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Theory of charge-density-wave dynamics
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Starting from the effective action for the order parameter (i.e., the generalization of the phase Hamil-

tonian), the generating functional governing the real-time dynamics is derived within the Keldysh for-

malism. As a particular advantage of this technique, it is possible to perform the average over the ran-

dom (impurity) pinning potential at an early stage —this leads to an "interaction" term in the action that
has peculiar time correlations. We study explicitly results in second order in the impurity-pinning po-
tential with emphasis on the nonlinear response to a static field (the sliding mode) in two and three di-

mensions including the experimentally interesting crossover region. We study also the effect of thermal
fIuctuations for three- and two-dimensional situations and, as an example, describe how long-range
Coulomb forces, which are screened by the normal electrons, can be incorporated.

I. INTRODUCTION

j =ev~N(0)t), y(r, t) . (2)

In the presence of impurities, translational invariance is
broken —this leads to pinning of the CDW. This
phenomenon, as well as the response to a large constant

Though intensively studied for several years, both ex-
perimentally and theoretically, ' the fascinating low-
temperature transport properties of quasi-one-dimen-
sional materials have remained a highly controversial
subject. In particular, the discussion between advocates
of quantum and classical concepts for an explanation of
the nonlinear response is unsettled. On a very basic level,
there is of course agreement that quasi-one-dimensional
systems undergo a Peierls transition at low temperatures
into a charge-density-wave (CDW) state, in which the
equilibrium positions of the ions as well as the electron
density are spatially modulated. For example, taking the
CDW direction along the x axis, the deviation of the elec-
tron density from its normal-state equilibrium value is
given by

5p=ep, cos[Qx +y(r, t)] —ev~&(0)B y(r, t),
where Q =2pz/ih', pi=2K(0)b, /A, . Here pF, vz, X(0), 2,
and 6 denote the Fermi momentum, Fermi velocity, the
normal state density of states per spin at the Fermi sur-
face, the dimensionless electron-phonon coupling con-
stant, and the magnitude of the order parameter, respec-
tively. Also, the complex order parameter is given by
Ae'+"" where we have anticipated that we are interested
in situations where the phase of the order parameter de-
pends upon space and time. For the current carried by
the CDW, it is suf6cient to consider the expression aver-
aged over distances large compared to Q ', but small
compared to the relevant length scale (see below); thus,
from the continuity equation and (l), it follows that

field (depinning) and the response to an additional oscil-
lating field, has been the topic of various investigations,
and will also be studied in this paper.

In the next section we present a brief theoretical over-
view of the standard approach, which focuses on the
phase of the order parameter as the only relevant vari-
able, and in particular discuss the equation of motion in-
cluding thermal noise. In the remaining sections we in-
troduce and evaluate a different approach to the problem
of pinning by impurities. The essential idea is to return
to the Euclidean functional-integral formulation from
which the equation of motion can be derived. Then, in a
very natural way, one is led to a matrix formulation due
to Keldysh, where the two matrix indices correspond to
times being on the forward or backward branch of the
contour arising in the analytic continuation to real times.
As the essential feature, it turns out that the normaliza-
tion of the generating functional (with the auxiliary field
set to zero) is independent of the nonlinear impurity con-
tribution. For the present problem, this means that the
generating functional can be averaged easily with respect
to the disorder, leading to an averaged interaction con-
taining peculiar time correlations. In this respect, the
Keldysh formulation has similarities to replica and super-
symmetric techniques; in fact, the dynamic method has
been applied to the problem of electron localization in
random potentials. A similar analysis has been carried
out earlier in a different area by Martin, Siggia, and
Rose. After introducing convenient reduced variables
and a condensed notation, the generating functional will
be discussed in Sec. III. In Sec. IV we illustrate the ap-
proach by presenting selected results to second order in
the impuri. ty potential at zero temperature, and in partic-
ular investigate the crossover from three to two dimen-
sions, i.e., the thickness dependence of the threshold
field. ' In Sec. V we study the effect of thermal fIuctua-
tions; the results, as it turns out, are close to those ob-
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tained by Maki" by a completely different approach. A
brief conclusion is given in Sec. VI. Finally, as a specific
example, we consider the effect of long-range Coulomb
forces in the Appendix.

