximately three times larger. In the configuration with
notch lengths 𝑙 = 2.25 cm, the first of the 24 notches is located between 45.00 cm and
47.25 cm and the last notch is located between 148.50 cm and 150.75 cm, occupying in
total 105.75 cm of the 2 m-beam with at least 45.0 cm uniform beam adjacent to the beam
ends. This shall minimise confounding effects with waves reflected at the beam ends (and
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the number of notches along the beam is sufficiently large to provide the possibility of
localisation).

Next, we leave the periodic problem and turn our attention to the disordered problem. For
this, we remain in the Timoshenko beam setting with 24 notches of length 𝑙 = 2.25 cm
and notch depth 𝑑0 = 2.0 mm in the underlying periodic configuration. This configuration
is chosen to be standard for the remaining investigations in this chapter. Now, we study
the effect of different magnitudes of notch depth variations for our problem configuration.
Fig. 5.18 shows the total reflection coefficient moduli medians for an ensemble of 100
realisations as functions of frequencies in the audible range for increasing 𝜖.
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Figure 5.18: Medians of total reflection coefficient moduli for Timoshenko beam model as
functions of frequencies for 𝜖 = 0 (black), 𝜖 = 0.05 (cyan), 𝜖 = 0.1 (magenta), 𝜖 = 0.2 (green),
𝜖 = 0.5 (blue) and 𝜖 = 1.0 (red), for notch length 𝑙 = 2.25 cm and underlying periodic notch
depth 𝑑0 = 2.0 mm

We can observe in Fig. 5.18 that for 𝜖 ≤ 0.2, only a small increase in the reflection coefficient
moduli compared to the underlying periodic configuration is visible. This changes when
the notch depth disorder magnitude is increased further and for 𝜖 = 0.5, the first stopband
moves slightly to the left, such that the original stopband is lost at the edge towards higher
frequencies. This loss at the edge towards higher frequencies can be observed for the second
stopband, which is significantly broader now, reaching from 17 kHz to 21 kHz. The original
passband between the two stopbands is also lost, but the disorder is not strong enough to
lead to full reflection for these frequencies. However, the total reflection is significantly
increased in this frequency regime. It needs the largest magnitude of notch depth disorder
under consideration, 𝜖 = 1.0, for full reflection in the audible range 𝑓 ≥ 10 kHz. For smaller
frequencies, which are still larger than in the first stopband, i.e. for frequencies between
4 kHz and 10 kHz, a very large reflection is achieved (with the reflection coefficient moduli
larger than 0.8). Left of the first stopband and for frequencies larger than 21 kHz, this
does not hold anymore and the reflection is smaller.

To get a quantitative insight into the influence of the notch depth disorder magnitude
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on the localisation behaviour in the two stopbands (for 𝑓 = 5 kHz and 20 kHz) and for
two frequencies in the passband between the two stopbands (𝑓 = 10 kHz and 15 kHz),
we have a look on the statistical distribution of the total reflection. Fig. 5.19 shows
box-and-whisker plots of the total reflection coefficient moduli as functions of the notch
depth disorder magnitude 𝜖. The box-and-whisker plot is depicted in the same way as
in Fig. 5.6. Again, results are shown using 100 different notch depth configurations from
the underlying periodic configuration (𝜖 = 0) and only the notch depths are increased for
increasing 𝜖 without generating new realisations.
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Figure 5.19: Box-and-whisker plot of total reflection coefficient moduli for Timoshenko
beam model as functions of notch depth disorder magnitude for 𝑓 = 5 kHz (top-left panel),
𝑓 = 10 kHz (top-right panel), 𝑓 = 15 kHz (bottom-left panel) and 𝑓 = 20 kHz (bottom-right
panel)

Fig. 5.19 shows the behaviour on the two stopbands as well as the passband, when disorder
is introduced. For 𝑓 = 5 kHz (top-left panel), we are in the first stopband, which is robust
with respect to disorder magnitudes for 𝜖 ≤ 0.5, for which full reflection is maintained.
When 𝜖 is increased beyond this value, the stopband is lost and the median of reflection
coefficient moduli decreases to approximately 0.8 for 𝜖 = 0.9, which is approximately the
same value as for the respective stopband in the Euler–Bernoulli beam model. For this
disorder magnitude, configurations exist, for which |𝑅| is only 0.1 and most of the wave
energy travels along the whole notched domain. This changes again for 𝜖 ≥ 1.3, for which
in most realisations full reflection of the incoming wave is attained again.
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For 𝑓 = 10 kHz and 15 kHz, we are in the passband between the two stopbands and for
the underlying periodic configuration, 𝜖 = 0, the reflection coefficient moduli are close
to zero. Increasing the disorder magnitude leads to an increase of the total reflection.
For the smaller frequency in the passband, 𝑓 = 10 kHz, a disorder magnitude of 𝜖 ≥ 1.1
is necessary to achieve full reflection for (nearly) all disorder configurations. However,
disorder configurations exist, for which 𝜖 ≈ 0.7 is already sufficient for no transmission
along the notched beam. For the second frequency under consideration in the passband,
𝑓 = 15 kHz, the increase of the reflection with increasing disorder magnitude is larger and
transmission is basically already prevented for 𝜖 ≈ 0.8. The smaller distance to the more
dominant second stopband leads to more attenuation in this case.

For 𝑓 = 20 kHz, we are in the second stopband, for which larger attenuation could be
observed in Fig. 5.17 than for the first stopband in the periodic configuration. This stop-
band exhibits a different behaviour than the first stopband. For 𝜖 < 0.9, no configuration
exists, for which wave energy is transmitted. Only for larger disorder magnitudes, very few
outliers, i.e. configurations, which allow a small proportion of wave energy to travel along
the notched beam, exist.

Concluding our investigations in the time-harmonic setting, the results shown in Figs. 5.18
and 5.19 are combined. Fig. 5.20 shows the heatmap of the total reflection coefficient
moduli in dependence of the frequency in the audible range and the notch depth disorder
magnitude.
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Figure 5.20: Heatmap of total reflection coefficient moduli for Timoshenko beam model as
functions of frequency and notch depth disorder magnitude

We clearly notice the two stopbands in Fig. 5.20, which yield full reflection in the periodic
notch configuration, i.e. 𝜖 = 0. The first stopband is comparably small and located around
5 kHz, the second stopband reaches from 19 kHz to 22 kHz. They differ qualitatively signifi-
cantly. The first stopband moves slightly towards the small frequency regime for increasing
disorder magnitude, hence the original stopband is lost for large 𝜖. In contrast to this, the
second stopband does not move to the left as a whole, it rather broadens for increasing 𝜖.
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However, we can also note that for the edge of the second stopband towards the higher
frequencies, full reflection is ultimately lost and small transmission allowed. This does
not happen with the edge of the second stopband towards the smaller frequencies, which
moves with increasing 𝜖 much more significantly towards the smaller frequencies, until
the two stopbands nearly merge for 𝜖 = 1.0. These characteristics serve as the basis for
our final work, the study of localisation in the audible range for the time-dependent problem.

As final result for our investigations, we consider the problem of pulses travelling along
the notched beam. The transition from time-harmonic to time-dependent waves in the
TBM method is important for possible experimental validation of the obtained results.
The waves travelling along the beam shall be excited by sinusoidal tonebursts (Eqn. (5.3)),
which yield good agreement of the TBM method with FE simulations for homogeneous
and dual-notched beams, see Sec. 5.4.2. For our study of the localisation behaviour for
(time-dependent) waves, we maintain our model of a Timoshenko beam with 24 notches of
lengths 𝑙 = 2.25 cm and notch depth 𝑑0 = 2.0 mm in the underlying periodic configuration,
for which disorder is induced by notch depth variations again. Fig. 5.21 shows transmitted
energy ratios as functions of the central frequency of the excited toneburst pulses for
𝜖 = 0.0, 0.2, 0.5, 0.8, 1.0 and 𝜖 = 1.2. The transmitted energy ratio is the ratio of energy
passing 𝑥end = 2.0 m for the respective configuration compared to the wave energy passing
the same location for the homogeneous beam. The transmitted wave energy is calculated
via the square of the wave amplitude at 𝑥end, i.e.

