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Abstract
Charge and heat transport in nano-structures is dominated by non-equilibrium effects which strongly
influence their behaviour. These effects are studied in a setup consisting of three external leads, one of
which is considered as a heat reservoir and is tunnel-coupled to two cold electrodes via two
independently controlled quantumdots. The energy flow from the hot electrode together with energy
filtering provided by quantumdots leads to a voltage bias between the cold electrodes. The heat and
charge currents in the device effectively flow inmutually perpendicular directions, allowing for their
independent control. The non-equilibrium screening changes the values of the systemparameters
needed for its optimal performance but leaves themaximal output power and efficiency unchanged.
Our results are important from the theoretical point of view aswell as for the practical implementation
and the control of the proposed heat engine.

1. Introduction

The efficient harvesting of waste heat is one of themost important challenges ofmodern technology both at large
and small scales. Combining the effective cooling of the integrated circuits with simultaneous conversion of a
part of the released heat into electric power could revolutionise electronics. On the road towards effective heat
nano-engines a number of important findings have to be noticed. Among them, the observation of the
importance of energy filtering [1] and the independent control of heat and charge flow [2–6] are of great interest.

These observations are at the heart of our approach aswe use quantumdots as efficient energy filters and the
three-terminal setup for independent control of heat and charge flow. The setupwe are considering is shown in
figure 1. It consists of two independently tuned quantumdots and three external terminals. The left and right
current junctions contain a quantumdot. The central terminal is the hot one. It can be considered as a cavity [4]
connected to an external heat bath. The temperature of the hot reservoir equalsTH,while the two other
reservoirs are assumed to have lower temperaturesTL andTR, respectively. The chemical potentials of the
electrodes L,R,Hm may be changed by the external voltage or as a result of the temperature difference between hot
and cold electrodes.

Experimentally similar systems [7] have been already produced and implemented in electronic refrigerators
[8], proved to be successful in cooling in themK temperature range and recently shown to be efficient heat
harvesters [9–11]. Thermoelectric nano-engines with quantumdots tunnel-coupled to external electrodes in
two- and three-terminal geometry have been proposed as effective heat to electricity converters [12–26]. Note
that besides quantumdots alsomolecules [27] and nano-wires [28] are useful elements for efficient energy
harvesting at the nano-scale. Thefield of thermoelectric energy harvestingwith quantumdots has been been
recently reviewed [29, 30], while amore general discussion related to energy harvesting can be found in [31].

Consider the system shown infigure 1with quantumdots energy levels differing by ED . Assume for awhile
that the tunnelling via quantumdots is possible only at sharp values of on-dot energies Le and Re . In such a case
an electron from the left leadwith energy Le can tunnel into theH-lead and an electronwith energy equal to Re
can tunnel fromH to the right electrode. Thus each electron transferred between L andR electrode gains an
energy E R Le eD = - from theH electrode. This process is possible if the temperature of theH electrode is the
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highest (hence hot electrode). The charge is transferred between L andR electrodes at the cost of the heat from
theH electrode. The dots act here as efficient energy filters and charge effectively flows in direction
perpendicular to the heatflow. In other words, the electron flowbeing a result of the temperature difference
between hot and cold electrodes gives rise to a voltage bias between the two cold electrodes. One can invert the
perspective and argue that in the presence of the (not too large) voltage bias (load) between two cold electrodes
the electronflow at the cost of heat from the hot electrode performswork against the bias. The value of the bias at
which the charge currents stop toflow is called stopping bias and is denoted byVstop. The device operates as a
heat engine in the voltage range V0, stop( ). The possibility of independent control of heat and chargeflow is a
mainmotivation to consider the three terminal geometry.

A similar heat nano-engine has been recently optimised [4] formaximumpower. The optimisation involved
the coupling strength of the dots to external electrodes, the ‘energy gain’ ED and the voltage load between left
and right electrodes.However, the authors [4] have not considered the non-equilibrium effects related to charge
redistribution and screening, being of importance outside the linear transport approximation.

