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Preface

The Algorithms and Tools for Petri Nets (AWPN) workshop is organized by the Special
Interest Group ”Petri nets and related system models” of the German Gesellschaft für
Informatik (GI) with the focus on algorithms and tools for Petri nets.

AWPN 2018 took place at Augsburg University in Germany on October 11-12. The
emphasis of the meeting was on the exchange of experiences and discussions.

Papers did not undergo a detailed reviewing process, but were inspected for rele-
vance with respect to the topics of AWPN 2018. Papers related to theoretical issues for
analysis, validation and simulation of Petri nets, on application and adaption of Petri
net based modeling techniques to different application areas and on experiences with
the implementation of visualization, analysis, simulation and teaching tools were pre-
sented at AWPN 2018. Overall, the quality of the submitted papers was very good and
all submissions matched the workshop goals very well.

The workshop startet with an invited talk on Carl Adam Petri’s Synchronic Distance
by Jörg Desel (without being published in the proceedings). Seven full papers and four
extended abstracts were presented at the workshop. We thank the authors and the pre-
senters for their contributions.

Enjoy reading the proceedings!

Robert Lorenz, Johannes Metzger
October 2018
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Spike - a command line tool for
continuous, stochastic & hybrid simulation

of (coloured) Petri nets

Jacek Chodak, Monika Heiner

Computer Science Institute, Brandenburg University of Technology
Postbox 10 13 44, 03013 Cottbus, Germany

jacek.chodak@b-tu.de, monika.heiner@b-tu.de
http://www-dssz.informatik.tu-cottbus.de

Abstract Spike is a command line tool for continuous, stochastic & hy-
brid simulation of (coloured) Petri nets (PN). It allows import from and
export to various PN data formats. Its abilities comprise the manipu-
lation of PN models by changing arc weights, markings or functions. It
also unfolds coloured PN. To comply with the demand for reproducible
simulation experiments, Spike is supported by a script language which
allows for model and simulation configuration.

Keywords: continuous, stochastic, hybrid, coloured (hierarchical) Petri
nets · simulation · configuration · reproducibility

1 Objectives

Many tools allow simulation of PN models. However, most of them have a graph-
ical user interface (GUI) which usually involves additional dependencies and
hinders batch processing. Simulation of PN models can be a time and memory
consuming process. For performance reasons such simulations should be deleg-
ated to run on a server side. Due to the reasons above, GUI tools are not well
suitable to be executed on a server.

Running simulation on a server helps to save user resources and speeds up
simulations. On a server, the user can schedule multiple simulation experiments
which can be executed simultaneously or sequentially. Often, a user wants to
check how a model behaves for different sets of parameters. In this case, the user
is forced to make changes in the model using an appropriate tool. Each time a
model is changed, the simulation needs to be repeated. To compare how a model
behaves under different types of simulation (stochastic, continuous, hybrid), it is
necessary to configure, each time separately, the simulation and the model. This
scenario can require to use separate tools for different types of simulations.

To ensure reproducible simulations, all parameters of model and simulation
configurations have to be saved. To simplify the workflow, the configuration of
the model and simulation should be supported by a script language, which allows
easy modification of parameters.
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Spike is meant for running different types of simulations of PN models. It
is supported by configuration scripts which permit to configure the model as
well as the simulation and to run sequentially multiple simulation experiments.
Storing configurations in scripts allows Spike to reproduce simulations in a user
friendly way.

2 Functionality

Spike is a slim, but powerful brother of Snoopy [2] - it is the latest addition to the
PetriNuts family of tools for modelling, analysis and simulation with Petri nets,
specifically tailored to the investigation of biochemical reaction networks. The
main focus of Spike lays on efficient and reproducible simulation of PN models.
Spike also offers import and export of various exchange data formats and some
basic reduction of PN models.

Simulation Similar to Snoopy, Spike is capable to run three basic types of sim-
ulations: stochastic, continuous and hybrid, each comes with several algorithms.
Simulation of coloured stochastic, continuous and hybrid PN models is supported
by unfolding them automatically to uncoloured models.

A given model is simulated according to the specified simulation type, des-
pite of place and transition types in the model. That means all places and trans-
itions are converted to the appropriate type. For example if a user wants to
run stochastic simulation on a continuous model, all places and transitions are
converted to the stochastic type. Likewise for stochastic models to be simulated
continuously, all stochastic transitions are converted to continuous type.

Simulation results can be saved in CSV files which can be used later for ana-
lysis and visualisation. They may comprise user-defined combinations of traces
of place markings, transition rates, as well as observers (auxiliary variables).

Conversion Spike supports the following data formats of PN models:

– ANDL and CANDL - human readable formats for Petri nets and Coloured
Petri nets, respectively, used internally by the PetriNuts framework,

– SBML (the Systems Biology Markup Language) - an XML-based repres-
entation format designed to exchange computational models of biological
processes [4],

– PNML - an XML-based interchange format for Petri nets [6],
– ERODE - a tool for the evaluation and reduction of chemical reaction net-

works [1].

Table 1 shows the data format conversions currently supported by Spike.

Reduction Spike is also able reduce structurally the model, by pruning clean
siphons and constant places. In both cases, clean siphons and constant places
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Table 1. Data format conversions currently supported by Spike.