𝐸transm =
ˆ 𝑇

0
U(𝑥end,𝑡)2 d𝑡, (5.24)

where 𝑇 is chosen to be sufficiently large to capture all waves passing 𝑥end. The results are
shown for an example notch depth configuration and increasing 𝜖 leads to an increase of
the notch depths in this specific configuration.

We can observe in Fig. 5.21 for the periodic configuration (𝜖 = 0.0) that the pass- and stop-
bands are not defined as clearly as for the time-harmonic problem, since the toneburst pulses
with central frequency 𝑓c contain surrounding frequencies, see the spectral distributions of
the toneburst pulses in Fig. 5.8. Hence, close to the edges of the passband, frequencies
from the adjacent stopband can be found, leading to a decrease in the transmitted energy,
and vice versa, close to the edges of the stopbands, frequencies from the passband can be
found, leading to some transmission. However, the pass- and stopbands remain visible in
Fig. 5.21. Since the stopbands for the time-harmonic problem are much narrower than the
respective passband in-between, transmission occurs in both cases due to the existence of
frequencies from the passband in the toneburst pulses. As we could observe in Fig. 5.8, the
spectral distributions widen for increasing central frequencies, which implies in particular
that the pass- and stopband characteristics blur more for large frequencies. This can
be noticed for the two stopbands under consideration, located around 5 kHz and 20 kHz.
The first stopband is comparably narrow and the transmitted energy ratio decreases to
approximately 0.2. For the second stopband, which is inherently about twice as broad as
the first one, the transmitted energy ratio decreases only to approximately 0.5 and the
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Figure 5.21: Transmitted energy ratios for Timoshenko beam model with example notch
depth configuration as functions of central frequency of excited toneburst pulses for 𝜖 = 0.0
(top-left panel), 𝜖 = 0.2 (top-right panel), 𝜖 = 0.5 (middle-left panel), 𝜖 = 0.8 (middle-right
panel), 𝜖 = 1.0 (bottom-left panel) and 𝜖 = 1.2 (bottom-right panel)

passband is already left for 𝑓c ≥ 15 kHz, hence for a significantly smaller frequency than
for the time-harmonic problem. Nevertheless, for central frequencies between 8 kHz and
15 kHz, the original passband is preserved and we have full transmission in this frequency
regime. This passband is of our main interest and we hope to achieve localisation in this
passband in the audible range by introducing disorder into the underlying periodic problem.

As expected, for the smallest notch depth disorder magnitude, 𝜖 = 0.2, only a small
downshift of the transmitted energy ratio can be observed for the stopbands and for the
passband edge towards higher frequencies. The passband edge towards the first stopband
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remains unchanged, though. This changes for 𝜖 = 0.5, for which no complete transmission
in the former passband occurs anymore, but it takes a disorder magnitude of 𝜖 = 0.8 to
achieve full reflection in the former second stopband for 𝑓c ≈ 17.5 kHz. Full reflection is
also almost attained for the former first stopband for 𝜖 = 0.8, but the frequencies in the
original passband close to the first stopband still lead to a significant transmitted energy
ratio of 0.6.

For the time-harmonic problem, a disorder magnitude of 1.0 is necessary to prevent
transmission between 10 kHz and 20 kHz. Here, for the time-dependent problem with excited
pulses in this specific notch depth configuration, this almost holds and the transmitted
energy ratio does not exceed 0.1 in this frequency regime. However, for larger central
frequencies, a significant transmission can be observed, as well as for frequencies in the
original first stopband and below. Increasing the notches further, this feature is conserved
for central frequencies smaller than 7 kHz and the transmission increases the longer the
waves become (decreasing frequency). But most important, for frequencies larger than
7 kHz full reflection is obtained and the excited pulses do not pass the notches.

5.5 Summary and discussion
After formulating the problem of waves travelling along a notched beam with notches of
the same length, we showed that stopbands exist around Bragg’s values in the periodic
notch configuration, for which all notches are of the same depth. We have also seen that
the stopbands move towards the smaller frequencies and the attenuation increases for
increasing notch depths. Furthermore, we could observe harmonics of lower frequencies
in the passbands, especially for frequencies smaller than in the first stopband. After
that, we introduced disorder into the notch depths to investigate the effect of disorder
in the notch depths on the wave propagation along the beam. We set the number of
notches as 24, which yields a clear pass- and stopband behaviour and this number can be
placed on a beam of 2 m length, without having to place the notches too close towards
the beam ends, which might lead to difficulties in the analysis. We observed that the
notch depths have to be at least 2.0 mm in the underlying periodic configuration in order
to obtain localisation for notch depth disorder magnitudes of 1.0, which corresponds
to doubling the notch depths at most. For larger notch depths in the underlying pe-
riodic configuration, the localisation effect for disorder magnitude 1.0 is even stronger,
but the problem becomes unpractical due to the very small remaining beam thickness,
though. All these calculations were performed with the numerical method, which was
introduced for the in-vacuo beam problem, without having to use step approximations to
approximate the profile now, since the profile is already piece-wise constant in the present
problem. The numerical method is for this discrete problem computationally very efficient,
since scattering matrices only appear at the scattering interfaces, which are the notch edges.

After this preliminary analysis, we used Abaqus FEA to perform simulations to vali-
date our numerical method for the Euler–Bernoulli beam model in the present problem
setting. For realistic simulations, a (finite) 2 m-beam was simulated with toneburst pulses
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excited at the left end of the beam. To allow comparisons with our numerical method
for the Euler–Bernoulli beam model, which we used for time-harmonic problems so far
only, the Fourier transform is applied to translate the time-dependent problem into the
frequency-domain, where our numerical method solves the respective problem, and to
translate the obtained results back into the time-domain again. In a first step of validation,
the wave speeds of signals excited by toneburst pulses were compared between our numerical
method for the Euler–Bernoulli beam model and the FE method. We observed that our
method for the Euler–Bernoulli beam model overestimates the wave speeds clearly. This
motivated the transition in our numerical method from the Euler–Bernoulli beam model
to a Timoshenko beam model, which takes shear deformations and rotational inertia into
account.

The Timoshenko beam model is an extension to the Euler–Bernoulli beam model and
after its derivation, we examined the occurring wavenumbers and ensured that in our
problem formulation, the second wave mode remains evanescent for frequencies in the
audible range. We noticed that the phase speeds in the Timoshenko beam model are
approximately only half of the phase speeds in the Euler–Bernoulli beam model in this
frequency regime. After that, we compared signals excited by toneburst pulses for the
homogeneous beam, simulated with our numerical method for the Timoshenko beam model
and the FE method, which yields good agreement with experimental results for beams
with similar dimensions. The comparisons showed very good agreement, which we then
extended to multiple frequencies in the audible range and observed very good agreement
for the wave speeds as well. Motivated by these observations, a beam with two notches
was considered and the signal excited by toneburst pulses simulated with our numerical
method for the Timoshenko beam model and the FE method. The agreement between
both methods was striking and indicated that the Timoshenko beam model is adequate to
describe the wave propagation along the beam and possible localisation effects.

