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We suggest quantal diffusion coefficients for Kramers' transport equation and discuss the dynamics of fluctuations in the neigh- 
borhood of a barrier, considered generic for an instability of a system's response to an external perturbation. 

I. Introduction 

Instabilities play an important role in many parts 
of physics. Often they are treated within a mean field 
approach, sometimes from static considerations. For 
the classical case, Kramers has shown [ 1 ] how a dy- 
namical treatment of statistical fluctuations may 
modify the results. It was only in the 80's that one has 
begun to understand how to incorporate quantum ef- 
fects (for a review see e.g. refs. [2,3] ). As the com- 
mon technique one uses the method of path integrals, 
usually adapted to propagation in imaginary time. 
The latter feature is a mathematical artifact. Indeed, 
there exist many physical problems for which a de- 
scription with real time propagation is highly desira- 
ble. For instance, this will be the case whenever the 
unstable mode is accompanied by additional observ- 
able processes. A prime example is nuclear fission at 
finite excitation which allows the evaporation of light 
particles. As another example we may mention nu- 
clear multifragmentation. Here, it is already the com- 
plexity of the underlying equation of motion - which 
is of Boltzmann-Landau type including a collision 
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term - which may prohibit feasible numerical solu- 
tions for imaginary times. 

For the typical situation considered by Kramers, 
the decay through a barrier out of a local potential 
minimum, there exists a formulation with real time 
propagation, at least for not too small temperatures. 
In ref. [4] it has been shown that all quantum correc- 
tions can be obtained in this way which had previ- 
ously been derived with imaginary time propagation. 
In ref. [4] path integrals are also used. This restricts 
direct applications to cases where the coupling is lin- 
ear in the bath variables, and for which the heat bath 
can be approximated by a quadratic form. Practically 
all examples from nuclear physics do not fall into this 
category. We will show that essential features can be 
taken over into a more general description making 
explicit use of transport equations. More specifically, 
we will generalize the formulation of ref. [ 5 ] to the 
case of a negative stiffness. This completes the method 
of describing large scale motion within the locally 
harmonic approximation [ 6,5 ]. 

2. The basic equations 

We have in mind to study harmonic motion in the 
neighborhood of an extremal point at Q=0.  In ref. 
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[5 ] differential equations for the first and second 
moments have been suggested. The corresponding 
transport equation for the Wigner function d(Q, P, 
t) reads 

0 Q,e,t)=l'~ O P O 3 P 
d( - O-OM + CQ+ 

0 2 0 2 "~ 
+Dqp OQ--~ + Dpp 0 ~ )  d(Q, P, t) (1) 

provided we neglect possible initial correlations. 
All transport coefficients appearing here can in the 

end be traced back to the system's response to an ex- 
ternal perturbation. Typically the response function 
Zoo(og) will have the following structure, when cal- 
culated within a self-consistent approach (see e.g. refs. 
[6,7]):  

XQO(og) =Z(og) / [ 1 +kx(og) ] • (2) 

Here, k is some effective coupling parameter, and Z 
measures the local response of the intrinsic degrees of 
freedom to a variation of the collective ones. This in- 
formation is all we need about the intrinsic degrees 
of  freedom. 

Generally, the information contained in eq. (2) will 
be richer than the one in eq. ( 1 ). A differential form 
for the time evolution can at best be true after picking 
some particular mode ogl of (2), defined by 
;~eQ(o91)-~=0. The transport coefficients for aver- 
age motion, namely inertia M, friction p and stiffness 
C, can then be introduced by approximating the true 
response )CQQ(og) in the neighborhood of ogt by one 
of a damped oscillator (see refs. [6,5 ] ). Thus we re- 
place the correct dispersion relation 1 + k;~ (o9) = 0 by 

--M(ogl )0) 2 -  ip(ogl )09+ C(o91 ) ---0. (3) 

From here on the ogl is kept fixed. Then the transport 
coefficients do not depend on frequency in true sense, 
but they do contain information about the actual dy- 
namics. As we will discuss below, they even exem- 
plify non-markovian features (cf. ref. [7 ] ). 