From To

ANDL PNML, ERODE
CANDL ANDL, PNML, ERODE
SBML ANDL, PNML, ERODE
ERODE ANDL, PNML

can be calculated by Spike or loaded from a file. It is also possible to save results
of the calculation to a file, which can be used later by Spike or for other analysis
purposes.

Further reductions may be applied by converting a model to the ERODE
format, if the model is to be read as ordinary differential equations (ODEs).
Reductions of a model can have a significant impact on simulation time.

Reproducibility To comply with the demand for reproducible simulations,
Spike reads a script which allows for model and simulation configuration. The
structure of the script is easily readable for the user and does not require any
special tools for editing: a simple text editor is enough.

The configuration script allows among others:

– definition of constants, e.g.:

cons tant s : {
// name o f a group , s ee ANDL s p e c i f i c a t i o n
a l l : {

/∗ i f constant does not e x i s t
∗ then i t w i l l be c reated and
∗ can be used in the con f i gu ra t i on ,
∗ f o r example in d e f i n i n g a p lace marking
∗/
M: ”D/2 + 1”
}

}
– set marking for places, e.g.:

p l a c e s : {
// example o f use o f the newly c rea ted constant M
P: ”1000 ‘(M,M)”
P 2 2 : 500

}
– definition of auxiliary variables (observers) which allow for extra measures

by defining numerical functions; depending on the type of observer, it can be
defined for places, transitions or simultaneously for places, transitions and
constants, e.g.:
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obs e rve r s : {
p lace : {

OP01 : {
f unc t i on : ” P 1 1 + P 2 3 ”

}
}

}
– defining multiple simulation configurations, which permits to run multiple

experiments for one model configuration;
– defining multiple exports of simulation results by use of regular expressions

over the nodes of which the simulation traces are to be recorded; it is possible
to combine the results of places, transitions and observers, coloured and
uncoloured, in one file, e.g.:

export : {
// Array o f p l a c e s to save ,
// i n c l u d i n g co l o r ed p l a c e s l i k e P
// in t h i s example ( i f empty , export a l l )
p l a c e s : [ ” P 1 1 ” , ”OP01” , ”Grid .∗” , ”D” , ”P” ]
// Array o f t r a n s i t i o n s to save ,
// i n c l u d i n g co l o r ed t r a n s i t i o n s
t r a n s i t i o n s : [ ” t 3 1 1 1 2 ” , ” t3 ” , ” t3 ” ]
// Array o f ob s e rve r s to save ( i f empty , export a l l )
ob s e rve r s : [ ”M01” , ”OT01” ]
to : ”sim01− f i l e 0 1 . csv ”

}
export : {
. . .
}

3 Architecture

Spike is written in C++, it is available for Linux, Mac and Windows. It has a
modular structure, where the modules are basically decoupled from each other.
This allows for easily adding new features.

Modules communicate with each other using command patterns and a queue
of commands which is globally accessible. Each module has its own list of com-
mands with specific parameters, which must be registered to the queue during
initialisations of a module. Table 2 shows a summary of all commands currently
available in Spike.

Commands are processed in a sequential way. Each command is executed
by the module which is responsible for it. Let’s consider the following use case
illustrated in Fig. 1 – the execution of a simple configuration script. When the
command ”exe” is at the head of the command queue, the module Configure
will execute it. During execution, the configuration module communicates with
other modules by appending new commands to the queue.
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Table 2. List of Spike’s modules with their commands.

Module Command Description

Main version display version of Spike
CLI help display help for a given command
Configuration exe execute configuration script
Converter load load a model from a given file

save save a model to a given file
prune prune a model
eval evaluate constants and places
unfold unfold a coloured model

Simulation sim run a simulation of the model

4 Use cases

Spike permits to run simulations on a server as well as on the user side. It can be
done in batch mode or by integration of Spike as a service. Algorithm 1 illustrates
a typical scenario, which allows, e.g., to compare how a model behaves under
different types of simulation algorithms or under different configurations of a
given simulation algorithm.

The discussion of more scenarios exceeds the given space limit.

Algorithm 1: Use case to run multiple simulation configurations.

1 Load model
2 Set model configuration
3 Set simulation configurations
4 for each simulation configuration do
5 Run simulation
6 Save results of the simulation

7 end

5 Comparison with other tools

So far there is no tool, which allows to conveniently configure simulation exper-
iments with support of a wide range of time-dependent Petri nets classes and
simulation types. For comparison of Spike, two tools were chosen which provide
partially similar functionality.

COPASI [3] supports stochastic and hybrid simulation of biochemical net-
works. It allows the definition of multiple result exports. However, there is no
direct support for Petri nets. Configuration files follow an XML-based format,
which hinders their readability by a user.

Renew (The Reference Net Workshop) [5] supports modelling and simulation.
It permits simulation on a server [7]. However, the Renew core does not support
quantitative (stochastic, continuous and hybrid) net classes.
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CLI exe
load

unfold
eval
sim

Command queue

Configurationload, unfold, eval, sim

Converter
Simulation

load, unfold, eval

exe exe

sim

Figure 1. This example shows the flow of commands through the modules of Spike
when a user types the command ”exe”.

To summarise, Spike is specifically suitable for scenarios, when user experi-
ments require different configurations of a model and/or simulation.