Indeed, recentmeasurements of the thermoelectric voltage clearly show [32, 33] that the observed nonlinear
effects are related to heating-induced renormalisation of the dot energy levels. The other source of
nonlinearities, namely, the energy dependence of the transmission function has been found to play a negligible
role. The renormalisations of the dot energy states by electric and thermal gradients in a similar systemhave been
recently studied theoretically within the scattering approach [34, 35, 47].

In other words, beyond the linear approximation the non-equilibrium screening potentials start to play an
importnat role. As a result, e.g. the optimal set of parameters of an engine differs from that obtained in the theory
which does not take such effects into account. Forfinite voltage or temperature bias, the charges pile up in the
electrodes and quantumdots. Due to the long-range Coulomb interaction they screen other charges and change
the injection rates of particles from the electrodes [36]. This observation is especially important for large
temperature differences and large load voltages well beyond the validity of linear response.

At the nano-scale the issue of linear response is a tricky one. In principle it is even notwell defined. In bulk
diffusive systems the small temperature difference between the far ends of the sample allowswell defined local
temperatures and an average temperature gradient. Similarly a small bias usually leads to a small gradient of the
electrochemical potential. In nano-structures even small biases do not imply validity of linear response. To
capture nonlinearity we shall use the non-equilibriumGreen function approach to derive equations for heat and
charge currents and consider the effects of non-equilibrium screening of charges and their piling up in the
electrodes [37].

Working as an energy harvester the system converts the heat current J into power P=IV, where I is the
charge current flowing between left and right (cold) electrodes. The voltageV is used to power an external device
(the load). The efficiency is defined as the ratio between the useful power and the heat currentflowing into the

Figure 1.The structure of the heat engine. The left and right current junction contain quantumdots. The temperature of the hot
reservoir equalsTH,while the two other reservoirs are assumed to have the same temperature T T TL R H= < . The chemical potentials
of the electrodes L,R,Hm may be changed by the external voltage or as a result of the temperature difference between hot and cold
electrodes.
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system, P Jh = . The efficiency calculated in this way can be contrastedwith the ideal Carnot value
T T1C R Hh = - and theCurzon–Ahlborn efficiency [38] expected atmaximum

power, T T1 1 1 2CA R H C Ch h h= - = - - » + .
The organisation of the paper is as follows. In the next sectionwe present themicroscopicmodel of the

system at hand and calculate the charge and heat currents using the non-equilibriumGreen function technique.
The nonlinear effects in transport are discussed in section 3. The results of the optimisation of the engine
workingwell outside the linear regime are presented in section 4.We endwith summary and conclusions
section 5.

2.Model and approach

TheHamiltonian of the system iswritten as

H n U n V c d V d ce , 1
k

k k
i

i i i

i k

i k k i i k i k
, ,

L,R,H
ˆ ( ) ( ˜ ˜ ) ( )† †*å å åe e= + - + +

l s
l s l s

s
s

l s
l l s s l s l s

 


  

where n c ck k k
†=l s l s l s

   and n d di i i
†=s s s denote particle number operators for the leads and the dots,

respectively. The operators c dk i( )† †
l s s create electrons in respective states kl s


i( )s in the leads (on the dots).

Symbols i 1, 2= refer to the left and right dot and L R H, ,l = denote the left, right and hot electrode,
respectively. The dot energy levels L 1e eº and R 2e eº can be easily tuned by the gate voltages. They are
renormalised by the potentialsUiwhich account for the electron–electron repulsion. This interaction is
considered here at themean-field level.

The bare tunneling amplitudes between dot i and electrodeλ are denoted byVi kl
.We introduce the symbol

V V 1 , 2i k i k H i H˜ [( ) ] ( )d d d= - +l l l l l
 

which takes into account that left and right leads are coupled, respectively to thefirst 1 (=L) and the second 2
(=R) quantumdot, while both dots are coupled to the H electrode.