As preparatory work towards final results for the time-dependent problem, we focussed on
the time-harmonic problem first and formulated a setting for our final investigations and
in particular for possible experimental setups. Since the Timoshenko beam model gives
larger wavenumbers than the corresponding Euler–Bernoulli beam model, the pass- and
stopbands move towards the smaller frequencies and we chose the notch lengths, which
make significant contributions to the Bragg’s values and hence to the locations of pass-
and stopbands, in a way such that the stopbands are located at the lower and upper
ends of our frequency regime of interest. The passband between both stopbands was then
of our main interest to find localisation when introducing disorder. We observed that
for large disorder, transmission of waves along the notched beam was prevented in the
time-harmonic problem. This prevention comes from the original second stopband, which
extends to the left for increasing disorder magnitude to merge with the first stopband
finally. However, the first stopband does not extend and moves towards smaller frequencies
only slightly and no transmission in the original stopbands can be observed, such as in the
work of Poddubny et al. (2012), who transformed stopbands into passbands by introducing
disorder for one-dimensional photonic crystals.
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With the understanding of the time-harmonic problem, we finally considered toneburst
pulses interacting with notches of a single example notch depth configuration for increasing
notch depths, which is a realistic and feasible experimental setup. In the time-dependent
problem, the pass- and stopbands merge into each other at their respective edges due to
the toneburst pulses, which contain a significant frequency spectrum around the central
frequencies. This does not affect the results for large disorder magnitudes and transmission
is finally prevented and localisation achieved in the audible range for frequencies larger
than 5 kHz.





CHAPTER 6

Summary and Future Work

The main aim of this thesis has been to study the behaviour of waves along solids with inho-
mogeneities. We dealt with various problems and developed a framework for semi-analytical
approaches to describe the attenuation behaviour of effective wave fields travelling along
beams and floating plates with small-scale continuous property and thickness variations
over long distances. We briefly review the content of each chapter in the following and
summarise the key outcomes. A detailed summary of the results for the various problems
is given at the end of the each chapter, respectively. Due to the fundamental nature of
this project, there is much future work to be done surrounding the respective problems
discussed in this thesis, and we give an outlook on future work.

In Ch. 2, we studied wave propagation along rough Euler–Bernoulli beams, whose rough-
nesses were incorporated by continuous beam property variations and thickness variations.
Beam property variations include varying densities and a varying Young’s modulus along
the beam, which leads to varying mass and varying rigidity, respectively. Before we investi-
gated the attenuation behaviour over long distances, we validated our numerical method,
which is based on a step approximation of the underlying continuous roughness profile. To
validate the numerical method, we considered beams with deterministically varying mass
and rigidity profiles. This allowed us to describe wave propagation along those beams with
integral equations, which were solved with a collocation method. This approach lead us to
the correct discretisation scheme for varying rigidity problems in the numerical method
based on the step approximation and we could validate our numerical method, which can
be used for general continuous roughness profiles. Due to the superposition principle, we
could restrict ourselves to time-harmonic waves in our investigations.

Our primary focus was put on the effective waves along rough thin-elastic beams over long
distances. The beam roughness was modelled via random variations in its mass, rigidity or
thickness using a Gaussian autocorrelated random process, for which only the amplitude
and the correlation length had to be prescribed. The effective wave fields were obtained as
the ensemble average of individual wave fields for randomly generated roughness realisations
for a given amplitude and correlation length, whereby the step-approximation method
was used to calculate the individual wave fields. This approach was used to validate the
semi-analytical approach, which was sought and derived to describe the propagation of the
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effective wave field more efficiently. To obtain sufficiently accurate effective wave fields, a
very large ensemble of individual wave fields was needed. Hence, for the computations of
the effective wave field via the numerical method, a high-performance computing cluster
was used to reduce the computing time hugely, compared to standard and high specification
PC systems. The semi-analytical approach was based on a multiple-scale expansion of
the effective beam deflection and yielded the phase changes and attenuation coefficients
of the effective wave fields, on the assumption that the roughness amplitude was small.
The phase changes and attenuation coefficients for the problems of varying mass, varying
rigidity and varying thickness, predicted by the multiple-scale method and obtained by
the numerical method, were compared over a range of correlation lengths and roughness
amplitudes, and individual wave fields could be compared with the corresponding effective
wave fields using the numerical method. The key findings were as follows:

a. The varying mass and varying rigidity produce identical attenuation coefficients, and
identical phase changes up to the addition of a constant.

b. For varying mass, the effective wavelength is longer than the wavelength of the
corresponding uniform beam, but it is shorter for the varying rigidity.

c. In the limit that the correlation length tends to zero, the varying mass produces no
phase change, but the varying rigidity does produce a phase change.

d. Varying thickness leads to significantly larger attenuation coefficients than varying
mass and varying rigidity, only.

e. The effective wavelength in the case of varying thickness is shorter than the wavelength
of the corresponding uniform beam.

f. The phase changes and attenuation coefficients predicted by the numerical method
and the multiple-scale method agree up to 𝜖 ≈ 0.1.

g. The effective wave fields differ from the individual wave fields, particularly in the
large-correlation-length regime.

We have seen that the multiple-scale method yielded accurate phase changes as well as
attenuation coefficients for the varying mass, varying rigidity and varying thickness prob-
lems in the small roughness-amplitude regime. The roughness in the material properties
and beam thickness lead to a random left-travelling wave component, which cannot be
neglected anymore for large roughness amplitudes. To take this into account in the large
roughness-amplitude regime, a left-travelling wave could be included at leading order in
the multiple-scale method. The spatial structure of the waves along the rough beam, in
particular the intrinsic left-travelling wave components, could be analysed and solutions
studied using dynamical system tools. Moreover, further autocorrelation functions could
easily be used for the numerical and semi-analytical methods and their impact be analysed.
In particular, our numerical method is capable of calculating the (individual as well as
effective) wave fields for more generic and complicated beams incorporated with other
random processes. Taking care of more general random processes describing the beam
properties and thickness would require more detailed modelling sophistication of the statis-
tics though. More extensive modifications of our model would result from the consideration
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of different kinds of non-linearity, which might reveal numerous effects not occurring in our
linear problem, and the enhancement to thick beams, for which compressibility, rotational
inertia, shear deformation and dissipation could be taken into account, see e.g. Balmforth
and Craster 1999.

In Ch. 3, the problem formulation was extended to wave propagation along rough plates
floating on water. This problem formulation for long plates typically has applications in
the construction of very large floating structures and in modelling the interaction of ocean
waves with very large ice floes in the marginal ice zone. We focused in our investigations
on the sea-ice model for very large ice floes, which help to prevent the continuous ice from
being broken by the long ocean waves travelling unimpeded through the marginal ice zone.
Since the amplitudes of the incoming ocean waves in the marginal ice zone are comparable
small to their wavelengths, linear water wave theory could be applied, and since the very
large ice floes are of comparable small thickness and highly flexible, they could be modelled
as Euler–Bernoulli plates. At the interface between the water and the floating plate, a
dynamic and a kinematic boundary condition were applied to couple the equation of motion
for the floating plate with the potential equation of the water. This lead us to a system of
equations for the velocity potential of the water and the plate deflection, consisting of an
equation for the velocity potential in the water domain, an impermeability condition at the
sea-floor and the coupled condition for the floating plate. We modelled the plate roughness
similarly to the in-vacuo beam problem as a continuous, Gaussian autocorrelated random
process with roughness profile variations being uniform along the 𝑦-axis, which made the
model two-dimensional. The numerical method based on the step approximation of the
continuous roughness profile, which was presented for the in-vacuo beam problem, had to
be extended for the floating plate problem, since the full-linear solution of the velocity
potential contains an infinite number of wave modes in each sub-interval. For numerical
computations, the full-linear solution in each sub-interval had to be approximated with
a finite number of wave modes. To obtain the effective wave field for the floating plate
problem via the numerical method, the computing time increased compared to the in-vacuo
beam problem, which was already computationally very expensive. For this reason, a
semi-analytical method is derived to describe the attenuation of the effective wave field in
presence of continuous thickness and plate property variations. This multiple-scale method
is based on the assumption again that the roughness amplitude of the plate variations is
small. The attenuation coefficients for the problems of varying mass, varying rigidity and
varying thickness, predicted by the multiple-scale method and obtained by the numerical
method, were compared over a range of correlation lengths and roughness amplitudes. The
key findings were as follows:

a. The attenuation coefficients predicted by the numerical method and the multiple-scale
method agree up to 𝜖 ≈ 0.1.

b. The attenuation coefficients show the same qualitative behaviour as for the in-vacuo
beam problem.

c. Varying thickness leads to significantly larger attenuation coefficients than varying
mass and varying rigidity only.
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d. The attenuation for varying rigidity dominates the attenuation for varying mass.

e. The effective wave fields differ from the individual wave fields, particularly in the
large-correlation-length regime.

