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Abstract

We study regularity properties of weak solutions in the Sobolev space W 1,n
0 to inhomogeneous

elliptic systems under a natural growth condition and on bounded Lipschitz domains in Rn, i. e. we
investigate weak solutions in the limiting situation of the Sobolev embedding. Several counterexam-
ples of irregular solutions are constructed in cases, where additional structure conditions might have
led to regularity. Among others we present both bounded irregular and unbounded weak solutions
to elliptic systems obeying a one-sided condition, and we further construct unbounded extremals of
two-dimensional variational problems. These counterexamples do not exclude the existence of a reg-
ular solution. In fact, we establish the existence of regular solutions – under standard assumptions
on the principal part and the aforementioned one-sided condition on the inhomogeneity. This extends
previous works for n = 2 to more general cases, including arbitrary dimensions. Moreover, this result
is achieved by a simplified proof invoking modern techniques.
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1 Introduction

Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain. We study the existence and regularity of vector-
valued weak solutions u : Ω→ RN of the following inhomogeneous system in divergence form

−
n∑
i=1

Diai(x, u,Du) + a0(x, u,Du) = 0 in Ω , (1.1)

subject to zero-Dirichlet boundary conditions. We are interested in systems where the vector field a =
(a1, . . . , an) is of (p−1)-growth and where the inhomogeneity a0 satisfies a natural (also called critical)
growth condition, i. e.

|ai(x, u, z)| ≤ K(1 + |z|p−1) , i = 1, . . . n , (1.2)

|a0(x, u, z)| ≤ K0(1 + |z|p) (1.3)

for all x ∈ Ω, u ∈ RN and z ∈ RNn, and clearly we suppose that the functions ai (i = 0, 1, . . . , n) are
Carathéodory functions. We first recall the notion of a weak solution to (1.1) referring to functions which
are weakly differentiable and which solve the system in a weak integral form.

Definition 1.1. A function u ∈W 1,p(Ω,RN ) is called a weak solution of (1.1) if∫
Ω

a(x, u,Du) ·Dϕdx+

∫
Ω

a0(x, u,Du) · ϕdx = 0 for all ϕ ∈ C∞0 (Ω,RN ) .
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2 1 Introduction

By approximation, this identity continues to hold for all functions ϕ ∈W 1,p
0 (Ω,RN )∩L∞(Ω,RN ). For

the investigation of existence and regularity of weak solutions (in the sense of continuity), we may restrict
ourselves to the case p ∈ (1, n] since the Sobolev embedding immediately implies Hölder continuity with
exponent 1−n/p for all function in W 1,p(Ω,RN ) with p > n. We further require corresponding coercivity
and ellipticity/monotonicity conditions on the vector field a, see the assumptions (2.1)–(2.5) for p = n.

Existence of weak solutions. Concerning the existence of weak solutions to such systems, there
are several classical approaches, such as Leray-Schauder theorems or the theory of monotone operators.
However, as a consequence of the critical growth assumption on the inhomogeneity, we do not necessarily
have that a0(x, v,Dv) belongs to the dual space W−1,p′(Ω,RN ) if v ∈W 1,p(Ω,RN ). Thus, none of these
approaches is directly applicable. Instead, under particular circumstances existence of weak solutions can
be established via an approximation process, which shall be discussed in more detail further below. The
reason for the interest in systems under the natural growth condition (1.3) is motivated for example by
the minimization of variational integrals of the form

w →
∫

Ω

F (x,w,Dw) dx (1.4)

among functions w ∈W 1,p(Ω,RN ), with an integrand F satisfying a standard p-growth condition. If F is
sufficiently regular, each minimizer is a weak solution to the associated Euler-Lagrange system (1.1) with

a(x, u, z) := DzF (x, u, z) and a0(x, u, z) := DuF (x, u, z) .

Classical minimization problems with integrand of splitting type, such as F (x, u, z) = F0(x, u)|z|p, natu-
rally lead to Euler-Lagrange systems with inhomogeneities satisfying the natural growth condition (1.3).
Here, the existence of minimizers follows from the direct method of the calculus of variation, combined
with lower semi-continuity properties of the functional (implied by a suitable convexity assumption on F ).

Regularity of weak solutions. We are further interested in the regularity properties of weak solutions.
In the vectorial case N > 1 with p < n, there are many examples of variational and non-variational systems
with irregular solutions, see e. g. the example of Giusti and Miranda [16] and its modification in [1]. In
particular, for p = 2 and n ≥ 3 Nečas [32, 18] gave examples where F depends only on the gradient
variable (hence a0 = 0) and where the solution is only Lipschitz, but not of class C1. Moreover, the paper
of Šverák and Yan [36] contains, among many other cases, an integrand F (z) for p = 2, n ≥ 5, where
the solution is even unbounded. Thus, we can expect only partial regularity for weak solutions, even for
homogeneous systems with a0 = 0. An elaborate overview on partial regularity theory for such systems
can be found in Mingione’s survey article [30]. In order to obtain full regularity results, we are forced to
make some further restriction on the systems under consideration. One idea is to stay “close” to a critical
setting. This might refer to the structure of the vector field a, in the sense that it is of a very particular
structure (which allows for example to use techniques known from the scalar case), see e. g. [35, 22], or
that the growth of the vector field is coupled to the space dimension (p = n), in the sense that Sobolev’s
embedding almost gives the desired result (note W 1,n ⊂ BMO, and we have the embedding W 1,n+ε ⊂ Cα
for some α > 0 iff ε > 0). We now provide a general heuristic of both approaches (always restricting
ourselves to systems with inhomogeneity of natural growth), explain how several different settings are
related and which results are expected. We here neither aim at a complete description of the results
known in literature, nor do we go into too much detail.

Diagonal structure condition. We start by discussing one research direction related to a special
structure condition, namely the case where the principal part is diagonal, i. e. aαi (x, u, z) = Aik(x)zαk
(in particular, we here deal with p = 2). For such systems, the coupling between the different vectors
of the solution takes place only via the inhomogeneity. However, we need further assumptions on the
inhomogeneity, as we can easily see by the following well-known example.

Example 1.2. Let n = N ≥ 3. The function u(x) = x/|x| ∈ W 1,2(Bn1 (0),Rn) ∩ L∞(Bn1 (0),Rn) is a
weak solution to the system −∆u− u|Du|2 = 0 in Bn1 (0).
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This elliptic system is solved by any critical point for the minimization of the Dirichlet energy among
all maps from the unit ball Bn1 (0) into the unit sphere ∂Bn1 (0). Note that, although the vector field a and
the boundary values are smooth, at least one solution develops a discontinuity since the inhomogeneity in
some sense dominates the Laplacean. A possible condition how to prevent such irregularities is to limit
the growth of the inhomogeneity a0 in terms of the ellipticity of the principle part a

a(x, u, z) · z ≥ ν|z|p , (1.5)

and possibly of the L∞-norm of the solution itself. In this regard there are several possibilities to manage
such inhomogeneous systems.

(I1) smallness condition on the solution u: K0‖u‖L∞(Ω,RN ) < ν;

(I2) angle condition: there exists ϑ ∈ [0, π2 ) such that a0(x, u, z) · u ≥ |u||a0(x, u, z)| cosϑ;

(I3) one-sided condition: a0(x, u, z) · u ≥ −ν0|z|p for some ν0 < ν;

(I4) two-sided condition: a0(x, u, z) · u ≥ −ν0|z|p for some ν0 ≥ 0 such that ν0 +K0‖u‖L∞(Ω,RN ) < 2ν.

We first observe that the angle condition I2 roughly means that the perturbation a0(x, u,Du) and the
solution u point in the same direction. This is for example satisfied for systems of the form a0(x, u, z) =
b(x, u, z)u with some non-negative, scalar b(x, u, z). Furthermore, I2 implies the one-sided condition I3,
and I3 will be one of the main interests for the present paper. Also I1 usually implies I3 (taking into
account the fact that I3 is employed for u equal to the weak solution only). As we will discuss below,
I1 has an huge advantage for the proof of regularity properties of such solutions. However, since it is a
condition on the solution itself, in practice it is in general not possible to show existence of such solutions.

The investigation of the regularity properties for weak solutions to diagonal systems has a long history.
First results can be found in the book of Ladyzhenskaya and Uralt’seva [24]. Then it was shown by
Hildebrandt, Widman and Wiegner [19, 39, 38] that n ≥ 3 and I1 imply Hölder continuity of a given
weak solution (and in the scalar case actually any bounded solution is regular). A generalization under
condition I4 was then given in [20], and a proof based on a geometric approach in [6]. Also the condition
I3 seemed promising since some tools from the scalar theory are available. However, only in the two-
dimensional case n = 2, Hölder continuity of all bounded weak solutions is obtained [41] (and smallness of
boundary values gives a priori estimate of the Cα(Ω,RN )-norm), and an example of Struwe [33] – again
with the Laplace operator as principal part – shows that this is not the case for n ≥ 3. Moreover, these
results are optimal in the sense that we cannot allow K0‖u‖L∞(Ω,RN ) = ν or ν0 = ν, which is obvious from
the above Example 1.2 for n ≥ 3 and a modification of the counterexample [7] for n = 2, see also [19, 28].

In this context it is also worth mentioning the connection between interior regularity results for
bounded solutions and Liouville-type theorems, cf. [9, 29], i. e. generalizations of Liouville’s copacetic
theorem stating that a bounded harmonic function in Rn is actually constant. Accordingly, we say that
the system (1.1) has the Liouville property if any bounded function which is a weak solution on every
bounded domain is constant. As above, the conditions I1 or I4 imply the Liouville property – for N = 1
without the smallness assumption on the L∞-norm of the solution – and are sharp, see [21]. The condition
I3 instead implies the Liouville property only for n = 2, but cannot be expected for n ≥ 3 and N > 1
(not even with ν0 = 0), see [28].

Systems of variational structure. We next discuss briefly another particular structure condition,
namely that the system (not necessarily diagonal) arises as Euler-Lagrange system of the variational
integral (1.4). Weak solutions then allow the interpretation as critical points. As explained above, the
direct method of the calculus of variations leads to the existence of minimizers, for which Morrey [31,
Chapter 4.3] proved Hölder continuity, provided that p = n. Hence, existence of regular weak solutions is
guaranteed. Moreover, for quadratic-type functionals with diagonal coefficients of the form F (x, u, z) =
Aik(x, u)zαk z

α
i Giaquinta and Giusti [14] proved that every bounded local minimum is Hölder continuous,

for arbitrary n ≥ 2, provided that a corresponding one-sided condition is fulfilled. For more general
variational systems (also for inhomogeneities which differ from DuF (x, u, z) in a controllable way) the
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existence of a regular solution still holds true for n ≥ p = 2 if in addition to the one-sided condition a
structure condition on the principle part is assumed, such as a generalized splitting condition, see [4, 5].
It is an interesting, open problem whether all solutions (such as non-extremal solutions of the Euler
equation) with smooth data are Hölder continuous, in particular for the two-dimensional case n = p = 2.