The current in the electrode l is calculated as time derivative of the average charge in that electrode
N n

k kå=l s l s
 :

I ne e , 3N

t t
k

k
d

d

d

d
( )å= - = -l

s
l s

l




where the symbol ...á ñdenotes the statistical average. Calculation of the heat flux follows that of the charge. From
thermodynamics we know the relation between the (internal) energy E, heat Q andwork. Assuming that the
onlywork is related to theflowofmass dNm , onewrites

Q dE dN . 4˙ ˙ ˙ ( )d m= -

The dot over symbols denotes time derivative. Applying this equation to one of the electrodes, say l, allows to
write the heatflux as

J H H N H, , , 5i i[ ˆ ] [ ˆ ] ( )
 

m= á ñ - á ñl l l l

where H n
k k k,å e=l s l s l s
   is the energy operator for the electrode l. Evaluating the commutators and defining

Keldysh ‘lesser’ functions:

G t t c t d t, i , 6
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Thefinal expressions for the stationary currents can easily bewritten in the general form [39]

I E G E f E G E G E2 , 10E

ij
ij ji ji

r
ji
aie d

2
( ){ ( ) ( )[ ( ) ( )]} ( )

 ò å= G + -l p
l

l
<

J E E G E f E G E G E2 , 11E

ij
ij ji ji

r
ji
aie d

2
( )( ){ ( ) ( )[ ( ) ( )]} ( )

 ò å m= G - + -l p
l

l l
<

3

New J. Phys. 18 (2016) 023050 B Szukiewicz et al



where

E V V E2 12ij
k

i k j k k( ) ˜ ˜ ( ) ( )*åp d eG = -l
l l l
  

denotes thematrix of effective couplings of dots i j,( ) to the lead l. The factor 2 in the formulas for currents
stems from the summation over spins. The heat current (11) can bewritten as a difference between the energy
current J E

l and the charge current Il:

J J I . 13E ( )m= -l l l l

To calculate lesser Green function [39]weuse the equation ofmotionmethod [40]. Fromnowon, we shall
work in units with Planck constant 1 = andBoltzmann constant k 1B = . It is convenient to define the
frequency dependent dotmatrixGreen function Ĝ ( )w<

with elements

G d d . 14ij i j( ) ∣ ( )†w = áá ññs s w
< <

For the definition of ... ...∣áá ññ, see [40]. After some algebra onefinds

G G G , 15
r aˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )w w w w= S< <

where thematrix lesser self-energy is given by
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V V V

V V V
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∣ ˜ ∣ ˜ ˜
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The equation for the retardedmatrixGreen function [41] Gij
r ( )w can bewritten in explicit form as
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with the retarded self-energy

. 18ij
r

k

V V

i0
i k j k

k
( ) ( )

˜ ˜*
åwS =
l

w e- +
l l

l

 



Thematrix inversion gives all the components of the required retarded function. In thewide band limit
approximation one replaces the retarded self-energy by its imaginary part only:

V Vi 19ij
r

k
i k j k k ij

i

2
( ) ˜ ˜ ( ) ( ) ( )*å åw p d w e wS » - - = - G

l
l l l

l

l


and neglects the frequency dependence of ij ij( )wG = Gl l.

3.Nonlinear effects

The long-range nature of theCoulomb interactions is responsible for the back-reaction of the non-equilibrium
charge distribution onto the transport properties of the device. In theHamiltonian (1) this is represented by the
screening potentialsUi. Their values depend on the thermoelectric configuration, i.e. voltages and temperatures
of all electrodes. This effect has been considered inmesoscopic normal systemsfirst by Altshuler and
Khmelnitskii [37] and later by Büttiker and coworkers [36, 42] and others [34, 43–47]. It has been also explored
inmetal-superconductor two-terminal [48, 49] and three-terminal junctions [50].