The approaches to characterise the dynamic behaviour in the marginal ice zone are numer-
ous. For this reason, we restrict our outlook for the future work on approaches, which can
directly be pursued from our work. Although we have been interested in the attenuation
for the floating plate problem, it would be obvious to characterise the phase change as well.
However, to give the phase change for this problem, the discontinuities of the higher-order
derivatives of the corresponding Green’s function have to be taken into account, which
result from the impulse at the source point. We want to emphasize the simplifying character
of this study and that ocean wave interactions with large ice floes have to be characterised
more sophistically. A first step towards a more realistic model would be to include cracks,
pressure ridges and extending the model to discrete ice floes, for which additional boundary
conditions (between plates and open water, corner conditions for cracks, ...) and no flow
conditions from open water through submerged part of plate edge (see e.g. Squire 2010)
have to be applied.

The multiple-scale method represents a very efficient method to capture the attenua-
tion for the present problem. However, it describes the attenuation of the effective wave
field only. To find the transmission and reflection of flexural waves across a patch of random
inhomogeneities such as mass and/or rigidity in a floating plate, numerical methods such
as our step-approximation method could be used, but it takes a long computing time, when
the patch is long. Efficient computational methods could possibly be found to describe
the transmission and reflection in such problems by using Fourier transform methods in
1D and 2D to find the plate deflection, which avoids the discretisation of the roughness
profile. Unfortunately, due to the ignorance of mankind, sea-ice is condemned to vanish.
For consequences of the loss of sea-ice in polar regions on areas across the planet, we refer
to Wadhams 2016.

In Ch. 4, we studied wave propagation along strings with continuous and discrete in-
homogeneities. To start with, we investigated an inhomogeneous string with a continuous
roughness profile, which exhibited the same roughness characteristics (for the string den-
sity) as the in-vacuo beam and floating beam problems. The problem for a string with
continuous roughness profile was of second order only, which was easier to deal with than
the beam and plate problems (and a simplified version of the step-approximation method
could be used) and primarily served as a simpler model to gain a deeper understanding
of scattering at continuous roughness profiles. A numerical modification allowed larger
roughness amplitudes in our investigations than for the previous problems. This modifi-
cation caused the statistical characteristics of the random process to be lost in the large
roughness-amplitude regime, for which, in addition, the limits of validity of analytical
approximations such as multiple-scale expansions are exceeded. However, the transition
to large roughness amplitudes lead to convergence of individual and effective attenuation
coefficients, i.e. for strong enough scattering, the wave cancellation effect diminished, and
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individual and effective wave fields can be representative for each other.

Our aim in this chapter was to establish a connection between the scattering and at-
tenuation behaviour of strings with continuous and discrete inhomogeneities. After we had
studied the continuous problem, it was pending and necessary for the subsequent work
to investigate and understand the discrete problem. To compute wave propagation along
a string beaded with point scatterers, our numerical method for the continuous problem
had to be modified to be applied for general point scatterer profiles. For our attenuation
investigations, we started in passbands for the underlying periodic beads configuration
and studied the effect of disordering the beads’ positions on the wave attenuation. An
averaging routine allowed us to calculate the effective wave field and we could observe that
individual and effective wave fields correspond throughout a large regime of scattering
strengths, and their attenuation coincided with the value predicted by the Berry–Klein
limit for sufficiently large positional disorder. It was also interesting to note that wave-
cancellation effects occurred in this setting for small scattering strengths, and effective
wave fields were attenuated slightly faster than individual wave fields, which complemented
our understanding of this phenomenon.

The separate analysis of the continuous and discrete problem, and the acquired understand-
ing of the respective problems made it possible to change our focus over to connecting both
problems. A numerical routine was then used to cluster continuous roughness profiles into
single humps and we studied their statistics. We used the phase-change distribution for the
continuous problem to fit a non-parametric distribution. This distribution was employed
to describe the positional disorder in the discrete problem (mean scattering strength
was obtained from clustered humps) and we compared the results with the underlying
continuous problem. The key findings were as follows:

a. The attenuation in the discrete problem dominates the attenuation in the continuous
problem with equivalent scattering strengths for uniformly distributed phase changes.

b. The phase-change distribution is important for the attenuation magnitude in the
discrete problem.

c. The maximum attenuation in the discrete problem occurs for phase changes dis-
tributed around 𝜋.

d. Agreement between the attenuation in the continuous and discrete problem for the
same phase-change distributions is reached in the correlation-length regime producing
maximum attenuation.

The importance of the phase-change distribution explains the comparably weak attenuation
for continuous roughness profiles (for rough beam and plates as well). The underlying
(Gaussian autocorrelated) process gives a hump profile with humps of very similar length
and the missing deviation in the hump lengths results in only similar phase changes of
waves interacting between adjacent hump. A hump-length disorder might numerically be
introduced into the continuous random profile to include all phase changes. To obtain
similar attenuation as for disordered discrete problems, it has to be taken into account that
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increasing hump lengths might lead to humps, which are too smooth then to attenuate
the propagating waves. This could possibly be compensated by adjusting the roughness
amplitudes for these scaled humps. We could observe that wave fields exist for large rough-
ness amplitudes and scattering strengths, which attenuate much slower than the remaining
wave fields and subsequently dominate the corresponding effective wave field, which we
eluded by introducing the quantile approach in our investigations. This has to be studied
carefully in the future. Preliminary investigations for the in-vacuo beam problem suggested
that a significant increase in the roughness amplitude gives rise to a converging behaviour
of individual and effective wave fields to each other for maximum-attenuation-producing
correlation lengths as well. Moreover, the connection between the continuous and discrete
string problems can be specified more accurately by identifying the scattering strength
and phase change of each clustered hump in the continuous problem and transferring it to
the corresponding point scatterer in the discrete problem instead of assigning the mean
scattering strength of all clustered humps and the corresponding phase change distribution
to the point scatterers. The more elaborate ansatz of individual scattering strengths
corresponds to compositional disorder of discrete scatterers, which is less influential on the
attenuation behaviour than positional disorder, see e.g. Maurel and Martin 2013.

In Ch. 5, we studied waves with frequencies in the audible range travelling along beams
with discrete, periodically located notches. Our aim was to find and investigate localisation
behaviour in this setting by introducing notch depth variations. We started with showing
the pass- and stopband behaviour for the periodic configuration, for which the notch depth
is uniform for all notches along the beam. This allowed us to analyse the fundamental
influence of the notch-configuration geometry for time-harmonic waves. The number of
notches was chosen to be sufficiently large for providing a clear pass- and stopband be-
haviour, but not too large to avoid difficulties in the analysis of possible experiments, which
might occur, when notches are placed too close towards the beam ends. However, these
difficulties do not arise with our efficient numerical method, introduced for the in-vacuo
beam problem in Ch. 2, for which the interactions at the beam ends are neglected. After a
preliminary investigation of the effect of disordering notch depths for the Euler–Bernoulli
beam model, we used FE simulations in order to validate our numerical method for the
Euler–Bernoulli beam model. For this purpose, a 2 m-beam was simulated with toneburst
pulses excited at the left end of the beam. To use our numerical method for time-dependent
problems, a Fourier transform was applied, which made it possible to apply the numerical
method in the frequency-domain and yield the results in the time-domain. The observed
discrepancy of wave speeds for a homogeneous beam between our numerical method for the
Euler–Bernoulli beam model and the FE simulations motivated a transition from the Euler–
Bernoulli beam model to the Timoshenko beam model for our numerical method. The
Timoshenko beam model was an extension to the Euler–Bernoulli beam model taking shear
deformations and rotational inertia into account and showed very good agreement with
the wave speed obtained by the FE simulations for frequencies in the audible range. The
Timoshenko beam model gave larger wavenumbers than the corresponding Euler–Bernoulli
beam model, which is why the pass- and stopbands move towards the smaller frequencies
compared to the Euler–Bernoulli beam model. We chose the notch lengths in a way such
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that the stopbands are located at the lower and upper ends of the audible frequency regime
of interest. The passband between these two stopbands was then of our main interest to
find localisation when introducing disorder. The key findings were as follows:

a. Good agreement between our numerical method for the Timoshenko beam model
and FE simulations for a toneburst pulse travelling along a beam with two notches
can be observed.