Non-diagonal systems and p = n. Let us turn our attention to general non-diagonal systems.
As explained above, we consider the critical integrability exponent p = n. In this situation some results
are available in the literature, requiring additional conditions. For example, under a more restrictive
smallness condition than I1, continuity of the solution is obtained, see [17]. Furthermore, under the one-
sided condition I3, which is of central interest here, the existence of one regular solution was obtained by
the second author [9] for the two-dimensional case n = 2.

Theorem 1.3 ([9]). Let Ω ⊂ R2 be a Lipschitz domain and assume that the structure assumptions (2.1)–
(2.5) and the one-sided condition (2.6) below are fulfilled. Then the elliptic system (1.1) has a weak
solution u ∈ Cα(Ω,RN ) ∩W 1,2

0 (Ω,RN ) for some α > 0.

The one-sided condition I3 does not prevent non-uniqueness and there may exist further bounded
solutions which are discontinuous, see [29]. It is obvious from the positive results above that the non-
diagonal principal part is indispensable for this dichotomy in the two-dimensional case, and for general
n > 2 non-diagonality might at least allow an easier construction of counterexamples.

Our motivation of the present paper is twofold. Our first aim is to provide several examples for the
existence of irregular solutions – with different scales for the lack of regularity (bounded and discontinuous
or even unbounded) – to different types of elliptic systems. These examples shall be described in the next
paragraph concerning the optimality of the regularity results presented here. The second aim is to provide
a simplified proof of Theorem 1.3, which is achieved by the use of some modern tools. At the same time,
we generalize the previous result to arbitrary dimensions n = p ≥ 2, that is, we demonstrate the existence
of a regular solution under the one-sided condition I3.

Theorem 1.4. Let Ω ⊂ Rn be a Lipschitz domain and assume that the structure assumptions (2.1)–
(2.5) and the one-sided condition (2.6) are fulfilled. Then the elliptic system (1.1) has a weak solution
u ∈ Cαloc(Ω,RN ) ∩W 1,n

0 (Ω,RN ) for some α > 0.

We highlight that both previous theorems include an existence result for such inhomogeneous systems
under the natural growth condition (1.3) with p = n. As explained at the beginning of this introduction,
we do not have an a priori existence result, which then allows us to work directly on such a solution
and then prove its regularity a posteriori. Instead, existence and regularity are proved simultaneously.
The strategy of proof is to employ a double approximation procedure via variational inequalities and
to derive for each of them first local and then uniform Morrey-estimates (with respect to the sequence
under consideration), which then are preserved in the limit. Thus, the existence of a Hölder continuous
solution follows from an embedding theorem. This line of argument is classical and was for example
accomplished in [38, 9, 41]. However, the uniform estimates are here established by taking advantage of
uniform smallness of the n-energy as a consequence of the Trudinger-Moser inequality (the specific choice
p = n is crucial). In Section 7 we finally show, how this approximation procedure can be applied in the
setting of some particular Bellman-type systems which model discount control problems.

For sake of completeness we note that a similar strategy via a suitable approximation scheme can
be accomplished if the angle condition I2 is supposed. This applies in particular for all p ∈ (1, n] and
yields (under further assumptions) the existence of a weak solution, but no further regularity result,
see [40, 25, 26].

Also here in the non-diagonal setting some Liouville-type results are available, in any dimension n ≥ 2.
In the scalar case N = 1 the Liouville property holds for all systems, whereas in the vectorial case N > 1,
this property follows from each of the conditions I1 and I3, see [9, 28, 12].

Sharpness of the regularity results. We next investigate the optimality of the positive results above,
pursuing the second aim of the present paper of gaining a better understanding of the regularity results
stated above. To this end we discuss several examples presented in Section 3.
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We first construct an elliptic system with inhomogeneity of critical growth (satisfying the one-sided
condition I3 or even the angle-condition I2), which admits a discontinuous solution. This shows that the
result from Theorem 1.4 is optimal, in the sense that non-uniqueness and irregular solutions may actually
occur.

Theorem 1.5. For every n ≥ 2 there exist non-diagonal elliptic systems (1.1) which satisfy the structure
assumptions (2.1)–(2.5), the one-sided condition (2.6), and which admit a bounded, irregular solution in
some bounded, regular domain Ω ⊂ Rn with regular boundary values.

This examples still leaves open the possibility that – even though not all solutions are continuous –
all solutions might still be bounded. This possibility is ruled out by another examples which shows for a
similar elliptic system the existence of an unbounded solution.

Theorem 1.6. For every n ≥ 2 there exist non-diagonal elliptic systems (1.1) which satisfy the structure
assumptions (2.1)–(2.5), the one-sided condition (2.6), and which admit an unbounded solution in some
bounded, regular domain Ω ⊂ Rn with regular boundary values.

Concerning systems of variational structure we first note that for the scalar case N = 1 examples of
integrands F were constructed which are analytic for n ≥ 3 and such that the associated Euler-Lagrange
equation has an unbounded W 1,p-solution, see [8]. For the vectorial case, an examples of an integrand
F is known which is discontinuous with respect to the variable x and such that a bounded discontinuous
solution to the Euler system exists for p = n = 2, see [10]. These examples violate the one-sided condition
(so the scalar example is optimal since a one-sided condition would imply L∞-bounds for the solution
which in turn would lead to Cα-regularity via the theory of Ladyzhenskaya-Uralt’seva), and moreover, the
system in [10] is of non-diagonal structure. In the present paper we give an example of a diagonal system
(in particular, the splitting type condition of the result from [5] is satisfied) arising as Euler-Lagrange
system of a variational integral (1.4) with a regular integrand such that an unbounded extremal exists.

Theorem 1.7. Let n ≥ 2. There exists a diagonal, elliptic Euler system arising from a variational integral
with integrand of the form F0(x, u)|z|2 with the following properties: the structure assumptions (2.1)–(2.5)
are satisfied (with exponent p = 2 instead of n), F0 is continuous in x, analytic in u, and the system admits
an unbounded weak solution in some bounded, regular domain Ω ⊂ Rn with regular boundary values.

Summary. Summarizing the results for diagonal and non-diagonal systems (with p = 2 and p = n,
respectively) under the assumptions I1 or I3 in the vectorial case, we obtain the following table for the
vectorial setting:

setting (with N > 1) diagonal (p = 2) non-diagonal (p = n)

result I1 I3 I1 I3

existence of a regular solution ? Yes (n = 2) ? Yes

regularity of bounded solutions Yes Yes iff n = 2 ? No

Liouville property Yes Yes iff n = 2 Yes

2 Structure assumptions

We here collect the assumptions on the vector field a and the inhomogeneity a0 (already sketched in the
introduction). We first assume the following growth assumptions

|ai(x, u, z)| ≤ K(1 + |u|q + |z|n−1) , i = 1, . . . n , (2.1)

|a0(x, u, z)| ≤ K(1 + |u|q + |z|n) (2.2)

for some q ≥ n and for all x ∈ Ω, u ∈ RN , and z ∈ RNn. Furthermore, we need some coercivity of the
problem, which is one of the essential ingredients in order to prove existence. For ease of notation we
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introduce

〈Tu, ϕ 〉 := 〈A(u), ϕ 〉+ 〈B(u), ϕ 〉 :=

∫
Ω

a(x, u,Du) ·Dϕdx+

∫
Ω

a0(x, u,Du) · ϕdx

for all u ∈W 1,n(Ω,RN ) and ϕ ∈ L∞(Ω,RN )∩W 1,n
0 (Ω,RN ), with the obvious abbreviations. Clearly, the

above identity vanishes for all such ϕ, whenever u is a weak solution to (1.1). Our coercivity condition is
then expressed in terms of the operator T , with

〈Tu, u 〉 > 0 as ‖u‖W 1,n →∞, u ∈ L∞(Ω,RN ) ∩W 1,n
0 (Ω,RN ) . (2.3)

We also assume the following pseudo-monotonicity condition:
if for a sequence (um)m∈N ∈ L∞(Ω,RN ) ∩W 1,n

0 (Ω,RN ) there hold

um ⇀ u weakly in L∞(Ω,RN ) ∩W 1,n
0 (Ω,RN ) and

lim sup
∫

Ω

(
a(x, um, Dum)− a(x, um, Du)

)
· (Dum −Du) dx ≤ 0 ,

then um → u strongly in W 1,n
0 (Ω,RN ) .

(2.4)

This is a natural condition and for example satisfied if the usual monotonicity of the vector field a
(pointwise or in an integral sense) holds. The last assumption on the principal part a is ellipticity (in
integral form) ∫

Ω

a(x, u,Dw) ·Dwdx ≥ ν
∫

Ω

|Dw|n dx−K
∫

sptw

|u|q dx−K|sptu ∩ sptw| (2.5)

for all u,w ∈ W 1,n
0 (Ω,RN ). Concerning the inhomogeneity, we finally require an additional one-sided

condition of the form
a0(x, u, z) · u ≥ −ν0|z|n −K(|u|q + 1) (2.6)

for some ν0 < ν and all x ∈ Ω, u ∈ RN and z ∈ RNn.

3 Examples

We start by giving several examples, which demonstrate the sharpness of some positive results concerning
the existence of regular solutions. The construction of the various solutions and the associated system are
in parts similar. However, in order to have a clearer exposition, we prefer to state the various examples in
separate subsections (though not providing full details for the calculations for all of them). In Section 3.1
we give an example of a system admitting a bounded, but discontinuous solution. This example is then
modified in Section 3.2, and a discontinuous solution to a system arising from discount control problems
is obtained. Section 3.3 is devoted to the construction of unbounded weak solutions, which is again based
on the construction of the first example, but with an additional parameter which for suitable choices is
responsible for the emergence of a singularity of the solution. In Section 3.4 we finally sketch briefly
the construction of an elliptic system of variational structure (i. e. as Euler-Lagrange system of a convex
variational integral) which admits bounded and unbounded irregular critical points.

3.1 Examples with a bounded, irregular solution

Given n ≥ 2, we here provide a family of weak solutions to inhomogeneous n-dimensional quasilinear
systems of the form (1.1), which satisfy all assumptions of Section 2, in particular the inhomogeneity
satisfies the one-sided condition (2.6). The construction of these examples is motivated from [7]. We
study the system{

−(∆nu)1 + λ(∆nu)2 = 2|Du|n(1 + |u|2)−1
(
(1 + α−1λ)u1 + (α−1 − λ)u2

)
−(∆nu)2 − λ(∆nu)1 = 2|Du|n(1 + |u|2)−1

(
(1 + α−1λ)u2 + (−α−1 + λ)u1

) (3.1)



Regular and irregular solutions for a class of elliptic systems 7

in an n-dimensional, bounded domain Ω, with parameters λ, α ∈ R, α 6= 0. We recall that the n-Laplace
operator is defined as a

∆nu =

n∑
i=1

Di

(
|Du|n−2Diu

)
(and in the two-dimensional case this reduces to the definition of the Laplace operator), with (∆nu)i

denoting the component functions. In the notation of system (1.1), we thus consider coefficients and
inhomogeneity given by

ai(x, u, z) ≡ ai(z) := |z|n−2(z1
i − λz2

i , z
2
i + λz1

i )t , i = 1, . . . n ,

a0(x, u, z) ≡ a0(u, z) := 2|z|n(1 + |u|2)−1

×
(
(−1− α−1λ)u1 + (λ− α−1)u2, (α−1 − λ)u1 + (−1− α−1λ)u2

)t
.

for all x ∈ Ω, u ∈ RN and z ∈ RNn.

