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Fission decay rates from a quantal transport equation 
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The decay of a metastable system is described by extending Kramers' method to the quantal regime. For temperatures above 
twice the crossover value we recover the result known from applying Euclidean path integrals to solvable models. Our derivation 
is not restricted to a linearly coupled heat bath of oscillators, and thus appficable to nuclear systems. 

In his famous paper Kramers [ 1] derived a for- 
mula which took into account the implications of  dy- 
namics on the decay rate of  a metastable system. Ap- 
plied to the situation portrayed in fig. 1 it can be 
written as 

RK= ~ m" (~:i-+t/b2--r/b) e x p ( - p B )  . (1) 

Here, f l= (kT)  --1, B is the barrier height and m~ the 
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Fig. 1. A schematic plot of the effective potential. 

frequency of the motion around the potential mini- 
mum (fulfilling the relation M . m  2. =C.=a2V(Q) /  
O Q ~ h  M. being the inertia), rh,=~,/ 
2x/Mb I Cb I measures the effective damping rate, cal- 
culated at the barrier from the friction coefficient 7b, 
the inertia Mb and the stiffness coefficient Cb= 
O2V(Q)/OQ2lb. 

Expression (1) is valid for damping rates r/b not 
smaller than about 0.2. Furthermore, one has to as- 
sume the barrier high enough to keep the decay rate 
R sufficiently small. Under such conditions the pro- 
cess can be viewed as quasi-stationary with the out- 
ward flux A at Qb being constant for macroscopically 
large times. The decay rate R is then simply given by 
the ratio of  the current divided by the number of  par- 
ticles N, caught in the well near Q~, R =jb/N,. 

It has always been a challenge to extend Kramers '  
result to the quantal regime. However, it was only 
after one had learned to apply the instanton trick to 
this problem that a decent solution could be found. 
Among the vast literature on this subject of  "dissi- 
pative tunneling" we would only like to refer to the 
classic paper [2 ], to ref. [ 3] as a general recent re- 
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view and to rcf. [4] as a reference to formal details. 
Common to all these approaches is the application of 
the technique of path integrals for imaginary time 
propagation. This is feasible if for the basic Hamil- 
tonian one assumes a form like 

~e(xi, pi, Q, e) 

=I°IB(xi, pi)+I~sB(x~,p,,Q,P)+I~Is(Q,P) , (2) 

in which two restrictions are imposed. First, the cou- 
pling is assumed to be of the form Hss= QF with 
F=~,cdq. Secondly, the heat bath must be repre- 
sented by a set of oscillators. It is needless to stress 
that some measures have to be taken in order to ren- 
der the final equations of motion irreversible. 

A first major step to unify these results with the 
usual concepts of transport theory has been under- 
taken in refs. [ 5,6 ]. Still using path integrals, the au- 
thor has been able to obtain from real time propaga- 
tion a quantal version of Kramers' stationary solution 
for the inverted oscillator, which he could then use to 
rederive the form of the known quantal correction 
factor. This derivation is valid above a critical tem- 
perature Tc=2T0 with To being the so called cross- 
over value [ 3,4 ]. We will come back to the physical 
significance of this restriction. 

A full-fledged transport theory has been formu- 
lated in ref. [7] within a quasi-classical approach 
based on a quantal I.angevin equation. Unfortu- 
nately, the authors have not been able to establish a 
direct connection to the results mentioned above. 
This will be the main goal of the discussion to come. 
We will proceed by exhibiting first the formal details, 
and then discuss later both the physical conditions of 
the derivation as well as consequences for possible 
applications. 

Let us begin by formulating the decay rate in terms 
of Wigner functions kW(/~; Q, P). Borrowing from the 
ideas of Kramers we may write 

R=Jb 
N. 