b. For notch depths of 2.0 mm in the underlying periodic configuration, their depths
have to be randomly doubled to obtain clear localisation in the time-harmonic setting.

c. Transmission of waves along the notched beam is prevented by the original second
stopband, which extends towards first stopband for large disorder magnitudes.

d. No transmission in the original stopbands can be observed.

e. The localisation effect in the original passband becomes stronger when the notch
depth disorder magnitude is increased beyond doubling notch depths.

f. The pass- and stopbands merge into each other at their respective edges in the
time-dependent problem (because of the frequency spectrum of the toneburst pulses).

g. Localisation is achieved in the audible range for frequencies larger than 5 kHz in the
time-dependent problem by disordering notch depths.

This study was intended as preparatory work for experimental validation, for which the
experiments still have to be conducted. Our setting was chosen with those in view to yield
good experimental results. For the analysis of toneburst signals after the notched domain, it
is required that they are isolated and reflections at the beam ends do not distort amplitude
measurements. This might be circumvented for our localisation investigations by damping
the right-end of the beam to absorb the signals there and prevent wave reflection. Also,
to design efficient experiments, frequency bands might be considered instead of toneburst
pulses to see which frequencies are localised along the notched beam. Moreover, compar-
isons with wave propagation along notched beams with asymmetric notches, i.e. the notches
are not modelled to be symmetric with respect to the mid-plane of the beam anymore,
would be informative for physical problems as well. The asymmetric notches give rise to
mode conversion of the anti-symmetric propagating Lamb waves (which our numerical
method cannot capture). The resulting symmetric Lamb waves have different wave speeds
and stresses through the beam thickness, see e.g. Bao 2003, and their influence on the
localisation behaviour has to be studied. We have investigated notch-depth configurations
for increasing notch depths, which is a realistic and feasible experimental setup, to obtain
localisation. This corresponds to compositional disorder for the beaded-string problem, for
which less attenuation is observed compared to positional disorder, see Maurel and Martin
2013. This could be studied in the setting of notched beams as well by comparing our
results with those for notch position variations. The notch position variations could be
incorporated by describing the notch lengths and the distance between adjacent notches
via random distributions.



214 Chapter 6 Summary and Future Work

In this work, we showed efficient computational methods to describe effective wave fields
in beam and floating plate problems with continuous roughness profiles. This research con-
tributed to the fundamental analysis of effective and individual waves, and their interaction
with continuous inhomogeneities along rough thin-elastic solids. In addition, we studied
wave propagation along solids with discrete scatterers and investigated their connection to
continuous inhomogeneities for strings. The findings in this thesis lay out the groundwork
for future work and might be applied on more complex inhomogeneous solid structures.



APPENDIX A

Random process in rough profile generation

The following paragraphs are based on the study by Shinozuka (1971) to show that the
random process in Eqn. (2.73) has mean zero and (on average) the same autocorrelation
and mean-square spectral density function as the target random process 𝜓0, and is ergodic
in the autocorrelation. According to the central limit theorem, the random process 𝜓 is
Gaussian for sufficiently large 𝑁 , and we can use the ensemble average
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and the independent choice of the random variables 𝑟𝑛 and 𝜙𝑛, 𝑛 = 1, . . . , 𝑁 , to obtain
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Hence, the ensemble average of 𝜓(𝑥) vanishes as expected.

To show the other properties, i.e. same autocorrelation and mean-square spectral density
as the target random process, the autocorrelation function of 𝜓(𝑥), 𝜌, is written as
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Here, it was used that the 2𝜋-periodicity of the trigonometric functions (similar argument
as in Eqn. (A.2)) leads to

⟨cos (𝑟𝑚𝑥+ 𝜙𝑚) cos (𝑟𝑛(𝑥+ 𝜉) + 𝜙𝑛)⟩ = 0 for 𝑚 ̸= 𝑛. (A.4)

With the general addition theorem,

cos(𝑎) cos(𝑏) = 1
2 [cos(𝑎+ 𝑏) + cos(𝑎− 𝑏)] (A.5)

for real 𝑎 and 𝑏, the expected value in Eqn. (A.3) for 𝑟 being considered as a sample can
be written as

1
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2 cos (𝑟𝜉) (A.6)

and Eqn. (A.3) simplifies with the representation of the probability density function 𝑓
from Eqn. (2.74) to
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Eqns. (A.2) and (A.7) imply that the random process 𝜓 is stationary in a wide sense, i.e.
the mean as well as the autocorrelation function 𝜓 do not vary with respect to space. This
is fulfilled, since the mean value is constant and the autocorrelation function only depends
on the difference 𝜉 between two points 𝑥 and 𝑥 + 𝜉. The wide-sense stationarity of 𝜓
makes it possible to apply the Wiener–Khinchin theorem, which relates the autocorrelation
function, 𝜌0, and the spectral density function, 𝑆0, via the Fourier transform and its inverse,
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It is used in Eqns. (A.8) that the autocorrelation function and the spectral density function
are even functions, and the second identity in Eqn. (A.8b) follows from application of the
inverse Fourier transform on Eqn. (A.7).

Recapitulating, we showed in Eqn. (A.2) that the first moment for both the random
process 𝜓 and the target random process 𝜓0 coincide (on average and for 𝑁 large enough).
It follows from Eqns. (A.8) that (again considering the ensemble average and sufficiently
large 𝑁) the autocorrelation function, 𝜌, and the mean-square spectral density, 𝑆, agree
with the target autocorrelation function, 𝜌0, and target mean-square spectral density, 𝑆0,
of the (target) random process 𝜓0.

After we have considered the statistical properties of the random process with respect to
ensemble averages above, we focus on individual realisations of the underlying process 𝜓,
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i.e. the statistical properties with respect to spatial averages, now. For the sake of notation
simplicity, the spatial mean of an included quantity is denoted with E. First, it can be
shown that the spatial mean vanishes,
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𝐿

√︂
2
𝑁

𝑁∑︁
𝑛=1

ˆ 𝐿

0
cos (𝑟𝑛𝑥+ 𝜙𝑛) d𝑥

⃒⃒⃒⃒
⃒

≤ lim
𝐿→∞

𝜎

𝐿

√︂
2
𝑁

𝑁∑︁
𝑛=1

1
𝑟𝑛

⃒⃒⃒
[sin (𝑟𝑛𝑥+ 𝜙𝑛)]𝐿𝑥=0

⃒⃒⃒
≤ lim

𝐿→∞

2𝜎
𝐿

√
2𝑁 max

𝑛=1,...,𝑁

1
𝑟𝑛

= 0. (A.9)

Hence, each realisation of the random process is expected to vary around its mean 0. It is
important to keep in mind, when dealing with individual process realisations (as we do
now considering spatial means, spatial autocorrelation, . . . ), that 𝑟𝑛 and 𝜙𝑛, 𝑛 = 1, . . . ,𝑁 ,
are not random variables anymore but sample values.