Lemma 3.1. The assumptions (2.1)–(2.6) from Section 2 are satisfied if α ∈ R \ {0} and λ ∈ R verify
the inequalities α−1λ < −1/2 and (n− 2)|λ| < 1.

Proof. The growth conditions (2.1) and (2.2) are clear by definition. It is further easy to calculate

a(Du) ·Du = |Du|n and a0(u,Du) · u = −(1 + α−1λ)
2|u|2

1 + |u|2
|Du|n .

Hence, (2.5) follows for ν = 1, and if α−1λ < −1/2 we also get (2.3) and (2.6). Finally, we have the
pointwise monotonicity condition(

a(z)− a(z̃)
)
· (z − z̃) ≥ c(n)(1− (n− 2)|λ|)|z − z̃|n ,

which implies (2.4) if (n− 2)|λ| < 1.

Remark 3.2. It is easy to check that the Wiegner-Landes’ angle condition is satisfied for α−1λ < −1.

We next take a function f ∈W 1,1(Ω,R+) which satisfies |Df |n/fn ∈ L1(Ω) and which is n-harmonic
in Ω \ A for some set A of W 1,n-capacity zero (note that for n > 1 single points in Rn have vanishing
W 1,n-capacity). Next we define the function u ∈W 1,n(Ω,R2) ∩ L∞(Ω,R2) via

u1(x) = sin
(
(n− 1)α ln f(x)

)
, u2(x) = cos

(
(n− 1)α ln f(x)

)
.

Proposition 3.3. For every α, λ ∈ R, α 6= 0, and every f given as above the function u is a weak solution
to (3.1) in Ω.

Proof. We obtain this proposition by elementary calculations, using in particular the following easy con-
sequences of the definition of the function f :

Diu
1 = (n− 1)α

Dif

f
u2 , Diu

2 = −(n− 1)α
Dif

f
u1 i = 1, . . . n ,

|Du|2 = (n− 1)2α2 |Df |2

f2

(∆nu)1 = −(u1 + α−1u2)(n− 1)n|α|n |Df |
n

fn

(∆nu)2 = −(u2 − α−1u1)(n− 1)n|α|n |Df |
n

fn

in Ω \A. This yields immediately that (3.1) is satisfied in Ω \A. Hence, since ai(Du) ∈ Ln/(n−1)(Ω,R2)
for i ∈ {1, 2} by construction and since A is of vanishing W 1,n-capacity by assumption, we find that u
is indeed a weak solution (3.1) for all possible choices of α, λ, f as given in the statement, and so the
assertion of the proposition is proved.
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Remark 3.4. Let Ω = B1/e2(0) ⊂ R2 and consider the function f = ln |x|−1 (harmonic outside of the
origin). Then, with α = 1 and λ = 0 we recover the example [7], and with α = 1 and λ = −1 Meier’s
modification [29] of the previous example.

As a consequence of the above construction, we can now prove Theorem 1.5.

Proof of Theorem 1.5. According to Lemma 3.1 the system (3.1) satisfies the assumptions (2.1)–(2.6) for
every α, λ ∈ R such that α−1λ < 0 and (n− 2)|λ| < 1. Then the existence of an irregular solution follows
by applying the previous proposition with Ω = B1/e(0) ⊂ Rn and f = ln |x|−1 (which is n-harmonic
outside and discontinuous at the origin).

Remark 3.5. In the statement of Theorem 1.5 we can obtain zero boundary values on ∂Ω, just by
modifying the above construction. Multiplying u with a smooth cut-off function η (with η ≡ 1 in a
neighbourhood of the singularity of f) we can easily calculate that the function uη is an irregular solution
to an elliptic system with the original principal part and a new inhomogeneity which differs from the
original one only by a smooth function.

Remark 3.6. From the previous example we can construct further systems of type (3.1) which are solved
by the same function u given above. Indeed, using the identity

gi(u,Du) := 2(1 + |u|2)−1(u1Diu
2 − u2Diu

1) = −α(n− 1)
Dif

f

for i ∈ {1, . . . , n}, we can replace the non-diagonal part in the vector field a. Setting for simplicity λ = −α
— implying that the one-sided condition is satisfied with ν0 = 0 —, it is then easy to check that u also
solves{

−(∆nu)1 − 2α
∑n
i=1Di

[
|Du|n−2(1 + |u|2)−1u1gi(u,Du)

]
= 2|Du|n(1 + |u|2)−1(α−1 + α)u2 ,

−(∆nu)2 − 2α
∑n
i=1Di

[
|Du|n−2(1 + |u|2)−1u2gi(u,Du)

]
= −2|Du|n(1 + |u|2)−1(α−1 + α)u1 .

Clearly, this system is more involved than the original one, due to the explicit u-dependence in the principal
part. However, it might give incitation for the construction of further counterexamples in this context.

Remark 3.7. In the two-dimensional case n = 2 we further give the (straightforward) complex reformu-
lation. The function w : R2 → C defined as w = u1 + iu2 solves

(−1− λi)∆w = 2|Dw|2(1 + |w|2)−1
[
(1 + α−1λ)w + (−α−1 + λ)iw

]
.

3.2 A counterexample for discount control

The theory of stochastic differential games with infinite horizon leads to diagonal elliptic systems – so
called Bellman systems – satisfied by the value function of the players. A standard system including
discount control is

−∆ui + γui = hi(u)|Dui|2 +G(u,Du)Dui − F (u,Du)ui + f i (3.2)

for i = {1, . . . , N}, with γ > 0, 0 ≤ F (u, z) ≤ K|z|2 +K, |G(u, z)| ≤ K|z|+K, and f, h ∈ L∞, cf. [2, 3].
The term ”discount control” here refers to the fact that control of the discount factor in the cost functional
of the players is admitted. An important open question is the existence of regular solutions (or even of
weak solutions). While Wiegner’s technique from [40] works also in the presence of the term G(u,Du)Dui,
the term hi(u)|Dui|2 leads to difficulties. From this point of view it is important to know that indeed
irregular solutions may occur in the case of the one-sided condition (2.6). Nevertheless, the existence of
at least one regular solution was worked out for n = 2, see [3], with methods partially similar as in the
present paper, and for n = p ≥ 3 and corresponding p-growth assumptions, it is sketched at the end of this
paper. For n ≥ 3 and p = 2, the regularity theory for the above system is an interesting open problem.

We now discuss the above mentioned examples of a system related to discount control which admits
an irregular solution, but with the difference that the term F (u,Du)ui is replaced by a pair (T1, T2)
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satisfying the one-sided condition, but not the angle condition (in fact, we will have T1u
1 + T2u

2 = 0).
Our construction is based on the old example [7]{

−∆u1 = (u1 + u2 − 4)|Du|2

−∆u2 = (u2 − u1)|Du|2
(3.3)

in B1/e2(0) ⊂ R2, which admits the discontinuous, positive solution

u1(x) = sin
(

ln ln |x|−1
)

+ 2 , u2(x) = cos
(

ln ln |x|−1
)

+ 2 .

The following lemma states that the right-hand side of (3.3) can be written in the form of (3.2), with
F (u,Du)ui replaced by (T1, T2) satisfying T (v,Dv) · v = 0.

Lemma 3.8. Let v = (v1, v2), g = (g1, g2) ∈ R2, with vi > 0 for i ∈ {1, 2}, and z = (z1, z2)t ∈ R2×2,
with zi = (z1

i , z
2
i ) ∈ R2. Then the following identity holds(

g1|z|2, g2|z|2
)

=
(
g̃1|z1|2, g̃2|z2|2

)
+
(
T 1

1 , T
2
1

)
+
(
T 1

2 , T
2
2

)
with

g̃1 = g1 + g2 v
2

v1
and g̃2 = g2 + g1 v

1

v2

and T ji defined in (3.4), (3.5) such that T 1
i v

1 + T 2
i v

2 = 0 for i ∈ {1, 2}.

Proof. We write for the pair of functions(
g1|z|2, g2|z|2

)
=
(
g1|z1|2, g2|z2|2

)
+
(
g1|z2|2, 0

)
+
(
0, g2|z1|2

)
.

Next, we observe (
g1|z2|2, 0

)
=
(
T 1

1 , T
2
1

)
+
(
0, g1|z2|2 v

1

v2

)
,

with

T 1
1 = g1|z2|2 and T 2

1 = −g1|z2|2 v
1

v2
. (3.4)

Obviously, we have T 1
1 v

1 +T 2
1 v

2 = 0. Similarly, the third term in the decomposition above is treated, and
we find (

0, g2|z1|2
)

=
(
T 1

2 , T
2
2

)
+
(
g2|z1|2 v

2

v1
, 0
)

with

T 1
2 = −g2|z1|2 v

2

v1
and T 2

2 = g2|z1|2 , (3.5)

and accordingly, we find T 1
2 v

1 + T 2
2 v

2 = 0. Hence, we end up with the desired representation.

Remark 3.9. The previous Lemma 3.8 can easily be generalized to n dimensions. The terms arising in
the decomposition given at the beginning of the proof are then vectors ekg

k(|z|2 − |zk|) (with ek denoting
the k-th coordinate vector), which then are rewritten analogously to above as

ekg
k(|z|2 − |zk|) = (T 1

k , . . . , T
n
k ) +

n∑
i=1,i6=k

eig
k|zi|2 v

k

vi

with

T kk = gk(|z|2 − |zk|2) and T ik = −gk|zi|2 v
k

vi
for i 6= k .

Obviously, this choice implies
∑n
j=1 T

j
kv

j = 0 and gives immediately the statement also for the general
n-dimensional case.
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Corollary 3.10. The system (3.3) can be written in the form

−∆ui + γui = hi(u)|Dui|2 − T i(u,Du) + f i ,

where γ > 0, f, h ∈ L∞(B1/e2(0),R2), and where Ti satisfies the natural growth assumption (2.2) and the
condition T (u, z) · u = 0 for all u ∈ R2 and z ∈ RNn.

