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The response of a one-dimensional fermion system is investigated using density functional theory �DFT�
within the local-density approximation �LDA� and compared with exact results. It is shown that DFT-LDA
reproduces surprisingly well some of the characteristic features of the Luttinger liquid, for example, the
dispersion of the collective charge excitations. On the other hand, the approximation fails even qualitatively for
details of the dynamic response and for quantities for which backscattering is important, i.e., those quantities
which are crucial for an accurate description of transport. In particular, the Drude weight in the presence of a
single impurity is discussed.
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I. INTRODUCTION

Density functional theory �DFT� is the most efficient and
powerful tool for determining the electronic structure of sol-
ids. While originally developed for continuum electron sys-
tems with Coulomb interaction,1,2 DFT has also been applied
to lattice models, such as the Hubbard model.3–6 One goal of
these studies was to develop new approaches to correlated
electron systems: lattice models often allow for exact
solutions—either analytically or based on numerics—which
hence can serve as benchmarks for assessing the quality of
approximations that usually have to be made when using
DFT. Very popular in solid-state applications is the local-
density approximation �LDA� where the exchange-
correlation energy of the inhomogeneous system under con-
sideration is constructed via a local approximation from the
homogeneous electron system. Recently a lattice version of
LDA has been suggested for one-dimensional systems6,7

where the underlying homogeneous system can be solved
using the Bethe ansatz. For example, the Bethe ansatz LDA
has been applied to study ultracold fermions in one-
dimensional optical lattices,8,9 Friedel oscillations in one-
dimensional metals,10 quantum spin chains,10 the Mott gap in
the Hubbard model,7 and strongly correlated electrons out of
equilibrium.11

For small systems and not too strong interactions, LDA in
most cases produces reasonable results—which can be ob-
tained with much less numerical effort than needed when
using more accurate methods, such as exact diagonalization
or the density-matrix renormalization group. This led to the
hope that the LDA may serve as a useful tool for large sys-
tems where the numerical effort for the more accurate meth-
ods is too expensive.

After recalling in Sec. II the theoretical background for
the Bethe ansatz LDA, we will study in detail the LDA so-
lution of spinless fermions in one dimension. In Sec. III we
determine the charge susceptibility and discuss, in particular,
questions of stability as well as the static and the dynamic
response. In Sec. IV, we study the Drude weight �which can
be related to the conductivity� in the presence of a single
impurity, and finally, present our conclusions in Sec. V. From
the size dependence of our results, we find that for large
systems, LDA predictions are qualitatively incorrect even for
weak interaction.

II. FORMALISM

We consider a one-dimensional model of spinless fermi-
ons described by the Hamiltonian

Ĥ = − t�
i

�ĉi
+ĉi+1 + H.c.� + V�

i

n̂in̂i+1 + �
i

vin̂i, �1�

where ĉi
+�ĉi� creates �annihilates� a fermion at site i, t is the

hopping parameter, V is the nearest-neighbor interaction, and
vi is an arbitrary local potential. The lattice consists of L sites
�the lattice constant a is set to one�, and periodic boundary
conditions are assumed.

The lattice version3 of DFT relies on the fact that there is
a one-to-one correspondence between the potentials �vi� and
the ground-state expectation values of the site occupations
�ni�. Therefore it is—in principle—possible to express all
quantities that can be obtained from the ground-state wave
function as a function �or functional in the continuous case�
of the densities. The site occupations as a function of the
potentials can, of course, be found from derivatives of the
ground-state energy with respect to the local potential,

ni =
�E0

�vi
. �2�

On the other hand, in order to determine the potentials from
the densities it is convenient to define the function

F��ni�� = min
�→�ni�

���T̂ + V̂��� , �3�

where �→ �ni� indicates that the minimization is constrained
to such wave functions � that yield the given site occupa-

tion, i.e., ���n̂i���=ni. Here T̂ and V̂ are the kinetic and
interaction parts of the Hamiltonian �1�, respectively. The
ground-state energy is obtained by minimizing the function
E��ni��=F��ni��+�ivini with respect to ni. This yields the
condition