Next, the spatial autocorrelation function for the random process 𝜓 is of interest. The
spatial autocorrelation function is denoted with 𝜌*(𝜉) and it simplifies to

𝜌*(𝜉) = E[𝜓(𝑥)𝜓(𝑥+ 𝜉)]

= lim
𝐿→∞

2𝜎2

𝐿𝑁

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=1

ˆ 𝐿

0
cos (𝑟𝑚𝑥+ 𝜙𝑚) cos (𝑟𝑛(𝑥+ 𝜉) + 𝜙𝑛) d𝑥

= lim
𝐿→∞

2𝜎2

𝐿𝑁

𝑁∑︁
𝑛=1

ˆ 𝐿

0
cos (𝑟𝑛𝑥+ 𝜙𝑛) cos (𝑟𝑛(𝑥+ 𝜉) + 𝜙𝑛) d𝑥

= 𝜎2

𝑁

𝑁∑︁
𝑛=1

cos (𝑟𝑛𝜉), (A.10)

where the following orthogonality result was used,

1
𝐿

ˆ 𝐿

0
cos (𝑟𝑚𝑥+ 𝜙𝑚) cos (𝑟𝑛(𝑥+ 𝜉) + 𝜙𝑛) d𝑥 =

{︃
0 for 𝑚 ̸= 𝑛,
1
2 cos (𝑟𝑛𝜉) for 𝑚 = 𝑛.

(A.11)

To obtain the corresponding mean-square spectral density function, 𝑆*, from the auto-
correlation function 𝜌*, the Wiener–Khinchin theorem is applied in the same way as in
Eqn. (A.8b),

𝑆*(𝑟) = 1
2𝜋

ˆ ∞

−∞
𝜌*(𝜉)e−i𝑟𝜉 d𝜉 = 𝜎2

2𝜋𝑁

𝑁∑︁
𝑛=1

ˆ ∞

−∞
cos (𝑟𝑛𝜉)𝑒−i𝑟𝜉 d𝜉 . (A.12)
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To simplify the expression for 𝑆*, we make use of the following representations of the Dirac
delta distribution,

F−1[F[𝛿(𝑟 − 𝑟𝑛)]] = F−1
[︁ˆ ∞

−∞
𝛿(𝑟 − 𝑟𝑛) ei𝑟𝜉 d𝑟

]︁
= F−1

[︁
ei𝑟𝑛𝜉

]︁
= 1

2𝜋

ˆ ∞

−∞
ei𝑟𝑛𝜉 e−i𝑟𝜉 d𝜉

= 1
2𝜋

ˆ ∞

−∞
e−i(𝑟−𝑟𝑛)𝜉 d𝜉 = 𝛿(𝑟 − 𝑟𝑛), (A.13a)

and similarly,
F−1[F[𝛿(𝑟 + 𝑟𝑛)]] = 1

2𝜋

ˆ ∞

−∞
ei(𝑟+𝑟𝑛)𝜉 d𝜉 = 𝛿(𝑟 + 𝑟𝑛). (A.13b)

These representations lead to the following form of the (normalised) integral term in
Eqn. (A.12),

1
𝜋

ˆ ∞

−∞
cos (𝑟𝑛𝜉)e−i𝑟𝜉 d𝜉 = 1

𝜋

ˆ ∞

−∞

e−i𝑟𝑛𝜉 + ei𝑟𝑛𝜉

2 ei𝑟𝜉 d𝜉

= 1
2𝜋

ˆ ∞

−∞
ei(𝑟−𝑟𝑛)𝜉 d𝜉 + 1

2𝜋

ˆ ∞

−∞
ei(𝑟+𝑟𝑛)𝜉 d𝜉

= 𝛿(𝑟 − 𝑟𝑛) + 𝛿(𝑟 + 𝑟𝑛), (A.14)

so that we can rewrite the mean-square spectral density function from Eqn. (A.12) as

𝑆*(𝑟) = 𝜎2

2𝑁

𝑁∑︁
𝑛=1

[𝛿(𝑟 − 𝑟𝑛) + 𝛿(𝑟 + 𝑟𝑛)] . (A.15)

To draw a comparison between the autocorrelation function in the ensembling case, 𝜌, and
its spatial equivalent, 𝜌*, it is expedient to construct the mean-square spectral distribution
function, 𝛤 *, from the mean-square spectral density function, 𝑆*,

𝛤 *(𝑟) =
ˆ 𝑟

−∞
𝑆*(𝑟) d𝑟 = 𝜎2

2𝑁

𝑁∑︁
𝑛=1

ˆ 𝑟

−∞
𝛿(𝑟 − 𝑟𝑛) + 𝛿(𝑟 + 𝑟𝑛) d𝑟. (A.16)

To evaluate the corresponding integrals of the Dirac delta distributions in Eqn. (A.16), the
cases 𝑟 ≤ 0 and 𝑟 ≥ 0 have to be analysed. For 𝑟 ≤ 0, we have

ˆ 𝑟

−∞
𝛿(𝑟 − 𝑟𝑛) + 𝛿(𝑟 + 𝑟𝑛) d𝑟 =

⎧⎪⎨⎪⎩
1, if 𝑟𝑛 ≤ 𝑟,

1, if 𝑟𝑛 ≥ −𝑟,
0, else,

(A.17a)
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whereas for 𝑟 ≥ 0, we have

ˆ 𝑟

−∞
𝛿(𝑟 − 𝑟𝑛) + 𝛿(𝑟 + 𝑟𝑛) d𝑟 =

⎧⎪⎨⎪⎩
2, if |𝑟𝑛| ≤ 𝑟,

1, if 𝑟𝑛 ≤ −𝑟,
1, if 𝑟𝑛 ≥ 𝑟.

(A.17b)

With these identities, the mean-square spectral distribution function, 𝛤 *, appearing in
Eqn. (A.16) can be written as

𝛤 *(𝑟) =
ˆ 𝑟

−∞
𝑆*(𝑟) d𝑟 = 𝜎2

2𝑁𝑁(𝑟), (A.18)

where 𝑁(𝑟) is the number of 𝑟𝑛 in the sample of size 𝑁 meeting the conditions in
Eqns. (A.17) for 𝑟 ≤ 0 and 𝑟 ≥ 0, respectively, multiplied by the given coefficients. The
representation of the mean-square spectral distribution function, 𝛤 *, from Eqn. (A.18) can
now be used to characterise the random variable 𝛤 *(𝑟+𝛥𝑟) −𝛤 *(𝑟) for positive 𝑟 and 𝛥𝑟,

𝛤 *(𝑟 +𝛥𝑟) − 𝛤 *(𝑟) = 𝜎2

2𝑁 [𝑁(𝑟 +𝛥𝑟) −𝑁(𝑟)] = 𝜎2

2𝑁

𝑁∑︁
𝑛=1

𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑛) (A.19)

with the indicator function

𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑛) =
{︃

1, if 𝑟 ≤ |𝑟𝑛| ≤ 𝑟 +𝛥𝑟,

0, else .
(A.20)

The determine the first as well as the second moment of 𝛤 *(𝑟 + 𝛥𝑟) − 𝛤 *(𝑟) (which
obviously coincide), we consider the corresponding moments of 𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑛),

E
[︀
(𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑛))2]︀ = E[𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑛)] =

ˆ ∞

−∞
𝐼[𝑟,𝑟+𝛥𝑟](𝑟) 𝑓(𝑟) d𝑟

=
ˆ −𝑟

−𝑟−𝛥𝑟
𝑓(𝑟) d𝑟 +

ˆ 𝑟+𝛥𝑟

𝑟
𝑓(𝑟) d𝑟 = 2

ˆ 𝑟+𝛥𝑟

𝑟
𝑓(𝑟) d𝑟 = 2𝑓(𝑟)𝛥𝑟 = 2𝑆0(𝑟)𝛥𝑟

𝜎2 , (A.21)

which is valid for small 𝛥𝑟 and follows from the representation of 𝑓 in Eqn. (2.74) together
with the fact that 𝑆0 is even. The expected value of 𝛤 *(𝑟 +𝛥𝑟) − 𝛤 *(𝑟) is then given by