Proof. We first note that the right-hand side of (3.3) can be multiplied by a smooth function `(u1, u2)
with `(s, t) = 1 for s, t ∈ [1, 3] and `(s, t) = 0 for s or t /∈ [1/2, 4], and the function u defined above
remains a weak solution, since it has values only in [1, 3]2. Consequently, with the abbreviation of right-
hand side of (3.3) as −a0(u, z) = `(u)|z|2(u1 + u2 − 4, u2 − u1)t for u ∈ R2 and z ∈ R2n, it is sufficient
to rewrite a0(u, z) only for u with values in [1/2, 4]2. The application of the previous Lemma 3.8 with
g1 = u1 + u2 − 4, g2 = u2 − u1 yields in this case

−a0(u, z)t = (h1(u)|z1|2, h2(u)|z2|2) + (T 1(u, z), T 2(u, z))

with

h1(u) = u1 − 4 +
(u2)2

u1
, h2(u) = u2 +

(u1)2

u2
− 4

u1

u2

T 1(u, z) =
(
− (u2)2

u1
+ u2

)
|z1|2 + (u1 + u2 − 4)|z2|2 ,

T 2(u, z) = (u2 − u1)|z1|2 +
(
− (u1)2

u2
− u1 + 4

u1

u2

)
|z2|2 ,

and T (u, z) ·u = 0 is clearly satisfied. It remains to mention that the function u defined above is bounded,
hence we can define f = γu ∈ L∞(B1/e2(0),R2) for an arbitrary number γ > 0, and the proof of the
corollary is complete.

3.3 Examples with an unbounded solution

We next provide families of unbounded weak solutions to inhomogeneous quasilinear systems. The first
example in this subsection concerns W 1,n-solutions in n dimensions. The second example is about W 1,2-
solutions in n dimension (that is, not in the critical dimension) to linear systems with inhomogeneity
of subquadratic growth. Such a non-critical (or controllable) growth assumption usually allows to prove
better regularity properties. For this reason we believe that this example of linear growth is interesting
on its own even if the principle part satisfies the main assumptions of the present paper with n > p = 2.

Principle part of (n−1)-growth and critical n-growth of the inhomogeneity

We start by showing that a construction similar to that from Section 3.1 can be used to provide examples
of systems under a one-sided condition (2.6), which admit an unbounded solution. This shows that not
every weak solution in this critical situation is necessarily of class L∞. The system under consideration is
essentially the one from (3.1), with some slight variation caused by the new parameter θ. We now study
the system {

−(∆nu)1 + λ(∆nu)2 = |Du|n max{|u|2, 1}−1
(
(b1 + λb2)u1 + (b2 − λb1)u2

)
−(∆nu)2 − λ(∆nu)1 = |Du|n max{|u|2, 1}−1

(
(−b2 + λb1)u1 + (b1 + λb2)u2

) (3.6)

in an n-dimensional, bounded domains Ω, for α, θ, λ ∈ R with α 6= 0, and coefficients b1 = b1(n, θ, α) and
b2 = b2(n, θ, α) defined by

b1(n, θ, α) :=
−θ(θ − 1)(n− 1) + α2

α2 + θ2
and b2(n, θ, α) :=

−nθα+ (n− 1)α

α2 + θ2
.

Obviously, this system can again be rewritten in the notation as in (1.1). Exactly as before for Lemma 3.1
we check that this system satisfies all assumptions from Section 2.
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Lemma 3.11. The assumptions (2.1)–(2.6) are satisfied if b1 + λb2 < 1 and (n− 2)|λ| < 1.

Remark 3.12. Replacing max{|u|2, 1} in the inhomogeneity by a smooth function m(u) with m(u) = |u|−2

for |u| ≥ 1 and m(u) ∈ [1/2, 1] otherwise, one easily obtains an inhomogeneity which is smooth with respect
to the variables u, z (and this modified system still satisfies (2.1)–(2.6) under a similar condition on b1
and b2).

Similarly as in Section 3.1 we take a function f ∈W 1,1(Ω, [1,∞)) which satisfies |Df |nfn(θ−1) ∈ L1(Ω)
and which is n-harmonic in Ω \ A for some set A of W 1,n-capacity zero. Then we define the function
u ∈W 1,n(Ω,R2) via

u1(x) = f(x)θ sin
(
α ln f(x)

)
, u2(x) = f(x)θ cos

(
α ln f(x)

)
.

Proposition 3.13. For every α, θ, λ ∈ R, α 6= 0, and every f given as above the function u is a weak
solution to (3.6) in Ω.

Proof. We first calculate in Ω \A the partial derivatives of u:

Diu
1(x) = f(x)θ−1Dif(x)

(
θ sin(α ln f(x)) + α cos(α ln f(x))

)
,

Diu
2(x) = f(x)θ−1Dif(x)

(
θ cos(α ln f(x))− α sin(α ln f(x))

)
for i ∈ {1, . . . , n}. This allows to deduce |Du(x)|2 = f(x)2(θ−1)|Df(x)|2(α2 + θ2), and we further find

(∆nu)1(x) = |Du(x)|n(α2 + θ2)−1f(x)−2θ
(
(θ(θ − 1)(n− 1)− α2)u1(x) + (nθα− (n− 1)α)u2(x)

)
,

(∆nu)2(x) = |Du(x)|n(α2 + θ2)−1f(x)−2θ
(
(θ(θ − 1)(n− 1)− α2)u2(x)− (nθα− (n− 1)α)u1(x)

)
.

Employing the definitions of b1 and of b2 we immediately check that (3.6) is satisfied pointwise in Ω \A,
which in turn shows (taking into account that f ≥ 1 holds by assumption) that u is a weak solution to
the system (3.6) as asserted.

Proof of Theorem 1.6. According to Lemma 3.11 the system (3.6) satisfies the assumptions (2.1)–(2.6) for
all α, θ, λ ∈ R with α 6= 0 such that b1 +λb2 < 1 and (n−2)|λ| < 1. We further note that such choices are
always possible. For this purpose it is sufficient to observe that equality b1 + λb2 = 1 holds for θ = −λα
or θ = (n−1)/n, and hence, the strict inequality can always be achieved for a given θ by a suitable choice
of αλ. Now the existence of an unbounded solution follows by applying the previous proposition with
Ω = B1/e(0) ⊂ Rn, f = ln |x|−1 and θ ∈ (0, (n− 1)/n). Indeed, with this choice we observe that

|Df |nfn(θ−1) = |x|−n(log |x|−1)n(θ−1) ∈ L1(Ω) ,

and due to |u(x)| = (ln |x|−1)θ we have u /∈ L∞(Ω,R2).

Principle part of linear growth and subquadratic growth of the inhomogeneity

Given n ≥ 3, we next construct a family of unbounded weak solutions to inhomogeneous quasilinear
systems, where the principle part satisfies a linear growth condition and where the inhomogeneity is of
subquadratic growth still obeying a one-sided condition (2.6). The motivation for this counterexamples
comes from the theory of ergodic control problems where Bellman systems of the form (3.2) introduced
above are studied, with the goal to analyze the passage to the limit γ ↘ 0. Under certain conditions,
uniform estimates for ‖Du‖L2 and the oscillations of u are available which is necessary for finding regularity
estimates. Unfortunately, in this particular situation of systems (3.2) it is very difficult to obtain the
uniform estimate for the oscillations. For this reason one is willing to pay the prize to restrict the
inhomogeneity to subquadratic growth (which is indeed satisfied by appropriate models). However, our
example shows that even under a subquadratic growth condition unbounded solutions may exist.

More precisely, we now consider the system{
−∆u1 + λ∆u2 = |Du|

2
1+γ
(
(b̂1 + λb̂2)u1 + (b̂2 − λb̂1)u2

)
−∆u2 − λ∆u1 = |Du|

2
1+γ
(
(−b̂2 + λb̂1)u1 + (b̂1 + λb̂2)u2

) (3.7)
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in a bounded domain Ω ⊂ Rn containing the origin, for α, γ, λ ∈ R with α 6= 0, and coefficients b̂1 =
b̂1(n, γ, α) and b̂2 = b̂2(n, γ, α) defined by

b̂1(n, γ, α) :=
γ(n− γ − 2) + α2

(α2 + γ2)1/(1+γ)
and b̂2(n, γ, α) :=

−αn+ 2α(γ + 1)

(α2 + γ2)1/(1+γ)
.

Again, following the notation of this paper, we can define the vector field a and inhomogeneity a0 (in
dependence of n, α, γ and λ) as functions of z and of u, z, respectively. Analogously to the system from
Section 3.1 it is easily verified that the system (3.7) is elliptic and that the inhomogeneity satisfies the
one-sided condition, provided that further assumptions on the various parameters are satisfied.

Lemma 3.14. The assumptions (2.1)–(2.6) are satisfied (with exponent p = 2 instead of n), for all choices

of α, λ, γ ∈ R with α 6= 0 such that 2γ > n− 2 or such that (n+ 2)γ ≥ n− 2 and b̂1 + λb̂2 < 0.

Proof. The assumptions (2.1)–(2.5) follow exactly as in the proof of Lemma 3.1, and in particular, we note
that the growth of the inhomogeneity a0 is subcritical in the gradient variable, i. e. the growth with respect
to the gradient variable is less than |z|2. Therefore, under the assumption on γ the inhomogeneity satisfies
a critical growth condition in the sense of a0(w,Dw) ∈ L1(Ω) for every w ∈W 1,2(Ω,R2). Concerning the
one-sided condition (2.6), we observe by Young’s inequality

a0(u, z) · u = −|z|
2

1+γ (b̂1 + λb̂2)|u|2 ≥ −ν0|z|2 − c(n, γ, α, ν0)|u|2
1+γ
γ

holds true. The first assumption of the lemma implies 2(1 + γ)/γ < 2n/(n − 2) whereas in the second
case the left-hand side is always positive. Consequently, the one-sided condition (2.6) is always satisfied,
and the proof of the lemma is concluded.

We next restrict ourselves to the systems with parameter γ < n/2 − 1, and we define the function
u ∈W 1,2(Ω,R2) via

u1(x) = |x|−γ sin(α ln |x|) , u2(x) = |x|−γ cos(α ln |x|) .

Proposition 3.15. For every α, λ, γ ∈ R, with α 6= 0 and γ < n/2− 1, the function u is a weak solution
to the system (3.7) in Ω.

Proof. We first calculate in Ω \ {0} the partial derivatives of u:

Diu
1(x) = |x|−γ−2xi

(
− γ sin(α ln |x|) + α cos(α ln |x|)

)
,

Diu
2(x) = |x|−γ−2xi

(
− γ cos(α ln |x|)− α sin(α ln |x|)

)
for i ∈ {1, . . . , n}. This allows to deduce |Du(x)|2 = |x|−2γ−2(α2 + γ2), and we further find

−∆u1(x) =
(
γ(n− γ − 2) + α2)|x|−2u1(x) +

(
− αn+ 2α(γ + 1)

)
|x|−2u2(x) ,

−∆u2(x) =
(
γ(n− γ − 2) + α2)|x|−2u2(x) +

(
αn− 2α(γ + 1)

)
|x|−2u1(x) .

