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Abstract. In this review we report on developments and various appli-
cations of the combined Density Functional and Dynamical Mean-Field
Theory, the so-called LSDA+DMFT method, as implemented within
the fully relativistic KKR (Korringa-Kohn-Rostoker) band structure
method. The KKR uses a description of the electronic structure in
terms of the single-particle Green function, which allows to study
correlation effects in ordered and disordered systems independently
of its dimensionality (bulk, surfaces and nano-structures). We present
self-consistent LSDA+DMFT results for the ground state and spectro-
scopic properties of transition metal elements and their compounds. In
particular we discuss the spin-orbit induced orbital magnetic moments
for FexNi1−x disordered alloys, the magnetic Compton profiles of fcc
Ni and the angle-resolved photoemission spectroscopy (ARPES) spec-
tra for gallium manganese arsenide dilute magnetic semiconductors.
For the (GaMn)As system a direct comparison with the experimen-
tal ARPES spectra demonstrates the importance of matrix element
effects, the presence of the semi-infinite surface and the inclusion of
layer-dependent self-energies.

1 Introduction

During the last decade the Density Functional Theory, through its various exchange
correlations functionals such as the local spin density approximation (LSDA), has
been succesfully combined with the Dynamical Mean-Field Theory (DMFT). This
combination came to be known as the LSDA+DMFT scheme and turned out to be
very successful in dealing with the electronic structure of a wide range of correlated
materials. Meanwhile, various LSDA+DMFT implementations are available [1–3].
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In the early LSDA+DMFT implementations a two step procedure has been used.
In the first step the LSDA problem was solved using an effective one-particle
Kohn-Sham Hamiltonian and the single particle wave-functions (Kohn-Sham basis
set) integrated into the Density Functional variational approach. The corresponding
Green function is obtained using the spectral representation of the Kohn-Sham
Hamiltonian. In the second step, the interacting problem, the low-energy effective
Hamiltonian was formulated within a Wannier-like basis obtained through down-
folding or, alternatively, by a suitable combination of Kohn-Sham basis sets. This
low-energy Hamiltonian was solved using DMFT, resulting in local self-energies and
Green functions that can in turn be used to calculate new charge densities and
new LSDA potentials. The above two step procedure follows partly the spirit of the
spectral density functional theory (SDFT) proposed by Savrasov and Kotliar [4].
The key idea of SDFT, however, is the self-consistent procedure applied to the
Dyson equation. This leads to the quasiparticle Schrödinger (or Dirac) equation
with a non-hermitian (component in the) Hamiltonian. An elegant way around the
technical difficulties of the SDFT and the Hamiltonian formulation is provided by
the multiple scattering KKR method.
In this manuscript we briefly review the fully self-consistent (with respect to charge

density and self energy) LSDA+DMFT implementation within the full potential fully
relativistic multiple-scattering KKR method [3,5]. A more extended account for the
recent developments using the KKR method has already been published [6]. It is
important to note the KKR flexibility in using the Dyson equation to relate the
Green function of a perturbed system to the Green function of a suitable unper-
turbed reference system. It allows in particular to calculate the properties of low
dimensional systems, e.g., semi-infinite 2D surfaces, nanostructures and embedded
3D or 2D systems, without using an artificial supercell construction. Additionally,
the KKR Green function method allows to treat disorder within the Coherent
Potential Approximation (CPA) for substitutional disordered alloys [5,7]. Finally,
in combination with DMFT, all the above problems can be addressed together with
the electronic correlations. What makes relativistic multiple-scattering KKR partic-
ularly unique is the use of a fully relativistic formulation on the basis of the four-
component Dirac formalism. Important consequences derive from the presence of all
aspects of relativistic effects, contrary to most frequent implementations which con-
sider only spin-orbit coupling. Therefore in combination with the LSDA+DMFT, the
simultaneous description of the orbital magnetic moments [8–10], relativistic band
structure [11], hyperfine fields [12], spin-fluctuations [13], and accurate total energy
calculations [14] becomes possible. In the later years, this method was successfully
applied to a variety of disordered magnetic systems including transition metal [9,15],
Heusler alloys [16,17] and diluted magnetic semi-conductors systems [18,19]. Further-
more, correlation effects on the hcp-Co(0001) surface have been studied and showed
pronounced changes in the band structure seen when the magnetisation is oriented
in or out-of-plane, as a consequence of the spin-orbit coupling acting on the elec-
tronic states [20]. Similar important correlation effects in the band structure close
to the Fermi level have been found for Fe, Co and Ni surfaces [21]. The analysis of
ground state properties have been complemented with spectroscopy investigations,
in particular using the angle-resolved photoemission (ARPES). The commonly used
comparison between the calculated density of states / spectral functions and the
corresponding measured spectra ignores among several things the matrix elements
and surface effects. Within the KKR method all these effects are included to a very
large extent. For example, an advanced analysis of ARPES data combines coherently
the LSDA+DMFT method with the one step model of photoemission and allows to
account properly for all relevant issues: the surface geometry, time-reversed LEED
state (as the best possible representation of the final state) and most importantly the
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transition matrix elements. These recent theoretical developments have been sum-
marised in two recent reviews [3,22] and were made possible within this research
unit.
In the following we shall review several results obtained with the LSDA+DMFT

method as implemented within the fully relativistic KKR method. In Section 2 we
briefly review the formalism. The results of calculations for the ground state properties
of disordered FexNi1−x alloys are presented in Section 3, while spectroscopy related
results are shown in Section 4. In particular in Section 4.1 we discuss the results
of the Compton profiles of Ni and Section 4.2 presents the results for the angle-
integrated as well as angle resolved photoemission spectra of transition metal surfaces
and disordered materials calculated within the one-step model of photoemission.