�F

�ni
+ vi = 0, �4�

which, of course, is purely formal unless F or at least a
reasonable approximation for it is available.
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A major step toward the practical implementation of DFT
was the idea of Kohn and Sham2 to employ a noninteracting

auxiliary Hamiltonian Ĥs in order to calculate the ground-
state density profile. In the present case,

Ĥs = T̂ + �
i

vi
sn̂i, �5�

where the potentials vi
s have to be chosen such that in the

ground state of Ĥs the site occupations ni are the same as in
the interacting model. Performing the same steps as before,
one obtains the conditions

�Fs

�ni
+ vi

s = 0. �6�

Combining Eqs. �4� and �6� yields

vi
s = vi +

�

�ni
�F − Fs� ¬ vi + vi

H + vi
xc, �7�

where vi
H=V�ni+1+ni−1� is the Hartree potential, and vi

xc is
the so-called exchange-correlation potential. The minimiza-
tion problem of DFT is thus mapped onto the diagonalization

of the one-particle Hamiltonian Ĥs supplemented with the
self-consistent condition �7�. However, there remains the
problem of finding a practical approximation for the
exchange-correlation potential vi

xc. Most DFT studies of lat-
tice models have so far relied on the LDA where the ground-
state energy density �i of the inhomogeneous system is ap-
proximated by the energy density of a homogeneous system
at the same density. In the present case this quantity can be
calculated from the Bethe ansatz equations;12 hence

	vi
xc
LDA =

�

�ni
	�BA�ni� − �H�ni�
 , �8�

where �BA�n� is the Bethe ansatz energy per site of a homo-
geneous system with particle density n and �H�n� is the cor-
responding energy density in the Hartree approximation.

III. SUSCEPTIBILITY

In order to assess the results based on LDA and to discuss
their validity, it is appropriate to recall first the phase dia-
gram of the model under consideration.12,13

In the homogeneous case and away from half filling, one
finds for all values of the interaction parameter V / t�−2 a
Luttinger liquid phase, i.e., there is no long-range charge
order and the low-energy excitations are gapless collective
charge excitations. For V / t�−2, phase separation is found.
Finally, at half filling and for V / t�2 the model exhibits
long-range charge order and a charge gap opens.14

Figure 1 shows the exchange-correlation potential vxc�n�
obtained from the Bethe ansatz 	compare Eq. �8�
 for several
values of the interaction strength V. Due to particle-hole
symmetry, we have vxc�1−n�=−vxc�n�. Furthermore, for
V / t�2 there is a discontinuity at n=1 /2 related to the open-
ing of the charge gap.

A. Stability

First we study the stability of the homogeneous LDA so-
lution by considering the charge susceptibility ��q�. Gener-
ally, the susceptibility can be expressed as15,16

��q� =
�0�q�

1 + 	V�q� + fxc�q�
�0�q�
, �9�

where q is the wave vector, fxc�q� is the Fourier transform of
f i−j

xc =�vi
xc /�nj, and V�q�=2V cos q; �0�q� is the static suscep-

tibility of the auxiliary system given by �L→��

�0�q� =
1

4�t sin�q/2�
ln� sin�q/2� + sin kF

sin�q/2� − sin kF
� , �10�

where kF is the Fermi wave vector. The stability boundary of
the homogeneous density profile is determined by the condi-
tion that the static susceptibility becomes infinite and
changes sign; this happens whenever the denominator in Eq.
�9� vanishes, i.e., for V�q�+ fxc�q�=−�0

−1�q�. Due to the loga-
rithmic divergence of �0�q� for q→2kF, this is equivalent to
the condition that V�2kF�+ fxc�2kF� changes sign. Notice that
within LDA the function fxc�q�→ fLDA

xc is independent of q.
Figure 2 shows the region of stability in the n-V plane ob-
tained within LDA both for the infinite system and for finite
systems of length L=100 and 1000, respectively. For L→�
only systems with density near 1/2 and not too strong inter-
action are stable; further away from half filling, the homoge-
neous solution is unstable for arbitrarily weak interaction.
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FIG. 1. �Color online� Exchange-correlation potential vxc