Employing the definitions of b̂1 and of b̂2 we immediately check that (3.7) is satisfied pointwise in Ω \ {0},
which in turn shows that u is a weak solution to the system (3.7) as asserted.

As a consequence of the above construction, we now deduce the existence of unbounded solutions:

Theorem 3.16. For every n ≥ 3 there exist non-diagonal elliptic systems (1.1) which satisfy the assump-
tions (2.1)–(2.6) for p = 2 and which admit a discontinuous or even an unbounded weak solution in some
bounded, regular domain Ω ⊂ Rn.

Proof. According to Lemma 3.14 the system (3.7) satisfies the assumptions (2.1)–(2.6) for every all possible

choices of α, λ, γ ∈ R, with α 6= 0 such that (n+ 2)γ ≥ n− 2 and b̂1 + λb̂2 < 0 (or such that 2γ > n− 2).

It is easy to check that the condition b̂1 + λb̂2 < 0 can be verified. For γ ∈ [0, n/2− 1), the function u ∈
W 1,2(B,R2) defined above is a weak solution to this system (3.7) (and (n+2)γ ≥ n−2 is trivially satisfied),
and it is discontinuous in the origin. Moreover, for every γ ∈ (0, n/2− 1) it is even unbounded.
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3.4 A variational example

We lastly apply a similar strategy as in the examples given above to provide a discontinuous, unbounded
solution to an Euler-Lagrange system, with diagonal principle part (but necessarily violating the one-sided
condition). This proves that the corresponding one-sided assumption in the positive theory is indeed
mandatory in order to obtain continuity of all solutions. For sake of simplicity we only give a simple
example. We take Ω ⊂ Rn a bounded, regular domain and we define a function F : Ω×RN ×RNn → R

via
F (x, u, z) := |z|2

(
1 + ĥ

(
f−2θ(x)|u|2

)
+ h
(
f−θ(x)(u1 cos(α ln f(x))− u2 sin(α ln f(x)))

))
.

Here, we take f ∈ W 1,1(Ω,R+) which satisfies f2θ, f2θ−2|Df |2 ∈ L1(Ω) for some θ ∈ R and which is

harmonic in Ω \ A for some set A of W 1,2-capacity zero. Furthermore, h, ĥ : R → R denote bounded,
monotone C∞-function with the property h(0) = 0. Defining the variational integral

F [w] :=

∫
Ω

F (x,w,Dw) dx

with w ∈W 1,2(Ω,RN ), we may then investigate critical points of F , that is weak solutions to the system

divDzF (x, u,Du) = DuF (x, u,Du) .

From the definition of F it is clear that this system is elliptic whenever sup |h| + sup |ĥ| < 1, and the
inhomogeneity is of quadratic, natural growth with respect to the gradient variable. Moreover, defining
u ∈W 1,2(Ω,R2) via

u1(x) = f(x)θ sin
(
α ln f(x)

)
, u2(x) = f(x)θ cos

(
α ln f(x)

)
,

it is easily derived the following condition on the parameters for u to be a critical point of F .

Proposition 3.17. The function u ∈W 1,2(Ω,R2) is a critical point of F if the equations

(1 + ĥ(1))(θ(θ − 1)− α2) = (α2 + θ2)ĥ′(1)

2(1 + ĥ(1))(2θ − 1)α = (α2 + θ2)h′(0)

are satisfied.

Proof. The computations are straightforward. After observing that the arguments of ĥ and h are constant
equal to 1 and to 0, respectively, for our choice of u, the system equations reduce to{

2∆u1(x)(1 + ĥ(1)) = |Du(x)|2
(
2f−2θ(x)u1(x)ĥ′(1) + f−θ(x) cos

(
α ln f(x)

)
h′(0)

)
,

2∆u2(x)(1 + ĥ(1)) = |Du(x)|2
(
2f−2θ(x)u2(x)ĥ′(1)− f−θ(x) sin

(
α ln f(x)

)
h′(0)

)
.

At this stage one essentially has to use the formulas for the derivatives of u derived in Proposition 3.13,
and the claim is proved.

Via the direct method in the calculus of variations, a minimizer in a given Dirichlet class in W 1,2

exists, which in the two-dimensional case is also known to be regular (due to by now classical results
pioneered by Morrey [31]). Theorem 1.7 states that not necessarily all weak solutions of such systems
– though obtained from a regular, variational integral – are continuous.

Proof of Theorem 1.7. We choose the system given above of variational structure for the special choices
of Ω = B1/e(0) ⊂ Rn, f(x) = ln |x|−1, θ ∈ (0, 1/2) arbitrary, and the functions ĥ(t) = −λ̂ arctan(t) and

h(t) = (1 − λ̂) arctan(λt)/2 for free parameters λ̂ ∈ (0, 1), λ ∈ R. By construction, the system is elliptic
and satisfies (2.1)–(2.5). Furthermore, we need to satisfy the equations stated in Proposition 3.17. The

first equation reduces to a linear equation in λ̂, and for the choice α2 = θ, we have λ̂ ∈ (0, 1). Finally, we
observe that also the second equation is linear in λ, and thus can be satisfied for a suitable choice λ ∈ R.
Consequently, the function u defined above is the desired unbounded weak solution.
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Remark 3.18. We highlight that the system given in the proof is of diagonal structure, continuous with
respect to the x-variable, and smooth with respect to u and z. The variational system constructed by
the second author in [10] instead is non-diagonal and only measurable in the x-variable (and it admits a
discontinuous, bounded weak solution). It would be interesting to know whether a discontinuous solution
to a variational system may also exist if the integrand is also smooth in x.

Remark 3.19. A similar construction is possible with |z|2 replaced by |z|p, ending up with a variational
system with principle part containing the p-Laplace operator. However, since the positive theory available
puts the emphasis on quadratic-type functionals, we decided to state the result only for p = 2. However,
we note that the preceding result might be generalized in particular to the existence of regular, elliptic
systems of variational structure of (n− 1)-growth which admit an unbounded, discontinuous solution (and
obviously also minimizers and therefore continuous weak solutions exist simultaneously).

4 Preliminaries

We now present some auxiliary tools for the second part of the paper which deals with the existence of
Hölder continuous solutions. We start with a basic lemma which ensures for an arbitrary L1-function the
existence of a suitable annulus B2r(x0) \Br(x0) (with radius depending on the given middle point x0) on
which the L1-norm decays as (| ln r| ln | ln r|)−1 with respect to the radius r of the annulus.

Lemma 4.1 ([11], Lemma 3.4). Let Ω ⊂ Rn and g ∈ L1(Ω). For every x0 ∈ Ω and every R ≤ 1/4 there
exists

r = r(x0) ∈ [rm, R] with rm = rm(R) = 2−(lnR/ ln 2)e

such that ∫
Ω∩B2r(x0)\Br(x0)

|g| dx ≤ 1

| ln r| ln | ln r|

∫
Ω∩B2R(x0)

|g| dx .

This tool will later be applied to control the growth of the n-energy.
The second lemma concerns mean values of functions which satisfy a certain exponential integrability.

It states that the mean values might blow up in terms of the size of the domain of integration only in a
logarithmic way.

Lemma 4.2 ([11], Lemma 3.5). Let u : Rn ⊃ Ω→ RN be a measurable function such that∫
Ω

eα|u|
q

dx ≤M

for some positive parameters α and q. Then there exists a constant c depending only on α, q and M such
that for all measurable sets A ⊂ Ω with |A| ≤ 1

2 we have∫
A

|u| dx ≤ c|A|| ln |A||
1
q

This lemma can in particular be applied to functions in W 1,n(Ω,RN ) with a bounded domain Ω ⊂ Rn.
In fact, in this critical case the embedding in L∞ is not available, but with Trudinger-Moser inequality [34]
the prerequisite of the lemma is satisfied for some positive α and q = n

n−1 . Hence, it is possible to control

the growth of the mean values for W 1,n-functions.
We will further work with Morrey spaces Lp,σ(Ω,RN ), with 1 ≤ p < ∞, σ > 0, which are defined as

the linear space of all functions u ∈ Lp(Ω,RN ) such that

‖u‖p
Lp,σ(Ω,RN )

:= sup
y∈Ω,0<ρ≤diam Ω

ρ−σ
∫
Bρ(y)∩Ω

|u|p dx <∞ .

This condition depends only on the behavior of u for radii ρ↘ 0. The space Lp,σ(Ω,RN ) is complete with
respect to the norm ‖ · ‖Lp,σ(Ω,RN ). For details and some fundamental properties of the Morrey spaces
we refer to the monographs of Giusti [15, Chapter 2.3] or of Giaquinta [13, Chapter 3]. In the sequel we
shall use the following isomorphy (only for the case p = n).
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Theorem 4.3 ([23], Theorem 2.2). Let Br ⊂ Rn be a ball, p ∈ (1, n], and λ ∈ (0, 1]. If u ∈W 1,p(Br,R
N )

and Du ∈ Lp,n−p+pλ(Br,R
Nn), then u ∈ C0,λ(Br,R

N ). Moreover, there exists a constant c depending
only on n and p (but independent of the radius r) such that

[u]C0,λ(Br,RN ) ≤ c‖Du‖Lp,n−p+pλ(Br,RN ) .

The same result holds true if Br is replaced by a bounded Lipschitz domain Ω. In this case, the constant
c also depends on the Lipschitz constant of ∂Ω.

5 Approximation via a variational inequality

5.1 The variational inequality

Let L ∈ R+. We consider the auxiliary variational inequality.{
Find uδ,L ∈W 1,n

0 (Ω,RN ), ‖u‖L∞(Ω,RN ) ≤ L, such that

〈A(uδ,L), uδ,L − v 〉+ 〈Bδ(uδ,L), uδ,L − v 〉 ≤ 0 for all v ∈W 1,n
0 (Ω,RN ), ‖v‖L∞(Ω,RN ) ≤ L .

(5.1)
Here we have introduced for δ ≥ 0

〈Bδ(u), ϕ 〉 :=

∫
Ω

a0(x, u,Du)

1 + δ|a0(x, u,Du)|
· ϕdx

(and obviously B0 reduces to the original operator B). We note that the growth condition (2.1) implies
that A is a continuous mapping from W 1,n

0 (Ω,RN ) into its dual, and the same holds for Bδ for fixed δ > 0
since (1 + δ|a0(x, u, z)|)−1a0(x, u, z) is bounded by δ−1. This allows us to apply the theory of monotone
operators which then leads to existence of a solution to (5.1).

Proposition 5.1. The variational inequality (5.1) has a solution uδ,L for fixed δ, L > 0, and there holds
‖uδ,L‖W 1,n

0 (Ω,RN ) ≤ c(L, ν, ν0,K, |Ω|) for all δ > 0.