Y~-oo dP(e/M)k~ob(#; Q~ Qb =0, P) 
= rQ.+~ dQf~_oo dPk~'ob(fl;, Q, P) (3) J Q.-~J 

Here k~ob(Q, P) is meant to represent the full global 
solution to our problem. Under the conditions men- 
tioned already above, and for not too small temper- 

atures (see below), this global function can be ap- 
proximated by local ones valid at the barrier or at the 
potential minimum, respectively. They are obtained 
by appropriate linearizations. Trivially an overall 
normalization factor drops out of eq. (3) and it is 
almost obvious that the local solutions should not be 
normalized in themselves. In this context it is useful, 
for a moment, to think of a stationary situation. Then 
k~ob (Q, P) would simply be the Wigner transform of 
~$1ob ---~ exp ( - floTg). As a consequence of this trans- 
formation one gets a prefactor (to the exponential 
factor depending on the coordinates and momenta), 
which in the end may be found from the partition 
function ~#ob. The linearization procedure we spoke 
of will in such a case have to be performed on ~. In 
this way it will lead to both a local partition function 
as well as to a local prefactor ~. Both will depend on 
the local frequency rendering obvious that the ~ will 
have to be different at the well and at the barrier. Our 
situation differs from the one just described only in 
the sense that we have to deal with a dynamical situ- 
ation, albeit in quasi stationary approximation, whose 
solutions must be found from transport equations. 

In rcf. [ 8 ] a Hamiltonian of type (2) has been used 
to derive a transport equation for local collective mo- 
tion. This Hamiltonian can be obtained self-consis- 
tently by applying an appropriate linearization pro- 
cedure with respect to the macroscopic degrees of 
freedom (see ref. [9]) .  No restrictions need to be 
imposed on the "bath" Hamiltonian ~B and the F 
appearing as a factor in/~sa (see text below eq. (2) ). 
As we shall see, for the present purpose it suffices to 
expand around values Qo which correspond to extre- 
mal points of the effective potential (for the general 
case see eg. ref. [ 8 ] or ref. [ 10 ] ). Then the result can 
be written as 

0 p _ ~tf(q, , t ) = (  0 P O Cq + 0 P 

0 2 0 2 
+Dqp 0 ~  +Dpp ~--~)f(q, P, t) (4) 

with q= Q-Qo. (With respect to P we assume from 
the start that our Hamiltonian is at most quadratic). 
Besides the transport coefficients for average (local) 
motion, there appear the two diffusion coefficients 
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with the equilibrium fluctuation 27q, given by the 
fluctuation dissipation theorem (FDT) 

27q, = ~'n coth ,q(og). (5) 

Similar expressions hold for 27pp and Zqp if for each 
appearance of the kinetic momentum P a factor Mw 
is multiplied to the integrand. As a consequence, 27¢r 
vanishes because of a simple symmetry, which is the 
reason for Dqq= 0. 

o ( ,0  Zqq( ) is the dissipative part of the susceptibility 
Zqq(o9) which measures the response of (q)o, to an 
external "field" q,~t(o9) in linear order. These func- 
tions contain information about all possible modes 
of our system, as given by the Hamiltonian (2). 
Clearly, we are interested only in the collective ones, 
namely those whose average behaviour we have par- 
ametrized in terms of the transport coefficients M, 7 
and C, defined for local motion. To render the dy- 
namics of the fluctuations consistent, we have to cal- 
culate the diffusion coefficients from the correspond- 
ing approximations. That means to replace in (5) the 
locally valid Z~q (o9) by the dissipative part of the os- 
cillator response function being defined by 

X ~  (o9)q(o9) --- ( - o92M-io9~+ C)q(o9) 

= - qox~(o9) • 

We are aware that this restriction will finally cause 
the expected problem of a diverging Zvp. To regular- 
ize the integral appearing there one has to introduce 
one other constant. For example, this could be done 
by way of a cut off [ 8 ] or through a Drude regulari- 
zation (cf. refs. [11,12] ). For our present purpose 
this problem is not really relevant. 