Here we follow [48] and others [49, 50], assuming that the long-range interactionsmodify the on-dot
energies ie , changing them into Uei ie - . In equilibrium the potentialsUi have constant values (independent of
Vl and T )D l , whichwe denote byUi,eq. In the presence of applied voltagesVl and temperature biases TD l, the
deviations U U Ui i i,eqd = - , in lowest order, are linear functions [48] ofVl and TD l.

Thuswewrite for the potential on each dot i 1, 2= :

U V T ... , 20i
U

V

U

T

L,R,H

0 0

i i( ) ( ) ( )åd = + D +
l

l l
¶
¶

¶
¶Dl l

⎡
⎣⎢

⎤
⎦⎥

where the subscript zero indicates that the partial derivatives have to be evaluatedwith allV T, Dl l set to zero and
the dots denote higher order terms The charge densities on the dots niá ñalso depend on the temperature and
voltage bias as well as on the potentialsUi. Expanding to lowest order in these parameters we get
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n n n

V T U . 21

i i i

L R H
n

V

n

T
j

ij j

,eq

, ,

0 0

i i( ) ( ) ( )å å

d

d

á ñ = á ñ - á ñ

= + D - P +
l

l l
¶á ñ
¶

¶á ñ
¶Dl l


⎡
⎣⎢

⎤
⎦⎥

The above equation defines the Lindhardmatrix function as

. 22ij
n

U
0

i

j( ) ( )P = - d
d

¶ á ñ
¶

The derivatives can be easily calculated by noting that

n d d E G Ed 23i i i ii
i ( ) ( )† òåá ñ = á ñ =

s
s s p

- <

and using equation (15). Another relation between charges and potentials defines the capacitancematrix Ĉ of
the system

n C U . 24i
j

ij j ( )åd dá ñ =

The equations (21) and (24) are easily solved and onefinds explicit expressions for the characteristic potentials

u C , 25i
U

V
j

ij
n

V,
0

1

0

i j( )( ) [( ˆ ˆ ) ] ( )åº = + Pl
¶
¶

- ¶á ñ

¶l l

z C . 26i
U

T
j

ij
n

T,
0

1

0

i j( )( ) [( ˆ ˆ ) ] ( )åº = + Pl
¶
¶D

- ¶á ñ

¶Dl l

The knowledge of the characteristic potentials allows to calculate how the temperature difference between hot
and cold electrodes and voltagesmodify the potentialsUi of the dots. These changes, in turn, affect the heat and
charge currents flowing in the system. For the explicit results presented below, wewill assume the small
capacitance limit Ĉ » 0.

Due to the approximation in equation (20) our approach is called ‘weakly nonlinear’, as we do not consider
higher order corrections.

4. Results

Weassume that the left and right electrodes of the system (see figure 1) have the same temperature,T TL R= . The
temperature of the hot electrode, which is kept fixed fromnowon, is denoted byTH (i.e. T 0HD = ). In addition,

T T T T TR L H RD = D = - º D and the average temperature of the system isT T T 2H R( )= + . The current
does notflow into or out of the hot electrodewhich is grounded (I 0H = ). Thismeans that charge conservation
written in the form I I 0L R+ = serves as a condition for the chemical potential Hm of the hot electrode. The

energy conservation J J J 0H
E

L
E

R
E+ + = may serve as a condition for the actual temperature of that electrode.

We shall take another point of view and assume that the hot electrode serves as an energy reservoir characterised
by the constant temperatureTH. The heat current JH flows out of it towards the L andR electrodes. For

E R Le eD = - ¹ 0 the electrons entering the left electrode at energy Le leave the right one at energy Re . As a
result the voltageV appears between both electrodes.

To facilitate the calculationswe impose additional conditions. The couplings of the quantumdots to
external leads fulfil ,ij i j ij i j

L
L 1 1

R
R 2 2d d d dG = G G = G andwe assume thematrix ij

HG to be symmetric with elements

,11
H

12
H

21
HG G = G and 22

HG .We tune the positions of the dots’ energy levels symmetrically with respect to the
chemical potential Hm . Also the voltages are assumed to be symmetrical with respect to ,Hm i.e.

eV 2L Hm m= - and eV 2R Hm m= + . Such choice of parameters assures that I 0H = and I I IL R= = - .
For an arbitrary set of parameters not fulfilling the above symmetries, Hm has to be calculated from the
condition I 0H = .

