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Abstract. Stripe phases are observed experimentally in several copper-
based high-T c superconductors near 1/8 hole doping. However, the specific
characteristics may vary depending on the degree of dopant disorder and
the presence or absence of a low-temperature tetragonal phase. On the basis
of a Hartree–Fock decoupling scheme for the t– J model, we discuss the
diverse behavior of stripe phases. In particular, the effect of inhomogeneities
is investigated in two distinctly different parameter regimes which are
characterized by the strength of the interaction. We observe that small
concentrations of impurities or vortices pin the unidirectional density waves,
and dopant disorder is capable of stabilizing a stripe phase in parameter
regimes where homogeneous phases are typically favored in clean systems. The
momentum-space results exhibit universal features for all coexisting density-
wave solutions, nearly unchanged even in strongly disordered systems. These
coexisting solutions feature generically a full energy gap and a particle–hole
asymmetry in the density of states.
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1. Introduction

Stripe ordering phenomena on the nanoscale seem to be an inherent consequence of electronic
correlations in high-Tc superconducting (SC) materials. They are most prominently close to
x = 1/8 hole doping [1–4], but they were also identified within a broader doping range in
the pseudo-gap regime [5–7]. However, the nature of the stripe order varies significantly for
different cuprate materials.

Unidirectional charge waves (CDW) and spin-density waves (SDW) have been detected in
many cuprates by neutron scattering and x-ray experiments [1, 3, 4, 8–17]. However, the details
are strongly material dependent. Neutron-scattering experiments on La2−x−yNdySrxCuO4

(LNSCO) at x = 1/8 [1, 12–14] revealed static antiferromagnetic (AF) SDW order with a period
of eight lattice constants and a concomitant charge-density wave with half this period. A similar
spin structure was found in La2−xBaxCuO4 (LBCO) [3, 9, 10, 15], in La2−xBaySrx−yCuO4

(LBSCO) (with y = 0.075) [4] and in La2−x−yEuySrxCuO4 [16, 17], where SDW and CDW
coexist at and near x = 1/8. A common feature of these cuprates is an anisotropic low-
temperature tetragonal (LTT) phase and, in addition, a strong dopant disorder; both the LTT
structure and dopant disorder are supposed to pin stripes. However, not all cuprates exhibit an
LTT phase or dopant disorder. While every chemical doping of the cuprate parent compounds
introduces disorder, its impact on the SC properties depends decisively on the distance between
the CuO2 planes and dopants. In La2−xSrxCuO4 (LSCO) dopants are randomly positioned close
to the CuO2 planes generating effective disordered impurity potentials to the in-plane electrons.
In contrast, oxygen dopants order in CuO chains in YBa2Cu3O7−δ (YBCO) that are separated
from the CuO2 planes by a BaO plane, and they are roughly at twice the distance from the
CuO2 planes than Sr is in LSCO. Hence, YBCO is minimally affected by the dopants’ impurity
potentials and is therefore considered as the cleanest material in the cuprate family. In pure
LSCO, which exhibits no LTT phase, spin stripes have been detected below Tc but no CDW
order [18, 19]. Although no static stripes have so far been reported for YBCO, electron-nematic
order is inferred from anisotropies [20] found in neutron scattering [21] and thermoelectric
transport [22] measurements. In addition, incommensurate spin fluctuations are detected in
SC YBCO, and a static CDW appears in the presence of an external magnetic field [23, 24].
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The different behavior of YBCO may arise from both the absence of dopant disorder and the
LTT structure. Stripe phenomena in cuprates must therefore be considered strongly material
specific. Here we present a comprehensive analysis of their delicate response to the presence of
disorder.

In the last few years, the theoretical understanding of stripe formation in cuprates has
advanced. Early on neutron-scattering data on LNSCO at hole doping x = 1/8 [1] suggested the
formation of a spin-ladder structure in the CuO2 planes. This structure is built from half-filled,
three-legged spin ladders, separated by quarter-filled chains. The AF spin structure changes
sign from one ladder to the next, resulting in a wavelength of eight lattice constants. This
same spin structure was later detected also in LBCO [8]. Indeed, theoretical models based on
coupled spin-ladders describe [25, 26] with some success inelastic neutron-scattering data on
LBCO [3]. Already before the experimental discovery of stripes, Zaanen and Gunnarsson [24]
and Machida [27] predicted the formation of spin stripes in doped AFs from mean-field analyses
of the Hubbard model. The spin stripes suggested by Tranquada and co-workers were found also
in various numerical calculations using the Hubbard model [28], the t–J model [29–36] or the
spin–fermion model [37], and their existence is by now well established.

A more delicate problem is understanding the coexistence of or competition between
spin- and charge-stripe order and superconductivity. It has been known for some time that
in a d-wave superconductor (dSC) with an on-site repulsion U (to which we refer as the
‘U -model’), antiferromagnetism nucleates around impurity sites [38, 39]. Depending on the
spatial configuration of the impurities, connected AF domains may form building networks of
quasi-one-dimensional (1D) AF lines [39, 40]. On the other hand, in homogeneous systems,
the above described spin-ladder state was found to coexist with a striped form of d-wave
superconductivity within a mean-field treatment of the t–J model and variants of it [41–44].
This SC state is modulated in space with the same period as the spin structure; its SC order
parameter is minimal in the center of the AF spin ladder and maximal in between the spin
stripes. Striped superconductivity in this context corresponds to a unidirectional pair-density
wave (PDW) state [45, 46]. Notably, this PDW oscillates with twice the wavelength of the
accompanying CDW, which is caused by periodic zero crossings of the SC order parameter.
Below we discuss and contrast the PDW state with the periodically modulated dSC (mdSC),
which lacks a sign change and thus oscillates with the same wavelength as the CDW.

The emerging static spin order in these models is typically rather robust and remains
unchanged in a wide range of parameters and hole density. This is in contrast to the spin stripes
found in the cuprates, the wavelength of which seems to shrink continuously with increasing
hole doping. One might therefore ask whether the stripe phenomena in cuprates are not better
described by the glassy stripe structures emerging from the disordered U -model. Indeed, it was
shown in [44] that the U -model is actually the weak-coupling limit of the mean-field decoupled
t–J model. The U -model is therefore expected to exhibit the same stripe order as the t–J model,
and it is the disorder (as induced, e.g. by dopant atoms) that qualitatively changes the nature of
the spin-stripe structures.