2 Computational details

When calculating the electronic structure of a solid, electron correlations may be
accounted for in a rather general way by complementing the scalar, real and local
single-particle potential VLSDA(r) as provided for example by LSDA by a suitably
chosen self energy Σ(r, r′, E) that in the most general case is energy dependent,
complex and non-local. A very powerful way to solve the electronic structure problem
for this situation is to solve the corresponding Dyson equation for the single-particle
Green function G(r, r′, E):

G(r, r′, E) = G0(r, r
′, E) +

∫
d3r′′

∫
d3r′′′G0(r, r′′, E) [VLSDA(r′′)δ(r′′ − r′′′)

+ Σ(r′′, r′′′, E)] G(r′′′, r′, E) (1)

where G0(r, r
′, E) is the electronic Green function for the reference system and r, r′

are defined relative to the center of an atomic cell corresponding to a specific site.
The reference system is described by a one-electron Hamiltonian with non-overlaping
potentials located on the regular lattice. The non-overlaping potentials are necessary
for the rigurous applications of the multiple scattering. The Green function for elec-
trons propagating in the potential of the type assumed in equation (1) is obtained
solving the single-site and subsequently the multiple scattering problem. These steps
are briefly described below.

2.1 The single-site problem

Adopting a fully relativistic formulation the single-site problem is specified by the
corresponding single-site Dirac equation:

[
�

i
cα ·∇+ βmc2 + V̄ (r) + βσz ·Beff(r)− E

]
Ψ(r) +

∫
d3r ′Σ(r, r′, E)Ψ(r′) = 0,

(2)
where all quantities have their usual meaning [23] and V̄ (r) and βσz ·Beff(r) are
the spin independent and spin dependent parts of the LSDA potential, respectively,
restricted – as the self energy Σ(r, r′, E) – to the atomic cell centered at site n.
Equation (2) may be solved by making an ansatz for the wave function Ψ(r) in

terms of four-component partial waves of the form [24]

ψν(r, E) =
∑
Λ

ψΛν(r, E) (3)
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with

ψΛν(r, E) =

(
gΛν(r, E)χΛ(r̂)

ifΛν(r, E)χ−Λ(r̂)

)
, (4)

where the index Λ = (κ, μ) represents the relativistic spin-orbit and magnetic quan-
tum numbers κ and μ, respectively, while the index ν labels the independent solutions.
In equation (4) gΛν(r, E) and fΛν(r, E) represent the large and small components,
respectively, and χΛ(r̂) is a bi-spinor [23]. This way one ends up with a coupled set of
integro-differential equations for the radial functions gΛν(r, E) and fΛν(r, E). After
these equations have been solved by a suitable scheme [5] the corresponding single-
site t-matrix tΛΛ′(E) is obtained by matching the wave functions smoothly to the free
electron solution at the boundary of the atomic cell [25].

2.2 Multiple-scattering path-operator and the Green function

Having accounted for the local self energy Σ(r, r′, E) already when solving the single
site problem all remaining steps to get the Green function are just the same as for plain
LSDA-based calculations. Within the multiple scattering formalism used in the KKR
method the Dyson equation (1) for the Green function is solved using the equation

of motion for the so-called scattering-path operator τnn
′
(E) connecting sites n and

n′ [26]:

τnn
′
(E) = tn(E)δnn′ + t

n(E)
∑
m�=n

Gnm0 (E)τ
mn′(E) , (5)

where the underscore indicates matrices with respect to the spin-angular Λ-
representation and Gnm0 (E) stands for the free electron Green function or the real
space KKR structure constant matrix, respectively. Dealing with a three-dimensional
periodic system equation (5) can be solved exactly by Fourier transformation leading
to [27]:

τnn
′
(E) =

1

ΩBZ

∫

ΩBZ

d3k [t(E)−1 −G0(k, E)]−1 eik(Rn−Rn′ ) , (6)

where G0(k, E) is the standard k-dependent KKR structure constant matrix.
With the multiple scattering problem solved the Green function G(r, r′, E) can

finally be written as [28,29]:

G(r, r′, E) =
∑
ΛΛ′

ZnΛ(r, E)τ
nn′
ΛΛ′(E)Z

n′×
Λ′ (r

′, E)

−
∑
Λ

[
ZnΛ(r, E)J

n×
Λ (r

′, E)Θ(r′ − r)

+JnΛ(r, E)Z
n×
Λ (r

′, E)Θ(r − r′) ] δnn′ , (7)

where the regular and irregular wave functions, ZnΛ(r, E) and J
n
Λ(r, E), respectively,

are normalised in an appropriate way [28,29]. Here it should be stressed that for a
complex non-Hermitian self energy Σ(r, r′, E) one has to distinguish between the left-
and right-hand side solutions to the single-site Dirac equation (2) [30]. Accordingly,
the left-hand side solutions Zn×Λ (r, E) and J

n×
Λ (r, E) have been indicated by the

symbol ×.
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From the knowledge of the Green function, properties of the system represented
by an operator A are obtained by evaluating the expression

〈A〉 = − 1
π
�
∫ EF

dE

∫
d3rTraceAG(r, r, E) , (8)

where the energy integration extends over the range of the occupied part of the
valence band up to the Fermi energy EF. For instance the spin and orbital magnetic
moments are computed with equation (8) using for A the operators μBβσz and μBβlz,
respectively.

