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Abstract
Bymeans offirst principles calculations, we comprehensively investigate the stability ofO vacancies at
the different possible sites in the (LaVO3)6/SrVO3 superlattice and their effect on the electronic
structure. Formation energy calculations demonstrate thatO vacancies are formedmost easily in or
close to the SrO layer.We show thatO vacancies at these energetically favorable sites conserve the
semiconducting character of the superlattice by reducing V4+ ions next to the SrO layer toV3+ ions,
while all other sites result in ametallic character.

1. Introduction

Ovacancies in transitionmetal oxides are becoming increasingly critical in device applications, since they act as
electron donors and therefore can strongly perturb the electronic structure [1–3]. On the other hand, as theO
vacancy concentrationmay be reversibly controlled by an external electricfield or by epitaxial strain, the
electronic conductivity andmagnetism of transitionmetal oxides can be tunedwithout introducing other
impurities [4, 5]. Numerous experimental and theoretical works have investigated the formation and diffusion
ofO vacancies (and the induced effects on the electronic andmagnetic properties) in transitionmetal oxide thin
films [5–8] and heterostructures [9–11], while the role ofO vacancies in superlattices is still a developing field.
For the LaAlO3/SrTiO3 heterostructure (of non-magnetic insulators), for example, the consequences ofO
vacancies for the formation of a two-dimensional electron gas or even superconductivity at the interface, as
found experimentally, have been studied in [12–15]. O vacancies also play a decisive role for themagnetic
ordering in this heterostructure [15, 16].

LaVO3/SrVO3 superlattices with different periodicities are attracting a lot of interest in recent years,
particularly due tomagnetic features that do not exist in the bulk compounds [17–22]. It also has been reported
that the saturationmagnetization of (LaVO3)m/SrVO3 superlattices is larger for even than for odd values ofm
[18]. The key for understanding the experimental situationmay be the observation of simultaneous appearance
of bothV3+ ions (as in bulk LaVO3) andV

4+ ions (as in bulk SrVO3) at the interface of the (LaVO3)6/(SrVO3)3
superlattice in [22]. Under the assumption that there are noO vacancies, first principles calculations show that
these V3+ andV4+ ions form a checkerboard pattern adjacent to the SrO layer [23]. However, in a real sample, O
vacancies are inevitable during the growth process [24], whichmay affect the electronic reconstruction of theV
ions and, thus, the properties of the superlattice. In addition, it can be expected that the location of anO vacancy
with respect to the SrO layer is important for its influence on the electronic structure. In order to clarify the role
ofO vacancies in the (LaVO3)6/SrVO3 superlattice, which has been investigated experimentally in [18], we thus
introduce in the present work such vacancies in different distances from the SrO layer and study their stability.
This will allow us to determine the induced charge transfer as well as the effects on the electronic properties.
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2.Methodology

Spin polarized first principles calculations are performed employing the projector augmentedwavemethod
[25, 26] (pseudopotentials with the following cores: He forO,Ne 3s2 for V, Ar 3d10 for Sr, andKr 4d10 for La) of
theVienna ab initio simulation package [27–30]. The generalized gradient approximation (Perdew–Burke–
Ernzerhof [31, 32]) is adopted for the exchange-correlation functional and the electronic correlations in theV 3d
orbitals are taken into account by an effective onsite interaction parameter of 3 eV [33]. The cut-off energy of the
planewave basis is chosen as 500 eV.Wehave checked that a higher cut-off energy of 650 eV results for the
pristine (LaVO3)6/SrVO3 superlattice in a total energy difference of less than 0.05 eV and a change in the band
gap of less than 0.01 eV. The Brillouin zone is sampled on a 9×9×1 k-mesh, for whichwe have confirmed
convergence. The total energy of the self-consistency calculations is converged to 1×10−5 eV and the atomic
positions are relaxed until the forces on all atoms have declined below 0.02 eV Å−1.

We form a singleO vacancy in the (LaVO3)6/SrVO3 superlattice by removing 1 out of the 42 O atoms. This
represents a sufficiently lowdefect concentration that only the atomic coordinates have to be relaxed, while the
lattice constants can be adopted from the pristine superlattice without relaxation.

However, the shortest distance betweenO vacancies (through the periodic boundary conditions) is only
5.5 Å in our simulation cell, implying that the interaction between the defects is not yet fully negligible. Lowering
the defect concentration, on the other hand, would require a larger simulation cell, which is computationally not
treatable as a consequence of a very slow convergence behavior. A superlattice with thinner LaVO3 slab also is
not an alternative, because the experimental situationwould no longer bemodeled and the interfaces at the two
ends of the slabwould start interacting. Due to the epitaxial strain present in the (LaVO3)6/SrVO3 superlattice,
themagnetic order is found to beA-type antiferromagnetic throughout the superlattice except for ferromagnetic
coupling of the twoVO2 layers next to the SrO layer, which is in agreement with the results reported in [27]. For
comparison, we also studyOdeficient bulk LaVO3 using the lattice constants of the superlattice and enforcing
A-type antiferromagnetic ordering. The formation energy of anO vacancy is calculated as

E E E E
1

2
, 1f defective O pristine2= + - ( )

where Edefective is the total energy of theOdeficient superlattice, EO2
the total energy of a gas phaseO2molecule

(triplet ground state), andEpristine the total energy of the pristine superlattice.