II. THEORETICAL OVERVIEW

The study of the static properties of the CDW, for spa-
tial variations that are on a much larger scale than the
amplitude coherence length (gz =iiivz/6), is based on
the phase Hamiltonian that includes gradient energies,
the pinning energy, and the electric field. It is given
b 4, 5, 12

A' m~N(0) f d r[ —,'c (B„y)+ —,'ci(V~)

—2e *u~Ay]+gf'

where the pinning energy & is

& =fd r V(r)5p/e.

(3)

(4)

Here m~( ))1) denotes the Frohlich mass relative to the
band mass, c =v~/m~, e*=e/m~, ci is of the order of
the phonon velocity, 6 is the electric-field component
along the CDW direction, and V (r) the random impuri-
ty potential. In (4) above, only the slowly varying (com-
pared to Q ') contribution has to be taken into account.
Restricting ourselves to the limit of weak pinning, in
which an individual impurity is not strong enough to de-
form the CDW considerably (and thus typical length
scales are large compared to the average distance be-
tween the impurities), & can be written as

&~ =p, f d r Re[i((r)e'x""], (5)

where we defined ig(r)= V (r)e'~". Equation (5) follows
from inserting the first part of the right-hand side (rhs) of
(1) into (4); this part is related to processes with —+Q
momentum transfer (backscattering). The forward-
scattering part, related to the second term on the rhs of
(1) is linear in the phase and can be included easily
(though this is not done in this paper). The complex ran-
dom field g(r) can be chosen to have a zero average and
correlations given by (g') =0, (g*g*)=0, and

in accordance with the classical limit of the Auctuation-
dissipation theorem. Note that typically y »co~ (the pin-
ning frequency co is defined below), so that the over-
damped limit is adequate under most circumstances. An
inspection of (7) immediately leads to the characteristic
scales of the problem. Consider, first, the static equation
for 6 =0 and for zero temperatures. In addition, let yo(r)
be the solution of the linearized equation, i.e.,

—,
'A' m~N(0)( —c 8„—ciV )go(r)=p, Re[/(r)] . (9)

As a result, the correlations of go(r) (in three dimensions)
are given by'

1/2
X + (10)

—V go=Re[((r)] . (12)

Similarly, we define the characteristic frequency, field and
time by

to =c/L~~, ho=co /2e*u~, to=y/to, (13)

and put 6=8/bo, t=t/to, and O=Ty/fico . The time
scaling factor is appropriate in the overdamped limit.
From now on, we also omit the carets; thus (7) reduces to
the following equation of motion (p = co~ /y ):

py+y —V y=Re[g(r)e' ]x+8 +g(r, t) .

The correlations of g are given as

(14)

(g(r, t)g(r', t') ) = 5(r —r')5(t t'), —

where Li =L~~(ci/c) L~~., usually called the Fukuyama-
Lee-Rice length is easily determined from (9) and (10).
Note that (10), which is a particular definition of L~~,
gives a length which differs by a numerical factor from
the length obtained by minimizing the gradient plus im-
purity energy. In any case, V, =L~~~L~ represents the
volume of a phase-coherent domain. The above result
suggests the introduction of the dimensionless coordi-
nates x =x/L~~, ri=ri/Li, and also a dimensionless im-

purity field g(r) whose correlations are given by

( g(r)g(r') ) =8ir5(r —r') .

This translates (9) into

(g(r)g*(r') ) = 5(r —r'),1

2irN (0)~2
(6) where

(16)A, = —,'m~X(0) V, A'y .

Note that k essentially is the energy in a phase coherent
volume measured in dimensionless units as constructed
above. Typical parameter values are L~~ approximately
equal to a few micrometers, L ~ =L ~~/7, mz = 100,
@=10"sec ', y/co =100, and thus X=10 . The fact
that A, is very large allows for a classical approximation,
which will be discussed below.

where ~2 is the scattering time for processes with —+Q
momentum transfer.