E [𝛤 *(𝑟 +𝛥𝑟) − 𝛤 *(𝑟)] = 𝜎2

2𝑁

𝑁∑︁
𝑛=1

E
[︀
𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑛)

]︀
= 𝑆0(𝑟)𝛥𝑟 (A.22)
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and its second moment by

E
[︀
(𝛤 *(𝑟 +𝛥𝑟) − 𝛤 *(𝑟))2]︀ = 𝜎4

4𝑁2

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=1

E[𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑚) 𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑛)]

= 𝜎4

4𝑁2

[︂ 𝑁∑︁
𝑛=1

E[(𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑚))2] +
𝑁∑︁

𝑚=1

𝑁∑︁
𝑛=1
𝑛̸=𝑚

E[𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑚)] E[𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑛)]
]︂

= 𝜎4

4𝑁2

[︂
2𝑁𝑆0(𝑟)𝛥𝑟

𝜎2 +𝑁(𝑁 − 1)4𝑆2
0(𝑟)(𝛥𝑟)2

𝜎4

]︂
= 𝜎2

2𝑁 𝑆0(𝑟)𝛥𝑟 + 1
𝑁
𝑆2

0(𝑟)(𝛥𝑟)2, (A.23)

using the independence of 𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑚) and 𝐼[𝑟,𝑟+𝛥𝑟](𝑟𝑛) for 𝑚 ̸= 𝑛. Under the assumption
of small 𝛥𝑟 (which was already used in Eqn. (A.21)), the square of the first moment of
𝛤 *(𝑟 +𝛥𝑟) − 𝛤 *(𝑟) can be neglected and the limit of its variance for 𝑁 → ∞ becomes

lim
𝑁→∞

Var [𝛤 *(𝑟 +𝛥𝑟) − 𝛤 *(𝑟)] = 0. (A.24)

To investigate the convergence of 𝛤 *(𝑟 + 𝛥𝑟) − 𝛤 *(𝑟), the target mean-square spectral
distribution function 𝛤0, which is defined by

𝛤0(𝑟) =
ˆ 𝑟

−∞
𝑆0(𝑟) d𝑟, (A.25)

is approximated on the basis of the Taylor series expansion as

𝛤0(𝑟 +𝛥𝑟) = 𝛤0(𝑟) + 𝑆0(𝑟)𝛥𝑟 + O((𝛥𝑟)2). (A.26)

Again under the assumption of small 𝛥𝑟, it is clear that 𝛤0(𝑟+𝛥𝑟)−𝛤0(𝑟) equals 𝑆0(𝑟)𝛥𝑟,
and since 𝛤0(𝑟 +𝛥𝑟) − 𝛤0(𝑟) is deterministic, its variance is zero, i.e. we have

lim
𝑁→∞

E
[︀

|(𝛤 *(𝑟 +𝛥𝑟) − 𝛤 *(𝑟)) − (𝛤0(𝑟 +𝛥𝑟) − 𝛤0(𝑟))|𝑟
]︀

= lim
𝑁→∞

[︀
|(𝛤 *(𝑟 +𝛥𝑟) − 𝛤 *(𝑟)) − (𝛤0(𝑟 +𝛥𝑟) − 𝛤0(𝑟))|𝑟

]︀
= 0 for 𝑟 = 1, 2. (A.27)

The case 𝑟 = 2 is the characterisation of convergence in mean square and already implies
convergence in the mean (case 𝑟 = 1).

So it is shown now (based on the work of Shinozuka (1971)) that the random process 𝜓
becomes mean-ergodic and ergodic in the mean-square spectral density, hence ergodic in
the autocorrelation, for 𝑁 approaching infinity, i.e. the mean as well as the autocorrelation
yield the same results regardless whether the ensemble average or the spatial average is
taken. As a consequence, these ensemble quantities can be deduced from one single, random
sample of the process 𝜓 over a sufficiently long interval. In addition, these properties of
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the simulated random process 𝜓 are the same as for the corresponding target process 𝜓0.

The target autocorrelation function, 𝜌0, which describes the autocorrelation of the target
random process 𝜓0, was chosen in Sec. 2.4 to be a squared exponential (Gaussian) autocorre-
lation function with correlation length 𝑙G (see Eqn. (2.75)). To simulate this target random
process 𝜓0, the probability density function 𝑓 for the frequencies 𝑟 in Eqn. (2.73) has to be
specified. This can be done via the corresponding mean-square spectral density function
𝑆0. Owing to the Wiener–Khinchin relationship in Eqn. (A.8b), the target mean-square
spectral density function, 𝑆0, can be obtained by applying the inverse Fourier transform to
the target autocorrelation function, 𝜌0,

𝑆0(𝑟) = F−1[𝜌0(𝜉)] = 1
2𝜋

ˆ ∞

−∞
𝜌0(𝜉)e−i𝑟𝜉 d𝜉 = 1

2𝜋

ˆ ∞

−∞
e− 𝜉2

𝑙G e−i𝑟𝜉 d𝜉 = 1√︁
2𝜋 2

𝑙2G

e
− 𝑟2

2· 2
𝑙2G .

(A.28)
Since 𝑆0 is already a probability density function in this case (Gaussian distribution with
mean zero and variance equals 2/𝑙2G), the choice 𝜌0 = e−𝜉2/𝑙2G ensures that the standard
deviation 𝜎 is normalised to unity and hence

𝑓(𝑟) = 1√︁
4𝜋/𝑙2G

e
− 𝑟2

4/𝑙2G . (A.29)

With the previous results about the random process 𝜓 we know that the autocorrelation
function of 𝜓 with respect to the ensemble average, 𝜌, and the spatial average, 𝜌*, are
identical with the target autocorrelation function, 𝜌0, for 𝑁 approaching infinity. Hence,
the target random process satisfying the Gaussian autocorrelation condition Eqn. (2.75) in
the limit 𝑁 → ∞ can be simulated with the series given in Eqn. (2.76).

We now want to convince ourselves numerically that the random process 𝜓 from Eqn. (2.76)
indeed has vanishing ensemble average and spatial mean, and it fulfils the ensemble and
spatial autocorrelation condition 𝜌0. Fig. A.1 shows the ensemble average of the random
process, ⟨𝜓⟩, over the spatial domain of (0,𝐿), where the domain length is set to be
𝐿 = 400 × 𝑙G, for increasing number of terms in the random process generation, 𝑁 = 100
(top panel), 400 (second panel), 1000 (third panel) and 10000 (bottom panel). For each
case of 𝑁 , the ensemble averages calculated for ensemble sizes of 100, 1000 and 100000 are
shown. The correlation length here is chosen to be 𝑙G = 2.5 and the random process is
evaluated at the mid-point of each of the four sub-intervals, which divide each correlation
length. This is in accordance with the step approximation, where the the roughness
profile (beam mass, beam rigidity and beam thickness, respectively) is approximated by a
piece-wise constant function on 𝑀 ≫ 1 sub-intervals, with (−∞, 0) and (𝐿,∞) the 0th and
(𝑀 + 1)th sub-intervals, respectively. The resolution of four sub-intervals per correlation
length corresponds in this case to 𝑀 = 1600.
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Figure A.1: Ensemble average of random process 𝜓 over domain (0,𝐿) for 𝑁 = 100 (top
panel), 𝑁 = 400 (second panel), 𝑁 = 1000 (third panel) and 𝑁 = 10000 (bottom panel).
Ensemble averages are calculated using ensemble sizes of 100 (light grey), 1000 (dark grey)
and 100000 (black).