3. Results and discussion

Our calculations for bulk LaVO3 result in a band gap of 1.39 eV, which is close to the experimental value of
1.1 eV as reported in [34]. The two inequivalentO vacancy sites in bulk LaVO3 are shown infigure 1(a): OVL is
located in theVO2 layer andOVB in the LaO layer (forming a bridge betweenVO2 layers). The formation energy
ofOVL (5.54 eV) is found to be higher than that ofOVB (5.39 eV), which suggests thatO vacancies favor the LaO
layer. Figures 1(c) and (d) show the density of states (DOS) obtained forOVL andOVB in bulk LaVO3,
respectively. In both cases the semiconducting state ismaintainedwith a band gap of 0.60 eV. As compared to
theDOSof pristine bulk LaVO3 (band gap 1.39 eV), see figure 1(b), additional states appear above the valence
band and strongly reduce the size of the band gap. Analysis of theDOS projected on the 3d orbitals of theV
atoms located next to anO vacancy, see figures 1(e)–(h), shows that eg states (dx y2 2- in the case ofOVL and
d z r3 2 2- in the case ofOVB) form the valence band edge. Themagneticmoments of these V atoms increase slightly
from1.82 μB (pristine bulk LaVO3) to 1.96 μB. The occupation of eg states can be attributed to transfer of excess
charge (from theO vacancy) to the neighboringV ions.Wefind that next toOVB eachV atomgains 0.45
electrons and each La atom gains 0.19 electrons. Next toOVL theV atoms also gain 0.45 electrons and the two
closest La atoms gain 0.06 and 0.13 electrons, respectively. It should be noted that Bader charges tend to
underestimate charge transfers.

We consider for the (LaVO3)6/SrVO3 superlattice all inequivalent O vacancy sites: four sites in each of the
VO2 layers L1 to L4 (OVL), seefigure 2(a), and two sites in each LaO layer in between them (OVB). TheO vacancy
formation energies obtained for these sites are summarized infigure 2(b). In the bulk-like region of the
superlattice (L3, L4) the values are similar to our results forOVL andOVB in bulk LaVO3, compare the dotted
lines infigure 2(b). They decrease gradually whenwe approach layer L1, showing thatO vacancies are formed
more easily towards the interface of the superlattice. A similar behavior has been reported in [35] for the
LaAlO3/SrTiO3 interface. Interestingly, wefind a change in the electronic character of the superlattice as
function of the distance of theO vacancy from the SrO layer, seefigure 2(c): whileO vacancies in the bulk-like
region of the superlattice give rise tometallic states, those located close to the interface (layer L2 are closer)
conserve the original semiconducting state. In addition, within the semiconducting regime, the band gap grows
gradually towards the interface.
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Wefirst analyze themetallic state of the defective superlattice. Since the differentO vacancy sites of this
regime, comparefigure 2, behave similarly, we study as first example anO vacancy in layer L3 inmore detail. The
total DOS and band structure obtained for this case are illustrated infigures 3(a) and (b), respectively. The
pristine (LaVO3)6/SrVO3 superlattice is predicted to exhibit a band gap of 0.70 eV, whilefigure 3 shows for the
superlattice withO vacancy in layer L3 a significant number of electronic states at the Fermi energy (mainly spin
majority states, but also spinminority states). Infigure 4 further insight is provided by projecting theDOS on the
3d orbitals of individual V atoms in layers L1 and L3. In the case of the pristine (LaVO3)6/SrVO3 superlattice,
V3+ ions (sites V1b andV1c) andV4+ ions (sites V1a andV1d) form a checkerboard pattern next to the SrO
layer. Everywhere else we haveV3+ ions. In the case of defective bulk LaVO3, as discussed earlier, the excess
charge entersmainly the dx y2 2- or d z r3 2 2- orbitals of the twoV ions next to theO vacancy, whereas in the
superlattice a substantial part of this charge does not stay at sites V3c andV3d but is transferred to aV4+ ion at
the interface (site V1d, see figure 4(d)), resulting in a partially occupied band. Correspondingly, the dx y2 2-

Figure 1. (a)Ovacancy sitesOVL (layer) andOVB (bridge) in bulk LaVO3. The La, V, andO atoms are represented by large blue balls,
medium gray balls, and small red balls, respectively. Total DOS of (b)pristine and (c), (d) defective bulk LaVO3.DOS projected on the
3d orbitals of theV atoms (e) left and (g) right ofOVL aswell as (f) above and (h) belowOVB.
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orbitals become partially occupied at sites V3c andV3d. Themetallic character thus is induced by the interplay
between theO vacancy and the interface, which, of course, is impossible in the case of defective bulk LaVO3 due
to the absence of V4+ ions (while a comparable situation is realized in La1−xSrxVO3 solid solutionswithmixed
V3+ andV4+ states and in appropriately doped LaVO3, i.e., the discoveredmechanismmay play a role). As a
consequence of the charge transfer, we find that themagneticmoment is reduced from1.96 to 1.86 μB for sites
V3c andV3d but enhanced from1.10 to 1.46 μB for site V1d.