3 Ground state properties

One of the most appealing features of the KKR method is the possibility to link
directly to the CPA alloy theory. Dealing with a binary alloy of A and B atoms the
corresponding CPA medium is determined by the requirement that the substitutional
embedding of an A or B atom into the CPA medium does not lead in the average to
additional scattering. This demand is most easily expressed in terms of the scattering
path operator for α = A, B:

xAτ
nn
A + xBτ

nn
B = τ

nn
CPA (9)

with the component projected scattering path operator

τnnα = τ
nn
CPA

[
1 +
(
t−1α − t−1CPA

)
τnnCPA

]−1
. (10)

Obviously, equations (6), (9) and (10) have to be solved for the single-site t-matrix
and scattering path operator, tCPA and τ

nn
CPA, respectively, of the CPA medium. As

emphasised by Drchal et al. [7] assuming the self energy Σ(r, r′, E) to be site-diagonal
as it is done within the LSDA+U as well as within standard DMFT schemes allows to
determine the effective CPA mean-field medium, i.e., to perform the single-site CPA
configurational average as for plain LSDA-based calculations.
In this section we present as an example the CPA formalism applied to the

FexNi1−x alloy system. These alloys show very interesting magnetic properties.
Permalloy (x = 0.19) which has fcc structure, shows vanishing magnetic anisotropy.
On the other hand, the bcc invar alloy (x = 0.65) have been intensively studied for low
magnetic moment and low thermal expansion. Using this example we will show that
the self energy shows non trivial behaviour w.r.t. concentration and we will discuss
the very well known problem of underestimation of the orbital magnetic moments by
spin density functional theory (for further discussions concerning electronic structure
and hyperfine fields see [12]).
Using the relativistic KKR-CPA formalism outlined above the electronic struc-

ture of ferromagnetic fcc-FexNi1−x alloys has been determined in a self-consistent
way using experimental lattice parameters. LSDA-based calculations have been
done using the parametrisation of Vosko et al. [31] for the exchange-correlation
potential. For the complementary self-consistent LSDA+DMFT calculations the
parameters U = 1.8 eV, J = 0.9 eV for Fe and U = 2.8 eV, J = 0.9 eV for Ni,
respectively, have been used. These parameters have been found to give the best
agreement between various experimental properties (e.g., spectroscopy and orbital
magnetic moments) and LSDA+DMFT calculations for the pure elements [3].
For the DMFT-part of the LSDA+DMFT calculations a FLEX-solver has been
used [32] working on a Matsubara energy grid corresponding to a temperature of
400K. Double counting (DC) was corrected using the around mean-field (AMF)
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Fig. 1. Spin resolved and orbital averaged DMFT real part of the self energy for Ni (left
panel) and Fe (right panel) for fcc-FexNi1−x disordered alloy as calculated within the KKR-
CPA formalism. Figure reproduced from [12]. (This figure is subject to copyright protection
and is not covered by a Creative Commons license.)
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Fig. 2. Left panel: element resolved and total magnetic moments of the fcc-FexNi1−x dis-
ordered alloy calculated within the LSDA (blue) and LSDA+DMFT (red) approach. Ex-
perimental data taken from [33]. Right panel: element resolved contributions to the orbital
magnetic moment (LSDA (blue) and LSDA+DMFT (red)). In both panels circles represent
Ni and squares Fe contributions, respectively.

scheme (for details concerning DC corrections within KKR calculations see ref-
erence [3,8]). In Figure 1, the real part of the spin-dependent self energy as a
function of the concentration is shown. It should be mentioned that only the
orbital averaged dynamical part of the self energy is shown. The order of magnitude
of the self energy reflects the very different U -values appropriate for Fe and Ni. For
both components, the self energy varies with concentration in an appreciable and not
trivial way. The imaginary part of the self energy (not shown here) shows a similar be-
haviour. In addition one notes that the broadening of the spectral features (not shown
here) due to the imaginary part of self energy is comparable to the disorder induced
broadening.
As it was mentioned above, the magnetic properties of the FexNi1−x alloy are of

great interest. Only recently Glaubitz et al. [33] could obtain element resolved spin
and orbital moments for the whole concentration region by means of X-ray magnetic
circular dichroism. In the left panel of Figure 2 we compare element resolved total
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magnetic moments as calculated by LSDA and LSDA+DMFTmethod. In both cases,
the total magnetic moment follow the Slater-Pauling curve [34], with a magnetic
moment that drops continuously from Fe to Ni. This seems to reflect the continuous
filling of the 3d band. However, as clearly confirmed by the XCMD results, Fe and
Ni keep their individual properties in contrast to this naive rigid band-like picture.
The LSDA + DMFT magnetic moments are slightly bigger than LSDA results. As
shown in the right panel of Figure 2, this enhancement can be traced back to the
higher orbital magnetic moments obtained by the LSDA+DMFT. Orbital magnetic
moments are caused by spin-orbit coupling and are typically underestimated within
the framework of plain spin density functional theory. To improve the description of
orbital magnetism, several related approaches have been proposed. The most general
approach which would be based on the current density functional theory is until
now, due to missing current exchange correlation functionals, impracticable. It has
been realised, that the explicit account of local many-body correlations by means
of LSDA+U can alternatively solve this problem [35,36]. The explicit account for
local correlations within the LSDA+DMFT approach which includes Hartree-Fock
like contributions to the self energy, should improve simultaneously the description
of the orbital magnetic moments [8,9], the relativistic band structure [11] as well as
spectral properties [10,15,20,21,37–43]. Concerning this, a very important issue is
an appropriate treatment of the so-called double counting terms. Comparison of the
calculated results directly with experimental data for the orbital magnetic moment
for FexNi1−x clearly shows that using the AMF setting is most adequate for this class
of materials.