4.1. Linear transport parameters, power factor and efficiency
From charge and heat currrents we calculate linear transport characteristics of the device including charge (G)
and thermal (k) conductances and Seebeck coefficient S. For convenience we change the notation and denote
the charge current as I1 and the heat current as I2. Expanding the currents to linear order in bias and temperature
forces X eV T1 = and X T T2

2= D , wewrite thefluxes in standard notation:

I L X L X , 271 11 1 12 2 ( )= +

I L X L X . 282 21 1 22 2 ( )= +
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The transport coefficients are given by the parameters Lij. In accordancewith standard definitions onefinds the
conductance G I V L TT1 0 11( )= =D = , the Seebeck coefficient whichwe ocasionally refer to as thermopower
S V T L TLI 0 12 111

( ) ( )= - D == , and the thermal conductance I T L L L L TI2 0 22 12 21 11
2

1
( ) ( )k = D = -= .

The Peltier coefficent defined as I I T2 1 0( )P = D = is given by L L21 11.
The combination of these parameters defines the thermoelectric figure ofmerit ZT GS T2 k= , which

enters the expression for the efficiency linh of the thermoelectric heat engine [30]:

. 29C
ZT

ZTlin
1 1

1 1
( )h h= + -

+ +

The expected efficiency based on linear coefficients will serve as a reference below. Infigure 2we show the
dependence of the linear conductance G, thermal conductance k, Seebeck S and Peltier P coefficients as well as
power factor GS2 E k Tversus BD for the systemwith all couplings equal,

LG = RG = ij
HG = k T i j, , 1, 2Bg = = . Aswe shall see later this value of the coupling ( k T 1Bg = ) leads to the

maximumpower. The conductancesG andκ are shown for positive values of ED , as they are even functions of
this parameter. On the other hand, both the Seebeck and Peltier effects are sensitive probes of the electron or
hole dominated transport, so they change sign as functions of ED . In thefigure ST has been plotted, which by
theOnsager relation equalsP.

The linear transport coefficients and the thermoelectric figure ofmerit ZT depend on ED and g .While
both, the conductance G and thermal conductance kmonotonically increase, the thermopower decreases with
increasing coupling g . The increase ofG and kwith g is related to the fact that the currents (8) and (9) are
proportional to g . To understand the decrease of the thermopower with g it is useful to recall that in nano-
structures S is directly related to the slope of the density of states at the Fermi energy [51], which is higher for
smaller g . In the linear approach the thermoelectric figure ofmerit yields the efficiency of the engine. Taking
into account the behaviour of ZT on g shown in the inset in the right panel offigure 2 and the formula (29), we
conclude thatmaximumefficiency, approaching theCarnot value Ch , is obtained for vanishingly small g .
However, the power of the engine approaches zero value, rendering the engine practically useless.

We are interested in achieving themaximumpower, which can be realised by optimising ED and g . In the
linear theory the appropriate parameter characterising the obtained power is the power factor defined as GS2. Its
dependence on ED for a few values of g is shown infigure 3. Aswe shall see in the next section the power factor
shows a dependence on ED and γ qualitatively similar to that found in the exact nonlinear approach, however,
with a few important differences to be discussed later.