6 Installation

Spike is available for Linux, Mac and Windows. Binaries can be downloaded from
its website http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Spike.
See also Spike’s website for installation instruction and manual. Currently, Spike
is under extensive development and we are open for suggestions.
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Can a Single Transition
Stop an Entire Petri Net?

Jörg Desel

FernUniversität in Hagen, Germany
joerg.desel@fernuni-hagen.de

Abstract. A transition t stops a place/transition Petri net if each reach-
able marking of the net enables only finite occurrence sequences without
occurrences of t (i.e., every infinite occurrence sequence contains occur-
rences of t). Roughly speaking, when t is stopped then all transitions of
the net stop eventually. This short contribution shows how to identify
stopping transitions during the construction of the coverability graph of
the net.

1 Introduction

We consider the following problem in this paper: Assume a place/transition Petri
net (without inhibitor arcs or capacity restrictions) and a transition t of this net.
Given any reachable marking m of the net, can we eventually stop the behavior
of the net by forbidding occurrences of t in occurrence sequences enabled at
m, or, equivalently, does no reachable marking m enable an infinite occurrence
sequence without occurrences of t?

Apparently, this question is relevant for several applications of Petri nets.
For example, given a robot (or any kind of machine) modeled by a Petri net, can
some component modeled by a particular transition be used as a cut out? As we
know from our computers, immediate stops are not always desirable, but rather
forced shut down processes. A transition t stops a Petri net model if it enforces
a shutdown process which will eventually lead to a marking which enables no
transition, except possibly transition t.

The problem tackled in this article could be solved by any standard mech-
anism involving temporal logics, for example the temporal logic LTL. In [4] it
is shown that the model checking problem for Petri nets and LTL formulas is
decidable, although according algorithms applied to unbounded Petri nets have
a huge complexity. Instead, this article provides a solution which is purely based
on Petri net analysis techniques. A typical advantage of these techniques is that
the user gets more insight to the actual behavior of the net. Often, analysis
methods tailored for Petri nets are more efficient as analysis techniques based
on a translation to other languages, at least for certain classes of inputs. This
might also be the case for the approach presented in this paper; a detailed study
to identify such classes is, however, still missing and a topic for further research.

Throughout this paper we consider place/transition Petri nets without ca-
pacity restrictions or inhibitor arcs. We call these place/transition Petri nets
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just nets. As usual, we assume that the sets of places and transitions of a net
are finite. We do, however, consider unbounded nets, i.e., nets with unbounded
places (a place is unbouded if, for any number b, some reachable marking as-
signs more than b tokens to the place). We assume the standard notations of
nets to be known, including the concept of a coverability graph for unbounded
nets (this concept goes back to [5]). The coverability graph represents aspects
of infinite behavior by finite means, and thus abstracts heavily from behavioral
details. However, it can be used to identify if a place is bounded. As we will
show, the coverability does not contain information about stopping transitions,
but a modified variant of it does.

For definitions and notations, see any textbook on Petri nets, e.g. [6], or [3].
In particular we will use the concepts of reachability tree and graph, as well
as of coverability tree and graph. Notice that often the coverability graph is
defined as a result of a non-deterministic algorithm and his hence not unique.
The algorithm constructs the reachability graph for bounded nets and a finite
coverability graph otherwise.

2 Terminating Petri nets

To warm up, we first consider the question whether a net terminates eventually,
i.e., whether all its occurrence sequences are finite.

Obviously, a bounded net terminates if and only if its reachability graph has
no cycles. In fact, if the reachability graph has a cycle, then each occurrence
sequence from the initial marking to any marking represented by a vertex of
the cycle can be extended infinitely, following the arcs of the cycle (remember
that each vertex of the reachability graph represents a reachable marking). Con-
versely, a bounded net has only finitely many reachable markings, because the
set of places of the net is finite. Since each occurrence sequence corresponds to
a directed path of the reachability graph, each infinite occurrence sequence cor-
responds to a directed path that passes through at least one vertex more than
once; thus the reachability graph has a cycle.

Unbounded nets do not terminate anyway. To see this, consider the construc-
tion of the reachability tree. Since the set of transitions is finite, each vertex of
this tree has finitely many immediate successors. By König’s Lemma, the tree
has an infinite path, corresponding to an infinite occurrence sequence.

Hence, an obvious algorithm to check termination of a net first checks bound-
edness, for example by the coverability graph construction. In case the consid-
ered net is bounded, the algorithm constructs the reachabilty graph and checks
whether this graph has a cycle. Actually, this two-step approach is not neces-
sary, because the coverability graph of a bounded net equals its reachability
graph, and cyclicity of this graph is implicitly checked during the coverability
graph construction. A perhaps more elegant algorithm1 first adds a place to the
net which has all transitions of the net in its pre-set and no transition in its

1 communicated by Karsten Wolf
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post-set, and then checks boundedness of this place, again by construction of
the coverability graph. Obviously, this additional place is bounded if and only if
the length of all occurrence sequences is bounded. Since the set of transitions is
finite, this is the case if and only if there is no infinite occurrence sequence.