4 LSDA+DMFT for calculations of spectroscopic properties

Spectroscopy is an extremely important experimental tool providing information on
the electronic structure of the probed system that has to be seen as a stringent
benchmark for the success of any electronic structure theory. Photoemission spec-
troscopy (PES) or its inverse – the Bremsstrahlen isochromat spectroscopy (BIS)
– in their angle-integrated form should reflect the density of states (DOS) rather
directly – in particular in the high photon energy regime (XPS). For that reason it
is quite common to check the DMFT-based calculations by comparing the calculated
DOS directly to PES spectra (see the reviews [1,2,44] for examples). However, this
approach ignores the influence of the specific PES matrix elements that in general
will introduce an element- and energy-dependent weight to the partial DOS. In case
of angle-resolved photoemission (ARPES) the situation is even move severe as the
surface as well as dipole selection rules may have a very pronounced impact on the
spectra [45] demanding for a coherent description as provided by the one-step model
of photoemission [22,46].
While ARPES has been succesfully used to map the spectral function (dispersion

of bands and k-resolved density of states) as explained above, relatively little attention
has been given to the wave function related quantities, despite the fact that wave
function information may provide a more sensitive way of testing the theoretical
models. The wave function can hardly be measured directly, instead the spectral
momentum density which within the independent particle model is proportional to the
square of the one-electron wave function can be obtained from scattering experiments.
According to its basic definition the Compton scattering is an incoherent, inelastic
scattering of a photon with a single electron. In the scattering process the photon
transfers energy to the electron and the degree of energy loss is dependent on the
scattering angle. The Compton scattering may provide complementary information
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to ARPES, in particular about the electronic correlations as we shall present below
results from our recent publications [43,47,48].

4.1 Compton profiles

The single particle momentum density of an interacting electronic system can be mea-
sured rather directly by high energy Compton scattering experiments [49]. Although
the momentum density is a relatively simple function it incorporates in a non-trivial
way the many-body aspects of the interactions between the electrons of the system.
Of particular interest in the case of metals are the tails of the momentum density
of conduction electrons which one would expect to extent beyond the Fermi surface
because of electron-electron correlations and the higher momentum components of
the conduction electron Bloch functions produced by the crystal potential. According
to its definition, the Compton profile is a directional quantity, which represents the
projection of the momentum density along the transfered momentum K=kin-kout,
with kin(out) the k-vector for in(out)-going beam, which typically can be chosen to
be parallel along certain crystallographic direction [hkl].
The KKR Green function formalism allows to compute Compton profiles JK(pz)

and magnetic Compton profiles Jmag,K(pz) (MCPs) in a straightforward way
[50,73,74]. In the case of a magnetic sample, the spin resolved momentum densi-
ties are computed within the framework of LSDA(+U/DMFT) approaches using the
Green functions in momentum space, as follows:

nms(p) = −
1

π
�
∫ EF
−∞

GLSDA(+U/DMFT )ms
(p,p, E)dE , (11)

where ms =↑ (↓). The total electron (n↑(p) + n↓(p)) and spin (n↑(p)− n↓(p)) mo-
mentum densities projected onto the direction K defined by the scattering vector,
allows to define the (magnetic) Compton profile as a double integral in the momen-
tum plane perpendicular to the scattering momentum pz|| K:

J
LSDA(+U/DMFT )
K (pz) =

∫ ∫
[n↑(p) + n↓(p)]dpxdpy

J
LSDA(+U/DMFT )
mag,K (pz) =

∫ ∫
[n↑(p)− n↓(p)]dpxdpy.

4.1.1 Compton difference profile

The anisotropy or difference profile, i.e., the difference between two Compton profiles
taken along different directions (for example K || [110] and K′||[100])

ΔJK,K′(p) = J110(p)− J100(p) (12)

is a frequently studied quantity that allows to eliminate to a large extent the isotropic
contribution of the core electrons. Although the computed anisotropy has in general
a trend similar to the experimental spectra, it often displays larger amplitudes of
oscillations in comparison with the measured profiles. For several transition metal
elements such discrepancies are found in the low momentum region (Fe, Ni, V, Cr)
[43,47,51–55]. The amplitudes of the characteristic oscillations are determined by
details of the fine structures of the momentum densities. In order to address these
discrepancies, Lam and Platzmann [56,57] introduced a correction related to the
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difference between the occupation function for a non-interacting nfree(p) and a
homogeneous interacting nint(p) electron gas. The Lam-Platzman correction acts
in the low-momentum region and for some cases it reduces the differences between
experiment and theory. Nevertheless, the theoretical values still overestimate the
amplitude with respect to the experiment in the low momentum region and in
addition the residual differences appear anisotropic, contradicting the isotropic
correction of Lam and Platzmann. The anisotropic effects were modeled for V and Cr
also by introducing an energy dependent occupation function for the d-orbitals [58].
While such corrections brought the theoretical profile in better agreement with
the experiment, one has to stress that this has been achieved by incorporating the
corrections empirically into the calculations.
Later on Bauer [59,60] suggested that inclusion of electron-electron correlation

effects may improve the difference between the theoretical and the experimental pro-
files. Kubo [61] computed the occupation number density within the GW approxima-
tion and discussed the corrections to the Compton profile for the principal directions,
concluding that the strong directional differences are due to the d-bands. Alterna-
tively DMFT can be used to account for the electronic correlations. In addition to
the anisotropy profiles according to equation (12) we studied [43,47] the difference
profiles taken along the same momentum direction with and without including elec-
tronic correlations:

ΔJ
+U/DMFT
K (p) = J

LSDA+(U/DMFT )
K (p)− JLSDAK (p). (13)