We are ready now to evaluate the decay rate. Let 
us look first at the denominator of (3). The lineari- 
zation we spoke of before means to put k~Vob (Q ~ Q., 
P) ~ koW~¢ (q, P ) and to use the following stationary so- 
lution of (4): 

kW¢(q, P)~= ~.exp (fiB) 

p2 (q_q.)2~ 
×exp 2Z~,p ~ ) '  (6) 

with the prefactor given as 

a a ' 

which normalizes (6) to Z. as discussed above. (Here 
and in the following the ~ ' s  always refer to the effec- 
tive macroscopic part of the partition function). In 
order to calculate the number of particles N, we may 
replace A by ~ ,  provided we have [ Q~I >> ~ .  Next 
we turn to the barrier region. Here the stiffness is neg- 
ative and the basic expressions for the diffusion coef- 
ficients become somewhat delicate, as the "equilib- 
rium fluctuations" loose their immediate physical 
meaning. Nevertheless, all formulas can be contin- 
ued analytically by replacing 

w , =  ~ M ~ : ~ i E f , =  / - ' C b '  Mb (7) 

everywhere. In this way the 27q¢ becomes negative, as 
already known from Kxamers' case of high tempera- 
tures. For the prefactor at Qb this implies to write 

b b b b " 

As for the functional dependence on Q and P, a form 
like the one obtained from (6) still solves our equa- 
tion of motion (4), now written for the local motion 
around Qb = 0. However, this would not be a decent 
approximation to k~ob (Q, P). Indeed, since the bar- 
rier is unbound to the right we expect a solution with 
a finite current. Such a solution has been displayed 
in ref. [ 13 ] and applied to computations of interest 
in nuclear fission, but not to the decay rate. Its form 
had been found before in ref. [ 5 ] within a path inte- 
gral description. In our present notation it reads 

k~Vob (Q~ Qb, P) ~ kW (q, P) 

(beXP( p2 q2 2Zb  ) \ 

P - - A q  

X 2 ~  exp - , (8) 
- - o o  

with 

- -  q q  ~ - -  - -  p p  , 
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The final expression for the decay rate is easily ob- 
tained. After putting into (3) both (6) and (8) the 
integrals can be calculated by elementary methods to 
give 

R= 141 ~ ,  ( ~ / l + ~ - ~ )  exp(-/~B) 
2n 

m fQRK . ( 9 )  

As observed already in ref. [ 5 ], the quantum correc- 
tion factorf  o can be expressed by the absolute value 
of the ratio of the local partition functions at a and b. 
In the remaining part of our letter we will discuss the 
physical relevance of our result together with a cri- 
tique of the present derivation. 

(1) Comparison with previous derivations. The 
partition functions appearing in (9) are readily cal- 
culated for the model of the bilinear coupling to a set 
of oscillators, for example with path integrals (cf. e.g. 
ref. [ 4 ] and our discussion below eq. (2)). Again take 
first the case of the potential minimum where one gets 

/' +oo ,~na X -I/2 

with the eigenvalues 

I t  2 2 n - M , v , + l v ,  lye( I v. I ) + M ,  te] .  

Here, v, = 2nn/hB and Y is the usual reference factor 
being independent of ~,,  M, and 7,. (We follow the 
notation of ref. [4] allowing frequency dependent 
friction coefficients y(co) for an eventual Drude re- 
gularization). ~ is obtained from the transforma- 
tion (7). We observe that the mode n = 0 has a nega- 
tive eigenvalue, which for this model proves the 
conjecture about Zb stated above, namely that ~ be- 
comes purely imaginary. For temperatures above To, 
with the corresponding flo being a solution of 
2~ = 2b__ ~ = 0, all other eigenvalues are positive. For the 
quantum correction factor one thus obtains 

fQ= f i  V~+VnF'(Vn)+~a2 
,=I V~ + V,Fb( V,)--~ 2 (11) 

with F =  7/M. This expression has been derived be- 
fore within the formulation of "dissipative tunnel- 
ing", but for the case M, fMb and ~:,-- 7b #~. We pres- 
ent in fig. 2 for a whole range of effective damping 
factors ~ .  At the crossover temperature To this for- 
mula diverges, but it can be regularized after consid- 

ering deviations of third order from the saddle points 
[ 4 ]. As we shall see now our derivation is restricted 
to temperatures of approximately twice that value, 
T> 2To. 