In ref. [ 5 ] the diffusion coefficients were defined 
through the quantal equilibrium fluctuations: 

Dpp = (?/M)Z~, q , Dqp = C ~  q - ( 1/M)Z~, q . (4) 

They can be expressed in terms Of Xae(og), again, by 
simply exploiting the fluctuation dissipation theo- 
rem (see e.g. ref. [8] ): 

t2= ~hh ,r~,?, 

- Mh ~ -  coth o92Z~e(o9), (5) 
- o o  

M M ~ do) [ o 9 ~  
A= -~ x~q=e ~- J ~-~ c o t h ~ T )  ZOO(O9) . "  (6) 

- c o  

For later convenience we have introduced two quan- 
tities, following a notation of refs. [ 9,4 ]. They have 
the following simple high temperature limit: hA= 
T ( M / C )  and hi2= T. 

In ref. [ 5 ] only stable modes (with C> 0) had been 
considered. In this case the L'~ q can be interpreted 
physically in the usual sense. However, there does ex- 
ist an analytical continuation to the case with C<  0. 
Still the integrals appearing in eqs. (5) and (6) can 
be calculated, once the pole approximation for the 
ZQQ(O9) has been made. In this sense our more gen- 
eral treatment becomes identical to the calculation of 
Ingold [4]. For the integral in (5) it is of  course nee- 
essary to apply some regularizing methods, as in the 
case of the stable modes. Here, we do not want to dis- 
cuss questions about possible choices of  the cutoff. 
Later on we will concentrate on an example for which 
only A will appear. 

For negative C, the solutions of  (3) are purely im- 
aginary: o9 ~ = iz±, with 

z+ =ogb(-- r /_+X/~q 2 ) , (7) 

and 

q = ~, / Z,v/ ~ l  C I , ogb = . , /  I C I / M (8) 

being the dimensionless damping rate and the barrier 
frequency, respectively. 

Before we move on to apply these results we would 
like to add some remarks on the possibly non-mar- 
kovian nature of our approach. According to ref. [ 7 ] 
there are cases for which the average motion is de- 
scribed correctly by the common differential form of 
the equations of motion. This is true if the dissipative 
part ofzQQ(og) is of lorentzian type - in which case 
it has just two poles. Recently this has been demon- 
strated in ref. [ 10 ] to be a typical behaviour of iso- 
scalar modes at higher temperatures. For such a form 
expression (6) can be evaluated without further ap- 
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proximations. Through the regularization necessary 
for (5) the behaviour at very short times (compara- 
ble to one over the cut-off frequency) is modified. 
This alters the extent of a possible "non-markovian" 
structure, which otherwise is decided essentially by 
the reduction of the response function ZeQ(to) to the 
one of the damped oscillator. Of  course, this ap- 
proach only makes sense if the quantities ~2 and A 
evaluated in this way turn out to be physically mean- 
ingful. For our application we will have to come back 
to this question below. 

So far we have not addressed the question of pos- 
sible initial correlations between intrinsic and collec- 
tive degrees of  freedom. At not too low temperatures, 
such correlations will die out after some (macroscop- 
ically) small time. The same is true for the correc- 
tions which arise due to neglecting the poles of (2) at 
higher frequencies. Therefore, we claim the differen- 
tial form of our basic equations to represent ade- 
quately the true situation. It is reassuring that our so- 
lutions for the second moments turn out identical to 
the ones derived in ref. [9] by applying path inte- 
grals to a model of coupled oscillators previously re- 
ferred to, provided one takes care about the restric- 
tions mentioned. As a matter of fact, in this letter we 
are going to use our equations only for examples 
which do involve the long time behaviour. We shall 
begin by looking at the transmission factor. 