3 Termination after stopping a transition – bounded case

We now come back to the question asked initially: Does a net terminate if a given
transition t of the net is stopped eventually? This is the converse of the question:
Is there an infinite occurrence sequence, enabled at some reachable marking,
without occurrences of t? An even simpler formulation of the same property is: Is
there an initially enabled infinite occurrence with only finitely many occurrences
of t? In fact, an infinite occurrence sequence enabled at a reachable marking m
is suffix of an infinite sequence enabled initially, and the finite prefix up to m
can contain only finitely many occurrences of t. Conversely, assume an infinite
occurrence sequences containing only finitely many occurrences of t. Then the
minimal prefix containing all these t-occurrences leads to a reachable marking
which enables the according infinite suffix without occurrences of t. In the sequel,
we say that a transition t stops the net if every infinite occurrence sequence of
the net contains infinitely many occurrences of t.

For bounded nets, there is again a very simple algorithmic solution to the
problem whether a transition t stops its net: Construct the reachability graph
and check whether every cycle of this graph contains at least one arc labeled by t.
If there is a cycle without t-labeled arc, then – as above – some infinite occurrence
sequence starts with a finite sequence to some vertex of this cycle (which might
include occurrences of t) and then runs along the cycle infinitely. Conversely,
assume that each cycle has at least one t-labeled arc. Each infinite occurrence
sequence passes through some vertex of the reachability graph infinitely often.
All (infinitely many) subsequences between two subsequent passes through that
vertex correspond to a cycle. By assumption all these subsequences contain an
occurrence of t, whence t occurs infinitely often in the sequence.

Algorithmically, we can delete all t-labeled arcs in the reachability graph
(which does not necessarily lead to a connected graph) and check for cycles.

4 Dito – unbounded case

Finally, we consider the case that the considered net is unbounded. Does it
eventually terminate provided a given transition t occurs only finitely often?
Unfortunately, the coverability graph does not bring immediate help. Consider
the simple example of a net with only one initially unmarked place, a single
input transition i, and a single output transition o (see Figure 1).

In this example, transition i eventually stops the net, whereas transition o
does not. However, both transitions occur in the coverability graph in quite the
same way, namely as labels of arcs leading from the ω-marking labeled by ω to
itself. These are the only cycles of this coverability graph. While the complete
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Fig. 1. A simple net and its coverability grap

coverability graph does thus not lead to an algorithmic solution, we can solve
the problem during its construction, as shown below.

Remember that, during the (nondeterministic) construction of the coverabil-
ity graph, we compare new ω-markings with already constructed ω-markings.
An ω-marking is a marking of the places of a net where some places can have
the entry ω, meaning that these places can carry arbitrarily many tokens. When
a new vertex of the coverability graph is constructed, the algorithm compares
the ω-marking m corresponding to this new vertex with the ω-markings m′ cor-
responding to vertices which are on paths from the initial vertex to the new one
(according to the graph constructed so far). If, for all places, the new marking m
is identical to m′, then the new vertex is identified with the vertex correspond-
ing to m′. Otherwise, if m(s) ≥ m′(s) for each place s (where ω > n for every
integer n), then m is modified as follows: For each place s with m(s) > m′(s),
we set m(s) := ω, because the sequence from the vertex corresponding to m′

to the newly constructed vertex can be repeated arbitrarily often, leading to an
unbounded token growth on the place s.

In the above example, the marking reached by the occurrence of transition
i is greater than the initial marking for the only place of the net; hence in
the coverability graph this place receives an ω-entry. Further occurrences of
transition i are possible, leading to the same ω-marking, because ω already
means “arbitrarily many”. Notice, however, that transition i can occur infinitely
often, no matter if transition o occurs, whereas o cannot occur arbitrarily often
without i, and in particular there is no infinite occurrence sequence o o o . . .
enabled at any marking, a fact which is not reflected by the coverability graph.

Now we come back to the problem whether some transition t eventually stops
its net. To this end, we modify the coverability graph construction as follows.
When adding a new vertex and comparing ω-markings with previously reached
ω-markings, we also look at the occurrence sequences leading from the previously
reached ω-marking to the current one. If all such sequences contain at least one
occurrence of t, we proceed as in the original algorithm. Otherwise, we consider
the occurrence sequences without t leading from a previously reached ω-marking
m′ to the actual ω-marking m which satisfy m′(s) ≤ m(s) for each place. We
define the effect of an occurrence sequence to a place s as the difference between
the number of occurrences of output transitions in the sequence and the number
of occurrences of input transitions of the sequence. That is, by the occurrence
of the sequence, the token count on s is decreased or increased by the effect of
the sequence to s. If m(s) 6= ω then the effect of the occurrence sequence to s
must not be negative by construction. However, if m(s) = ω, then the occurrence
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sequence might actually decrease the number of tokens on s, as it happens in
our example by the short occurrence sequence o.

If we find an occurrence sequence (without t) from some suitable previously
reached markingm′ tom with non-negative effect to all places s, then we stop the
algorithm with output no, i.e., the algorithm comes to the result that transition
t does not stop the net. Otherwise we proceed as in the usual construction of
the coverability graph. If the construction algorithm reaches its regular end, i.e.,
if it never answered no, then it delivers the output yes, thus detecting that t
actually stops the net.

If we apply our modified algorithm to the above trivial example and ask
whether o stops the net, then we immediately identify the occurrence sequence

m0
i−→ m which neither contains o nor has a negative effect on any place (but

a positive effect on the only existing place). So the algorithm terminates with
output no. If we apply it with respect to transition i, then the only relevant cycle
is given by the arc labeled by o, which is actually a loop. The short occurrence
sequence o decreases the token count of the only existing place. So it has a nega-
tive effect to this place. Therefore, the algorithm finally constructs the complete
coverability tree and ends with output yes.