(2) The limits of our approach. In our discussion 
above we have been very sloppy about any conver- 
gence problem appearing in the integrals. Looking 
back at formula (3) we realize that problems may 
come from the numerator of this expression. We cer- 
tainly nccd a positive 27~p. However, the more crucial 
quantity turns out to be the Xqbq. In Kramers' case it 
is known to be negative such that the Gaussian factor 
in (8) increases with increasing q. To study these 
expressions in general and for sizeable friction is 
somewhat elaborate, at least for the regime where 
quantal effects are important. For a first orientation, 
let us therefore look at weakly damped motion, to 
postpone a discussion of the general case to future 
publications (see e.g. ref. [ 10] ). Evaluating the X~,, 
from (5) to zero order in y one gets 

( Cbq2/2)b  "= ( p 2 / 2 M b ) b  = ½ T* (iWb) 

1/iV~ cot(flV~,) 
- 2 2 ~ , (12) 

which is nothing else but the quantal virial theorem 
continued analytically to the imaginary frequency of 
the barrier, making apparent the fact that the "equi- 
librium fluctuation" in q is negative at the barrier. 

st The case of  variable inertia and friction has been treated in 
ref. [ 14 ] within a phenomenological ansatz; see our discus- 
sion to come in point (4). 

8 

6 
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2 

411 i i 
0 i 2 

2~kBT/hzo b 

Fig. 2. The quantum correction factor fQ for the case of  both con- 
stant inertia M. ffi Mb and friction ~,. ffi ~ ,  and the following values 
of  the effective damping rate ~ ffi 10, 5, 2, 1, 0.5, from left to right, 
respectively. The arrows show the corresponding crossover tem- 
peratures To. 
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(To get Kramers' case of high temperature we just 
have to replace T* by T). For a situation like the one 
behind (12) the condition we have to pose clearly is 
T> T¢=2To=hVgb/Tt. It guarantees that Zpp is posi- 
tive and 2;qq negative. Notice, that for this situation it 
is easy to observe that also the a ofeq. (8) is positive. 
At T=  Tc = 2 To the Gaussian factor appearing in (8) 
becomes indifferent as function of q and regulariza- 
tion procedures would have to be employed [ 15,6 ]. 

(3) On the quantum nature of this approach. Our 
result clearly demonstrates that the transport equa- 
tion (4) contains quantum effects. It is clear that the 
latter are there on a semielassical level only, as global 
motion is treated in a locally harmonic fashion. 
Nevertheless it is interesting to see the effects con- 
tained in a differential transport equation. 

Without any doubt this equation causes problems 
for the basic uncertainty relations at short times. This 
is no surprise as we have left out memory effects as 
well as the implications of initial correlations. That 
both these effects must be there can be studied in the 
oscillator model again. One may look, for instance, 
at the results ofref. [ 16 ] for the time evolution of the 
second moments, say for the case of  a positive stiff- 
ness. Compared with the evolution obtained from 
(4), one sees that both agree for large times. This is 
to be expected, of course, from the very construction 
of the transport equation [ 8 ]: The diffusion coeffi- 
cients are chosen such as to guarantee the correct 
equilibrium, as defined by the FDT. 

The lesson we learn from our present results is that 
these features prevail also for the case of the inverted 
oscillator. Again, this does not come unexpected. One 
knows both from ref. [ 17 ] and ref. [ 5 ] that for the 
inverted oscillator time dependent solutions "relax" 
to stationary ones. Apparently, in the regime of tem- 
peratures we look upon here, it is the long time be- 
haviour of the solution which matters - and this be- 
haviour contains the adequate quantum feature. 
Further details will be discussed elsewhere, see e.g. 
ref. [ 10]. 