For an investigation of the dynamics of the phase, one
is led by phenomenological and other arguments (see
also the Appendix) to the following equation of motion
for y(r, t):

(,g(r, t)g(r', t') ) =m~X(0)ykti T5(r —r')5(t t')—(8)

where y denotes the damping constant. The correlations
of the thermal noise force g(r, t) are given by

III. GENERATING FUNCTIONAL

The derivation of the equation of motion from micro-
scopic theory has been studied in detail, and will only be
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sketched here. It is based on methods similar to those
employed in the study of the quantum dynamics of
Josephson junctions. ' In a first step, neglecting varia-
tions of the magnitude of the order parameter, which is
justified in the long-wavelength low-frequency limit (com-
pared to the amplitude coherence length gA and the gap
frequency b, /fi), one obtains an Euclidean action K [X],
where X=X(r, t) and the t integration is from 0 to iR—/3
(/3=1/T). The t integration could also be allowed to run
from t* to t —iA'/3 where t* denotes an arbitrary (real)
time. Then the integration contour is deformed such that
t runs from t* to + ~, from + ~ back to t *, and finally
from t * to t *—i lrt/3. Finally, taking t ~—co and
neglecting initial correlations, one arrives at the Keldysh
countour —oo ~ ~ ~—oo.6

Thus in a very natural way, one is led to define Xl(r, t)
and X2(r, t) on the forward and the backward branch, re-
spectively. Neglecting for a moment the dissipative part,
the real time action is found to be given by

Go (q, co)=(/2co +iso q—) ', Go =(Go )*, (25)

and in accordance with the Auctuation-dissipation
theorem,

Glc — (gR g A
)0 g 0 0 (26)

where we have displayed the classical limit co « O.
Quantum fluctuations can be included by the replacement
28/co~coth(co/28). Note that the inverse has the fol-
lowing structure (again in the classical limit):

4iO/A, (G )
G 0 (gA) —1 0 (27)

Second, the impurity part is given by

Keldysh components. Including the dissipative contribu-
tion the Fourier-transformed Green's functions are given
by

A =—f" dt fd'r ~X,—Vl(X, )
—(X,-+X2) (17) A, = ~fdt fd3r n 6+01/~

2
02

—0'1/~

~z

where we have used the rescaled variables as explained
above, and

&(x)= —,'(~x)' —@x+&,(x),

Vl (X)=Re[if(r)e'r] .

(18)

Generally, and in particular in the presence of dissipation
which adds to (17) a contribution analogous to the single
degree of freedom case '' (quadratic in Xl and X2), it is
useful to transform to sum and difference variables. We
hence define

01 Xl X2 Xl +X2
(20)

A=A0+A +A, , (21)

where Ao, A, and A, denote the quadratic part, the
pinning term, and the external field term, respectively.
We find

where in defining $1 we have anticipated that fluctuations
in g1 —g2 are suppressed since g, —

y2 -—A, ', and A, ))1.
The quantity X(r, t) (the classical phase) discussed in Sec.
II, is related to $2 by X=1I)2/&2. As a result, the action
is given by

and finally, we have

A, =(.~y),

(28)

(29)

where E, ='1/28 and E2 is an auxiliary field, to be put
equal to zero after differentiation (see below). We are
then left to define a generating functional to compute
correlation functions with. This is

Z[c, ]=%f2)l/l 'p)1/12e' (30)

The constant JV is chosen such that Z[E2=0]=1. The
surprising fact is that it turns out to be independent of
the nonlinear contribution A . This important property
of the Keldysh technique can be demonstrated perturba-
tively by expanding the rhs of (30) with respect to A
and then A„with respect to ltll, p2. Taking into account
the matrix structure given in (24), it follows that each
contribution (for 82=0) contains a closed loop of retarded
(or advanced) Green's functions following each other.
However, the product of retarded (or advanced) functions
in a closed loop is identically zero. This completes the
proof of the above claim. As a consequence, it is
straightforward to perform an impurity average at the
generating functional stage itself. We define A;„tas

A, =-,'&y~g ~y)

using an obvious shorthand notation, e.g. ,

&&~&)= g fdtfd r A (r, t)8 (r, t)

(22)

(23)

(e &) =eiA iA.

and taking out the zeroth-order result Ao[E], where

Ao[s]=exp ——'& E~G, ~E)

(31)

(32)

and so on. The zero-order Green's function G0 is a 2 X 2
matrix with the structure '