In this paper, we discuss the impact of inhomogeneities on striped superconductors within
the U - and the V -model. Additionally, the effect of magnetic vortices is studied, which proves
to have a similar impact on the stripe formation as isolated strong impurities. In section 2, we
introduce the U -model as the weak-coupling limit of the mean-field decoupled t–J model and
derive also the strong-coupling limit, to which we refer to as the ‘V -model’. By comparing
the two limits, we conclude that only the U -model shows the large susceptibility to disorder
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and the doping dependence of the stripe structure observed experimentally. The cuprates are
nevertheless estimated to be placed in between the two limits. Some cuprate materials show
characteristics that are qualitatively explained by the V -model, whereas others come closer to
the physics of the U -model. In this regime, the strengths of SC and AF correlations are in
balance and material-specific details matter [44]. By relating our theoretical results with the
experimental observations, we conclude in section 4 that disorder is essential for understanding
the nature of the stripe phases in cuprate superconductors.

2. Hamiltonian

We follow the general idea that the one-band Hubbard model describes well the low-
energy physics of the CuO2 planes of the cuprates, including antiferromagnetism and
superconductivity [47]. At strong coupling, a unitary transformation maps the Hubbard model
onto the t–J model with an AF exchange coupling J = 4t2/U [48]. The non-local interaction
in the t–J model accounts for both superconductivity and antiferromagnetism already on
the mean-field level [49–53]. Here we use an ansatz introduced by Kagan and Rice [52], in
which the projection to exclude doubly occupied sites is replaced by an on-site repulsion term
U/2

∑
i,σ ni,σ ni,−σ , leading back to the original t–J model in the limit U → ∞. On mean-

field level, this ansatz is equivalent to the fully decoupled Bardeen–Cooper–Schrieffer (BCS)
Hamiltonian HU V with attractive nearest-neighbor interaction of strength V and an on-site
repulsion of strength U , if V is identified with J [44]. We employ this model on a square lattice
including randomly positioned on-site impurity potentials V imp

i and a perpendicular orbital
magnetic field. Specifically, the model Hamiltonian reads

HU V = −

∑
i jσ

ti j e
iϕi j c†

i,σ c j,σ−
V

2

∑
〈i j〉,σ

c†
i,σ c†

j,−σ c j,−σ ci,σ +
U

2

∑
i,σ

ni,σ ni,−σ +
∑
i,σ

(
V imp

i − µ
)

c†
i,σ ci,σ ,

(1)

where c†
i,σ creates an electron on-site i with spin σ =↑, ↓ and ni,σ = c†

i,σ ci,σ . The hopping
matrix elements between nearest and next-nearest neighbor sites are denoted by ti j = t and
t ′

= −0.4 t , respectively. An electron moving in the external magnetic field from site j to i
acquires the Peierls phase ϕi j = (π/80)

∫ ri

r j
A(r) · dr, where 80 = hc/2e and A(r) = (0, x B)

is the vector potential in the Landau gauge. The attractive nearest-neighbor interaction is
parameterized by V > 0 and the chemical potential µ is adjusted to fix the electron density
n =

∑
i〈ni〉/N = 1 − x , where x is the hole concentration. The impurity potentials V imp

i are
used to simulate the effect of either a single impurity or of the disorder introduced by the dopant
atoms, the case in which the density of impurities is equal to the hole concentration x .

The Hamiltonian HU V approaches the physics of the Hubbard model for U → ∞.
Nevertheless, a thorough mean-field analysis of its ground-state solutions showed that, at finite
values of U , it is well suited to describe the combined emergence of superconductivity and
antiferromagnetism as observed in the cuprates [44]. A mean-field decoupling of the interaction
−V/2

∑
〈i j〉,σ c†

i,σ c†
j,−σ c j,−σ ci,σ , leads to the standard term for BCS-type superconductivity, and

additionally to an AF interaction term of the form −V
∑

〈i j〉,σ 〈ni,σ 〉n j,−σ . At half-filling, the
ground state of this model is an AF Mott insulator, while far enough from half-filling, it is a dSC.
While both situations are captured within a mean-field decoupling scheme, this approximation
is not considered adequate to describe the correlation physics of the doped Mott insulator close
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to but slightly below half-filling (e.g. at x = 1/8). In [44], two special situations were identified
where a mean-field decoupling is nonetheless meaningful: (i) if the interaction V is small
(V � t), its pairing component is dominant and antiferromagnetism acts only as a perturbation
to the SC ground state. In this regime, the term −V

∑
〈i j〉,σ 〈ni,σ 〉n j,−σ is of minor relevance,

and antiferromagnetism is controlled by U . Thus we denote this limit the U -model. (ii) On
the other hand, if V is large (V & t), the system separates locally into half-filled AF stripes
separated by hole-rich, metallic (or SC, respectively) regions. Since V in this case is sufficient
to almost maximally spin polarize the AF sites, the term (U/2)

∑
iσ ni,σ ni,−σ is negligible.

Therefore, we call this limit the V -model. Since antiferromagnetism appears here only in half-
filled, spatially separated regions, a mean-field decoupling is feasible. Physically meaningful
results can therefore be obtained from our model in the weak- and strong-coupling limits, while
the intermediate-coupling regime is not accessible in a mean-field calculation.