In particular this quantity allowed us to discuss the momentum space anisotropy of
correlations effects.
Comparison between theoretical and experimental amplitudes of the Comp-

ton profile anisotropies for Ni are presented and discussed in detail in references
[62–64]. Our results [43,47] for the computed anisotropy profiles J[110] − J[001] and
J[111] − J[001] are shown in Figure 3. In the upper panels (both left and right columns)
the LSDA results are presented, while in the middle and lower panel the spectra
obtained using LSDA+U and DMFT can be seen. A very similar behaviour, indepen-
dent of the various level of sophistication to include the Coulomb interaction is visible.
In the lower panel (c) we compare the anisotropy spectra with the corresponding ex-
perimental data of Anastassopoulos et al. [64]. There is a rather satisfying agreement
between theory and experiment, in particular for the difference J[110] − J[001] (Fig. 3,
red lines) where the theoretical calculation properly reproduce most of the maxima
and minima seen in the experiment. On the other hand for J[111] − J[001] (Fig. 3,
green lines) differences may be seen not only in the amplitude of the oscillation but
also in the position of the minima/maxima. The right column of Figure 3 shows the
comparison on a reduced momentum scale 0 < pz < 1 a.u. The LSDA results are seen
to overshoot in the range 0 < pz < 0.2 a.u. the experimental spectra plotted with
dashed lines.
In the same momentum range the LSDA+U results underestimate the experimen-

tal data as seen in Figure 3b. Figure 3c shows the LSDA+DMFT results and one
can see that the dynamic correlations capture at best the behaviour of anisotropy of
the Compton profile in the region around the zero momentum pz < 0.2 a.u. Previ-
ous analysis [64,65] discussed qualitatively the discrepancies with the experimental
spectral based on the shortcomings of the DFT exchange-correlation potentials in
misplacing the position of the d-bands (orbitals). It is well known that LSDA over-
estimate the exchange splitting, and the static corrections using LSDA+U enhance
the exchange splitting further. Therefore the (+U) addition does not correct upon the
position of the d-bands. On the contrary, LSDA +DMFT improves on the exchange
splitting as a consequence of a Fermi-liquid type of self energy and we equally see in
the panel (c) of Figure 3, although in a narrow momentum region 0 < pz < 0.2 a.u.,
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Fig. 3. Theoretical Compton profile anisotropies of Ni. Panel (a) gives LSDA anisotropies
while panels (b) and (c) show the LSDA+U and LSDA+DMFT results for U = 2.3 eV,
J = 0.9 eV and T = 400K. Comparison with the experimental anisotropy is presented in
panel (c). Right column: enlarged representation for 0 ≤ pz ≤ 1 a.u. Figure reproduced from
reference [48]. (This figure is subject to copyright protection and is not covered by a Creative
Commons license.)

an excellent agreement with the experimental anisotropies. The limited momentum
range may be due to the inherent DMFT approximation that the self energy neglects
spatial fluctuations.

4.1.2 Relativistic effects, moments of the Compton profiles and total energies

There are a few theoretical methods of electronic structure available to quantitatively
assess the interplay between correlation and relativistic effects. Within the framework
of DFT the recently developed KKR+DMFT scheme demonstrates a clear advantage
in this direction. From a pragmatic point of view perturbative solvers of DMFT
written in adapted basis sets to include spin-orbit effects [1,32] are efficient tools
for realistic multi atom/orbital calculations. This means that we in fact capture the
interplay between relativistic and correlation effects at a more economical level of
the theory: from the correlations point of view a perturbative solver is considered,
while for the relativistic part the four-component was replaced by a two component
formulation. For a single-particle in an effective spherical symmetric potential Veff ,
the most common transformation of the Dirac Hamiltonian into the two component
formulation is expressed as a unitary transformation [66], that leads to the following
series in power of ∝ 1/c2:

HBP =(mc2 + Veff+
p2

2m
)− p4

8m3c2
− 1

8m2c2
(p2Veff ) +

�

4m2c2
σ(∇Veff × p) + . . .

(14)

The first terms in parenthesis in equation (14) represent the usual non-relativistic
Hamiltonian including the rest mass energy, the second one is the so called mass-
velocity term, the third is called the Darwin term and the fourth operator describes
the spin-orbit coupling (interaction). It can be analytically proved that the scalar
mass-velocity and Darwin terms are unbounded from below. The resulting Breit-Pauli
Hamiltonian (HBP ) is also known as the first order relativistic Hamiltonian.
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The measured Compton profile, or the momentum distribution enables in prin-
ciple to obtain averages 〈pn〉 directly from experiment. On the computational side,
the momentum space formulation allows to obtain the Compton profiles within the
LSDA(+U/DMFT) [43,47,49] for many systems.
Further on additional information can be gained by taking moments of the dif-

ference between the correlated and non-correlated Compton profiles along different
K-directions: pz||K

〈pn〉K =
∫ ∞
0

pnz

[
J
+U/DMFT
K (pz)− JLSDAK (pz)

]
dpz . (15)

The second (n = 2) and the forth (n = 4) moments of the difference in the total
Compton profiles, along the bond directions can be connected with some specific terms
from the expansion (14). In the following we discuss the connection between the second
moment of the difference between correlated (LSDA+DMFT) and non-correlated
(LSDA) Compton profiles and the kinetic energy of the electronic system. Our main
focus is on the bond average of the second moment of the difference Compton profiles:

〈p2〉 = 1

Nb

∑
K

∫ ∞
0

p2zΔJK(pz)dpz ∝ EDMFTkin − ELSDAkin . (16)

The overbar represents the average taken over the bonds extending along the
K-directions, ΔJK(pz) is the difference of the total Compton profiles, Nb is the num-
ber of bonds. On the right hand side of equation (16) are the kinetic energies computed
in DMFT/LSDA. In general, calculating total energies in LSDA+DMFT is a diffi-
cult task and requires the evaluation of an energy functional with several terms [1,75]

including the Galitskii-Migdal contribution [67], i.e., 1/2Tr[Σ̂Ĝ], and the double
counting as well. The LSDA+DMFT total energy functional can in principle be
analysed to obtain an expression for the kinetic energy similarly to what is done for
DFT [68,69]. When focusing on the differences between LSDA+DMFT and LSDA,
one can write:

ΔEkin = Tr
[
ĤDMFTKS ĜDMFT

]
−Tr

[
ĤLSDAKS ĜLSDA

]
+ 〈ΔVKS〉+ 〈ΔTc〉 . (17)