0 60

we obtain

Z[E]=Zo[s] ( e '"')0, (33)

GR GK
0 0

(24)

where A, 2, and E refer to the retarded, advanced, and

where the subscript zero indicates that the average has to
iA 0+iA,be taken with the "weight" e '; it is normalized

such that ( 1 )o
= 1. The result of the impurity average is
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P, (r t) P, (r, t') P,(r, t) P—,(r, t')
iA;„,= —8~if dt f dt' f d r sin — sin — cos

2 A, 2 2
(34)

Since A, is large ( —10 ), it is possible to approximate the sine functions to lowest order in their arguments. This leads to

iA;„,= 4v—r f dt f dt' f d r P, (r, t)P, (r, t')cos
v'2 (35)

This is a central result of this paper, on which the pertur-
bative analysis will be based. We proceed by summariz-
ing how physical quantities of interest are to be computed
provided Z(s) or F(E)= —i lnZ(E) are given. For exam-
ple, the average of the phase is

where the subscript now indicates that the "weight" is
iA0

e . Furthermore, we consider now F
&

as a functional
of P, if convenient, and also combine all the variables into
a single index z = (a, r, t). Then we obtain immediately

&y(r, t)&= &y,(r, t)) =1 1 6F
2

'
2 582, =p

2

(36)

Furthermore, the full connected Green's function is given
by

—Gp '(z, z') & P, .) = —Gp
' (z,z')

5c. ~

6F,+
5p, 5p,

(41)

6F
G ~(r, t;r', t')=-

5s (r, t)5sti(r', t')

where, as we mentioned earlier Ei=&26. In particular,
the Auctuations of the phase are given by

(37)

&5y(r, t)5y(r', t')) = G(r, t;r', t'—), (38)

where 5y=y —&y). In order to explain the general
structure further, we write

F=Fp+F„Fp= i lnZp—[s] (39)

F, = i ln & exp—(iA [P+5$] ) ) (40)
I

and define P ) = —Gp ~
E ), which corresponds to free

motion in the presence of an arbitrary field, and put
~P) =~/)+5/. This transformation removes the A, in
the exponent, and we are left with the expression

since Gp(z, z') =Gp(z', z). Similarly, the Green's function
is given by

G (z,z') =Gp(z, z')+ Gp(z, z, )S(z„zz)Gp(zz, z'), (42)

where

6F,
S(z„z2)=—

5$, 5p,
(43)

After differentiation, we take Ez=O, i.e., Pi=0 and
G p E i ~ Note that for constant (i.e., not varying in

space and time) electric field, we have $2(t) Pz(t')—
=Ei(t —t')=&28(t —t') which will be of importance
later.

Finally, we remark that in first order, i.e.,
Fi =F'&'~ = &A;„,[P+5$])p p this quantity is easily deter-
mined, with the result

P,(r, t) P,(r,t')—F'i" =4mi f dt f dt' f d r e " ' ' Pi(r, t)P, (r, t')cos

Pz(r, t) —$2(r, t')
i &2G p (0, t—t ')P, (r, t)sin— (44)

where

M(t)= —[Gp (0,0)—Gp (O, t)] (45)

and we also used that Gp (t=O)=Gp" (t=O)=0, and
Gp (t)Gp (t)=0. Consequences of (44) will be studied
below. We remark in passing that for 82=0, i.e., Pi= 1,
we find that F&"=0, which is related to the discussion of
the normalization condition given below (30).

IV. THRESHOLD FIELD AND DIMENSIONAL
CROSSOVER

In this and the following section we study the motion
of the CDW in the presence of a constant external field,

I

i.e., the static nonlinear current field characteristic. Our
discussion will be based on the first-order expression for
the generating functional, F'i'' given in (44) above and
thus, strictly speaking, applies only for sufficiently large

Nevertheless, we extrapolate the perturbative result
to obtain an estimate of the threshold field. Of course, we
cannot expect reliable results concerning numerical fac-
tors, but we believe that ratios and the dimensional cross-
over will be reasonably accurate.