2.1. U-model

As discussed above, the interaction −V/2
∑

〈i j〉,σ c†
iσ c†

j−σ c j−σ ciσ is not important for magnetism
in the limit V � t , but leads to the standard BCS expression for the SC order parameter. Thus,
the Hartree–Fock decoupling of HU V can be restricted to the U -model:

HU = −

∑
i jσ

ti j eiϕi j c†
iσ c jσ − µ

∑
iσ

c†
iσ ciσ +

∑
〈i j〉

(
1i j c

†
i↑c†

j↓ + h.c.
)

+
U

2

∑
i

(
〈ni〉ni − 〈σ z

i 〉σ z
i

)
+

∑
iσ

V imp
i c†

iσ ciσ , (2)

where σ z
i = (ni↑ − ni↓)/2. In the following, we will focus mainly on hole densities at and near

x = 1/8. The non-local pairing amplitude is defined as

1i j = −V 〈c j↓ci↑〉. (3)

We do not include spin-flip terms of the form 〈c†
i↑ci↓〉c

†
i↓ci↑, because they do not conserve

the spin as the original Hamiltonian (1) does. Furthermore, the inclusion of a finite spin-
flip term in the factorization acts only as a rotation of the spin-quantization axis, but
contributes neither to superconductivity nor to antiferromagnetism. The U -model has been
the starting point for numerous investigations on disorder- [38, 39, 54–57] and field-induced
antiferromagnetism [39, 57–59]. Within a certain hole-doping regime and most prominently
around x = 1/8, the ground state exhibits AF spin-stripes, if U exceeds the critical value Uc.

All fields, i.e. 1i j , the local electron density 〈ni〉 and the local magnetization 〈σ z
i 〉 are

calculated self-consistently from the solutions of the associated Bogoliubov–de Gennes (BdG)
equations. A detailed derivation of the BdG equations is presented in [39, 59]. The d-wave
order parameter on a lattice site i is defined as

1d
i =

1
4

(
1d

i,i+x̂ + 1d
i,i−x̂ − 1d

i,i+ŷ − 1d
i,i−ŷ

)
, (4)

where 1d
i, j = 1i j e−iϕi j . In order to describe a possibly appearing modulation of the SC order

parameter, as in the PDW state [43, 44, 46, 60, 61], we subdivide the pairing order parameter
into three contributions [46, 61]

1d
i = 10 + 1q eiq·ri + 1−q e−iq·ri , (5)
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where the wave vector q parameterizes the modulation of the pairing amplitude and reflects
a finite center-of-mass momentum h̄q of the electron pairs. 10 accounts for a homogeneous
component of the order parameter. Two distinct types of SC states are possible solutions for
HU : If 10 = 0, the SC order parameter shows a stripe pattern modulated with wave vector q,
where the SC stripes are separated by channels of zero pairing amplitude across which the
SC order parameter changes sign. If the absolute values of |1q| and |1−q| are smaller than
the homogeneous component |10|, 1d

i is always finite and modulated with wave vector 2q.
Although the ‘pure’ PDW with 10 = 0 was phenomenologically suggested to be the ground
state of striped high-Tc superconductors [45], all calculations of mean-field type so far led to
ground states with dominating uniform component 10, cf [42, 44].

2.2. V -model

For large attractive interactions V ∼ t , the Hartree–Fock decoupled Hamiltonian of equation (1)
is effectively described by the V -model Hamiltonian

HV = −

∑
i, j,σ

ti j e
iϕi j c†

iσ c jσ − µ
∑
i,σ

c†
iσ ciσ +

∑
〈i, j〉

(
1i j c

†
i↑c†

j↓ + h.c.
)

− V
∑

〈i, j〉,σ

〈niσ 〉c†
j−σ c j−σ

+
∑
i,σ

V imp
i c†

iσ ciσ , (6)

where 1i j is defined as in equation (3). The term 〈niσ 〉c†
j−σ c j−σ is responsible for

antiferromagnetism; it is controlled by the same interaction parameter V as the SC order
parameter. Since in this limit AF correlations are strong enough to separate the system locally
into AF regions close to half-filling and into hole-rich regions far from half-filling, the U -term
contributes little. Even for values of U as large as the bandwidth, the U -term does not have a
qualitative effect on the ground-state solutions [44].

For hole doping around x = 1/8, the solutions of the BdG equations for HV in the impurity-
free case are very similar to those of the U -model [44]. The main difference is the hierarchy of
SC and AF order: in the U -model, two-dimensional superconductivity is the dominant order,
i.e. the SC energy gap dominates over the AF gap, up to a certain value of U , above which the
AF gap takes over and superconductivity is destroyed. In the V -model the hierarchy is reversed.
Antiferromagnetism appears only if V is sufficiently large to induce an AF energy gap, which
dominates over the SC gap. Superconductivity is thereby destroyed within the AF stripes and
the regions where superconductivity persists are spatially separated into uncorrelated, quasi-1D
filaments. Therefore, the phase relation between them is not fixed and the ‘pure’ PDW state
is degenerate to a solution with finite 10. Because of the 1D character of the solutions of the
V -model, they barely adjust to impurities in comparison with the solutions of the U -model. This
characteristic difference is discussed in section 3.2.

2.3. Momentum-space quantities

For a thorough analysis of our results we also discuss the following momentum-space quantities.
With the Fourier transform of the factorized square of the magnetization

S(q) =

∣∣∣ 1

N

∑
i

〈σ z
i 〉 e−iq·ri

∣∣∣2
, (7)
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we approximate the magnetic structure factor. In addition, we discuss the absolute squares of
the Fourier transformed (FT) d-wave order parameter

|1(q)|2 =

∣∣∣ 1

N

∑
i

1d
i e−iq·ri

∣∣∣2
(8)

and the deviation from the average electron density n

|n(q)|2 =

∣∣∣ 1

N

∑
i

(〈ni〉 − n) e−iq·ri

∣∣∣2
. (9)

In the strong disorder limit, the suppression of the electron density at the random impurity
sites dominates the charge distribution even for small impurity potentials. Coherent charge
oscillations with small amplitudes are therefore barely visible in the Fourier transform n(q).
Since we are especially interested in these coherent charge modulations, we exclude the
impurity sites in the presence of strong disorder from the sum over sites in the Fourier
transformation.