Proof. We verify the conditions of Leray-Lions-Vishik from the theory of monotone operators, see [27,
Chapitre 2.8]. In fact, we first observe that due to (2.5) and (2.6) we have that the coercivity

〈A(u) +Bδ(u), u 〉 ≥ (ν − ν0)

∫
Ω

|Du|n dx− 2KL|Ω| (5.2)

holds true for all u ∈ W 1,n
0 (Ω,RN ) with ‖u‖L∞(Ω,RN ) ≤ L, independently for all δ. Next we discuss

the pseudo-monotonicity of the operator A(·) + Bδ(·). For this purpose we take a sequence (um)m∈N ⊂
W 1,n

0 (Ω,RN ) converging weakly to a function u, with ‖um‖L∞(Ω,RN ) ≤ L for all m ∈ N, and we further
suppose

lim sup
m→∞

〈A(um) +Bδ(um), um − u 〉 ≤ 0 .

In view of the boundedness of Bδ(um) and Rellich’s theorem, we find 〈Bδ(um), um − u 〉 → 0 as m→∞,
and analogously we have ∫

Ω

a(x, um, Du) · (Dum −Du) dx = 0 .

Hence, the monotonicity assumption (2.4) on the vector field a indeed guarantees strong convergence of
um → u in W 1,n

0 (Ω,RN ). But then, the growth assumption (2.1) and boundedness of Bδ(·) yield also
strong convergence of A(um) → A(u) and Bδ(um) → Bδ(u) in the dual of W 1,n

0 (Ω,RN ), for all δ > 0.
In particular, this implies pseudo-monotonicity in the sense of Lions, and we thus obtain existence of a
solution uδ,L to the variational inequality (5.1) for all δ > 0 and every L > 0, see [27, Théorème 8.2].

The second statement about uniform boundedness of (uδ,L)δ>0 immediately follows from the variational
inequality (5.1), applied with v = 0, and the coercivity of the approximation (5.2).
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5.2 Caccioppoli’s inequality

We next establish two types of the Caccioppoli inequality, for solutions uδ,L ∈ W 1,n
0 (Ω,RN ) – in both

cases δ > 0 and δ = 0 – to the variational inequality (5.1), provided that ‖uδ,L‖L∞(Ω,RN ) ≤ L.

Lemma 5.2. Let L ∈ R+, δ ≥ 0, and assume that uδ,L ∈ W 1,n
0 (Ω,RN ) is a solution of (5.1). Then

there exist a number θ(K, ν, n) ∈ (0, 1), an exponent γ(q) and constants c1(K, ν, ν0, n, ‖uδ,L‖W 1,n(Ω,RN )),
c2(K, ν, ν0, n, q,Ω, ‖uδ,L‖W 1,n(Ω,RN )) (all independent of the parameters δ and L) such that for all x0 ∈ Ω̄
and r ∈ (0, 1) there hold∫

Ω∩Br(x0)

|Duδ,L|n dx ≤ c1
∫

Ω∩B2r(x0)\Br(x0)

(
|Duδ,L|n + r−1|uδ,L||Duδ,L|n−1

)
dx+ c1r

γ

and ∫
Ω∩Br(x0)

|Duδ,L|n dx ≤ θ
∫

Ω∩B2r(x0)

|Duδ,L|n dx+ c2r
γ

+ c2osc(uδ,L,Ω ∩B2r(x0))
(
rγ +

∫
Ω∩B2r(x0)

min
{
δ−1, |Duδ,L|n

}
dx
)
.

Proof. For x0 ∈ Ω̄, r ∈ (0, 1) we fix a smooth cut-off function τ ∈ C∞0 (B3r/2(x0), [0, 1]) satisfying τ ≡ 1
in Br(x0) and ‖Dτ‖L∞(Ω,Rn) ≤ cr−1. To establish the desired inequalities, we now use two functions
v1 = uδ,L − uδ,Lτ2 and v2 = uδ,L − (uδ,L − ξ)τ2 for testing (5.1), where ξ ∈ RN is an arbitrary constant
with |ξ| ≤ L (implying ‖v‖L∞(Ω,RN ) ≤ L) to be fixed later if dist(x0, ∂Ω) > 3r/2, and ξ = 0 otherwise.
This choice of ξ distinguishes the interior and the boundary situation and guarantees zero-boundary values
for all possible choices of x0, r. Note that v1 and v2 differ only by ξτ2. For i ∈ {1, 2} we then find∫

Ω

a
(
x, uδ,L, D((uδ,L − ξ)τ2)

)
·D((uδ,L − ξ)τ2) dx

+

∫
Ω

[
a
(
x, uδ,L, Duδ,L

)
− a
(
x, uδ,L, D((uδ,L − ξ)τ2)

)]
·D((uδ,L − ξ)τ2) dx

+

∫
Ω

a
(
x, uδ,L, Duδ,L

)
·D(v2 − vi) dx

+

∫
Ω

a0(x, uδ,L, Duδ,L)

1 + δ|a(x, uδ,L, Duδ,L)|
· (uδ,Lτ2 + v1 − vi) dx ≤ 0 .

Note here that the first integral was simply added to the weak formulation of the system equation and
is fully compensated by the second term in the second integral. We then estimate the different integrals
appearing in the previous inequality. First, by ellipticity (2.5) of the principal part, we find∫

Ω

a
(
x, uδ,L, D((uδ,L − ξ)τ2)

)
·D((uδ,L − ξ)τ2) dx

≥ ν
∫

Ω

|D((uδ,L − ξ)τ2)|n dx−K
∫

Ω∩B2r(x0)

(1 + |uδ,L|q) dx .

Next, by the growth condition (2.1) and noting τ ≡ 1 in Br(x0), we find

−
∫

Ω

[
a
(
x, uδ,L, Duδ,L

)
− a
(
x, uδ,L, D((uδ,L − ξ)τ2)

)]
·D((uδ,L − ξ)τ2) dx

≤ c(K)

∫
Ω∩B2r(x0)\Br(x0)

(
1 + |uδ,L|q

n
n−1 + |Duδ,L|n + r−n|uδ,L − ξ|n

)
dx .

The third integral only occurs for i = 1 and again gives a contribution only on the annulus. In fact,
with (2.1) we get

−
∫

Ω

a
(
x, uδ,L, Duδ,L

)
·D(ξτ2) dx ≤ c(K)|ξ|r−1

∫
Ω∩B2r(x0)\Br(x0)

(
1 + |uδ,L|q + |Duδ,L|n−1

)
dx .
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It remains to estimate the last integral involving a0. For i = 1 we employ the one-sided condition (2.6).
This yields

−
∫

Ω

a0(x, uδ,L, Duδ,L)

1 + δ|a0(x, uδ,L, Duδ,L)|
· uδ,Lτ2 dx ≤ ν0

∫
Ω

|Duδ,L|nτ2 dx+K

∫
Ω∩B2r(x0)

(
1 + |uδ,L|q

)
dx .

Alternatively, if i = 2, we use the growth condition (2.2) to find

−
∫

Ω

a0(x, uδ,L, Duδ,L)

1 + δ|a0(x, uδ,L, Duδ,L)|
· (uδ,L − ξ)τ2 dx

≤ c(K)‖uδ,L − ξ‖L∞(Ω∩B2r(x0),RN )

∫
Ω∩B2r(x0)

min
{
δ−1, |Duδ,L|n

}
dx

+ c(K)‖uδ,L − ξ‖L∞(Ω∩B2r(x0),RN )

∫
Ω∩B2r(x0)

(1 + |uδ,L|q) dx .

Combining the estimates (recalling τ ≡ 1 in Br(x0)), we then find with the triangle inequality and Young
the preliminary Caccioppoli-type inequalities∫

Ω∩Br(x0)

|Duδ,L)|n dx

≤ c(K, ν, ν0)

∫
Ω∩B2r(x0)\Br(x0)

(
|Duδ,L|n + r−1|uδ,L||Duδ,L|n−1 + r−n|uδ,L − ξ|n

)
dx

+ c(K, ν, ν0)

∫
Ω∩B2r(x0)

(
1 + |uδ,L|q

n
n−1
)
dx

or alternatively∫
Ω∩Br(x0)

|Duδ,L)|n dx

≤ c(K, ν)

∫
Ω∩B2r(x0)\Br(x0)

(
|Duδ,L|n + r−n|uδ,L − ξ|n

)
dx

+ c(K, ν)(‖uδ,L − ξ‖L∞(Ω∩B2r(x0),RN ) + 1)

∫
Ω∩B2r(x0)

(1 + |uδ,L|q
n
n−1 ) dx

+ c(K, ν)‖uδ,L − ξ‖L∞(Ω∩B2r(x0),RN )

∫
Ω∩B2r(x0)

min
{
δ−1, |Duδ,L|n

}
dx .

Now, in the interior situation when dist(x0, ∂Ω) > 3r/2, we set ξ as the mean value over the annulus
B2r(x0) \Br(x0) in Ω, i. e.

ξ = (uδ,L)Ω∩B2r(x0)\Br(x0) = |Ω ∩B2r(x0) \Br(x0)|−1

∫
Ω∩B2r(x0)\Br(x0)

uδ,L dx

(thus |ξ| ≤ L is guaranteed), and we recall that we have chosen ξ = 0 otherwise. These choices allow
us, for both in the interior and close to the boundary, to apply the Poincaré inequality to the function
uδ,L − ξ on Ω ∩ B2r(x0) \ Br(x0). Note here that whenever dist(x0, ∂Ω) ≤ 3r/2, then uδ,L vanishes on
a quantified proportion of the boundary of Ω ∩ B2r(x0) \ Br(x0), since Ω is assumed to be a Lipschitz
domain. Furthermore, by Hölder and then the Sobolev-Poincaré inequality we estimate

‖uδ,L‖Lp(Ω∩B2r(x0),RN ) ≤ c(n, p,Ω)rγ‖uδ,L‖W 1,n(Ω,RN )

for any p <∞ and some exponent γ(p). Hence, we obtain the inequalities∫
Ω∩Br(x0)

|Duδ,L|n dx ≤ c1
∫

Ω∩B2r(x0)\Br(x0)

(
|Duδ,L|n + r−1|uδ,L||Duδ,L|n−1

)
dx+ c1r

γ
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and ∫
Ω∩Br(x0)

|Duδ,L|n dx ≤ c0(K, ν, n)

∫
Ω∩B2r(x0)\Br(x0)

|Duδ,L|n dx+ c2r
γ

+ c2‖uδ,L − ξ‖L∞(Ω∩B2r(x0),RN )

(
rγ +

∫
Ω∩B2r(x0)

min
{
δ−1, |Duδ,L|n

}
dx
)
,

with two constants c1 = c1(K, ν, ν0, n, ‖uδ,L‖W 1,n(Ω,RN )) and c2 = c2(K,n, q, ν, ‖uδ,L‖W 1,n(Ω,RN )), which
do not explicitly depend on the parameters L and δ (only via the dependence on ‖uδ,L‖W 1,n(Ω,RN )). This
yields the first Caccioppoli-type inequality stated in the lemma, and the second one follows from filling
the hole and the fact that ‖uδ,L−ξ‖L∞(Ω∩B2r(x0),RN ) is controlled by the oscillation of uδ,L in Ω∩B2r(x0),
as a direct consequence of the definition of ξ.