Ciiven the formal preliminaries of the previous section,
the results follow easily. Consider the first component of
(41) and perform the variational derivative; the result is

&g) =6+4vr f d~e "sin(@r)Gp (0,~) . (46)
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(p) =e 4—~f dq +
@2+q4 (47)

For three-dimensional samples, dq=d q/(2m ), while for
films of thickness d «L ~ in the transverse direction,
dq=(Li/d)d q/(2~), and for wires of area 2 ((Li,
dq=(Li/A)dq/2~. The integration in (47) is done easi-
ly, and we obtain the following results:

Thermal fluctuations are related to M(r), which will be
the topic of Sec. V. Here, we restrict ourselves to
M(r)=0. Clearly, the second term on the rhs of (46)
represents the reduction of the CDW velocity due to im-
purity scattering. Neglecting the inertia, which is
justified for 6'((p '=(y/co ), we obtain the well-
known result, namely

0)

o
A
N
Q

A

0.5

@—&8/2+ . , D =3,
(j(r, t)) = . @ (mL, /2—d)+ . , D =2,

(48)

(49)

I I I I I I I I I I I I I I I I I I I I0 A
o %J

0.0 0.8 0.4 0.6 0.8 1.0

@—(~Li/A)6 ' + (50)

@3D
T 2

The dots indicate the higher power terms, which form
a power series with terms of the form 6', 6"', and

with m =2, 3, . . . from here on, for D=3,
D=2, and D=1, respectively. Using the first-order ex-
pressions, we obtain the following estimates for the
threshold field 6"

T from the condition (j') =0:

FIG. 1. Threshold field vs thickness for zero temperature as
obtained numerically. The quantities are given in dimensionless
units as mentioned in (11) and (13). The dashed lines indicate
the asymptotic behavior for d ))L, and d L„asgiven by (51)
and (57).

dim-nsional result given in (49) applies only for
d «L j /6 and thus even thin films show a crossover
to three-dimensional behavior for sufficiently large fields.
Putting again (j') =0 and expanding (56) for small d, we
find

6'T =(~Li/2d),
@1D

( L 2 /g )2/3

(52)

(53)
O'T= + +, d~Li .

2d 24
(57)

In particular, returning to physical units, we f-.nd the ra-
tio10, 9

(@2Dd)2

@3D
T

2
Lj AvF

4 Lii
(54)

Note that this quantity is about a factor of 2 smaller than
the estimate that Bardeen obtains based on his quantum
theory. The ratio is also in good accord with recent ex-
periments if we choose Li/L

I
=1/3. In the experiment,

in fact, the thickness dependence of the threshold field
has been investigated. In order to study this crossover,
we put

Equating this expression with 6'T =
—,', we find that the

eros~over occurs at the film thickness d'/L~ =4.3, which
is easily confirmed by a numerical evaluation of the sum
in (56) (see Fig. 1). An excellent approximation for BT(d)
is 6 T = —,

' for d )d* and 6 T(d) as given in (57) for
d &d*. Thus given a measured crossover thickness d*
and the ratio (54), it is possible to infer the characteristic
lengths. Note that the experiment also confirms that the
pinning in NbSe3 doped with Ta is weak. '

V. THERMAL FLUCTUATIONS

Thermal fluctuations enter (46) through M(r), which is
related to the time dependence of phase fluctuations at
the same point in space. From (45) and (38), we obtain

M (r) =
—,
' ( [5y(0, r) —5y(0, 0) j ) . (58)

where the sum is over the discrete states in the transverse
direction, with the result

Thus M(&=0)=0 and M(r) ~0 for all times. Explicitly,
using the results (25) and (26), this quantity is given by

j'(r, t) =8—
2

qn

d „2——arctan (56)
20 dc' 1 —eMr=

(
2 2)2+ 2dq (59)

where q„=2m nL~ /d. Note that actually the two-
in the classical limit. (Note that in the quantum limit
0—+0, the integrand has to be multiplied by ~co~/20. )
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0 1 1M(7. )=—
~ 4~'" (60)

Thus M(T) increases initially on the scale given by To,
and approaches for ~))7p the value

M„=( [5y(0,0)] ) =
4~'/2+To

(61)

where the last equality in this relation defines the charac-
teristic temperature' (and is chosen so that it agrees with
Ref. 11). Note that (61) is at best an order-of-magnitude
estimate for Tp which should be determined actually by
comparison with experiment.