We can observe in Fig. A.1 for 𝑁 = 100 that the ensemble averages look noticeably different
for the three ensemble sizes. For the smallest ensemble size in consideration, 100, the
ensemble average essentially fluctuates around zero, but it deviates randomly along the
domain significantly by magnitude 0.4 upwards and downwards. For the medium ensemble
size, 1000, the number of outliers does not decrease, but their magnitudes do considerably.
The ensemble average deviates in this case not more than 0.15 upwards and downwards
henceforth. As expected, the largest ensemble size, 100000, yields the best result. Here, the
ensemble average of the random process shows only very small deviations of magnitude 0.01
from the expected value zero. In the other cases, 𝑁 = 400, 1000 and 10000, the ensemble
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averages look qualitatively very much the same with similar magnitude of deviations for the
different ensemble sizes. This is consistent with the analytical calculation of the ensemble
average, which is influenced by 𝑁 , but the ensemble size has to be sufficiently large to
calculate the expected value.

Next, we analyse the autocorrelation of the random process, 𝜌, and compare it with
the target autocorrelation 𝜌0, which is given by the squared exponential Gaussian function
in Eqn. (2.75). Fig. A.2 shows the ensembled autocorrelation function 𝜌 of the random
process (as function of distance between points, 𝜉) for ensemble sizes 100 and 1000. Random
processes are generated with 𝑁 = 100 (top panels), 400 (middle panels) and 1000 (bottom
panels) terms and results are shown for correlation lengths 𝑙G = 0.9, 2.5 and 4.1. The
domain (0,𝐿) is chosen to be of length 𝐿 = 400 × 𝑙G again.
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Figure A.2: Ensembled autocorrelation function of random process 𝜓 for𝑁 = 100 (top panels),
𝑁 = 400 (middle panels) and 𝑁 = 1000 (bottom panels) and correlation lengths 𝑙G = 0.9
(left-hand panels), 𝑙G = 2.5 (middle panels) and 𝑙G = 4.1 (right-hand panels). Autocorrelation
function is calculated for ensemble size 100 (+) and 1000 (∘). Target autocorrelation function
is shown for comparison (solid grey curve).

We can see in Fig. A.2 that already the autocorrelation of the random process with only
𝑁 = 100 shows good agreement with the target autocorrelation function for the larger
ensemble size 1000, for all correlation lengths considered. Using a smaller ensemble size of
only 100 leads to small deviations of the actual and the target autocorrelation function in
the case of 𝑙G = 0.9 for (relatively) more distant points and to less correlated neighbouring
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points in the case of 𝑙G = 2.5. For 𝑁 = 400, the results are similar, i.e. an ensemble
size of 1000 yields accurate autocorrelation of the underlying random process and for the
smaller ensemble size, 100, we can see small deviations, here for 𝑙G = 0.9 for large 𝜉 and
for 𝑙G = 4.1 in the middle regime of all 𝜉 considered. For 𝑁 = 1000 we can observe a
slight improvement and only very small deviations in the case of the larger ensemble size
for 𝑙G = 2.5. Similarly to the previous results, the ensembled autocorrelation function
gives excellent agreement with the squared exponential Gaussian target autocorrelation
function, hence the random process 𝜓 fulfils the autocorrelation condition for sufficiently
large ensemble size for all cases of 𝑁 and 𝑙G considered.

After confirming the derived properties of the ensemble mean and autocorrelation of
the random process 𝜓 numerically, we now study these characteristics taking the spatial
average. The analysis for the spatial average in Appendix A is based on the assumption
that 𝐿 → ∞. We use the same domain length as in the previous results, 𝐿 = 400 × 𝑙G, and
study the mean and autocorrelation of single realisations of 𝜓 for this long, but finite interval.

Fig. A.3 shows box-and-whisker plots of the spatial mean, for four different numbers
of terms in the generation of the random process, 𝑁 = 100, 400, 1000 and 10000, for the
correlation lengths 𝑙G = 0.9 (left-hand panel), 2.5 (middle panel) and 4.1 (right-hand panel).
For each 𝑁 and 𝑙G, the spatial mean over (0,𝐿) is calculated 100000 times, providing a
large sample size. The boxes and whiskers represent the same statistical quantities as in
Fig. 2.15. For better visibility, points regarded as outliers are shown as crosses here.
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Figure A.3: Box-and-whisker plots of spatial mean for 𝑁 = 100, 𝑁 = 400, 𝑁 = 1000 and
𝑁 = 10000, for correlation lengths 𝑙G = 0.9 (left-hand panel), 𝑙G = 2.5 (middle panel) and
𝑙G = 4.1 (right-hand panel)

We can observe in Fig. A.3 that the median of the spatial mean (50% quantile) is zero for
all correlation lengths considered, 𝑙G = 0.9, 2.5 and 4.1, and the reasonably symmetric data
distributions indicate that the mean of the ensembled spatial mean is zero, too. 𝑁 = 100
leads to more variation in the spatial mean, indicated by the spread outliers. Increasing
the number of terms in the random profile generation to 𝑁 = 400 significantly reduces the
spread of the outliers for all 𝑙G. It is interesting to note that as a consequence thereof, the
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25% and 75% quantiles move slightly away from the mean. Further increase of 𝑁 to 1000
and 10000 does not change the 25%, 50% and 75% quantiles anymore and the spread of
the outliers is reduced only slightly. To obtain results with the 25% and 75% quantiles
moved closer together, the domain length has to be increased.

To complete this section about the statistical analysis of the generated random pro-
cess, which shall describe the beam’s roughness profile, we study the autocorrelation of 𝜓
taking the spatial average. Since the spatial average is already included in the results in
Fig. A.2, we focus now on the spatial autocorrelation for single realisations of the random
process for the large domain length 𝐿 = 400× 𝑙G. Fig. A.4 shows the spatial autocorrelation
𝜌* of single example process realisations for 𝑁 = 100 (left-hand panel), 400 (middle panel)
and 1000 (right-hand panel), for the correlation length 𝑙G = 2.5. Under the assumption
of 𝐿 → ∞, the spatial autocorrelation function is given analytically by Eqn. (A.10). This
curve is shown for comparison.
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Figure A.4: Spatial autocorrelation function (+) of example realisation of random process 𝜓
for 𝑁 = 100 (left-hand panel), 𝑁 = 400 (middle panel) and 𝑁 = 1000 (right-hand panel), for
correlation length 𝑙G = 2.5. Target autocorrelation function (solid grey curve) and analytical
spatial autocorrelation function (dash-dotted grey curve) are shown for comparison.

We can observe in Fig. A.4 that the spatial autocorrelation function for the example
realisation of the random process for 𝑁 = 100 shows a significant deviation from the
prescribed squared exponential Gaussian target autocorrelation function 𝜌0 for 𝜉 ≥ 2,
where the process realisation exhibits markedly less autocorrelation than given by 𝜌0.
However, it shows very similar behaviour as the analytical spatial autocorrelation function
in the limit 𝐿 → ∞ given by Eqn. (A.10). For 𝑁 = 400, the autocorrelation is much closer
to the target autocorrelation function and for 𝑁 = 1000, the spatial autocorrelation agrees
with the target autocorrelation function. This confirms the findings from Fig. A.2 that
𝑁 = 100 is not sufficient to obtain Gaussian autocorrelated realisations of the random
process 𝜓, but 𝑁 = 400 yields reliable results. In all the cases, the spatial autocorrelation
is remarkably close to the suggested analytical values, for which the assumption 𝐿 → ∞
has to be made. Increasing 𝐿 certainly gives agreement between them.

The representation in Eqn. (2.76) provides a much more efficient way to calculate Gaussian
autocorrelated random processes than their widely used generation via Cholesky decompo-
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sition, which is computationally very expensive for generating roughness realisations over
the long distances, which we are interested in. Gaussian random processes of this type
can also be represented via the Karhunen–Loève expansion, a sum of eigenfunctions of the
associated covariance operator weighted with the eigenvalues and independent, identically
standard normal distributed random variables, see Stark and Woods 2011.
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