The momentum distribution is given by

n(k) =

∑
σ

〈c†
kσ ckσ 〉, (10)

where the fermionic operators ckσ are the Fourier transform of the real-space operators ciσ . The
spectral density at the Fermi energy A(k) ≡ A(k, ω = 0) is determined from the imaginary part
of the retarded Green function

A(k, ω) = −
1

π

∑
σ

Im〈〈ckσ ; ckσ 〉〉
ret
ω . (11)

A(k) allows for the determination of partially reconstructed Fermi surfaces which are
characteristic for inhomogeneous superconductors. Homogeneous dSCs exhibit a finite gap
away from the nodes on the Brillouin zone diagonals. n(k) is therefore continuous everywhere
except across the nodes. However, stripe formation leads to a reconstruction of the Fermi surface
attributed to finite pairing momentum. In this case, the pair density P(k) (equation (12)) is
readjusted and, as a result, the SC energy gap no longer covers all sectors of the underlying
Fermi surface. Impurities, on the other hand, induce bound states within the SC gap, leading
to a redistribution of spectral weight into the gap which can be observed in A(k). In this
process, the transition from partially filled to empty states in n(k) narrows, implicating a partial
reconstruction of the Fermi surface.

The momentum distribution of the pair density P(k) is defined as [44, 62]

P2(k) =

∑
q

∣∣〈c−k+q↓ck↑〉
∣∣2

. (12)

It measures the average correlation of the two occupied electron states |k, ↑〉 and | − k − q, ↓〉

and thereby the parts of the Brillouin zone where electron pairing occurs. Eventually, we discuss
the information contained in

ρS(k) =
1

2

∑
qσ

〈σc†
k+qσ ckσ 〉 (13)

on the spin state. This quantity is maximal in those parts of the Brillouin zone
where antiferromagnetism dominates. Thus, the competition between superconductivity and
antiferromagnetism can be analyzed by comparing P(k) and ρS(k).
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3. Results

3.1. U-model

The Hamiltonian (2) gives rise to unidirectional stripes [44, 54, 59, 63, 64] or checkerboard
patterns [65, 66], which have been identified in the real-space quantities of clean dSCs above
a critical on-site repulsion Uc. The role of disorder for the competition between stripe and
checkerboard CDW order in the non-SC state was analyzed in [67, 68]. For a clean (V imp

= 0)
dSC, the free energy of stripe solutions is typically close to the homogeneous dSC solutions.
Depending sensitively on the initial conditions of the self-consistent BdG calculations, we
find either stripes or homogeneous AF order both coexisting with superconductivity. In clean
systems, regular stripe solutions emerge only if the self-consistency loop is started from a
striped initial state. However, in the presence of perturbations, such as impurities or vortices,
or by a rectangular lattice geometry, stripes are pinned and the stripe solutions become
robust against the changes of the initial conditions. This relates to the notion that in the
unperturbed superconductor fluctuating stripes are present, which become static by the pinning
to defects [54, 59, 63].

In the U -model below a critical pairing interaction, an emerging stripe state exhibits a
dominant uniform component of the SC order parameter, i.e. 10 6= 0 in equation (5), in addition
to the finite-momentum pairing amplitudes. In this case, the SC order parameter 1d

i does
not feature a sign change and we call this state an mdSC. In [69], it was shown within a
momentum-space formulation that a translation-invariant Hamiltonian in zero magnetic field
can nevertheless support a ‘pure’ PDW ground state with 10 = 0 for a similar set of parameters
but with a stronger pairing interaction V & 2.2 t . There, an analytic approximation to Gor’kov’s
equations was considered. Solutions of this kind are also found in the impurity-free real-space
model used here, although the PDW solution converges into a local energy minimum and is
slightly higher in energy than the mdSC solution. Stripe solutions are indeed observed in a
broad hole-doping range. In the strong disorder limit, however, we find stripe states only close
to x = 1/8.

3.1.1. Impurity-free stripe solutions. Choosing sinus-shaped initial values with a wavelength
of 8a for the self-consistent fields 1i j and mi = 〈σ z

i 〉, the impurity-free system (V imp
= 0)

exhibits horizontal (or vertical) stripes in the real-space quantities over a wide hole-doping
range. In figure 1, the order parameter, the electron density and the staggered magnetization
are shown for x = 1/8. Obviously, a CDW, a SDW and a modulated pair-density (mdSC)
(1q 6= 0) coexist in such a striped superconductor. The SC order parameter is finite everywhere,

modulated only with an amplitude of a few per cent of the average order parameter 1
d
i . The

CDW oscillates around the average density n with an amplitude of only 1%. The staggered
magnetization exhibits the strongest modulation with an amplitude of about 0.5 µB including a
periodic sign change in the vertical direction corresponding to anti-phase domain walls between
the antiferromagnetically ordered stripes. This solution is the ground state of the U -model for
the chosen parameters and initial conditions.

The periodic modulation of the magnetization in the vertical direction translates into two
distinct peaks in the magnetic structure factor at the wave vectors qm = (2π/a) (1/2, 1/2 ± ε)

with ε = 1/8. These magnetic ordering wave vectors qm correspond to an SDW with period
8a perpendicular to the stripes as is also obvious from the real-space pattern of the staggered
magnetization in figure 1(c).
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a b

c

Figure 1. Density modulations of a d-wave superconductor. SC order
parameter 1d

i for an (a) impurity-free and an (b) impurity-pinned (V imp
= 10t)

stripe solutions. (c) Vertical cuts of the electron density and the staggered
magnetization in the impurity-free case (V imp

= 0). These calculations were
performed on a 24a × 24a lattice where a is the lattice constant. Parameters were
fixed to T = 0.025 t , t ′

= −0.4 t , V = 1.5 t , x = 1/8, U = 3.3t .

The concomitantly emerging CDW (figure 1(c)) and mdSC (figure 1(a)) modulate with
half the wavelength compared to the fluctuating SDW. Their Fourier transforms peak at qc/p =

2π/a (0, ±δ) with δ = 1/4 indicating a vertical oscillation with wavelength λCDW/mdSC = 4a.
The period doubling of the SDW results from the π -phase shift that the spin order experiences
between neighboring charge stripes. In contrast to the PDW, which contains no uniform q = 0
pairing component, the SC order parameter is here always of equal sign. These wavelengths stay
fixed in a hole doping range from x = 0.1 to 0.15. For x > 1/8, the additional holes collected
in the already present stripes deepens the hole-rich channels, thus increasing the oscillation
amplitude of the CDW.
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a b

c d

Figure 2. Momentum-space quantities of the striped phase of a clean d-wave
superconductor. (a) Momentum distribution n(k), (b) spectral density A(k),
(c) pair density P(k) and (d) spin density ρs(k) for T = 0.025 t , t ′

= −0.4 t ,
V = 1.5 t , x = 1/8, U = 3.3 t and V imp

= 0. Horizontal and vertical axes are
given in units of π/a.