To prove the algorithm correct, we first observe that it proceeds like the usual
coverability graph construction algorithm, except that it might terminate earlier.
So it terminates eventually, as the unmodified coverability graph construction
algorithm terminates eventually.

If the algorithm terminates with ouput no, then there is an ω-marking in
the coverability graph constructed so far which enables an occurrence sequence
without occurrences of t and with non-negative effect to all places. Remember
that an ω-marking enables a finite occurrence sequence if the regular marking
constructed by replacing all ω-entries by the length of the sequence enables the
occurrence sequence (this replacement ensures that none of the transitions of the
sequence lacks tokens on places marked by ω). By construction of the coverability
graph, we can actually reach such a marking by pumping up the sets of tokens
on all ω-marked places. Since the occurrence sequence has no negative effect to
any place, the marking reached by the sequence assigns at least as many tokens
to each place as the marking enabling the sequence. Therefore, the occurrence
sequence can be repeated infinitely often. Thus, transition t does not stop the
net.

Conversely, assume that a transition t does not stop the net. We proceed in-
directly and assume that the algorithm stops with output yes, thus constructing
the full coverability graph. Since t does not stop the net, there exists a reach-
able marking m that enables an infinite occurrence sequence without t. In this
occurrence sequence, we reach markings m′ and m′′ (reached after m′) such that
m′′(s) ≥ m′(s) for each place s (this is the core of the proof of finiteness of
the coverability graph, based on Dickson’s Lemma). Let σ be the occurrence
sequence leading from m′ to m′′. Clearly, σ also does not contain t, and it has a
non-negative effect to all places. It is known that the ω-markings of the cover-
ability graph cover all reachable markings. Hence some ω-marking m′

ω covers m′,

11



i.e., m′
ω(s) ≥ m′(s) for each place s. During the construction of the coverability

graph the algorithm will find out that m′
ω enables σ, which leads to another

ω-marking m′′
ω covering m′′. However, comparing m′′

ω with m′
ω and considering

the occurrence sequence σ would lead to an earlier termination of the algorithm
with output no – a contradiction.

5 Conclusion

We have shown how to decide whether a single transition is able to stop an
entire net, i.e., with only finitely many occurrences of t the net terminates even-
tually. The proposed algorithm can easily be generalized to sets of transitions
(if we forbid all transitions of this set at some marking, will the net eventually
terminate?). Another obvious generalization refers to arc weights; the procedure
works for nets with arc weights with only small changes.

Other tool for identifying transitions that stop a net are given by transition
invariants, which are closely related to cyclic occurrence sequences, and by tran-
sition sur-invariants, which are related to occurrence sequence with non-negative
effect to all places. Both types of invariants can be derived by linear algebraic
means, see e.g. [1]. These techniques lead to much more efficient algorithms, but
unfortunately provide only sufficient criteria for termination problems.

Yet another approach to solve the problem is to consider cycles in coverability
graphs (see [2]), representing cyclic behavior. The calculation of such cycles
requires, however, by far more effort than the algorithms suggested in the present
contribution.
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1 Introduction

The Event Coordination Notation (ECNO) can be used for defining how related
model elements in a system must coordinate their behaviour. It can be used
to model software systems and then generate the code from these models fully
automatically [1]. In a previous study, we demonstrated that a large software
system, a workflow management system, could be modelled by ECNO and then
the code for it could be generated automatically [2, 3].

The ECNO, however, can also be used for rapid prototyping, where the gener-
ated code is just a means to try out specific behaviour; the generated code is not
the final result. Once the prototyping results in the desired behaviour, the sys-
tem is implemented manually; for example, when the code runs in a distributed
way3. In that case, the ECNO model can serve as more than just a prototype
for the final implementation: in the end, we can use the original ECNO model
to validate the final implementation.

This idea first came up when we used ECNO for modelling a large and
distributed banking system [4] for prototyping. It roughly took a day or two
to come up with a first model and play with the automatically generated code.
Initially, we used this model for prototyping only. Later, in his masters’ project,
Egilsson [5] designed and implemented an extension of the ECNO Tool, which
then allowed us to validate an implementation of the banking system against the
ECNO prototype.

This paper discusses this idea of validating manual implementations against
ECNO models and some of its main ingredients. In Sect. 2, we briefly introduce
the core ideas of ECNO by using an example. In Sect. 3, we discuss the state
space of ECNO models. In Sect. 4, we describe traces as an abstraction of the
observed behaviour of the manually implemented system. In Sect. 5, we show
how a trace of the implementation can be validated against the ECNO model
by mapping the trace to the state space of the ECNO model.

2 ECNO by Example

To explain the main idea of ECNO, we use the simple introductory example
from the ECNO report [1]. It models a company in which workers are required

3 Up to now, the ECNO code generator cannot generate such code automatically.
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to jointly do some jobs. Only if all the workers that are needed for the job are
available, the job can be done. To make things slightly more interesting, we
assume that the workers share cars for coming in for work and for leaving again.
Therefore, the workers sharing the same car will arrive and depart together. And
only when a worker is at work, the worker is available for doing a job.