(4) Advantages of our approach. Although our 
method does not apply at very low temperatures, we 
hope to contribute to the understanding of  quantum 
effects in dissipative dynamics. We see at least the 
following three favorable circumstances. 

(i) It should be of some theoretical interest to see 

effects of"dissipative tunneling" come out of  a trans- 
port equation proper. 

(ii) Our derivation is not based on the assumption 
of  a linear coupling to a heat bath which does not 
change with Q. It is commonly understood that such 
a model would be quite unrealistic for nuclear fis- 
sion, a case discussed already by Kramers. In a Ham- 
iltonian like (2) the xt, p; represent the dynamics of 
the nueleons. For a In'st approximation there is no 
way around a mean field approach, which poses im- 
portant constraints both on the Hamiltonian itself as 
well as on the treatment of  the coupling (see ref. [9 ] 
and further literature cited there). First of all, ~ss  
must have a term involving the collective momen- 
tum P. Secondly, the dependence of/~s and ~ss  on 
the x~ cannot just be of  In'st and second order. This 
feature becomes already evident by looking at the 
simple but well examined case of multipole vibra- 
tions around a potential minimum. It is only for di- 
pole excitations that t he / / s s  can be taken linear in 
the x,. Thirdly, for large scale motion both ~ s  as well 
as/~ss must vary along the collective path. Within 
the locally harmonic approach one is able to incor- 
porate these effects both for the construction of  the 
Hamiltonian f~'(x;, p~, Q, P) itself [9] as well as for 
the derivation of the equations of motion [ 8 ]. 

We have mentioned already ref. [ 14]. There the 
effects of variable inertia and friction on the decay 
rate have been taken into account by the following 
procedure: It was assumed that a Hamiltonian like 
(2) exists for global motion, with a factorized form 
for the/~SB; the latter was supposed just to depend on 
the coordinates, thus neglecting self-consistency; some 
phenomenological ansatz was made both for the form 
factor of/~ss as well as for the (unperturbed) inertia 
in/ /s ,  neglecting the renormalization of  the conserv- 
ative forces through the coupling; the collective vari- 
ables were linearly coupled to a heat bath of  oscilla- 
tors with fixed frequencies. 

(iii) Our approach may allow for interesting prac- 
tical applications, even beyond the mere calculation 
of decay rates. For instance, one is not bound to look 
at cases where the temperature stays constant. More- 
over, as we look at real time propagation our trans- 
port equation can easily be used for Monte Carlo 
simulations. Notice, that our locally harmonic ap- 
proximation concurs ideally with the small time steps 
employed in these calculations. Such simulations have 
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proven successfully in many fields of physics. Let us 
only allude to the following examples where instabil- 
ities play a dominant role: once more nuclear fission, 
chemical and surface reactions, nucleation and spi- 
nodal decompositions. The lesson wc learn from the 
present study is how simple it can be to incorporate 
quantum effects: Supposc one wants to treat time 
evolution of the average values on the basis of classi- 
cal physics. The usc of proper diffusion coefficients 
restores quantum features on the level of the second 
moments, a procedure which is quite easy to perform 
within the locally harmonic approximation. In the 
case discussed hcrc average dynamics is represented 
by our collective variable Q(t), but an extension to 
time evolution of the general mean field is straight- 
forward. For the latter the appropriate classical means 
is the Landau-Vlasov equation. A linearization al- 
lows to deduce response functions which in turn de- 
termine quantum statistical fluctuations and hence 
generalized diffusion coefficients (cf. rcf. [ 18 ] ). 

We would  like to t h an k  H. Graber t ,  P. Fr~Jbrich a n d  
R. Sollacher for f rui t ful  d iscuss ions  a n d  va luab le  

suggestions. 
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