For a further characterization of the impurity-free case, we present in figure 2 momentum-
space quantities. The momentum distribution n(k) is shown in figure 2(a) and exhibits an
anisotropy in kx and ky . In the presence of horizontal spin stripes, states with wave vectors
near k ' (±π, 0) are less probably occupied than states near k ' (0, ±π).

In a homogeneous d-wave superconductor, the spectral (quasi-particle) density A(k) is
finite only at the four points in the Brillouin zone where the SC order parameter has nodes. In
the striped superconductor, it was shown that CDW order leads to an increase of spectral weight
in the nodal direction, while SDW order suppresses spectral weight in this region [70]. Here we
observe that spectral weight reappears on most of the Fermi surface of the normal conducting
state (figure 2(b)). In the near nodal direction two peaks appear, which are fingerprints of both
CDW and SDW order with a dominance of the latter. Comparing with [70], one can attribute
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the peak around k ' (0.25, 0.6)π in the first quadrant of the Brillouin zone to spin order, while
the peak at k ' (0.5, 0.4)π results from the charge order. These features bear resemblance to
angle-resolved photoemission spectroscopy (ARPES) data found in La2−x−yNdySrxCuO4 and
LSCO by Zhou et al [71]. Figure 2(c) shows the pair density P(k) that accentuates the states
contributing to superconductivity. The maxima in A(k) around k ' (0.5, 0.4)π which originate
from the CDW order [70] correspond to a suppression of the pairing in figure 2(c). P(k) is
maximal around k ' (±π, 0) where the pairing amplitude is largest. These regions resemble
those of a homogeneous dSC, but stretching out less far into the nodal direction. In contrast,
P(k) is strongly suppressed at wave vectors k ' (0, ±π) where the spin density is strong
and exhibits local maxima around k ' (0, ±3/4π). The unidirectional character of the SDW
is clearly seen in ρs(k) (see figure 2(d)), which relates to the large amplitude oscillations of
the staggered magnetization in real space. ρs(k) dominates regions in momentum-space, which
P(k) would occupy in a non-magnetic homogeneous dSC. It extends far along the Fermi arcs,
crossing the nodal points. ρs(k) has large intensities in the anti-nodal regions, i.e. it competes
with superconductivity. Although maxima of ρs(k) are clearly separated from those of the pair
density P(k), both quantities coexist in large parts of momentum space.

3.1.2. Impurity-pinned stripes. In the presence of a single strong impurity with potential
strength V imp

= 10 t , the stripes are pinned as is inferred from the order parameter pattern shown
in figure 1(b), where the impurity is located at the center. Impurity-pinned stripe solutions are
robust against a change of the initial conditions, in contrast to the impurity-free stripe solution
(figure 1(a)). Thus, we expect fluctuating stripes in real materials to be pinned by impurities and
to become static. Horizontally equationed stripes emerge as well in the magnetization and the
electron density. The impurity pins a channel of reduced pairing amplitude (figure 1(b)), which
minimizes the loss of pairing energy. On the other hand, inhomogeneities in the order parameter
result in a charge density redistribution in the absence of particle–hole symmetry [59]. In fact,
the channels of reduced pairing amplitude collect electrons, thereby shifting the electron density
in these channels toward half-filling. This in turn favors the emergence of AF order in the regions
of enhanced electron density. That is why the impurity pins one of the ridges of the staggered
magnetization. Altogether, electron-rich stripes coincide with strongly magnetized stripes of
reduced pairing amplitude. The characteristics of the impurity-pinned stripes are similar to those
of the impurity-free case, except that the impurity-pinned stripes emerge independently of the
initial conditions. Thus the momentum-space quantities shown in figure 2 for the impurity-
free stripe solution are essentially the same for the impurity-pinned stripes. Summarizing,
we observe for sufficiently large on-site repulsion U > Uc, as in the impurity-free case, the
coexistence of an mdSC, an SDW and a CDW with wavelength λCDW = λmdSC = 4a = 1/2 λSDW

pinned by a single non-magnetic impurity.
Real-space quantities of stripes pinned by a single strong non-magnetic impurity have

already been investigated by Chen and Ting [72]. They obtained similar results for the U -model
at x = 15% hole doping, which is assumed to be close to optimal doping. We also checked that
the periodicity of the stripes for a single impurity at x = 1/10 remains the same as for x = 1/8.

3.1.3. Vortex-pinned stripes. The vortex-pinned stripes shown in figure 3 display essentially
the same properties as those for the impurity-free and the impurity-pinned stripes. The
amplitudes of the mdSC, CDW and the SDW are marginally enhanced as compared to the
impurity-pinned stripes, because a vortex penetrating the superconductor acts as a far stronger
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a b

c

Figure 3. Vortex-pinned stripes. Results are shown for a magnetic flux 8 =

280 penetrating a 32a × 32a lattice which corresponds to a magnetic field
B = 25.6 T. (a) SC order parameter, (b) electron density and (c) staggered
magnetization (blue lines mark the zero-crossing). The model parameters were
set to T = 0.025 t , t ′

= −0.4 t , V = 1.34 t , x = 1/8, U = 3.2 t .

perturbation than a single point-like impurity. Just like the impurity, the vortices pin the ridges of
the SDW. Stripes of reduced pairing run through the elliptically deformed vortices and thereby
save condensation energy. The AF stripes are further attracted by the vortex since vortex cores
in d-wave superconductors strongly magnetize due to a spin-dependent splitting of the Andreev
bound state [39, 59]. Correspondingly, the vortex pins an electron-rich stripe with a filling
shifted toward 1/2. From the Fourier transforms of the real-space quantities, we obtain the
same wavelength of the mdSC (λmdSC = 4a), the CDW (λCDW = 4a) and the SDW (λSDW = 8a)
at x = 1/10 and 1/8. Similar results for coexisting CDWs and SDWs were observed in [63]
within the U -model for vortex-pinned stripes above a critical U at x = 15% hole doping. Hence
the wavelengths of these unidirectional density waves are identical in the impurity-free and
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the impurity- and vortex-pinned stripes and robust against a change of hole doping or pairing
interaction strength, as we verified by explicit calculations.