	within LDA as obtained from Eq. �8�
 of the one-dimensional spin-
less fermion model as a function of the density n for several values
of the nearest-neighbor interaction V.
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FIG. 2. �Color online� Critical interaction strength Vc above
which the LDA susceptibility is negative, indicating an instability of
the system with respect to charge ordering. In the infinite system,
the stable region is localized near half filling from nc�0.331 to 1
−nc. For finite system size and weak interaction, LDA is stable for
all densities.
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For an accurate determination of the phase boundary we
investigate the weak-interaction case in more detail. We find

fLDA
xc = �2

�n2 ��BA − �H� = − V�2kF� + O�V2� �11�

so that in the first order in the interaction no conclusion
about the stability can be drawn: the second-order correction
to the ground-state energy �2 is needed. Numerically we find
that its second derivative with respect to the density �2��n�
changes sign at nc�0.331 thus limiting the range of stability
to nc�n�1−nc at weak coupling. This result should be con-
trasted with the Hartree approximation �fxc=0� where the
homogeneous system is stable only for V�2kF��0, i.e., be-
low quarter and above three quarter filling, and with the ex-
act ground state where a charge instability of the homoge-
neous system occurs only at half filling for V�2t.

There are, however, very pronounced finite-size effects
that strongly enlarge the actual region of stability within
LDA. Since �0�2kF� diverges only logarithmically with sys-
tem size L, the critical interaction strength approaches zero
very slowly, Vc�L�
1 /�ln L. As a consequence, for finite
systems and from weak to intermediate interaction strength,
the homogeneous LDA solution is stable for all densities, as
can be seen in Fig. 2 for L=100 and 1000.

B. Static response

Here we investigate the static susceptibility, i.e., its q de-
pendence, in more detail. In Fig. 3 we show �LDA�q� for
V / t=1 in comparison with the exact susceptibility obtained
from numerical diagonalization of small systems. As to be
expected, in the long-wavelength limit q→0, perfect agree-
ment is found. Technically, there is a cancellation between
the susceptibility �0

−1�0�=2�t sin kF and the second deriva-
tive of the Hartree energy �H=−�2t /��sin kF+Vn2 with re-
spect to n=kF /�. Therefore,

�LDA�q → 0� = � �2�BA

�n2 �−1

=
1

L

�N

��
, �12�

which is the exact uniform susceptibility of the interacting
system. Unfortunately, already the next to leading contribu-
tion 
q2 is not obtained correctly within LDA. At half filling
the discrepancy between the LDA susceptibility and the ex-
act one becomes more and more pronounced for q→2kF

=�. At q=2kF the exact susceptibility increases with the sys-
tem size �not shown in the figure� and diverges with a power
law, while in LDA there is only a cusp. The cusp value itself
remains finite and approaches �LDA���=1.668 / t for L→�.

At quarter filling �LDA�q� is very close to the exact sus-
ceptibility for q�2kF, while for q�2kF there is a clear dis-
crepancy. For q=2kF=� /2 the exact result again is strongly
size dependent and diverges for L→�, while within LDA
the susceptibility diverges already at a finite system size
since at quarter filling one is already outside the range of
stability of LDA.

C. Dynamic response

DFT as presented in Sec. II is a ground-state theory. How-
ever, a time-dependent generalization17 of DFT is available,
which allows one to calculate frequency-dependent response
functions.15 The dynamic susceptibility of the homogeneous
system is of the same form as Eq. �9� with the only differ-
ences that �0�q� has to be replaced by �0�q ,	� and fxc�q� by
fxc�q ,	�. In a simple approximation called adiabatic local-
density approximation18 �ALDA�, one neglects this fre-
quency dependence and uses the function fxc already known
from LDA fxc�q ,	�→ fLDA

xc . The corresponding approxima-
tion for the susceptibility is denoted as �ALDA�q ,	�.

Figure 4 shows the imaginary part of �ALDA�q ,	� in the
q-	 plane for a half-filled system and V / t=1. A continuum
of excitations in the frequency range 2t�sin q��	
�4t sin�q /2� is apparent, which can be identified with the
particle-hole continuum. Note that the spectral weight of the
particle-hole excitations vanishes for q→0 as expected for a
Luttinger liquid.