Inserting (61) into (46), however, we realize that the
time scale in that expression is set by 6 . Thus, except
for extremely large fields, we conclude that it is a
sufficient approximation to use

—M —2 T//T
e

—M(r) 0 (62)

We then immediately deduce the temperature depen-
dence of the threshold field, which by comparison with
(48)—(50) is given by

@T(T) T/To 4/(4 D)—
NT(0)

(63)

in agreement with Ref. 11. The agreement of the static
considerations of that paper with our investigation of the
sliding mode is related to the fact that fast and short
wavelength fluctuations dominate the behavior; for these,
even a "slowly" moving CDW is a static object to a good
approximation. As another consequence, we note that
the three-dimensional expression for the fluctuations is
adequ:e as long as d ))g„.Presently, however, it
remains doubtful whether the observed temperature
dependence of the threshold fiel (for low temperatures)
can be explained in all cases by the above arguments. '

Finally, we remark that for a film of thickness d ~I.
&

[compare (57)], the temperature dependence of the
threshold field is given by

—2 T/To 7r 4T/To-
2d 24

d~L~ .

(64)

As a consequence, the crossover thickness d* is also tem-
perature dependent, with the result

d*(T)/d*(T =0)=exp(2T/To) .

Thus d* increases with increasing temperature, which
reAects the temperature dependence of the Fukuyama-
Lee-Rice length.

Clearly, (59) requires a short-wavelength cutoff, which we
introduce into this expression by multiplying by
exp( —

Toq ). Physically, this can be motivated by the ob-
servation that the long-wavelength expansion, on which
all our results are based, ceases to be valid on the scale of
the amplitude coherence length. Thus, To-(g„/L~~)—10 in order of magnitude. Neglecting for simplicity
the inertia, we obtain

VI. CONCLUSIONS

In summary, we introduced in this paper a different ap-
proach to the random disorder inherent in the charge
density wave problem. Within this technique, it was pos-
sible to derive an impurity averaged generating function-
al on which, as we hope, further nonperturbative studies
can be based. Presently, however, we have not been suc-
cessful with this goal. Clearly, within perturbation
theory which we have studied in some detail in order to
illustrate some features of our method, we obtained re-
sults which agree with standard perturbation theory. In
particular, we studied the dimensional crossover in the
threshold field; the results are in reasonable agreement
with experiment' (but this is also true for Bardeen's
quantum theory ). In addition, our results for the tem-
perature dependence agree with an earlier theoretical ap-
proach" which is based on completely different argu-
ments.
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APPENDIX

Vo(q) 47re'
V(q, co)=, Vo(q) =

e„(q,co)
'

q2
(Al)

which is the Coulomb interaction screened by the normal
electrons (at Matsubara frequency co). The dielectric
function e„(q,co) is related to the density-density correla-

In order not to interrupt our line of arguments, we
have excluded in the above sections a detailed discussion
of the microscopic theory that leads to (3) including the
dissipation and Auctuating force. There is, however, a
rather important contribution arising from the long-
range Coulomb forces. These, as is well known, are
screened by the normal electrons (see Sneddon and also
Refs. 12 and 19). This aspect deserves further attention
and will be discussed in this appendix.

Though we could base our arguments again on the
path integral version of the microscopic theory, includ-
ing the Coulomb interaction, the result can be summa-
rized in the low-temperature limit very simply as follows.
Note that for low temperature, screening is entirely due
to the normal electrons, i.e., those from parts of the Fer-
mi surface not participating in the CDW transition.
Thus define
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tion function of the normal electrons in the usual way.
As a result, the Coulomb contribution to the Euclidean
action Sc is given by (irt =kii = 1):

This is highly anisotropic, provided y, dominates. An
important feature of the Coulomb contribution is ex-
pressed by the statement that

Sc[y]=—f dx dx' p V(x —x') p, (A2)
1,5p(x), 5p(x')
2 e e

fdry, (r)=0 . (A 10)

~TI'
e( q, co ) = 1+

1

q2)q
~co +q2)q

(A3)

Here qTF =8ire N„(0),N„(0)is the normal electron den-
sity of states at the Fermi surface, and q2)q=q, D~~