5.3 Uniform smallness of the n-energy and Morrey estimates

We continue to study sequences of functions in W 1,n and we are now interested in some consequences of
Caccioppoli-type inequalities of the form of those derived in the previous section. The first consequence
concerns uniform smallness of the n-energy and is obtained following the arguments from [11, Section
3.4]. Secondly, we provide estimates on the Morrey-norm for the gradient of solutions to the variational
inequality (5.1).

Lemma 5.3. Let (vk)k∈N be a sequence of functions in W 1,n(Ω,RN ) which is uniformly bounded, i. e.
‖vk‖W 1,n(Ω,RN ) ≤ C0 for all k ∈ N, and which satisfies for all x0 ∈ Ω̄ and r ∈ (0, 1)∫

Ω∩Br(x0)

|Dvk|n dx ≤ C1

∫
Ω∩B2r(x0)\Br(x0)

(
|Dvk|n + r−1|vk||Dvk|n−1

)
dx+ C2ω(r)

with ω(·) a modulus of continuity. Then there exists a critical radius rc(ε, ω(·), C0, C1, C2,Ω) > 0 such
that ∫

Ω∩Brc (x0)

|Dvk|n dx < εn

uniformly in x0 ∈ Ω̄ and k ∈ N.

Proof. We essentially have to estimate the mixed term, which is done by taking advantage of Lemma 4.1
and Lemma 4.2. We start with a fixed x0 ∈ Ω̄, R ∈ (0, 1/4) and determine, according to Lemma 4.1, a
radius r = r(x0, k, R) < 1 such that∫

Ω∩B2r(x0)\Br(x0)

|Dvk|n dx ≤
1

| ln r| ln | ln r|

∫
Ω∩B2R(x0)

|Dvk|n dx .

We then observe that by the Trudinger-Moser inequality [34] we find positive constants M,α (depending
only on the uniform W 1,n-norm of the sequence vk) such that∫

Ω

eα|vk|
n/(n−1)

dx ≤M for all k ∈ N .

Hence, by Lemma 4.2 we find

|(vk)Ω∩B2r(x0)\Br(x0)| ≤ c| ln r|
n−1
n .

Now, by Hölder’s and Poincaré’s inequality (applied to the function vk−(vk)Ω∩B2r(x0)\Br(x0) on the annulus
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B2r(x0) \Br(x0) in Ω for the radius r determined above), the Caccioppoli-type inequality becomes∫
Ω∩Br(x0)

|Dvk|n dx ≤ c
∫

Ω∩B2r(x0)\Br(x0)

|Dvk|n dx

+ c| ln r|
n−1
n

(∫
Ω∩B2r(x0)\Br(x0)

|Dvk|n dx
)n−1

n

+ C2ω(r)

≤ c(| ln r| ln | ln r|)−1

∫
Ω∩B2R(x0)

|Dvk|n dx

+ c(ln | ln r|)
1−n
n

(∫
Ω∩B2R(x0)

|Dvk|n dx
)n−1

n

+ C2ω(r) .

At this stage we conclude uniform smallness of the n-energy, in the sense that to a given ε > 0 we can
choose R sufficiently small such that the right-hand side of the previous inequality is smaller than εn.
Since r is bounded from below according to Lemma 4.1 (note that this bound is independent of x0 and
k), we hence obtain the statement.

We next state the announced Morrey-estimates for sequences of functions, which – under further
prerequisites – allow to pass from non-uniform to uniform estimates.

Lemma 5.4. Let (vk)k∈N be a sequence of functions in W 1,n(Ω,RN ) with the following properties:

(i) non-uniform Morrey-estimate: there exists some α > 0 (independent of k) such that there holds
[Dvk]Ln,nα(Ω,RNn) ≤ C(k) for all k ∈ N;

(ii) uniform smallness condition: for every ε > 0 there exists a radius rc > 0 such that there holds
‖Dvk‖Ln(Ω∩Brc (x0),RNn) ≤ ε;

(iii) Caccioppoli-type inequality: for all x0 ∈ Ω̄, every r > 0 and some θ < 1 there holds∫
Ω∩Br(x0)

|Dvk|n dx ≤ θ
∫

Ω∩B2r(x0)

|Dvk|n dx+ C1r
nα

+ C1osc(vk,Ω ∩B2r(x0))
(
rnα +

∫
Ω∩B2r(x0)

|Dvk|n dx
)
.

Then there exists β ∈ (0, α] (independent of k) such that

‖Dvk‖Ln,nβ(Ω,RNn) ≤ C
(
C1, rc(n,C1,Ω, θ), ‖Dvk‖Ln(Ω,RNn)

)
.

Proof. We start by fixing a number γ ∈ (θ, 1) and choose β < α such that 2nβθ ≤ γ. Then we divide
the Caccioppoli-type inequality in (iii) by rnβ . Estimating (2r)−β‖Dvk‖Ln(Ω∩B2r) by ‖Dvk‖Ln,nβ(Ω) and
using Morrey’s Theorem 4.3, we then find

r−nβ
∫

Ω∩Br(x0)

|Dvk|n dx ≤ γ‖Dvk‖nLn,nβ(Ω,RNn) + C1

+ c(n,C1,Ω)
(
‖Dvk‖Ln(Ω∩B2r(x0),RNn) + rnα

)
‖Dvk‖nLn,nβ(Ω,RNn) .

Hence, for ε = ε(n,C1,Ω, γ) sufficiently small, we deduce from (ii) that

r−nβ
∫

Ω∩Br(x0)

|Dvk|n dx ≤
1 + γ

2
‖Dvk‖nLn,nβ(Ω,RNn) + C1

provided that r ≤ rc(ε) = rc(n,C1,Ω, θ). However, for larger radii, the left-hand side is trivially estimated
by rc(n,C1,Ω, θ)

−nβ‖Dvk‖nLn(Ω,RNn), and we hence end up with

r−nβ
∫

Ω∩Br(x0)

|Dvk|n dx ≤
1 + γ

2
‖Dvk‖nLn,nβ(Ω,RNn) + C1 + rc(n,C1,Ω, θ)

−nβ‖Dvk‖nLn(Ω,RNn)

for all x0 ∈ Ω̄, r > 0. Passing to the supremum over all x0 ∈ Ω̄, r > 0, we can replace the left-hand side
of the last estimate by ‖Dvk‖nLn,nβ(Ω,RNn), and the assertion then follows from γ < 1.
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6 Proof of Theorem 1.4

Proof of Theorem 1.4. The proof is divided into a series of steps. We now study solutions uδ,L to the
variational inequality (5.1) for δ, L > 0, and subsequently we extract information about the two families
(uδ,L)δ∈(0,1), with L > 0 fixed, and (uL)L∈N = (u0,L)L∈N, using the results provided in Section 5.

Step 1: The sequence (uδ,L)δ>0 for L > 0 fixed. In this step we shall sometimes use the fact that
|uδ,L| ≤ L for all δ ∈ (0, 1). Sequentially we now derive the following properties.

a) Existence and uniform bound on the W 1,n
0 -norm. This is a consequence of Proposition 5.1, which

in particular shows ‖uδ,L‖W 1,n
0 (Ω,RN ) ≤ c(K,L, ν, ν0, |Ω|) for all δ > 0.

b) Morrey estimate and Hölder continuity, via a classical hole-filling technique introduced by Wid-
man [37]. Indeed, the Caccioppoli-type inequality in Lemma 5.2 shows the existence of a number
α(θ, n) = α(K, ν, n) > 0, independent of δ, L, such that

‖Duδ,L‖Ln,nα(Ω,RNn) ≤ c(δ,K,L, ν, ν0, n, q,Ω, ‖Duδ,L‖Ln0 (Ω,RNn)) .

Moreover, we obtain Hölder continuity of uδ,L with exponent α via Theorem 4.3, with Hölder
constant depending in particular on δ, L.

c) Uniform smallness of the n-energy. From the first Caccioppoli-type inequality in Lemma 5.2, com-
bined with the uniform bound from Step 1a), and Lemma 5.3 we immediately find for every ε > 0
a radius rc(ε,K,L, ν, ν0, n, q,Ω) > 0 such that ‖Duδ,L‖Ln(Ω∩Brc (x0)) ≤ ε holds, uniformly in x0 ∈ Ω̄
and for all δ ∈ (0, 1).

d) Uniform Morrey-estimate in δ ∈ (0, 1). With the (non-uniform) Hölder regularity derived in Step 1b),
the uniform smallness from Step 1c), and the second Caccioppoli-type inequality in Lemma 5.2 we
are in the position to apply Lemma 5.4. This ensures the existence of some β ∈ (0, α] such that

‖Duδ,L‖Ln,nβ(Ω,RNn) ≤ C(n,K,L, ν, ν0, q,Ω, ‖Duδ,L‖Ln(Ω,RNn)) .

Step 2: The passage to the limit δ ↘ 0. As already noted in Step 1a), the sequence (uδ,L)δ>0 is bounded

uniformly in W 1,n
0 (Ω,RN ), with L > 0 fixed. Hence, we can extract a subsequence which converges weakly

to a function uL ∈ W 1,n
0 (Ω,RN ). Moreover, uL is a solution to the variational inequality (5.1) for δ = 0

(thus, we establish in particular existence of a solution to (5.1) for δ = 0). This is seen as follows. First,
since for all L > 0 we also have convergence uδ,L → uL in some Hölder space, we get

〈Bδ(uδ,L), uδ,L − uL 〉 → 0 as δ ↘ 0 .

Hence, as in the proof of Proposition 5.1, we find

lim sup
δ↘0

∫
Ω

(
a(x, uδ,L, Duδ,L)− a(x, uδ,L, DuL)

)
· (Duδ,L −DuL) dx ≤ 0 .

The monotonicity condition (2.4) then implies strong convergence uδ,L → uL in W 1,n
0 (Ω,RN ), which in

turn yields the desired variational inequality, due to the convergence

〈A(uδ,L), uδ,L − v 〉+ 〈Bδ(uδ,L), uδ,L − v 〉 → 〈A(uL), uL − v 〉+ 〈B(uL), uL − v 〉

for all v ∈W 1,n
0 (Ω,RN ) with ‖v‖L∞(Ω,RN ) ≤ L.