4.2. Nonlinear transport:maximumpower and efficiency of the heat nano-engine
We start the presentation of the results obtainedwith non-equilibrium screening potentials taken into account
by showing the parameters ui,l and zi,l and their dependence on the couplings ijG and the energy difference

E R Le eD = - . These together with the voltage loadV are themain optimisation parameters.
Infigure 4we show the dependence of the characteristic potentials u u,1,L 2,L and z z,1,L 1,R onΔE. The

behaviour of the other parameters u u z, ,1,R 2,R 2,L and z2,R can be inferred from their symmetries. For the
symmetric systemwe are dealingwith, the parameters ui,l are even functions of ED and fulfil the relations:
u E u E u E u E,1,L 2,R 1,R 2,L( ) ( ) ( ) ( )D = D D = D . The z parameters are antisymmetric functions of

E z E z E, e.g. 1,L 1,L( ) ( )D D = - -D and are related as: z E z E1,L 2,R( ) ( )D = - D and z E z E1,R 2,L( ) ( )D = - D .

Figure 2. Linear conductance G and thermal conductance Tk are shown (left panel) as a function of the energy difference E k TBD
for k TBg = . The right panel shows the thermopwer S multiplied by the temperature T and the Peltier coefficient. Clearly ST = P,
in agreement with theOnsager reciprocity relations. The inset shows the g dependence of the thermoelectric figure ofmerit
ZT GS T2 k= .
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The ‘off-diagonal’ characteristic potentials aremuch smaller than the ‘diagonal’ ones. This is especially true for
the thermal potentials, z1,R and z2,L, which are two orders ofmagnitude smaller than z1,L and z2,R .

The symbol g used in thefigure denotes the common value of the coupling parameters,

L R 11
H

22
H

12
H

21
H gG = G = G = G = G = G = . The calculations have been performed for T T 0.3D = . The

diagonal characteristic potentials show a stronger dependence on ED and larger variation for smaller values of
the couplings g . The amplitude strongly increases with increasing T TD .

If the couplings ,12
H

21
HG G are assumed to vanish, then also the off-diagonal characteristic potentials

u u,1,R 2,L and z z,1,R 2,L vanish. This fact, however, has only a small effect on the performance of the engine.
Themost important parameters of the engine are themaximumoutput power Pmax and the efficiency maxh at

maximumpower. The dependence of themaximumpower, scaled by k TB
2( ) , on E k TBD with all couplings

equal to g is shown in the left panel offigure 5.Different curves correspond to different g in units of k TB and for
each of them the power has been optimisedwith respect to the applied voltage load. The calculations were
performed for T T 0.3D = with the nonlinear effects taken into account. Interestingly, for E k TBD up to
about 12 the largest power is obtained for k TBg = , but for E k T 12BD > , (typically) higher values of g lead to
larger power. This non-monotonic dependence of themaximal power on the effective width of the resonance
can be traced back to the strong ED dependence of the characteristic potentials, which in turn renormalise the
dots energy levels Le and Re (and thus ED ).

The right panel offigure 5 shows the efficiency of the engine corresponding tomaximumpower max Ch h ,
measured in units of the Carnot efficiency. Themaximumvalue of max Ch h strongly depends on the coupling g .
For the optimal value of k TBg = and for T T 0.3D = , it exceeds 20%of theCarnot value. The efficiency as
well as themaximumpower are increasing functions of temperature difference. The linear approximation for
the on-dot potentials presumably precludes reliable results for T T 0.3D > . For a given value of T TD the
maximal efficiency increases with decreasing g , tending to theCarnot limit when g  0. At the same time the
power diminishes towards zero. This agrees with our analysis in the linear approximation carried out in
section 4.1 and the recent analytical treatment of the two-terminal system [26].

Figure 3.The dependence of the power factor GS2 on ED for a number of g values. Note the non-monotonous dependence of its
maximumvalue on g accompanied by the change of ED forwhichmaximum is achieved.

Figure 4.The dependence of the characteristic potentials u u,1,L 2,L (left panel) and z1,L (right panel) on the energy level difference
E R Le eD = - for a number of g values. The inset in the right panel shows z1,R . The energies aremeasured in units of k TB and the

calculations have been done for T T 0.3D = .