+q zD~, where D
~~

and D~ are the parallel and perpendic-
ular diffusion constants respectively. Actually, the "1"in
(A3) is negligible. Taking all this into account, we find in
the Fourier representation

F T dqu2N(0)2
'[~]=

4N (0) ~f,q. x
tt q23q

(A4)

Comparison with the Hamiltonian in (3) shows that the
first term in (A4) implies simply a renormalization of the
phason speed, according to

N(0)
N„(0) (A5)

which can be a considerable enhancement provided large
parts of the Fermi surface are affected by the CDW tran-
sition [N(0) ))N, (0)]. On the other hand, we write the
second term as follows:

Ty f, ~~~ ~~, .l'), (q),
mFN(0) q

4 (2ir)

where x =(r, r), the r integration is between 0 and
P= 1/T and 5p is given by expression (1). Presently, we
concentrate upon the first term in (1) (however, see Ref.
5) and use the long-wavelength, low-frequency limit of
the dielectric function

'2

In order to discuss the consequences of the Coulomb
contribution to our results, we introduce reduced quanti-
ties as described in Sec. II, using presently the renormal-
ized phason speed [Eq. (A5)] and the bare viscosity yo to
effect the normalizations. In particular, (A7) can be writ-
ten as

),(q) =r,d'(q), (Al 1)

Go (q, co) = I ico[1+y, (q)/yo] —
q I (A13)

in comparison with (25); the inertia term is neglected im-
mediately. In addition, we have in (27),

O[ 1+1,(q) /)'0) (A14)

which implies that the fluctuation-dissipation theorem
remains unchanged.

Turning now to the explicit results of Secs. IV and V,
we consider again (41) within the approximation (44).
Due to the property (A10), the leading term in (47),
which represents a uniformly sliding CDW, is un-
changed. This implies that the high field conductivity is
given by the bare viscosity. ' ' ' While the correction
term is affected, it follows nevertheless that it is formally
still given by (46); explicitly, the second term on the rhs
of (47) is now modified according to

where y,o=uFN(0)/mFN„(0)Dl and

f(q)= (A12)
qDq

where D(~ =D(~ /L
~~

and Di =Di /L i. The general discus-
sion of Sec. III still applies, except for a redefinition of
the zero-order Green's function Gp, which is given by

where we defined 6~8[1+@,(q)/yo] . (A15)

uFN(0) q
y, (q)=

mFN„(0) q&q
(A7)

Note that y, (q) depends only upon the direction of the
wave vector; hence we obtain as in (48)—(50)

y5(r —r')~y(r —r') . (A9)

Note that (A5) and (A7) have also been obtained in Ref.
12, where the more general case of finite temperatures
was considered.

The following steps of analytic continuation are now
straightforward, as described in Sec. III. Thus we find
the trivial change in &, as given by (A5), but in addition
the dissipative term due to y, becomes nonlocal in space
according to [compare (7)]

yy~ f d r'y(r —r')y(r', t), (A8)

where y(r)=yo6(r)+y, (r). Furthermore, the correla-
tions of the Auctuating force are modified accordingly,
with the result

(+) @ C @D/2 1—(A16)

C3 = —1+
2 pp

(A17)

where the angular brackets denote an angular average.
At low temperatures, we expect yp to become small;
hence it is sensible to consider a limit y,p)) yp, in which
case

Tcp

(
f(q(

)
(A18)

where for wires (D= 1) and films (D=2), C22 equals the
values given in (49) and (50). On the other hand, for
D=3,
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C,(x»1)=C,(0)x (A19)

Thus the enhancement of C3 due to the prefactor in
(A18) is partly compensated for x ))1, which seems to be

This expression is a decreasing function of x =DtL~~/
D1Lt, with C3(0) =(y,o/2yo)'~, C3(1)=C3(0)/2, and

the relevant limit. These results imply an enhancement
of 6'T over the value (51), provided C3 ) 1/&2.

Finally, considering thermal fluctuations (Sec. V), the
approximation M(~)=M is adequate; in addition this
quantity is not modified compared to (61). This is be-
cause it characterizes the equal-time correlations of the
phase.
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