3. Transmission factor 

We consider the transmission factor in a time de- 
pendent picture where "penetrability" has to be de- 
fined as 

o o  

17= lira f d Q n ( Q , t )  
0 

= lim [ dQ dPd(Q, P, t) .  
t ~ o o  

0 - - o o  

(9) 

This is identical to the probability of finding the sys- 
tem to the right of  the barrier at t~oo  if it had started 
at the left at some initial time. For a gaussian solu- 
tion all integrations necessary can be carried through. 
For reasons of simplicity, in this letter we just look at 

the case where the system starts at Q0, Po precisely, 
which means setting the initial widths of  the distri- 
bution equal to zero. One then obtains: 

/-/= 1 erfc( , -z_QoM+Po _~ (10) 
kx/2Mh [ - (z_ )2A +g2] /"  

A result of this type had been published previously 
in ref. [ 11 ]. This is seen by looking at their eq. (14), 
putting the initial fluctuations [called Fi(t = 0) ] equal 
to zero, and correcting for a typing error (the I2~ 
should obtain a minus sign). The only difference is 
found in the new and correct choice of the diffusion 
coefficients (4). As for the transport equation itself 
we have to identify du~ with Du~. Considering these 
facts, the general case of  a broad initial distribution 
is readily deduced. 

In ref. [ 11 ] an extended discussion can be found 
of the nature of quantum effects contained in ref. 
[ 10]. We just mention the fact that for non-dissipa- 
tive systems our result reduces to that of the SchrS- 
dinger equation. As for diffusion, in ref. [ 11 ] the high 
T limit was taken. 

4. Quantum version of Kramers' stationary solution 

Kramers [1 ] had found that for C < 0  eq. (1) has 
a stationary solution with non-vanishing flux. (Here, 
we have in mind the case of  spatial diffusion. ) In ref. 
[ 12 ] a connection to the time dependent solution was 
established: Integrating the latter over time the re- 
suiting expression "relaxes" into that of  Kramers (as 
function of Q). This feature sheds some light on the 
physical nature of this stationary solution: It is mean- 
ingful for some statistically averaged processes only, 
and it can be valid at best after some initial time has 
passed. Within his analytical model, Ingold [ 4 ] was 
able to find the quantal extension of Kramers '  form. 

He did not look at a transport equation, but also in 
his treatment a long time limit had to be performed. 
With the parameters introduced above the new solu- 
tion reads 

P/M--aQ 

X dsexp - 2h(_Aa2_g2) s 2 , (11) 
- o o  
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with a =  -g2 / (Az+ ). (For the following the normal- 
ization coefficient ( )  will be immaterial.) By mere 
differentiation one may easily check that ( 11 ) does 
indeed solve eq. ( 1 ). 

5. Time delay through quantal diffusion 

Of considerable interest is the average time the sys- 
tem spends in the barrier region. In ref. [ 13 ] this time 
had been estimated from Kramers '  stationary solu- 
tion for the case of nuclear fission. We may just re- 
peat the same steps here for the quantum case. To 
have one specific example, let us calculate the time 
the system needs to pass from saddle to scission. Ac- 
cording to ref. [ 13 ] it can be defined as 

Q~ 
! / *  

j dQnt(Q) (12) /-= 
Jl o 

with the (constant) current given by 

j i  = i dPPd , (Q ,P) .  (13) 
- -  o o  

In a different context for such a time the notion "dwell 
t ime" had been used (see e.g. ref. [ 14]. The density 
n~(Q) is obtained similarly, integrating out the mo- 
mentum without the velocity factor. The final result 
can be written as 

/-= (2/O,'b) (r/+ X/1 + r/2 ) 

×~t(x/Mo)~,Q2d2Tx/T/(-A)hofi,) . (14) 