In this expression the first and second terms on the right hand side are the single
particle energies of the Kohn-Sham Hamiltonian within LSDA+DMFT and LSDA,
while the third term is the expectation value of the difference of their corresponding
Kohn-Sham potentials. The last term in equation (17) is the variation of the exchange-
correlation contribution to the kinetic energy, and can in principle be expressed in
terms of the exchange-correlation potential and its gradient [69]. In Figure 4 we show
the variation of the kinetic energy as obtained from equation (17) by ignoring the
last term 〈ΔTc〉. These data were obtained through a full-potential linearized muffin-
tin orbital (FP-LMTO) code [70,76], which has been shown to give results in very
good agreement with SPR-KKR regarding LSDA+DMFT total energies [75]. The
second moments along the bonds 〈p2〉K are also shown in Figure 4, demonstrating
that the electronic correlation energies are anisotropic. One has to note that the
main source for the anisotropy in the momentum space is bond directionality that is
already captured within the LSDA. However, this can not provide any measure for
the electronic correlations.
In fact, from Figure 4 it is clear that the two contributions are still far from

quantitative agreement. However, we capture a consistent qualitative picture pointing
to a decrease of the kinetic energy difference for increasing U . In the low momentum
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Fig. 4. Left panel: second moment of the difference profiles δJK(p) along the symmetry di-
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averaged forth and second moments of the Compton profiles computed within LSDA+
DMFT (red solid) and LSDA+U (black solid). U = 2.0/2.3 eV, J = 0.9 eV and T = 400K.
Left panel reproduced form [47], right pannel [48]. (This figure is subject to copyright pro-
tection and is not covered by a Creative Commons license.)

region increasing the values of U an increasing in the kinetic energy is obtained, which
is in agreement with the argument that the presence of U penalises the electrons and
leads to an increase in their kinetic energy. This argument is not valid anymore in the
region of high momenta, where the mean-field type exchange-correlation dominates
the “Hubbard-U” contribution. Further analysis is needed in order to make a more
quantitative comparison, especially to understand the role of the double counting
correction and the effects of the expectation value of Tc, discarded in the present
analysis.
We evaluate the so called free particle relativistic kinetic energy (H0) in terms

of the second moments and its relativistic correction as the forth moment, along
the bond directions of Ni. In order to compare the magnitude of second and fourth
order moments one has to introduce a dimensionless quantity pr = p/mc. In terms of
this reduced variable H0 = mc

2
(
(1/2)p2r − (1/8)p4r + ...

)
and the relevant expectation

values has the expression:

〈H0〉K =
∫
H0dpzΔJ

+U/DMFT
K (pz) ≈ mc2

[
1

2
〈p2r〉K −

1

8
〈p4r〉K

]
; (pz||K) . (18)

Although the fourth order moments are significantly smaller than that of second
order, 〈p4r〉 ∝ 10−3〈p2r〉, an overall non-negligible contribution is obtained: The rela-
tivistic corrections to the kinetic energy (see Fig. 4) are both negative and we see
that dynamical correlations (LSDA +DMFT) generate larger relativistic corrections
to the one-particle kinetic energy in comparison to their mean field (LSDA +U)
counter part. In the range of the studied values of U qualitative and quantitative
differences are seen in the Compton profiles depending weather the LSDA is supple-
mented with static or dynamical many-body corrections. An important message is
that relativistic effects and electronic correlations may have a non-trivial interplay
and dynamical correlations determine larger relativistic corrections in the electronic
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Fig. 5. Left panel: magnetic Compton profiles of Ni along [001] and [110] directions com-
puted with LSDA and LSDA+DMFT with U = 2.3 eV, J = 0.9 eV. The computed data
were convoluted according to the experimental resolution of 0.43 a.u. The experimental pro-
files are taken from reference [71]. Right panel: Compton profiles of Ni along the principal
directions with experimental data reference [72].

structure of solids. Further investigations are necessary for a quantitative assessments
of such effects.

4.1.3 Magnetic Compton profiles of nickel

The magnetic Compton profiles of Ni along the [001] and [110] directions are shown
in Figure 5. The dashed (solid, red) curve represents results of the LSDA (LSDA+
DMFT) calculations. The theoretical calculations are compared with the experimental
MCP data [71,72]. The experimental momentum resolution is 0.43 a.u., which was also
used as Gaussian broadening parameter for the calculated MCP spectra. In addition,
the calculated MCPs have been scaled to the spin magnetic moment (0.6 μB for both
LSDA and LSDA+DMFT calculations).
As one can see in the left panel of Figure 5 the significant broadening takes away

almost all fine structure features of the spectra. The LSDA results already show
a reasonable agreement with the measurements. It captures the behaviour at large
moments, it gets close to the maximum at ≈ 1.8 a.u. and overestimates the low
momentum region. In contrast to this, the DMFT reproduces significantly better the
low momentum region, and the position of the maximum. However, it slightly overesti-
mates the absolute value at the maximum and consequently deviates slightly from the
experimental data in the intermediate region. The insets show the low momentum
region. The right panel of Figure 5, shows the MCPs along the principal crystalo-
graphic directions. For all momenta the presence of correlations improves the agree-
ment with experiment. In particular in the low momentum region (pz < 1.5 a.u.).
According to our results, the mean field decoupling of the interaction (+U) overes-

timates slightly the MCP spectra, while dynamic correlations improve the agreement
with experiment. To reveal differences between the LSDA+U and LSDA+DMFT
approaches we studied the directional differences, i.e., differences of Compton pro-
files with respect to the LSDA spectra. Overall the difference spectra follow a similar
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momentum dependence with visible deviations in the low momentum region. A quali-
tative difference is evidenced in this region: within the mean field approach (+U) neg-
ative differences are seen while in the dynamic case, the opposite result is obtained.
According to our suggested picture of momentum redistribution because of interac-
tion [47] we conclude that the weight from low momentum distribution is shifted
towards the higher momentum region in the LSDA+U spectra. This is in agreement
with the naive picture of the effects of LSDA +U on the spectral weight distribution
shifting weights towards higher energies. In the Compton scattering language, pho-
tons would be scattered accordingly by moving electrons situated in higher energy
bands, although this does not mean that the electrons are moving faster, explaining
the fact that there are no dramatic changes in the Compton spectra (differences of
the order of ±0.02). On the contrary to the LSDA+U results, in the DMFT calcu-
lations the Fermi liquid type of self energy determines the spectral weight transfer
towards the low energy region, and accordingly the spectra of photon scattering on
the renormalized electronic structure would be redistributed towards low momenta.
Similar conclusions have been reached in our previous studies [43,47].