The underlying structure of this system is modelled as a class diagram in
Fig. 1. The association between classes Worker and Car represent which workers
share the same car. The association between classes Worker and Job represents
which workers are needed for doing a job. A worker can be assigned many jobs
– but a worker can only do one job at a time. Note that a single job may need
more than one worker to participate.

Fig. 1. Structural model

Figure 2 shows an object diagram with an example situation of a company
with some workers, jobs and cars and how they are related.

  

vw:Car bmw:Car

cleo:Workerbert:Workerali:Worker dan:Worker

ab:Job
acd:Jobabcd:Job

d:Job

Fig. 2. Some configuration of a company

For modelling the system’s behaviour, the ECNO distinguishes between the
life cycles of objects and the coordination of the behaviour among the different
objects. For clarity, objects that have a life cycle and for which the ECNO defines
how to coordinate their behaviour are called elements.
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The basis for defining and coordinating behaviour in ECNO are events. To
this end, the ECNO allows us to define the types of events in the system. In our
workers example, the events are arrive and depart, which mean that the workers
and cars are arriving at or departing from the work site. Moreover, there is the
event doJob, which means that a job is done; and there is an event cancelJob,
which means that an existing job is cancelled.

These events are formally defined in the ECNO coordination diagram of Fig. 3
– shown as rounded rectangles. More importantly, the coordination diagram
defines the coordination of how different elements are supposed to participate in
events together. To this end, it equips some parts of the structural model from
Fig. 1 with some additional annotations, which are explained below.

Worker

arrive

depart

doJob

Job

doJob

cancelJob

Car

arrive

depart

arrive depart doJob

job: Job

cancelJob

arrive->ONE

depart->ONE

doJob->ONE

car

1

assigned

*

needed

*

passenger

*

doJob->ALL

arrive->ALL

depart->ALL

Fig. 3. Coordination diagram

When a Car is ready to participate in an arrive event, the coordination dia-
gram requires that all workers sharing that car participate in this arrive event,
too. To this end, there is a box with label arrive in the Car. This box is called a
coordination set for event arrive of element Car. This coordination set is linked
to the reference passenger with an annotation arrive->ALL. This annotation is
called a coordination annotation and says that for a given car participating in
an arrive event, every passenger (i. e. every worker at the other end of the link
corresponding to passenger in the given situation) must also participate in the
arrive event. Now, for a Worker participating in an arrive event, there is another
coordination set for arrive, which imposes additional requirements of other el-
ements participating. The Worker has a coordination set with a coordination
annotation arrive->ONE linked to reference car. This means that for a Worker
participating in an arrive event, there must be one Car at the end of the link car
that must also participate in that arrive event. This gives us a combination of
different elements participating in different events. Once such a combination of
elements and events meets all the coordination requirements of the coordination
diagram for each event, we call this combination an interaction. An interaction
can be executed, which means that all involved elements execute the associated
events in an atomic way.
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Now, we assume that all workers have arrived at work and that the con-
figuration is as shown in Fig. 2. This means that, according to their life cycle,
each worker can participate in a doJob event. Let us assume that cleo would
want to participate in a doJob event. Since there is a coordination set for event
doJob for Worker, other elements would be required to participate. The coordi-
nation annotation doJob->ONE would require one of the jobs assigned to cleo to
participate in the doJob event, too. In our example, there are two possibilities:
job acd and abcd. Let us investigate job acd. The coordination set of Job for
event doJob with the coordination annotation doJob->ALL linked to reference
needed, specifies that all workers at the end of the link also need to participate
in the doJob event. For the job acd, this would be the workers ali, cleo, and dan.
The worker cleo is already participating in the doJob event – we started from
there. But, now ali and dan also need to participate. This way, the coordination
diagram makes sure that also all needed workers participate in the doJob event
when the job acd does.

Note that, in our example, all elements participate in the same event. In
general however, there can be more events involved in an interaction, and even
a single element can participate in different events at the same time.

As mentioned before, the coordination diagram defines only the coordination
of the behaviour among different elements. The life cycle for each element is
defined separately: the life cycle defines when an element can participate in
an event. In ECNO, one possibility for defining the life cycle for an element is
through ECNO nets, which are a form of Petri nets. Figures 4 and 5 show the life
cycles of a worker and a car, respectively. We omit the life cycle of the jobs here.
The transitions labelled with the respective events indicate when the element
can participate in which event.

home 1

t1

work

t2 a = arrive();d = depart();

j = doJob(workers = self());t3

Fig. 4. Life cycle of a Worker

home

work

1

t1t2 a = arrive();d = depart();

Fig. 5. Life cycle of a Car

In this paper, an ECNO model consists of a structural model, the coordina-
tion diagram and the ECNO nets for the life cycles of the elements.
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3 ECNO State Space

The state space of such an ECNO model, basically, consists of the states, which
represent situations like the one shown in Fig. 2, where additionally for each
element the state of its life cycle of and the value of each of its attributes would
be stored. In our case, the state of the life cycle would be a vector of natural
numbers representing the marking of the resp. ECNO net.

The transitions of the state space would be the interactions. For each in-
teraction in the state space, the involved elements, the links between them and
which events are associated with which elements and links are represented.

Figure 6 shows an abstract representation of a part of the state space of the
example from Sect. 2. The details of the states are not represented in that figure
at all, since the focus of the validation is on the interactions.