3.1.4. Disorder-pinned stripes. For the modeling of cuprates, such as BSCCO or those based
on the parent compound La2CuO4, their dopant disorder has to be taken into account. In the
following, we consider explicitly intrinsic disorder and compare our results with experimental
data in zero and finite magnetic field. For modeling dopant disorder, we use randomly placed
impurities with equal potentials V imp and set the impurity concentration equal to the hole doping
nimp

= x . Moreover, we assume that the dopants’ impurity potential decreases with increasing
hole doping due to enhanced screening [38]. Here we employ V imp

= 1.3t for x = 1/10 and
V imp

= 0.9t for x = 1/8. In figures 4 and 5, we show exemplary results for two specific
impurity configurations, which exhibit the characteristic behavior of the disordered stripe
phase. We have verified that other impurity configurations yield density waves with the same
wavelength as discussed here. For a Coloumb repulsion U = 3.3 t we find quasi-unidirectional
stripes at x = 1/8, slightly deformed by the presence of the non-magnetic impurities (see
figures 4(d)–(f)). Hole-rich paths (see figure 4(e)) coincide with anti-phase domain walls, seen in
the staggered magnetization profile in figure 4(f), and with stripes of strong superconductivity as
observed in the SC order parameter, figure 4(d). Although the suppression of the electron density
on the impurity sites dominates the charge pattern as seen in figure 4(e), closer inspection
reveals the existence of hole-rich channels (colored orange in figure 4(e)), where 〈ni〉 is reduced
compared to the average electron density. Additionally, the lines of zero staggered magnetization
(blue lines in figure 4(f)), which coincide with the maxima of the SC order parameter, also serve
as a guide to the eye. The d-wave order parameter (figure 4(d)) varies in the strong-disorder limit
with much larger amplitudes as compared to the previous cases, but it never changes sign.

From the analysis of different disorder configurations, we conclude that the hole-rich
paths emerge only close to x = 1/8 hole doping and sharpen upon approaching x = 1/8.
Simultaneously, the density modulations as a whole become quasi-unidirectional. We find that,
by shifting the hole doping toward 1/8, the system is driven into the stripe state. Moreover, we
observe that the wavelength of the density modulation decreases by enhancing hole doping
from x = 1/10 to 1/8 (cf figure 5). This characteristic, which is also observed in neutron-
scattering experiments [73, 74], is not found in the impurity-free systems. Experimentally,
SDWs with wavelengths λSDW(x = 1/10) = 10a and λSDW(x = 1/8) = 8a were inferred from
the incommensurabilities. While this model calculation predicts exactly the same wavelength
for the SDW at x = 1/8, the wavelength at x = 1/10 is slightly larger, that is λSDW = 12a,
than in the experiment. Note that a decrease in hole density either reduces the amplitudes of the
density waves or enhances the wavelength. The latter is valid in this model calculation. Strongly
disordered systems support the former, where the random impurity sites facilitate the setup of
additional hole channels. Disorder allows the stripe pattern to adjust more easily to the average
hole density, whereas in the clean case, the stripe pattern is tied to the underlying lattice.

All real-space quantities verify horizontally (or vertically) oriented stripes at x = 1/8.
The periodicity of these patterns is extracted from the FT quantities as shown in figure 5.
Intriguingly, the FT data in the strong disorder regime for x = 1/8 (figures 5(d)–(f)) peak,
in general, at the same wave vectors as for the perfectly unidirectional stripes discussed for
clean systems. The magnetic structure factor (figure 5(f)) shows two dominating peaks at the
incommensurate wave vectors qm =

2π

a (1/2, 1/2 ± ε) with incommensurability ε = 1/8. The
FT electron density (figure 5(e)) and the FT SC order parameter (figure 5(d)) exhibit similar
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a
Order parameter

x = 1/10
d

Order parameter

x = 1/8

b
Electron density

e
Electron density

c
Staggered magnetization

f
Staggered magnetization

Figure 4. Emergence and stabilization of stripes in real-space quantities of
d-wave superconductors by a shift of hole doping from 1/10 to 1/8 (nimp = x ,
U = 3.3 t). For this set of parameters density modulations emerge close to x =

1/10 doping (V imp
= 1.3t) in the presence of strong dopant disorder and become

unidirectional by a change of hole doping toward 1/8 (V imp
= 0.9t). (a), (d) SC

order parameter 1d
i , (b), (e) electron density, (c), (f) staggered magnetization

(blue lines mark the zero-crossing) for T = 0.025 t , t ′
= −0.4 t , V = 1.6 t .
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a
Order parameter

x = 1/10
d

Order parameter

x = 1/8

b
Electron density

e
Electron density

c
Staggered magnetization

f
Staggered magnetization

Figure 5. FT SC order parameter (a), (c), electron density (b), (e) and magnetic
structure factor (c), (f) for 1/10 (a)–(c) and 1/8 (d)–(f) hole doping. The dopants’
impurity potential is Vimp = 0.9 t at x = 1/8 and Vimp = 1.3 t at x = 1/10. Note
that the impurity sites are not considered in the FT electron density (b), (e)
as described in section 2.3. Parameters were fixed to ndop = x , U = 3.3 t , T =

0.025 t , t ′
= −0.4 t , V = 1.6 t . Horizontal and vertical axes are given in units

of π/a.
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patterns with two broad maxima around wave vectors qc/p ' 2π/a (0, ±δ) with δ = 1/4. The
main difference to the clean stripe solutions is that the peaks in figures 5(d) and (e) are
broadened and a low-intensity substructure is observable. Obviously, the slight deviation from
the characteristics of perfect unidirectional stripes is caused by the finite impurity concentration.
While the correlation length of both charge and spin order is larger than the system size used, the
spin-correlation length is even larger than the charge-correlation length (cf figures 5(e) and (f)).
This agrees well with neutron scattering data obtained for LBCO [8].