4.2 Photoemission spectroscopy

The most direct probe of the electronic structure of the valence band is provided by
ARPES or its inverse version (IPE). An appropriate theoretical description of ARPES
and IPE is supplied by the so called one-step model of photoemission. The main idea of
it is to describe the photoemission process as a single coherent quantum-mechanical
process. This approach includes more or less all relevant spectroscopy issues, like
multiple-scattering events, matrix element, final state effects and surface effects. The
approach goes back to the developments worked out by Pendry and coworkers [77–
79]. For calculation of the matrix elements that define the transition probability of
the photoelectron, one has to consider the initial- and final-state wave functions.
The final state has been constructed using the theory of spin-polarised low-energy
electron diffraction (SPLEED). In this framework, the final state is represented by
a so called time-reversed SPLEED state [77]. The initial valence band states are
represented by the Green function. Both states are in practice calculated by means
of the layer KKR theory [6]. Within this approach it is straight forward to describe
complex layered semi-infinite structures, like surfaces, thin films or multilayers. Recent
technical developments allow one to perform calculations of the ordered as well as
chemically disordered systems including fully relativistic and electronic correlation
effects [3,22,46].
In the following, ferromagnetic transition metal systems are considered as pro-

totype materials to study electronic correlations and magnetism beyond the LSDA.
Various one-step model of ARPES studies including correlation effects by means
of LSDA +DMFT have been performed. In particular, the spin dependent quasi-
particle life-times and strength of electronic correlation effects in the ferromagnetic
3d transition metals (Fe, Co and Ni) have been studied in a detail by spin- and
angle-resolved photoemission [20,39,40,80]. A detailed comparison between theory
and experiment is shown in Figure 6. Figure 7 shows the experimentally extracted
imaginary part of the self energy in direct comparison with results based on the
DMFT (using a pertrubative FLEX-solver) and an alternative many-body technique,
the so called three body scattering (3BS) scheme [81]. A reasonable agreement with
the spin-integrated as well as spin-resolved experimental data for all three surfaces
and various photon-energies has been achieved. This agreement was previously not
obtainable by LSDA calculations. Our quantitative analysis reveals that inclusion of
local many-body Coulomb interactions within the LSDA+DMFT method are of ul-
timate importance for a realistic description of correlation effects in ferromagnetic
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Fig. 6. Top: series of experimental spin-integrated photoemission spectra of (a) bcc Fe(110),
(b) hcp Co(0001), and (c) fcc Ni(111). Left panel bottom: corresponding LSDA+DMFT-
based calculations within the one-step model of photoemission for an in-plane magnetisation
according to the experimental situation. Figure is reproduced from [80]. (This figure is
subject to copyright protection and is not covered by a Creative Commons license.)

3d transition metals. In addition in Figure 6, several spectral features close to the
Fermi level can be attributed to surface states and surface resonances. Although these
states have predominantly surface character, their position in energy and dispersion
is strongly influenced by DMFT which has been applied only to d-states. Similar ef-
fects can be seen in the inverse photoemission of fcc-Co(001) [41]. This study showed
that surface effects play an important role and are necessary to be included into the
LSDA+DMFT scheme. In the case of Fe(001) it turned out that the discrepencies
between the experimental and theoretical spectra can be trace back to the non-local
contributions to the self energy [40]. The increasing values of the on-site Coulomb
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Fig. 7. Comparison between the experimental (symbols) and theoretical �Σ (lines) for
majority [black] and minority [red] spin electrons. The theoretical calculations correspond
to �Σ obtained from the DMFT (thick solid lines) and 3BS (thin dotted lines) calculations.
Figure is reproduced from [80]. (This figure is subject to copyright protection and is not
covered by a Creative Commons license.)

interaction parameter U and the band narrowing of majority spin states, which were
obtained when moving from Fe to Ni, indicate that the effect of non-local correlations
becomes weaker with increasing atomic number, whereas local correlation effects tend
to be stronger.
Recently, the one-step model of photoemission has been extended to the soft-X-ray

(sub-keV) and hard-X-ray (multi-keV) regime [82–84]. Increasing the photon energy
means increasing the bulk sensitivity of the corresponding photoemission data and
gives access to deeper lying layers in a sample. This technique has now been applied
to a wide variety of materials including strongly correlated materials. Understanding
the electronic and magnetic properties of diluted magnetic semiconductors, like e.g.,
Mn-doped GaAs, by the UV-ARPES has been a challenge due to the problems with
the surface preparation (see [85] and references therein). The detailed understand-
ing of the states near the Fermi level is necessary for explanation of the nature of
ferromagnetic coupling. Two extreme limits have been discussed for explaining fer-
romagnetism in (Ga,Mn)As. In one case Mn d-states strongly hybridise with GaAs
valence band states close to the Fermi level leading to ferromagnetism through p-d ex-
change. In the second model impurity bands are separated by 30–100meV from the
valence band leading to double-exchange mechanism. Recently, this problem could
be settled by angle resolved [18] and angle integrated [19] bulk sensitive hard X-ray
photoemission. From the theoretical point of view, in order to describe this class of
materials the computational scheme presented above has been extended to the com-
bination of the exact diagonalisation solver [86] and CPA and therefore disorder is
included naturally and on equal footing with the DMFT.
In Figure 8 we compare results of the one-step model of photoemission for