3

State 
1

link link

5 1 6

arrive

trigger event

trigger

17

State 
3

State 
9

link

6 10

doJob

trigger event

trigger

link

6 10

doJob

trigger event

trigger

21

State 
2

4 link link

3 2 4

arrive

trigger event

trigger
State 

4

7 link

7

cancelJob

trigger event

trigger

Fig. 6. Abstract representation of a part of the state space

The ECNO Tool4 provides a state space generator, which systematically gen-
erates the state space for an ECNO application starting from some initial con-
figuration. Actually, it is also possible for the user to run the ECNO application
normally and record the fragment of the state space which the application comes
by while running.

4 See http://www2.compute.dtu.dk/ ekki/projects/ECNO/
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4 Traces

As an abstraction of the behaviour of the implementation of the system, we
use traces. Each trace corresponds to one execution of the system, which is rep-
resented as a sequence diagram showing how the different parts of the system
invoke each other. Figure 7 shows an example of a trace of the final implementa-
tion of our example. This trace corresponds to the workers cleo and dan arriving
at work together and then dan doing job d. The separation of the two steps is
indicated by the green bars, which represent a state in the state space. But the
green bars are actually not part of the trace. They will be computed later when
mapping the trace to the state space.

Fig. 7. Implementation behavior: Traces

Egilsson [5] implemented a tracer that could record a trace in the running
implementation. It basically used AspectJ for recording the relevant method
invocations.

5 Mapping Traces to State Space

The most important part of validating an implementation against an ECNO
model (or actually its state space) is identifying parts of the trace which corre-
spond to an interaction in the state space. These parts will be called segments
of the trace (the parts between the green bars in Fig. 7). The tricky part is that
interactions in ECNO are executed atomically, whereas the segments in traces
are not executed atomically and can actually be intertwined. But, the segments
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of the communication in the sequence diagram need to correspond to a complete
interaction in the state space. And the validation consists of computing segments
in traces and mapping them to interactions in the state space.

The mapping algorithm looks for the communication among the same ele-
ments in the trace, which also can be found as a link in an interaction. But,
there can be more than one invocation for one link between these elements in
a trace and the order can be arbitrary. The mapping algorithms starts match-
ing the communication from the beginning of the trace to the interactions in
the state space starting from its initial state. And once all communication for
an interaction is found the segment is created at this point; the end of which
corresponds to the next state. From there, the process continues with a lot of
backtracking for alternative matches.

Egilsson [5] implemented such a mapping algorithm and showed that com-
puting such mappings was feasible for the original banking example. Figure 8
shows the idea of this mapping with a short trace and a small excerpt of the
state space from the original banking example.

insertCard: 
Transition

Card 
Inserted

link link

np hw ctrl

insertCard

trigger event

trigger

No Card 
Inserted

1

2
4

4

4
4

3 3 3
1

Fig. 8. Mapping

Of course, there are much more details in the mapping algorithm, which we
cannot discuss here (see Egilsson [5] for more information).
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6 Conclusion

In this paper, we have discussed the main idea of how to validate the final
implementation of a system against its original ECNO specification. More details
can be found in Egilsson’s master thesis [5]. But even this thesis is just the
beginning, since ECNO has more features which are not yet covered by the
mapper implemented in the master thesis.
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Abstract. In this paper, we present how to model complex business
processes and synchronisation between their instances using Petriflow
language which extends Petri Nets with other components. Small snip-
pets of code called Actions are introduced to show the capabilities of
inter-process communication. Examples of searching, constructing new
instances, executing tasks, and data manipulation are provided.
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1 Petriflow

Petriflow language is an XML based extension of Petri nets[1]. As the underly-
ing model, we use place/transition nets enriched by reset arcs, inhibitor arcs and
read arcs. The read arcs appear quite necessary in order to model an unbounded
number of concurrent reading of data in a case. To meet modern business mod-
elling requirements other layers were brought to the language on top of Petri
nets. Roles are the first layer to extend Petri nets. Roles layer defines who can
fire transitions to which they are bound. Data variables were added as the second
layer on top of modelled processes. Data variables represent all properties of an
instance of a process during its life-cycle. Data variables are bound to transitions
by dataRef tag in the underlying XML creating a dataset of the transition. To
have more control over process instance data, data field actions were added to
Petriflow. Actions can define relations or dependencies between data fields in
the model of a process or generate values based on a process instance state. All
extensions and layers create the right tool for modelling complex, yet simple to
understand models of any process that comes to mind.
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Each transition represents a task [2] that can be executed when the transition
is enabled. The task life-cycle can be modelled with a Petri net in figure 1. Each
task consists of four basic events:

1. Assign - triggered when an actor starts the task execution,
2. Delegate - triggered when an actor assigns the task to another actor,
3. Cancel - triggered when an actor stops the task execution,
4. Finish - triggered when an actor finishes the task execution.

Process roles restrict which event can be triggered by which actor. Data fields
can be edited only if the task is active and only by the actor executing the task.

Fig. 1. Task representation net

2 Petriflow universe

Petriflow universe consists of a set of process models and their instances - cases.
Each case is a deep copy of the original process model with its own set of data.
This concept is similar to relational databases.

Process model represents an entity. In analogy to a relational database, Pet-
riflow model represents a table. It defines a set of data variables one can work
with, their data types and validations which is an analogy to table columns.
Table rows represent instances of given entity. In Petriflow cases are instances of
the original model. Set of tables forms a database, in our universe it is a process
driven application working with multiple Petriflow models.