Above this continuum we find a well-defined branch of
collective excitations with linear dispersion for small q. Ana-
lytically, the dispersion of the collective excitations can be
obtained from the singularities of the susceptibility, i.e., by
considering the zeros of the denominator of ��q ,	�. In the
low frequency and small wave-vector limit, the susceptibility
agrees with the Luttinger liquid result

��q,	� �
1

L

�N

��

�qv�2

�qv�2 − 	2 , �13�

where v is the velocity of the collective excitations. Within
the adiabatic local-density approximation, the velocity is
given by

L = 20
L = 18
L = 16
L = 14

q

χ
(q

)

0 π/2 π 3π/2 2π

1

0.8

0.6

0.4

0.2

0

FIG. 3. �Color online� Static susceptibility ��q� �in units of t−1�
in LDA for V / t=1 at half filling �L=202; one-peak curve� and
quarter filling �L=204; two-peak curve�. The symbols are results
from exact diagonalization for systems of up to L=20 sites.
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FIG. 4. �Color online� Imaginary part of the dynamical suscep-
tibility �ALDA�q ,	� �in units of t−1�.
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vALDA = vF�1 +
2V + fLDA

xc

�vF
, �14�

where vF=2t sin kF is the Fermi velocity. To linear order in
the interaction, vALDA agrees with the exact result. In Fig. 5
we compare vALDA with the exact value obtained from the
Bethe ansatz for various interaction strengths and densities.
For small densities, there is nearly perfect agreement be-
tween the two values. The largest deviation occurs at half
filling at the critical point V=2t where the error is 2 /��−1,
which is about 13%. We want to emphasize that within the
random-phase approximation, i.e., neglecting the ALDA cor-
rection factor fxc in Eq. �14�, one never obtains the correct
charge velocity except for V=0. From the discrepancy be-
tween vALDA and the exact value, one concludes that the
frequency and wave-vector-dependent function fxc�q ,	� is
nonanalytic in the q ,	→0 limit.

Recently several exact results for the dynamic response
beyond the free-boson description of the Luttinger liquid
have been obtained;19–22 as to be expected, these results are
not reproduced within ALDA. For example, the structure
factor �see, in particular, Fig. 1 of Ref. 20 and Fig. 1 of Ref.
21� considered as a function of 	 for fixed q displays a
continuum of states in a finite range 	−�	�	+ where 	


are q and interaction dependent. In addition, for a repulsive
interaction, a power-law divergence near 	− is found, imply-
ing a shift of spectral weight toward the lower end of the
continuum. In contrast, ALDA incorrectly shows a well-
defined collective mode for finite q clearly separated from
�and above� the continuum, as discussed above; see Fig. 4.

IV. SINGLE IMPURITY

Finally, we consider the spinless fermion model for a non-
zero potential vi. As an important example in this context, we
consider the case of a single impurity, i.e., vi=vimp at the
impurity site and vi=0 elsewhere. It is well known that in
one-dimensional interacting systems the reflection and trans-
mission probabilities for scattering at an impurity are
strongly renormalized.23–25 Here we address the question of
whether this renormalization is captured by the LDA—with
negative conclusion.

Let us first consider the simple picture for the origin of
the renormalization that was developed by Matveev et al.25

Around an impurity, the density is disturbed, and in the pres-
ence of electron-electron interaction this modulation �Friedel
oscillations� leads to additional scattering. In particular, the
Friedel oscillations are the origin of enhanced backscatter-
ing. To linear order in the interaction, the correction to the
transmission probability for a wave vector q close to kF is
given by25

�T = − 2�T0�1 − T0�ln� 1

�q − kF�� , �15�

where T0 is the bare value; the dimensionless parameter �
characterizes the interaction strength. It is given by the sum
of a Hartree and an exchange contribution �=�H+�x with
�H=−V�2kF� /2�vF and �x=V�0� /2�vF. By summation of
the leading divergences to all orders in the interaction using
a renormalization-group approach, it is found that even for a
weak defect the transmission approaches zero as q→kF �re-
pulsive interaction�. Repeating the arguments leading to Eq.
�15� within DFT and for a weak impurity, we find �→
−	V�2kF�+ fxc�2kF�
 /2�vF. Since fLDA

xc =−V�2kF�, this singu-
lar correction to the transmission is zero; i.e., T is not renor-
malized in DFT-LDA.