7

New J. Phys. 18 (2016) 023050 B Szukiewicz et al



Infigure 6 the comparison of themaximumpower calculatedwith full renormalisation of the on-dot energy
levels (lines)with that obtained in the approach neglecting screening (symbols) is presented. Two important
features are apparent. First, the nonlinearities strongly affect the value of the dots energy difference, ED , for
which the systemperformswithmaximumpower.While without screening effects the optimal ED corresponds
to k T6 B» , the screening shifts the optimal value to k T9 B» . In order to understand this behaviour, one has to
note that for a given biasV V VR L= - and temperature difference TD , onemay define the ‘effective’ energy
difference E E eu V ez T2eff 1,L 1,L( )D » D - - D ; here we used the symmetries of the uiʼs and ziʼs, as well as the
smallness of the off-diagonal potentials, see section 4.2. As a result, the upward shift of the optimal ED is such
that the effective energy difference roughly agrees with the optimal value foundwithout screening effects. In fact,
the shift due to screening evaluated at E k T 6BD = is about k T2 B , to be comparedwith the difference of

ED -valuesmentioned above, namely k T3 B» , for the considered parameters ( T T k T, BgD = = ). The
remaining difference, k TB» , can be understood by observing that linear terms appear in the denominators of
theGreen functionswhich are integrated over energies with the Fermi functions in the nominator. Second, the
value of the power itself and the efficiency remain unchanged. Other differences are less important for the
question of themaximumpower but should be noted. For example, one observesmuch stronger asymmetries of
the P Emax ( )D curves with the nonlinear screening effects taken into account.

Comparison of the optimal power, figure 5, with the power factor,figure 3, shows that there exist important
differences between these quantities. In particular, the energy difference ED at which the power ismaximal
markedly differs from that leading to themaximumpower factor: this is related to the fact that in the full theory
the voltage serves as an additional optimisation parameter.

5. Summary and conclusions

The three-terminal heat nano-engine has been analysed in the linear and the nonlinear approximation. In the
latter case it has been optimisedwith non-equilibrium screening effects taken into account. In the linear limit the

Figure 5. Left panel: the dependence of themaximumpower P k Tmax B
2( ) on E k TBD for a number of k TBg values for

T T 0.3D = . Right panel: efficiency atmaximumpower. The dashed line in the right panel corresponds to k TBg = and shows the
linear efficiency lin Ch h .

Figure 6.Comparison of themaximumpower P k Tmax B
2( ) E k Tversus BD calculatedwithout characteristic potentials (symbols)

andwith them (lines) for a number of g values for T T 1D = .
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Onsager symmetry relations are fulfilled due to thefloating character of the hot electrode. In this limit we have
calculated charge and thermal conductances, the Seebeck coefficient and the thermoelectricfigure ofmerit ZT .
The expected efficiency calculated from thefigure ofmerit is comparedwith that calculated self-consistently in
theweakly nonlinear limit in the right panel offigure 5. For the optimal value of the coupling ( k TBg = ) the
linear efficiency surprisingly well describes the performance of the system [4] calculated exactly.

Our calculations show that the optimal value of the coupling is essentially unchanged by the non-
equilibrium screening effects and equals k TBg = . These effects do not change themaximumvalue of the
output power and the efficiency obtained for the optimal value of the coupling constant and for a given value of

T TD . The optimal distance between the dots energy levels, ED , changes as a result of the screening effects. The
change is directly related tomodifications of the on-dot energy levels by the potentialsUi. The system efficiency
atmaximumpower in units of the ideal Carnot efficiency exceeds 20% for T T 0.3D = .

In agreement with other studies of heat nano-engines [35, 52–55], we have found that the large value of the
thermoelectric figure ofmerit ZT does not necessarily imply the usefulness of the device as an efficient energy
harvester. Interestingly, for this particular device, we have found an overall agreement between the efficiency
obtainedwithin linear approximation and in the full theory (see two sets of data for k T 1Bg = in the right
panel offigure 5). Hence the three-terminal systemunder studymarkedly differs from a typical two-terminal
engine.
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