The function on the right of (14) is defined as 

~ ( x ) =  exp(y 2) dy e x p ( - z  2) dz 
o y 

(c.f. ref. [15]) .  Its form is plotted in fig. 1. In eq. 
(14) the argument x of ~ (x) has been factorized like 
x=xdgqu. This form makes apparent the quantum 
corrections to the case of  the high temperature limit 
studied in refs. [13,12]. The first factor, 

2 2 x/MoJbQ,c/2T, simply is determined by the ratio of 
the difference of the potential energy between saddle 
and scission to the temperature. The second one, gqu, 
can be evaluated with the help of (6). With the re- 
sponse function XQQ(to) approximated by the one of 

5 
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Fig. 2. The quan tum correction factor gq. as function of T/hoyo 
for three typical values of  q. 

the damped oscillator [recall eq. (3) with C < 0 ]  one 
gets, after performing a contour integration and sum- 
ming up all poles, and by introducing ~u as the loga- 
rithmic derivative of the gamma function: 

gqu 2 - -Aht°2 
T 

) 
h ° ) b " '  l x f ] - ~ ) ) ] .  (15) - ~u(1 + ~--~ t q *  

The quantity gqu is plotted in fig. 2 as a function of a 
dimensionless temperature rtem = T/ho~,. At some 
small values the factor gq, tends to infinity. Possibly, 
this restricts the domain of validity of our approach. 
Indeed, at these temperatures the A becomes zero in- 
dicating that the system ceases to behave diffusive. 
For higher temperatures we observe deviations from 
unity up to Tte m ~ 0.5-1. From the behaviour of Ros- 
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ser's function in fig. 1 we see that this effect is to in- 
crease/-due to quantum effects. The size of hOb de- 
pends on the deformation chosen and on its 
parametrization. For fission typical values are of the 
order of  1 MeV. For fusion [ 16 ] they would be a few 
times bigger. 

6. Discussion 

We have demonstrated how the computation of the 
diffusion coefficients ofref. [ 5 ] within a locally har- 
monic approximation can be extended to the barrier 
region. For such a situation we have studied two ex- 
amples which can be treated analytically. The first one 
involves a truly time dependent picture. The second 
one deals with the stationary situation exploited al- 
ready by Kramers. 

As a quantitative application, we have taken the 
case where only the "generalized fluctuation" of  Q 
appears. For a full evaluation of both diffusion coef- 
ficients we would need the one in P as well, see ( 4 ) -  
(6), where regularization procedures had to be per- 
formed. It turned out that for this particular example 
quantum effects are to be expected at quite low tem- 
peratures only. This is in distinction to computations 
of diffusion coefficients for unstable modes. Indeed, 
take figs. 2 and 3 of ref. [ 5 ]. Sizable quantum effects 
can be observed up to temperatures of 2 MeV. From 
fig. 3 we see that the same effect is to be expected for 
stable modes: just extrapolate down to C=  0. 

The observed difference to the results for/-is to be 
attributed to the fact that in/-the quantity 12 does not 
appear explicitly. Indeed, for stable modes its value 
is known to be influenced by quantum effects up 
temperatures higher than the corresponding ones for 
A. For a propagation across a barrier the natural 
counterpart is the momentum distribution, say as 
given by Kramers stationary solution. Indeed, the 
mean kinetic energy and its variance can be evalu- 
ated from ( 11 ) completely analogously to the proce- 
dure of  ref. [ 13 ]. For lack of space we will not pres- 
ent these results here. Of  course, in the classical limit 
they can be shown to turn into those of ref. [ 13 ]. Just 
at which temperature this transition will occur re- 
quires a more careful computation of/2, which we 
would like to defer to later publications. 

7. Outlook 

The method suggested here to define and compute 
diffusion coefficients can be applied to several 
problems. 

