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The evaluation of the specific heat of an open damped quantum system is a subtle issue. One possible route
is based on the thermodynamic partition function which is the ratio of the partition functions of system plus
bath and of the bath alone. For the free damped particle it has been shown, however, that the ensuing specific
heat may become negative for appropriately chosen environments. Being an open system this quantity then
naturally must be interpreted as the change in the specific heat obtained as the difference between the specific
heat of the heat bath coupled to the system degrees of freedom and the specific heat of the bath alone. While
this difference may become negative, the involved specific heats themselves are always positive; thus, the
known thermodynamic stability criteria are perfectly guaranteed. For a damped quantum harmonic oscillator,
instead of negative values, under appropriate conditions one can observe a dip in the difference of specific
heats as a function of temperature. Stylized minimal models containing a single oscillator heat bath are
employed to elucidate the occurrence of the anomalous temperature dependence of the corresponding specific
heat values. Moreover, we comment on the consequences for the interpretation of the density of states based on
the thermal partition function.
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I. INTRODUCTION

An open classical system in contact with a heat bath can
often be modeled in terms of a Langevin dynamics with
constant friction and white Gaussian noise sources obeying a
fluctuation-dissipation theorem �1–3�. A remarkable feature
then is the circumstance that the equilibrium statistics of the
open classical system turns out to be independent of the cou-
pling strength between the system and the heat bath. In other
words, the canonical equilibrium for a classical damped
Langevin dynamics agrees with the canonical equilibrium of
the isolated system. This feature is rooted in the fact that in
this case the so termed “Hamiltonian of mean force” is still
given by the bare system Hamiltonian �4�. In clear contrast,
this property in general no longer holds true for open sys-
tems in the quantum regime beyond the weak-coupling limit
�5�. In particular, the canonical equilibrium state of an open
quantum system then typically involves an explicit depen-
dence on the system-bath coupling strength.

Motivated by this fact, the study of the specific heat be-
yond the weak-coupling limit has recently received consid-
erable attention, in particular in view of the validity of the
third law of thermodynamics �6–12�. Apart from fundamen-
tal thermodynamical questions the study of the specific heat
in the quantum regime is also of interest because it can be
related to entanglement properties �13�.

Recently, two different routes toward the evaluation of a
specific heat were proposed and discussed �6,9�. One possi-
bility is based on the thermal expectation value of the Hamil-
tonian describing the isolated system. Another approach, on
which we will focus in this paper, starts out from the ther-
modynamic partition function of the dissipative system
�6,9,14–24�

Z =
TrS+B�exp�− �H��
TrB�exp�− �HB��

, �1�

where the total Hamiltonian

H = HS + HB + HSB �2�

consists of terms describing the system, the bath, and the
system-bath coupling, respectively. In the absence of a cou-
pling between system and bath, Z reduces to the partition
function of the system. Partition function �1� appears natu-
rally in the Feynman-Vernon approach to dissipative systems
�15,16,18,19� and can be related to equilibrium properties of
the system �17,23�.

From Eq. �1�, one obtains by means of standard thermo-
dynamic relations a specific heat �25�, reading

C = kB�2 �2

��2 ln�Z� . �3�

Here, kB is the Boltzmann constant and the temperature T
appears through �=1 /kBT.

In the following, we will assume the bath to consist of
harmonic oscillators and the coupling to be bilinear in sys-
tem and bath coordinates �5�. In such a framework Ref. �9�
found for the damped free particle that under certain circum-
stances specific heat �3� can become negative. In the case of
the Drude model, for example, where the Laplace transform
of the damping kernel is given by

�̂�z� =
��D

z + �D
, �4�

the specific heat exhibits negative values at low temperatures
if the damping constant � exceeds the cutoff frequency �D,
i.e., ���D. This behavior is depicted in Fig. 1. For a general
damping kernel, a negative specific heat will appear at low
temperatures if �̂��0��−1 �see Ref. �9��. No negative spe-*gert.ingold@physik.uni-augsburg.de
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cific heat was found if the free particle is replaced by a
harmonic oscillator.

In this paper, we will elucidate the origin of the negative
specific heat for the case of the free damped particle and its
absence for the damped harmonic oscillator by considering
two minimal models. Before doing so, a general comment on
the appearance of a negative specific heat is appropriate.

The rationale behind the definition of a specific heat based
on thermodynamic partition function �1� is that this partition
function should be associated with an effective description of
an open system. From this point of view, a negative specific
heat may appear disturbing because it raises doubts as to the
thermodynamic stability of the system.

However, the meaning of thermodynamic partition func-
tion �1� of the open system can be better understood from the
point of view of its finite coupling to the heat bath. Specific
heat �3� can in fact be expressed as

C = CS+B − CB, �5�

where CS+B is the specific heat of system and heat bath while
CB is the specific heat of the heat bath alone.