To substantiate this finding numerically, we calculate the
Drude weight for the single-impurity case. The Drude weight
D is defined as the response of the system to a change of
boundary conditions according to

D =
L

2
�d2E

d
2�

=0

, �16�

where E�
� is the ground-state energy. The parameter 

characterizes the twist in the boundary conditions: 
=0 cor-
responds to periodic and 
=� to antiperiodic boundary
conditions.23,26 The Drude weight is closely related to the
transmission through the defect, and in the noninteracting
system—where T is not renormalized—the size dependence
of D is negligible. In the interacting system, on the other
hand, the transmission coefficient for �q−kF��vF /L is rel-
evant as discussed above. Correspondingly, the Drude weight
increases �decreases� algebraically with system size for re-
pulsive �attractive� interaction.23–25

In Fig. 6 we present our LDA results for the Drude weight
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FIG. 5. �Color online� Charge velocity v as a function of the
interaction strength V for densities n=0.1, 0.2, 0.3, 0.4, and 0.5
�from bottom to top�. Exact values from Bethe ansatz �symbols� in
comparison with the results obtained within ALDA �solid lines�
from Eq. �14�.
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FIG. 6. �Color online� Drude weight D for a half-filled system
with a single impurity as function of the interaction strength V for
several values of the impurity strength vimp / t=0, 1, 2, 3, 4, and 5
�from top to bottom�. The solid curve is the Bethe ansatz result for
the clean system; the long- and short-dashed curves are LDA results
for L=102 and L=202, respectively.

SCHENK et al. PHYSICAL REVIEW B 78, 165102 �2008�

165102-4



at half filling for different system sizes �L=102 and L=202�
and different values of the impurity strength. Unlike the �nu-
merically� exact results,23 we do not observe any dependence
on system size within the LDA in agreement with the pertur-
bative argument given in relation with Eq. �15�.

V. SUMMARY

We studied in detail the Bethe ansatz LDA for spinless
fermions in one dimension. The numerical effort of the
method is comparable to the Hartree �or Hartree-Fock� ap-
proximation. As a major improvement with respect to the
Hartree approximation, the Bethe ansatz LDA correctly pre-
dicts a noncharge-ordered ground state for a large range of
parameters. Both the static and the dynamic density response
functions agree reasonably well with the exact results. In
particular, for low density and q�2kF, the static susceptibil-
ity obtained within LDA is almost indistinguishable from the
exact one. In the dynamic case a very good agreement for the
velocity of collective charge excitations is found. On the
other hand, the adiabatic LDA fails to describe details of the
dynamics of the spinless fermion model, namely, those that
are related to aspects beyond the Luttinger model; see Sec.
III C.

Furthermore, the LDA does not capture the fact that the
system is critical with respect to a charge-ordering phase
transition. Whereas the exact susceptibility has a power-law
singularity at q=2kF, the LDA susceptibility remains either
finite or the system develops charge ordering for very large
system size. As a consequence physical quantities that are
related to the 2kF-periodic charge oscillations are described

incorrectly within the local-density approximation. Examples
are the Friedel oscillations around a defect, the interaction
renormalization of the reflection and transmission probability
�and therefore the conductance�, and the Drude weight.

We emphasize that our focus has been on a “simple”
interacting-fermion model in one dimension utilizing exact
results available for the model �for the homogeneous case�.
The situation is entirely different from “standard” applica-
tions of DFT-LDA in solid-state physics, in which case the
ionic and electronic charge densities vary strongly. Thus, in
solid-state physics �and in chemistry�, there has been exten-
sive research on improving the exchange-correlation poten-
tial, for example, within the generalized gradient
approximation,27 i.e., by including derivatives of the density,
or within the LDA+U approach,28 which captures aspects of
the �local� Coulomb interaction between localized orbitals.

It remains to be seen whether any of these concepts are
useful for the one-dimensional models studied here. From
our results, it appears to be promising to pursue the exact
exchange or optimized effective potential approach29 further;
however, it is at present not clear whether the “critical” 2kF
scattering in one dimension can be captured properly.
Nevertheless we are confident that the Bethe ansatz LDA,
combined with numerically determined exact exchange-
correlation potentials,30 is a very useful approach for rela-
tively short inhomogeneous systems.
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