Step 3: The sequence (uL)L. The regularity properties of uL derived in Step 1 may still depend on L.
In order to remove this L-dependence, we next proceed analogously to above and show the corresponding
properties for the sequence (uL)L (instead of (uδ,L)δ), uniformly in L.

a) Existence and uniform bound on the W 1,n
0 -norm. Existence was proved in Step 2, and the uniform

bound is an immediate consequence of the coercivity (2.3) of the operator T .
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b) Morrey estimate and Hölder continuity. A non-uniform bound (depending on L) for DuL in the
Morrey norm Ln,nβ(Ω,RNn) follows by construction via the passage to the limit in Step 1b).

c) Uniform smallness of the n-energy. Again, the first Caccioppoli-type inequality in Lemma 5.2
(now with δ = 0) together with Lemma 5.3 implies that, for every ε > 0, there exists a radius
rc(ε,K, ν, ν0, n, q,Ω, supL ‖DuL‖Ln(Ω,RNn)) > 0 such that ‖Duδ,L‖Ln(Brc (x0),RNn) ≤ ε, uniformly in

x0 ∈ Ω̄ and L > 0.

d) Uniform Morrey-estimate in L > 0. With Step 3b), Step 3c), and the second Caccioppoli-type

inequality in Lemma 5.2, we may apply Lemma 5.4 as above in Step 1d). This yields β̃ ∈ (0, β] such
that

‖DuL‖Ln,nβ̃(Ω,RNn) ≤ C(n,K, ν, ν0, q,Ω, sup
L
‖DuL‖Ln(Ω,RNn)) .

Step 4: The passage to the limit L→∞. Exactly as in Step 2, we obtain a subsequence of (uL)L which
converges (weakly by compactness, strongly via the monotonicity condition) to some u ∈W 1,n

0 (Ω,RN ) ∩
C0,β̃(Ω,RN ). The variational inequality

〈A(u), u− v 〉+ 〈B(u), u− v 〉 ≤ 0 for all v ∈W 1,n
0 (Ω,RN )

then immediately gives equality, and hence, u is a solution to the system (1.1). This completes the proof
of the theorem.

7 Application to discount control problems

The theory provided above also applies to obtain the existence of a regular solution for other problems
having an inhomogeneity of critical growth, at least in the critical dimension. For illustration, we state the
corresponding result exemplary for equations related to discount control. The proof differs in some parts,
but the general strategy via approximation and the validity of uniform Morrey-type estimates remains
the same. For simplicity, we here restrict ourselves to the following system of equations (cf. Section 3.2)

−
n∑
i=1

Di

[
(1 + |Du|2)

p−2
2 Diu

α
]

+ γuα = Hα
0 (·, u,Du) +G(·, u,Du)Duα − F (·, u,Du)uα + fα (7.1)

=: Hα(x, u,Du) + fα

for all α = 1, . . . , N in a regular domain Ω ⊂ Rn, some γ > 0, and with functionsH0 : Ω×RN×RNn → RN ,
G : Ω × RN × RNn → Rn, F : Ω × RN × RNn → R and f : Ω → RN on the right-hand side. We
further assume that this inhomogeneity satisfies the Carathéodory condition and that the following growth
assumptions hold true: 

|Hα
0 (x, u, z)| ≤ K|z|p−2|zα|2 +K for α = 1, . . . , N

|G(x, u, z)| ≤ K|z|p−1 +K

0 ≤ F (x, u, z) ≤ K|z|p +K

f ∈ L∞(Ω,RN )

(7.2)

for all x ∈ Ω, u ∈ RN , and z ∈ RNn, cf. [2, 3]. We emphasize that the function Hα
0 only depends

on zβ for β 6= α with (p−2)-growth. This system can be considered as a natural extension of discount
control problems (p = 2). We further note that we here consider only principal parts which are of p-
Laplace structure. However, one might easily adapt the theory in order to cover more general systems of
monotone structure. With an approximation technique which is similar to that applied before we find the
existence of a regular solution to (7.1).

Theorem 7.1. Let Ω ⊂ Rn be a Lipschitz domain and assume that the aforementioned growth assump-
tions (7.2) are fulfilled for p = n. Then the elliptic system (7.1) has a weak solution u ∈ Cαloc(Ω,RN ) ∩
W 1,n

0 (Ω,RN ) for some α > 0.
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Sketch of proof. Since the arguments are very similar to those in [3] (and partially also to those applied
before), we only describe briefly the intermediate steps of the proof and leave the details to the reader. We
start by approximating the right-hand side H(x, u, z) in (7.1) via a bounded inhomogeneity Hδ(x, u, z) =
H(x, u, z)/(1 + δ|z|n). We then introduce the approximating system via

−
n∑
i=1

Di

[
(1 + |Du|2)

p−2
2 Diuδ

]
+ γuδ = Hδ(x, u,Du) + f in Ω . (7.3)

Observation 1: Boundedness of (uδ). The approximate elliptic systems have continuous solutions
uδ ∈ W 1,n

0 (Ω,RN ) with uniform L∞-bound in terms of only the data (that is, K, ‖f‖L∞(Ω,RN ) and γ).
The proof is based on the theory of monotone operators, combined with a weak maximum principles
involving truncations, and follows the arguments in [3, Section 8]. With this bound at hand, we need only
the approximation with δ ↘ 0 (and not the additional approximation with L↗∞ for the bounds on the
L∞-norms of the solutions to the approximating system).

Observation 2: A Caccioppoli-type inequality I. We test the approximating system (7.3) with iterated
exponential functions of the form

ϕα = τ
(

exp(λuαδ )− exp(−λuαδ )
)

exp
(
λ

N∑
β=1

(exp(λuβδ ) + exp(−λuβδ ))
)

:= τ
(

exp(λuαδ )− exp(−λuαδ )
)

exp(h(uδ))

with τ either a localization function or τ ≡ 1 (both is possible due to the zero-boundary condition on the
family (uδ)δ∈(0,1)), and λ > 0 a parameter to be chosen later. Similarly as in [3, Section 6], we now study
the effects of this test function on the principle part of (7.3). We find∫

Ω

(1 + |Duδ|2)
p−2
2 Duδ ·Dϕdx

= λ

N∑
α=1

∫
Ω

(1 + |Duδ|2)
p−2
2 |Duαδ |2

(
exp(λuαδ ) + exp(−λuαδ )

)
exp(h(uδ))τ dx

+

∫
Ω

(1 + |Duδ|2)
p−2
2

∣∣ N∑
α=1

∇(exp(λuαδ ) + exp(−λuαδ ))
∣∣2 exp(h(uδ))τ dx

+

N∑
α=1

∫
Ω

(1 + |Duδ|2)
p−2
2 Duαδ

(
exp(λuαδ )− exp(−λuαδ )

)
exp(h(uδ)) · ∇τ dx .

Concerning the right-hand side of the approximating system 7.3, we can estimate the first three terms as
follows (noting (1 + δ|z|p) ≥ 1 in the regularization of the inhomogeneity):∫

Ω

|H0(·, uδ, Duδ) · ϕ| dx ≤ K
∫

Ω

(1 + |Duδ|p−2|Duαδ |2)
(

exp(λuαδ ) + exp(−λuαδ )
)

exp(h(uδ))τ dx∫
Ω

|G(·, uδ, Duδ)Duδ · ϕ| dx ≤ ε
∫

Ω

|Duδ|p exp(h(uδ))τ dx

+ λ−2c(ε,K)

∫
Ω

(1 + |Duδ|2)
p−2
2

×
∣∣ N∑
α=1

∇(exp(λuαδ ) + exp(−λuαδ ))
∣∣2 exp(h(uδ))τ dx

−F (x, uδ(x), Duδ(x))uδ(x) · ϕ(x) ≤ 0 for x ∈ Ω .

For the last inequality we have used the facts that F ≥ 0 and that t(exp(λt)− exp(−λt)) for all possible
choices of t ∈ R and λ > 0. With λ = λ(K) chosen in a suitable way, we then obtain the desired
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Caccioppoli-type inequality

N∑
α=1

∫
Ω

[
(1 + |Duδ|2)

p−2
2 |Duαδ |2

(
exp(λuαδ ) + exp(−λuαδ )

)
+ (γuαδ − fα)

(
exp(λuαδ )− exp(−λuαδ )

)]
exp(h(uδ))τ dx

≤ −
N∑
α=1

∫
Ω

(1 + |Duδ|2)
p−2
2 Duαδ

(
exp(λuαδ )− exp(−λuαδ )

)
exp(h(uδ)) · ∇τ dx .

Observation 3: A Caccioppoli-type inequality II. Testing the approximating system (7.3) with the
function (uδ − ξ)τ2 for suitable choices of ξ ∈ RN and with τ ∈ C∞0 (B2r(x0), [0, 1]) a standard cut-
off function with τ ≡ 1 in Br(x0) and ‖Dτ‖L∞(Ω,Rn) ≤ cr−1 and using a hole-filling argument one
arrives at a classical Caccioppoli inequality, in a very similar way as in Lemma 5.2. In particular, this
establishes a non-uniform Morrey-type estimate for Duδ, which in particular guarantees that assumption
(i) of Lemma 5.4 is satisfied for the sequence (u1/k)k∈N.

Consequence 1: Uniform W 1,p-estimate. Using the previous Caccioppoli-type inequality I for the
choice τ ≡ 1, we immediately obtain a uniform bound on the W 1,n-norm of the family (uδ)δ∈(0,1), by
taking advantage of the inequalities

exp(λt) + exp(−λt) ≥ 2 and t
(

exp(λt)− exp(−λt)
)
≥ 0

for all t ∈ R and λ > 0. This bound is needed later for the passage to the limit δ ↘ 0.
Consequence 2: Logarithmic Morrey estimate. In the Caccioppoli-type inequality I we next choose

τ = | ln(diam (Ω)|x− x0|/2)|a for a ∈ (0, 1). Using Young’s inequality, this gives∫
Ω

(1 + |Duδ|2)
p−2
2 |Duδ|2| ln(diam (Ω)|x− x0|/2)|a dx

≤ c
∫

Ω

| ln(diam (Ω)|x− x0|/2)|a dx

+ c

∫
Ω

(1 + |Duδ|2)
p−2
2 |Duδ|| ln(diam (Ω)|x− x0|/2)|a−1|x− x0|−1 dx

≤ 1

2

∫
Ω

(1 + |Duδ|2)
p−2
2 |Duδ|2| ln(diam (Ω)|x− x0|/2)|a dx+ c

(
a,K, ‖f‖L∞(Ω,RN ),diam (Ω)

)
.

Hence, after absorbing the first integral on the right-hand side, we end up with∫
Br(x0)∩Ω

|Duδ|p| ln(|x− x0|)|a dx ≤ c

for all x0 ∈ Ω and every r ≤ 1/2. In particular, this provides the uniform smallness condition of the
Ln-norm of the sequence (Duδ)δ∈(0,1) as required in Lemma 5.4 (ii).

Conclusion and passage to the limit. Proceeding exactly as in the proof of Theorem 1.4, one now
employs Lemma 5.4 in order to obtain a uniform Morrey estimate for the sequence (u1/k)k∈N. Passing

to the limit k → ∞ it turns out that the sequence (u1/k)k∈N ⊂ W 1,n
0 (Ω,RN ) of solutions to the ap-

proximating system (7.3) (with 1/k instead of δ) form an approximating sequence of a regular solution
u ∈ C0,α(Ω,RN ) ∩W 1,n

0 (Ω,RN ) of the original system (7.1). This finishes the proof of the theorem.
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