Therefore, C describes the change of the specific heat
when the heat bath is enlarged by coupling it to system de-
grees of freedom. This difference expression in Eq. �5� must
be expected on physical grounds when dealing with an open
system that is not heat insulated from its environment. For
example, take a certain amount of an agent within a con-
tainer: The established experimental procedure to determine
the specific heat of this agent is first to measure the specific
heat of the empty container and to subtract this value from
the measured specific heat of the combined system to finally
arrive at the specific heat of the agent alone. For a macro-
scopic amount of the agent this value is truly agent specific,
i.e., independent of the particular nature of the container and
its interaction with the agent �provided the interaction of the
agent with the container is short ranged�. For a nanoscopic
system, however, the energy that is contained in the system-
bath coupling typically cannot be neglected and conse-
quently will influence the specific heat of such a system.
Notably the thermodynamic internal energy of the open sys-
tem also typically differs from the thermal expectation of the
bare system Hamiltonian �4,7�. As a consequence, the values

of the specific heat evaluated along such different routes then
differ as well �6,9�.

The coupling can thus result in a negative specific heat of
the open quantum system. However, the involved specific
heats, i.e., those of system plus bath on the one hand and of
the bath alone on the other hand, are each positive so that no
issues concerning the thermodynamic stability arise �26�.
Such physical situations are not uncommon as evidenced by
recent discussions in the context of the Casimir effect �27�,
the multichannel Kondo effect �28�, or the physics of meso-
scopic superconductors that contain magnetic impurities
�29�.

II. FREE PARTICLE

In order to elucidate the appearance of negative specific
heat �3� it is sufficient to consider a stylized minimal model
where the “bath” consists of only a single degree of freedom
described by the Hamiltonian

HB =
p2

2m
+

fB

2
q2, �6�

where fB denotes the spring constant. In the following, we
will study a system governed by the Hamiltonian

HS =
P2

2M
+

fS

2
Q2, �7�

both in the cases of a free particle �spring constant fS=0� and
of a harmonic oscillator �fS�0�. The coupling Hamiltonian
is given by

HSB = − fBqQ +
fB

2
Q2, �8�

where the last term renormalizes the potential in order to
ensure translational invariance in the case of the free particle.
Figure 2 illustrates our two minimal models. The starting
point is a single bath oscillator with mass m as depicted in
Fig. 2�a�. Coupling the system mass M to the bath oscillator
leads to the harmonically coupled system of two masses
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FIG. 1. The specific heat as defined in Eq. �3� for a free damped
particle with Drude damping kernel �4� is shown as a function of
temperature for �D /�=0.2, 1, and 5. Note that in contrast to Ref.
�9�, temperature is given in units of the cutoff frequency �D instead
of the damping strength �.
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FIG. 2. �a� One single bath oscillator represented by a mass m
harmonically coupled to a wall of infinite mass. �b� Bath oscillator
coupled to a free system degree of freedom. �c� Bath oscillator
coupled to a harmonically bound system degree of freedom. The
spring constants of the bath and system oscillator are denoted by fB

and fS, respectively.
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shown in Fig. 2�b�. If the system degree of freedom corre-
sponds to a harmonic oscillator, we obtain the mechanical
system of Fig. 2�c�.

It is quite obvious that an environment consisting of one
degree of freedom does not suffice to replace any realistic
heat bath. In particular, it does not lead to a truly dissipative
behavior of the open system to which it couples. Neverthe-
less, it turns out that even such minimal bath models give
rise to the same thermodynamic anomalies that are also en-
countered with more realistic large environments.

We begin our analysis with a free particle in contact with
the single-degree-of-freedom environment described by Eqs.
�6� and �8�. System and bath are assumed to stay in thermal
equilibrium with each other at the inverse temperature �.
Hence, the density matrix of the total system is given by a
Gibbs state reading

�SB = ZSB
−1 exp�− ��HS + HB + HSB�� , �9�

where ZSB=Tr exp�−��HS+HB+HSB�� denotes the partition
function of the total system.

The partition function ZB=Tr exp�−�HB� of the isolated
bath degree of freedom is given by

ZB =
1

2 sinh�	��

2
� , �10�

where

� = � fB

m
�1/2

�11�

is the frequency of the bath oscillator. From Eq. �3� the spe-
cific heat of this bath follows as

CB = kBg�	��

2
� �12�

with the abbreviation

g�x� = � x

sinh�x��
2

. �13�

If we add the system degree of freedom in order to obtain the
mechanical system shown in Fig. 2�b�, the partition function
contains contributions of two degrees of freedom related to
the center-of-mass and the relative motion. The first one is
described by a free particle with an effective mass m+M
while the second degree of freedom corresponds to a har-
monic oscillator with effective mass mM / �m+M� and the
frequency

�̄ = �1 +
m

M
�1/2

� . �14�

As discussed in Sec. I, negative values of the specific heat
occur for the Drude model if the damping strength exceeds
the cutoff frequency of the heat bath. Within our minimal
model the specific heat may become negative if the mass
ratio m /M exceeds a value slightly above 4. Then, �̄ is sig-
nificantly larger than �, a fact which will be relevant for the
discussion of specific heat �16� below.