As second example for themetallic regime, we study anO vacancy between layers L2 and L3, which
demonstrates that the described charge transfer phenomenon is not limited toOVL but also occurs forOVB. The
metallic character of the superlattice is clearly visible infigure 5, andfigure 6 indicates charge transfer from sites
V2c andV3c (located next to theO vacancy) to theV4+ ion at site V1d. Themagneticmoment turns out to be
1.30 μB at site V1d, 1.88 μB at site V2c, and 1.91 μB at site V3c.We note that site V2c (layer L2) is closer to theV4+

ion than site V3c (layer L3) so that the reduction of itsmagneticmoment (from1.96 μB) is slightlymore
pronounced.

Turning to the semiconducting regime of the defective superlattice, compare figure 2, we address as example
anO vacancy in layer L1, located between sites V1c andV1d. According to the total DOS and band structure, see
figures 7(a) and (b), respectively, this defect conserves the semiconducting character of the superlattice but the
band gap is reduced from0.70 to 0.51 eV. Infigure 8we show theDOS projected on the 3d orbitals of theV
atoms in layer L1.Wefind that the excess charge due to theO vacancy results in a 3d2 configuration for site V1d,

Figure 2. (a)Relaxed structure of the pristine (LaVO3)6/SrVO3 superlattice. L1, L2, L3, and L4 label the inequivalent VO2 layers. The
Sr atoms are represented by large green balls. (b) Formation energies ofOVL andOVB in different distances from the SrO layer. Dotted
linesmark the corresponding values of bulk LaVO3. (c)Electronic character of the superlattice.

Figure 3. (a)Total DOS and (b) band structure of the (LaVO3)6/SrVO3 superlattice withO vacancy in layer L3. Black and red lines in
(b)denote spinmajority andminority bands, respectively.
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Figure 4.DOSof the defective (LaVO3)6/SrVO3 superlattice projected on the 3d orbitals of V atoms indicated in the structure sketch
on top. TheO vacancy is located between sites V3c andV3d.

Figure 5. (a)Total DOS and (b) band structure of the (LaVO3)6/SrVO3 superlattice withO vacancy between layers L2 and L3. Black
and red lines in (b) denote spinmajority andminority bands, respectively.
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see figure 8(d), while site V1a keeps its 3d1 configuration, see figure 8(a). Themagneticmoments at sites V1c and
V1d turn out to be both 1.96 μB, whereas those of the otherV

3+ ions remain at 1.82 μB.

4. Conclusion

Wehave studied the stability of O vacancies at different sites in the (LaVO3)6/SrVO3 superlattice. It turns out
that the formation energy decreases gradually from the bulk-like region of the superlattice towards the SrO layer
(interface). AnO vacancy in the bulk-like region leads to charge accumulation on the two neighboringV atoms
aswell as to charge transfer to theV4+ ions in the checkerboard pattern at the interface. As a consequence,
partiallyfilled bands are generatedwhich give rise to ametallic character of the superlattice. Thismechanism

Figure 6.DOSof the defective (LaVO3)6/SrVO3 superlattice projected on the 3d orbitals of V atoms indicated in the structure sketch
on top. TheO vacancy is located between sites V2c andV3c.
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plays no role in the case of bulk LaVO3, since there are noV
4+ ions that could accept additional charge. On the

other hand, itmay be speculated that the discoveredmechanismbecomes relevant, for example, for
La1−xSrxVO3 solid solutionswithmixedV3+ andV4+ states and for appropriately doped LaVO3.When theO
vacancy is locatedwithin a range of notmore than twoVO2 layers next to the SrO layer, surprisingly, the
semiconducting state of the superlattice is conserved despite theOdeficiency. Thisfinding has been explained in
terms of a perturbation of theV3+

–V4+ checkerboard pattern that is present in the (LaVO3)6/SrVO3 superlattice
in theVO2 layers next to the SrO layer. Instead of partial charge transfer, as in the case of bulk-likeO vacancies,
here V ions at the interface change their oxidation state fully from4+ to 3+ and in that way are able to absorb the
entire excess charge resulting from theOdeficiency. The conservation of the semiconducting character is an
immediate consequence of this observation.

Figure 7. (a)Total DOS and (b) band structure of the (LaVO3)6/SrVO3 superlattice withO vacancy in layer L1. Black and red lines in
(b)denote spinmajority andminority bands, respectively.

Figure 8.DOSof the defective (LaVO3)6/SrVO3 superlattice projected on the 3d orbitals of V atoms indicated in the structure sketch
on top. TheO vacancy is located between sites V1c andV1d.
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