We infer that coexisting mdSC, CDW and SDW with wavelength λmdSC = λCDW = 4a
and λSDW = 8a persist at x = 1/8 even in the regime of strong disorder. The wavelengths
of the density modulations change with doping as is recognized by comparison of 1/10 and
1/8 hole doping. In figures 5(a)–(c), the FT SC order parameter, the FT electron density and
the magnetic structure factor are displayed for x = 1/10. The maxima deviate clearly from
those at x = 1/8. At x = 1/10 the density modulations oscillate with wavelengths λSDW ' 12a
and λmdSC ' 6a = λCDW. In contrast to weakly disordered systems the incommensurabilities
ε and δ in the strong disorder limit are sensitive to doping and increase with growing hole
concentration.

The momentum-space quantities n(k), A(k), P(k) and ρs(k) (see figure 6) in the strong
disorder limit resemble the results obtained for the impurity-free stripe solutions (see figure 2).
Disorder slightly enhances the anisotropy, best visible in ρs(k). Importantly, in the disordered
system continuous Fermi arcs appear in the near nodal direction (see figure 6(b)). This agrees
with ARPES measurements in LBCO [75], which has a strong dopant disorder. Oweing to the
impurity potentials, through which the hole channels run, the CDW is stronger here as compared
to the previously discussed cases, which results in the redistribution of spectral weight to the
nodal directions [70].

Altogether, we find that an SDW, a CDW and an mdSC coexist at x = 1/8 hole doping
in strongly disordered systems, such as dopant-disordered LSCO. The density modulations are
pinned and stabilized, just as for a single impurity or a vortex, yet slightly deformed by the
strong disorder. The doping dependence of the incommensurabilities ε ∝ x and δ ∝ x is similar
to those observed in experiments [73, 74].

3.1.5. Density of states. Characteristically, all the identified stripe solutions exhibit a full gap
in the density of states (DOS) (see figure 7). For comparison also the typical v-shaped gap
of a homogeneous d-wave superconductor is shown in figure 7. In the presence of stripes
a full gap opens around the Fermi energy. The full gap is a generic property of stripes in
d-wave superconductors , which persists also in the strong disorder limit. The full gap originates
from a finite extended s-wave contribution in the striped d-wave superconductor and the SDW
gap present in the strongly magnetized stripes. In a homogeneous d-wave superconductor, the
bond order parameter 1i j changes sign between horizontal and vertical bonds which reflects
the d-wave symmetry of the energy gap 1k. Thus the summation of 1i j over the vertical and
horizontal bonds connecting to a given lattice site gives zero in a homogeneous dSC. Owing
to the strong anisotropy of the stripe solutions, however, this summation yields a finite value
here, which characterizes extended s-wave superconductors. So far, no experimental data for the
DOS in the SC state of cuprates exhibiting static stripe order are available. The existence of an
extended s-wave order-parameter component in these systems therefore still awaits experimental
confirmation.
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a b

c d

Figure 6. Momentum-space quantities in the strong disorder limit. (a) Momen-
tum distribution n(k), (b) spectral density A(k), (c) pair density P(k) and
(d) spin density ρs(k) for T = 0.025 t , t ′

= −0.4 t , V = 1.6 t , U = 3.3 t ,
x = 1/8 = ndop, V dop

= 0.9 t . Horizontal and vertical axes are given in units
of π/a.

In a dSC coexisting with a SDW, the gap is generically not centered around the Fermi
energy, which is the reason why the full gap is asymmetric in all stripe solutions shown in
figure 7. In addition, particle–hole symmetry is already broken by the constant random impurity
potentials with Vimp > 0. Experimentally, particle–hole anisotropy was observed recently by
ARPES in the pseudogap phase of Bi-2201 [6], which is attributed to competing orders and
contrasted to homogeneous superconductivity. The appearance of a full gap was also found
by Loder et al [43]. Obviously, the gap is largest in the unperturbed stripe solution (B = 0,
Vimp = 0). This is because with the impurity- and field-induced bound states, spectral weight is
shifted into the energy gap.
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Figure 7. DOS in d-wave superconductors in the presence of stripes. Results for
the data sets used above for impurity-free, impurity-pinned, vortex-pinned and
disorder-stabilized stripe solutions for x = 1/8. The black curve corresponds to
the DOS of a homogeneous d-wave superconductor.

3.2. Impurities in the V -model

The V -model presented by the Hamiltonian equation (6) was introduced in [43] as an
alternative description for the coexistence of superconductivity with magnetic order. In the
homogeneous case, the ground-state solution of the V -model for x = 1/8 is a mdSC state similar
to figures 1(a, c). The main difference is that the AF stripes are nearly maximally magnetized,
i.e. the SDW oscillates with an amplitude ≈ µB, while 1d

i goes to zero at the center of the
AF stripes without changing sign. Thus magnetic order is dominating in the V -model, whereas
superconductivity is reduced to straight, quasi-1D lines on the domain walls between the AF
stripes. This mdSC solution is degenerate with a ‘pure’ PDW, which features a periodic sign
change in 1d

i . Both, the ‘pure’ PDW and the mdSC have identical pair densities P2(k) (cf [43]).
In the strong disorder limit, the U - and the V -model show a severely different behavior.

The solutions of the V -model can be divided into two regimes. If the scattering strength
V imp of the impurities is weak (i.e. V imp . t), the AF stripes remain straight, as shown in
figure 8. The magnetic energy gain is dominant and prevents the SC stripes to wind around
the impurities, which would allow us to gain further condensation energy. Moreover, impurities
in the straight 1D SC channels strongly suppress superconductivity. This effect culminates in
the disappearance of the entire SC stripes, if the impurity density in their near vicinity becomes
too large (figure 8(a)). One of the neighboring AF domains (see figure 8(c)) spreads over such
a metallic line expelling the holes, which collect in the remaining SC stripes (figure 8(b)). In
this situation, the AF domain-wall boundaries are shifted locally, according to the impurities’
positions, but the AF spin stripes remain largely straight (figure 8(c)). The AF stripes are almost
half-filled and all sites within the AF stripes are nearly fully polarized, in contrast to the small
amplitude modulations seen in figure 4 for the U -model. Thus the SC stripes in the disordered
V -model have a filling below 1/4 because the holes collect mainly in the remaining SC stripes.
Similar to the SDW, also the CDW in the V -model modulates with much larger amplitudes as
compared to the U -model.
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a b

c d

Figure 8. Stripe patterns in the disordered V -model. (a)–(c) Weak impurity
potentials V imp

= 0.9t (x = 1/8 = ndop) and (d) strong impurity potentials
V imp

= 2.0t (ndop = 4%). (a) 1d
i is d-wave order parameter. (b) Electron

density. (c) Staggered magnetization. (d) Electron density exhibiting global
phase separation for strong impurity potentials. The turquoise dots indicate the
positions of the impurities. Parameters were fixed to T = 0.01 t , t ′

= −0.4 t ,
V = 1 t .