In order to obtain a well-defined partition function for the
free particle, we restrict its motion to a region of length L.
This length is supposed to be sufficiently large such that the
energy-level spacing can be neglected if compared with the
thermal energy kBT �9�. Under this condition L will turn out
to be irrelevant in the sequel.

The partition function of system plus bath consists of a
product of contributions arising from the two normal modes,
i.e., the center-of-mass and relative motion, and thus reads

ZSB =
L

	
�2
�m + M�

�
�1/2 1

2 sinh�	��̄

2
� . �15�

From Eqs. �10�, �12�, �13�, and �15� it is straightforward to
evaluate specific heat �3� which becomes

C

kB
=

1

2
+ g�	��̄

2
� − g�	��

2
� . �16�

The first term arises from a free particle while the second and
third term describe the change in specific heat due to the
increase in the oscillator frequency from � to �̄ as given by
Eq. �14�.

In Fig. 3 the contributions to Eq. �16� are sketched. The
upper dashed curve corresponds to the first two contributions
arising from system and bath. It contains kB /2 from the iso-
lated free particle and a contribution from the harmonic os-
cillator which is strongly suppressed at low temperatures and
reaches kB for high temperatures. The lower dashed curve
corresponds to the third term in Eq. �16�. The main point to
note is the relative shift in temperature of the two contribu-
tions due to the change of the oscillator frequency. In the
presence of the system, the oscillator frequency is increased
according to Eq. �14�. As a consequence, there is a tempera-
ture window, where the specific heat of system and bath is
already significantly suppressed while this is not yet the case
for the bath oscillator alone. In this regime, difference �16� of
the specific heats can become negative. Note that in contrast
to Fig. 1 this temperature window does not extend all the
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FIG. 3. The difference of specific heats as function of the tem-
perature for the case of a free particle coupled to a single oscillator
bath for the mass ratio m /M =10. The upper dashed curve corre-
sponds to the first two terms in Eq. �16�, i.e., to the specific heat of
the system shown in Fig. 2�b� while the lower dashed curve corre-
sponds to the third term in Eq. �16�, i.e., to the negative of the
specific heat of the bath oscillator shown in Fig. 2�a�. The resulting
difference is depicted as solid line and displays a temperature re-
gion where it takes on negative values.
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way down to zero temperature. This is explained by the fact
that the bath consists of only one oscillator so that the low-
frequency oscillators present in Drude model �4� on which
Fig. 1 is based are missing.

III. HARMONIC OSCILLATOR

After having explained the origin of a negative specific
heat for a free particle in contact with an environment we
will now address the question why such a scenario cannot be
realized for a harmonic oscillator.

A. Minimal environment

To this end, we determine the difference of specific heats
for the mechanical systems shown in Figs. 2�a� and 2�c�. The
system frequency associated with the spring constant fS is
given by �= �fS /M�1/2. The eigenfrequencies of system plus
bath are readily obtained as

��
2 =

1

2
�m + M

M
�2 + �2� � �1

4
�m + M

M
�2 + �2�2

− �2�2�1/2

. �17�

One can show that �−
�
�+, where �−=� or �+=� for
m=0, depending on whether � /��1 or � /��1. For in-
creasing mass ratio m /M and fixed frequency ratio � /� both
gaps from � to �− and �+ widen. In the limit m�M, at any
fixed frequency ratio � /� one finds �−= �M /m�1/2� and
�+= �m /M�1/2�.

From Eqs. �1� and �3� one then obtains

C

kB
= g�	��+

2
� + g�	��−

2
� − g�	��

2
� , �18�

where kBg is the specific heat of a harmonic oscillator de-
fined in Eqs. �12� and �13�. A typical scenario for the case of
sufficiently well-separated frequencies is sketched in Fig. 4.

Although for the harmonic oscillator a dip in the specific
heat may appear, no negative values can be obtained. The
main difference to the case of a free particle is the specific
heat of the isolated system degree of freedom: While for not
too low temperatures the specific heat for the harmonic os-
cillator equals kB it is only half as large for the free particle.
The difference of the specific heats of the bath oscillator in
the presence and absence of the system degree of freedom
may reach values up to kB, thereby opening up the possibility
of negative values of the specific heat for the free particle but
not for the harmonic oscillator.