First of all we need to mention nuclear fission which 
is to be treated as a large scale motion using the prop- 
agator method (see e.g. refs. [5,6]).  The transmis- 
sion coefficient (10) might be used for fusion reac- 
tions (see ref. [ 17] and c.f. ref. [ 11 ] ). (Recall that 
according to ref. [ 6 ] the temperature may play a less 
stringent role.) I f  non-linear effects turn out impor- 
tant, here also propagators could be introduced. 

As indicated above, to derive the transport equa- 
tion ( 1 ) all one needs as the basic ingredient are the 
response functions. They can be calculated whenever 
the proper equations for average motion are known. 
In this sense applications to equations of  Boltz- 
mann-Landau type or the ones of hydrodynamics are 
possible. Indeed, the authors of ref. [ 18 ] have begun 
to study the first example. This is a generalization of 
the treatment of instabilities of nuclear matter with 
response functions, given in ref. [ 19 ]. Similar insta- 
bilities supposedly happen in certain stages of the time 
development of the quark-gluon plasma. It would be 
most interesting to study this problem, too. 

Furthermore, there remain a few other theoretical 
problems. First, there is the very intriguing question 
of what happens at lower temperatures. On decreas- 
ing T the equations will cease to be of  a differential 
nature. There is also still the problem of the decay 
rate for fission. The alert reader may have already 
noticed that this quantity has been missing in what 
has been said so far. Indeed, for a description with 
real time propagation, to date this problem has been 
solved only within the path integral method. Whether 
or not this will be possible by using the transport 
equation ( 1 ) will be discussed in a subsequent paper. 

Acknowledgement 

One of use (G.-L.I.) would like to thank H. Gra- 
bert for fruitful discussions on the problems of dissi- 
pative quantum systems. 

257 



Volume 264, number 3,4 PHYSICS LETTERS B 1 August 1991 

References 

[1 ] H.A. Kramers, Physica 7 (1940) 284. 
[2] P. H/inggi, J. Stat. Phys. 42 (1986) 105. 
[ 3 ] P. H~inggi, P. Talkner and M. Borkovec, Rev. Mod. Phys. 

62 (1990) 251. 
[4] G.-L. Ingold, Thesis, Universit~it Stuttgart (1988). 
[5 ] H. Hofmann, R. Samhammer and G. OckenfuB, Nucl. Phys. 

A496 (1989) 269. 
[6] H. Hofmann, Phys. Scr. T32 (1990) 132. 
[7] H. Hofmann, R. Samhammer and S. Yamaji, Phys. Lett. B 

229 (1989) 309. 
[ 8 ] D. Forster, Hydrodynamic fluctuations, broken symmetry 

and correlation functions (Benjamin, 1975 ). 
[9] H. Grabert, P. Schramm and G.-L. Ingold, Phys. Rep. 168 

(1988) 115. 

[ 10] H. Hofmann, S. Yamaji and A.S. Jensen, preprint ( 1991 ). 
[ 11 ] H. Hofmann and R. Samhammer, Z. Phys. 322 ( 1985 ) 157. 
[12]J.R. Nix, A.J. Sierk, H. Hofmann, F. Scheuter and D. 

Vautherin, Nucl. Phys. A 424 (1984) 239. 
[ 13 ] H. Hofmann and J.R. Nix, Phys. Lett. B 122 ( 1983 ) 117. 
[ 14] E.H. Hauge and J.A. Stovneng, Rev. Mod. Phys. 61 (1989) 

917. 
[ 15 ] J.B. Rosser, Theory and application off6 exp( - x  2) dx and 

f 6 exp ( - p  2y2) dy f ~ exp ( - x2 ) dx (Mapleton House, New 
York, 1948 ). 

[ 16 ] P. Fr6brich, private communication. 
[ 17] F.L. Canto, Nucl. Phys. A 491 (1989) 337. 
[ 18 ] H. Hofmann, D. Kiderlen and I. Tsekhmistrenko, preprint 

(1991). 
[19] C.J. Pethick and D.G. Ravenhall, Ann. Phys. (NY) 183 

(1988) 131. 

258 