If the impurity potentials V imp become larger than t , we expect that the impurity-
pinning of stripes is energetically favorable as long as a mdSC state prevails, similar
to the U -model (cf figures 4(a)–(c)). However, we observe an overall disappearance of
superconductivity accompanied by a global phase separation. All holes accumulate where
the impurity concentration is the largest and antiferromagnetism is the weakest, while the
surrounding region turns into a half-filled AF insulator (figure 8(d)). The same occurs if weak
impurities are numerous enough to destroy sufficiently many metallic (SC) lines so that the
remaining ones cannot accommodate all the holes in the system. This behavior is a characteristic
for the strong-coupling limit described by the V -model: if the effectively 1D striped system is
forced to become two dimensional because of the disorder, the system divides into half-filled
and empty regions featuring global phase separation.

3.3. Discussion of the experimental observations in different cuprates

We found that the U -model allows for two-dimensional superconductivity in coexistence with
a stripe order that adapts flexibly to disorder, while the solutions of the V -model remain
quasi-1D. Materials in which three-dimensional superconductivity coexists with stripe order,
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such as LBCO [7] or the rare-earth-doped cuprate La2−x−yNdySrxCuO4 with x . 0.12 and
y = 0.2 [1, 12], are certainly not as 1D as the solution of the V -model. On the other hand
the V -model reproduces the quasi-1D characteristics of Nd-doped LSCO around y = 0.4, quite
well [43], where the material becomes more anisotropic with increasing doping. As argued in
[44], the models described by HU and HV are the weak and strong coupling limits of a t–J -
like model, and the cuprates are most likely found somewhere in the intermediate-coupling
regime. This regime is not directly accessible within the mean-field evaluation used here. But
the comparisons of the weak- and strong-coupling limits to experimental results give valuable
insights.

The static, unidirectional CDWs and SDWs observed in LBCO and LNSCO [4] are
often ascribed to the structural phase transition toward the LTT phase, where the LTT-specific
buckling pattern of the CuO6 octahedra induces an x–y anisotropy [76]. Our results imply that
the strong dopant disorder, which is present in these substances, further stabilizes the stripe
state. The results within the U -model in the strong disorder limit reproduce typical properties
of these substances well, such as the Fermi arc reconstruction in LBCO [75] or LSCO [77]
and the doping dependence of the wavelength of the SDW as inferred from neutron scattering
experiments in LSCO [73, 74].

Although spin stripes are observed in LSCO at x = 1/8, an ordering of the charges has
so far not been detected by neutron-scattering experiments [18, 19]. As LSCO does not exhibit
an LTT phase we suggest that the experimentally observed spin stripes [18] are induced by the
dopant disorder. The expected concomitant charge stripes are not found by neutron-scattering
experiments possibly because the charge modulations are weak and may therefore be concealed
by the reduction of the electron density below the dopant sites.

YBCO, which has neither an effective dopant disorder nor a LTT phase, exhibits dynamic
instead of static stripes [20, 78]. This agrees with the results of the U -model for an impurity-
free system as discussed. In the presence of a magnetic field charge stripes become static,
while spin stripes are absent [23]. In this case, the magnetic field weakens superconductivity,
allowing charge stripes to emerge. We find a similar behavior in the U -model when we turn
off superconductivity deliberately. The magnetization is greatly suppressed, while a dominant
charge order survives.

4. Summary

The models we investigated in this paper allow us to explain a wide range of features of
striped cuprate superconductors, which were found experimentally. Notably, the material-
specific characteristics of stripe phases in various cuprates can be modelled within the U -model.
On the other hand, we found that AF correlations in the V -model tend to be stronger and the SC
stripes are 1D, which reproduces some characteristics of Nd-doped LSCO quite well.

Specifically, we found the coexistence of PDW’s, SDW’s and CDW’s with wavelengths
λCDW = λPDW = 4a = 1/2 λSDW in a d-wave superconductor for sufficiently large U in the
U -model. Impurity-free, (single) impurity-pinned and vortex-pinned straight stripe solutions
exist over a broad doping range in the U -model. Disorder dissolves the strict 1D stripe order
into meandering stripe-like patterns. Only close to x = 1/8 hole doping, which is ideal for
stripe formation, a unidirectional stripe order reemerges in strongly disordered systems. Since in
clean systems, the stripe pattern remains unchanged over a broad range of hole concentrations,
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disorder appears to be essential in understanding the flexible adaption of the stripe wavelength
to variations of hole doping as observed experimentally.

In the V -model, stripes are rigid and remain 1D and virtually undistorted in the presence
of weak disorder. Although SC stripes react sensitively to disorder and may even be removed
in particular SC channels, the stripe pattern and its wavelength do not adapt to impurities or
a change of the hole concentration. Strong disorder, however, leads to global phase separation
into dominantly AF regions with non-magnetic puddles absorbing the holes. The disordered
U -model is therefore best suited for describing the physics of most cuprate materials which
display a stripe phase.

The overall identical characteristics of the impurity-, vortex-pinned and (strong) disorder-
pinned stripes indicate that the stripes are not generated by impurities or fields. Instead, stripe
states, which are energetically close to homogeneous solutions in unperturbed systems, are
pinned and stabilized by inhomogeneities which are connected to charge redistributions.

A generic feature of striped d-wave superconductors in both the U - and the V -model is the
opening of a full gap, induced by an extended s-wave contribution. Without local probes for the
SC order parameter it is not clear if pair-density modulations accompany the charge- and spin
stripe order.
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