GaAs and Ga0.97Mn0.03As calculated within LSDA and a corresponding experimental
hard-X-ray ARPES measured at 3.24 keV [18]. Although overall agreement between
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Fig. 8. (a) and (b) LSDA results of one-step hard-X-ray angle-resolved photoemission calcu-
lations for GaAs and Ga0.97Mn0.03 As respectively. (c) and (d) Experimental data measured
at 3.24 keV. Figure reproduced from [18]. (This figure is subject to copyright protection and
is not covered by a Creative Commons license.)
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Fig. 9. Left: Mn d-like partial density of states calculated by the LSDA and LSDA+DMFT
approach within the CPA. Right panel: real and imaginary part of the self energy calculated
by exact diagonalisation calculated in the complex plane 0.1 eV above real energy axis. The
finite broadening of the imaginary part of self energy is artificial and is not related to the
quasi-particle life time in the case of exact diagonalisation.

experiment and theory is remarkable, a closer look around the Fermi level reveals
several inconsistencies. In particular, localised states of Mn are found at about 0.3 eV
below the Fermi level. This feature was not reproduced by the LSDA calculations. In
order to understand these features, we performed additional LSDA +DMFT calcu-
lations [19] and corresponding concentration dependent angle integrated study. The
exact diagonalisation self energy as shown in the right panel of Figure 9 has been
calculated using the parameters described by DiMarco et al. [87]. The overall agree-
ment between the resonant photoemission data [87] and the LDA+DMFT density
of states shown in the left panel of Figure 9 is very good. The shift of the majority
d-states of Mn to the lower binding energies at −3 and −5 eV is in agreement with
previous LSDA+U calculations [88]. At low binding energies between −6 and −10 eV
clear satellite structures appear. These structures can also be seen in the experiments.
In Figure 10 we show experimental (a)–(c) and theoretical curves (d), (f) based on
the one-step model of angle integrated photoemission. Our LDA+DMFT calcula-
tions agree quantitatively with the experimental data over a wide range of binding



2494 The European Physical Journal Special Topics

Fig. 10. (a), (b) and (c): experimental angle integrated hard-X-ray spectra for various Mn
concentration in GaAs. (d), (e) and (f): corresponding theoretical one-step model data for
13% Mn using LDA (red curve) and LDA+DMFT (blue curve). Panel (c) and (f) show
in addition the Mn-contribution to the spectral weight calculated as a difference between
undoped and doped spectra. Figure reproduced from [19]. (This figure is subject to copyright
protection and is not covered by a Creative Commons license.)

energies. In particular, we found close to Fermi level a peak with its maximum lying
at 250meV below the Fermi edge, which is better described by LDA+DMFT than
by LDA calculations. From the calculations we infer that the maximum in the dif-
ference signal has mainly Mn-3d (t2g) character. A strong hybridisation is present
with a mixture of mainly As 4p states localised around the impurity, and Mn 4p
states. It is important to emphasise that the Mn-related DOS near the Fermi edge,
although significantly smaller, is nonzero within the energy resolution. This indicates
that ferromagnetism in (Ga,Mn)As must be considered to arise from both p-d ex-
change and double-exchange, thus providing a unified picture of this controversial
material.

5 Summary

In summary, we have reviewed an LSDA+DMFT implementation on the basis of the
KKR band structure method. This combined scheme is particularly suitable to study
the interaction of photons and electrons with matter. Nowadays, many technological
applications such as materials characterization as well as electro-optical devices are
based on the understanding of these interactions. In this area many fundamental
questions concerning the theoretical / numerical aspects are still open.
We have presented the principles of the LSDA+DMFT method using the fully

self-consistent, full potential, fully relativistic KKR formulation. This approach offers
a clear physical picture and a straightforward analysis of spectroscopy results that
are connected with the presence of the spin-orbit coupling. In our examples we rather
followed at this particular point of view and looked at spin-orbit coupling induced
properties of the ground state as well as the excited states.
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A systematic improvement of the actual implementation requires to work on
both the KKR(LSDA) and DMFT sides. In order to compute and predict magneto-
crystalline anisotropy an improved accuracy is required. The still open problem,
include the need for a technical development to overcome the bottleneck linked
to the analytical continuation of the Green function from the complex contour of
KKR(LSDA) into the Matsubara axis where the impurity (DMFT) problem is solved.
More success and failures of the analytical continuation (stochastic or in its actual
form) are needed in order to sort out this question. Advancing this problem will also
open the possibility to calculate within the Kubo formalism the anomalous Hall effect
and related transport properties. Using a perturbative solver, as available in the cur-
rent implementation, the calculations are less cumbersome. Better solvers, such as the
exact diagonalization (ED) or the numerically exact continuous-time quantum Monte
Carlo (CT-QMC) have still to be adapted to the KKR(LSDA), especially when this
method is meant to be used for the calculation of multiplet effects in the absorption
spectra (one-step model) of solids. As shown in our example (ARPES of Fe) it is
expected that including non-local correlations into one-step model of photoemission
by means of the combined GW and DMFT would further improve on the agree-
ment with experimental results. In addition this will allow not only to get a proper
description of the bulk states, but also the proper asymptotic behavior of the
surface barrier.
Other problems that will be treated as a motivation for future research is briefly

summarized as follows: (i) the description of disorder in correlated materials using
Compton and Magnetic Compton scattering; (ii) The one step-model of photoemis-
sion in combination with DMFT, at equilibrium and (iii) its generalization to the
pump-probe case, eventually the combination with the non-equilibrium DMFT. In
conclusion is seems reasonable to suppose that progress will come form a common
effort of people involved in the fields of Density Functional and Dynamical Mean Field
Theory.
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