B. Drude bath

The dip in the specific heat of the harmonic oscillator in
contact with the minimal environment can also be observed
for a bath giving rise to ohmic damping, i.e., where �̂�0�
�0. For the ratio of partition functions �1� one finds

Z =
1

	��
	
n=1

�
�n

2

�n
2 + �n�̂��n� + �2 , �19�

where �n=2
n /	� are the Matsubara frequencies.
We specifically consider a Drude model characterized by

damping kernel �4� with a cutoff frequency �D. Introducing
the quantities

�D =
	��D

2

�20�

and

�i =
	��i

2

, i = 1,2,3 �21�

with

x3 + �Dx2 + ���D + �2�x + �D�2 = �x − �1��x − �2��x − �3� ,

�22�

we obtain from Eqs. �3� and �19�

C

kB
= 1 + �1

2���1 − �1� + �2
2���1 − �2� + �3

2���1 − �3�

− �D
2 ���1 − �D� . �23�

Here, ���x� denotes the trigamma function. Specific heat
�23� is shown in Fig. 5 for �=5� and �D=0.1�, where � is
the frequency of the system oscillator. In contrast to the un-
damped case, the specific heat increases linearly with tem-
perature with a slope proportional to the damping constant.
Then, for sufficiently small cutoff frequency the specific heat
goes through a dip at low temperatures before it asymptoti-
cally approaches its high-temperature value kB.

IV. DENSITY OF STATES

One can use partition function �1� to formally define an
effective density of states ��E� of the system by means of the
relation �21�

−1
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2

C
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FIG. 4. The difference of specific heats as function of the tem-
perature for the case of a harmonic oscillator coupled to a single
oscillator bath. The upper dashed curve corresponds to the first two
terms in Eq. �18�, i.e., to the specific heat of the system shown in
Fig. 2�c� while the lower dashed curve corresponds to the third term
in Eq. �18�, i.e., to the negative of the specific heat of the bath
oscillator shown in Fig. 2�a�. The resulting difference is depicted as
solid line and displays a dip for the chosen parameter values �
=� and m /M =10.
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Z = 

0

�

dE��E�exp�− �E� . �24�

For the free particle, it was found in Ref. �9� that the density
of states obtained from Eq. �24� can become negative for
appropriately chosen environments, e.g., a Drude model with
�D��. For an environment consisting of a single bath mode
like in the minimal models discussed in Secs. II and III it
was demonstrated that the appearance of negative contribu-
tions to the effective density of states is generic. In particular,
the minimal model for a harmonic oscillator coupled to an
environmental mode displayed in Fig. 2�c� leads to negative
delta functions in the density of states �see Ref. �9��. This is
in contrast to our finding for the specific heat which remains
always positive for the harmonic oscillator. Interestingly, for
a heat bath exhibiting a continuous distribution of bath os-
cillators, one obtains again a positive density of states de-
spite of the fact that dips in the specific heat like the one
shown in Fig. 5 can be observed. Figure 6 displays the den-
sity of states for the same parameters as employed in Fig. 5.

An important difference between the specific heat and the
density of states as defined by Eq. �24� lies in the fact that
the latter cannot be interpreted in terms of a difference of
two densities of states. We recall that such an interpretation
was possible for the specific heat only because according to

Eq. �3� it depends linearly on the logarithm of partition func-
tion �1�. The specific heat shares this property with other
thermodynamic quantities like the internal energy and the
free energy. The absence of a logarithm of the partition func-
tion in Eq. �24� indicates that the effective density of states
does not lend itself to an interpretation in terms of the dif-
ference of two densities of states. Despite the fact that the
effective density of states of a damped harmonic oscillator in
the weak-coupling limit, i.e., when the damping strength rep-
resents the smallest frequency scale, displays resonances at
the expected energies and even yields the correct level
widths �23�, it therefore remains unclear whether the mean-
ing of the effective density of states goes beyond that of a
merely formal notion.

V. CONCLUSIONS

For a free damped particle, the specific heat based on
effective partition function �1� can become negative. We
have demonstrated that this surprising behavior does not en-
danger the thermodynamic stability of the damped system.
Instead, the specific heat should be interpreted as the change
in the specific heat of the environment when a system degree
of freedom is attached to it. For a damped harmonic quantum
oscillator, the difference of specific heats cannot become
negative but may display a dip instead. The difference in the
behavior of the free particle and the harmonic oscillator can
be traced back to the specific heat of the uncoupled system
which for the free particle is smaller by a factor of two. All
those quantities that are obtained from the logarithm of the
partition function by means of a linear operation can be in-
terpreted as differences between the corresponding quantities
of the total system plus bath and of the bath alone. This
reasoning though does not apply to the density of states
which is the inverse Laplace transform of the partition func-
tion itself �see Eq. �24��. By this transformation the ratio of
two partition functions yields a complex quantity that obvi-
ously cannot be interpreted as a difference of the densities of
states of the total system and of the environment.
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