In relational databases, foreign keys are used to create relationships between
tables. Since Petriflow is focused on processes we use tasks and events to transfer
data between cases and change the state (marking) of a case.

3 Inter-process communication

Inter-process communication can be used to model complex real-life processes by
creating an interface between distinct Petriflow models. This interface consists
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of models transitions and its events, which can be triggered by an authorised
actor. This means that one case can create a new instance of Petriflow model,
read and write tasks data, and trigger events on tasks. Each task event (assign,
delegate, cancel, finish) can be triggered by an application user or from another
process using Actions.

Actions are small pieces of Groovy code, that can be executed at different
places in our model. They can be used to change data variables values and
behaviour, change case attributes such as title or icon. Customer specific actions
can be defined in the application and used in the model as well.

Actions can be triggered by following events:

– assign task,
– delegate task,
– cancel task,
– finish task,
– read value of data field,
– set a new value of data field.

A very important feature of Petriflow is that it allows specifying if the action
should be triggered before the event or after. Some actions need to be executed
before the event due to change in the marking of the net or if a failure in execution
of the action should prevent the event.

Imagine that we have a custom function, one updating document record in a
DMS via a web service. A task will update document status on its finish event. It
should not be possible to finish this task if the update fails. Other action needs
to be executed after the finish event. For example, a task called aTask should be
assigned to a user immediately after the finish event of the current task produces
tokens. Both actions can be assigned to the same event.

Listing 1.1. Example of case search

<event type=” f i n i s h ”>
<a c t i o n s phase=” pre ”>

<ac t i on>
updateDocumentRecord ( )

</ ac t i on>
</ a c t i o n s>
<a c t i o n s phase=” post ”>

<ac t i on>
ass ignTask ( aTask , user )

</ ac t i on>
</ a c t i o n s>

</ event>

As it was already illustrated above, actions can not only be triggered by these
events, but actions can trigger events on other tasks (as an event assignTask

assigned aTask to a user inside of an action). Moreover, actions can be used to
search for an entity (case, transition, task etc.), create a new case and work with
data of a different case.
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3.1 Finding objects

Searching for information is a fundamental part of every enterprise application.
In terms of inter-process communication, search action is used to find a specific
instance to read or change its data values, or to find a task that should be
executed in order to continue.

Actions use QueryDSL language to formulate search predicates. Search predi-
cates use an example search object called it. It supports complex querying using
logical operators and dynamic expressions. Every entity can be searched by any
of its properties. This allows to search for a case with a specific data variable
value:

Listing 1.2. Example of case search

List<Case> ca s e s = f indCases ( {
i t . dataSet . get ( ” emai l ” ) . eq ( ” mazar i@netgr i f . com” )

} )
Case aCase = f indCase ( {

i t . author . id . eq ( loggedUser ( ) . id )
} )

For each entity, there are two find actions. One that will return a list of all
entities that match the given predicate. The other will always return only one
entity, even if multiple entities match the predicate. In that case, the first entity
is returned.

In the example above, it.dataSet returns the set of all data variables of
example case it. get("email") returns the data variable with id "email" of
that dataset. The rest of the predicate compares the value of this data variable
"email" with a string "mazari@netgrif.com".

3.2 Creating new instances

Creating new cases is the basic function in each process-driven application. To
create a new instance we only need a reference or the Id of the net. All the other
parameters such as case title, colour and author are optional and default values
will be used.

Listing 1.3. Example of case constructor

Case aCase = createCase ( ” insurance ” , ”My insurance ” )

In this example a new case will be created by calling the createCase action
with Petriflow net Id and case title.

3.3 Triggering task event

As mentioned before, each of the four basic task events can be triggered by an
action. These actions take a transition Id or task reference as the first parameter.
The second parameter is the actor whose identity will be used to trigger the

24



event. If the parameter is omitted logged user will be used instead. Imagine that
we have a net with data variable email and another net called "some net" with
a transition "first task".

Listing 1.4. Triggering task event

i f ( emai l . va lue != null ) {
de f user = f indUser ( i t . emai l . eq ( emai l . va lue ) )
de f nC = createCase ( i d e n t i f i e r : ” some net ” , author : user )
ass ignTask ( ” f i r s t t a s k ” , nC, user )

}
In the example above, email refers to a data variable of the current case with

id "email". The user whose email equals to the value of the variable email is
stored to the local variable user. Then a new case of "some net" is constructed
by the found user stored in the local variable user. The constructed case is stored
in the local variable nC. Finally calling assignTask function will assign the found
user to the task with id "first task" of the constructed case of "some net".

3.4 Reading and writing data

Data variables in Petriflow are bound to transitions and can be accessed by
reading and writing using these transitions. Since only authorised actors can
execute transitions this allows you to restrict access to data values of each model
using process roles. In addition, data behaviour can be defined that specifies if
the value is visible, optional, required or hidden. This behaviour not only restricts
the read and write operations but also restricts triggering of the finish event. If
the required data variable does not have a proper value task cannot be finished.

To read the tasks dataset we need to specify the task data of which should
be read. This can be done by providing:

1. reference of the task itself by calling findTask which returns the task object,
2. reference of the tasks transition (works only on tasks in the current case),
3. tasks id and case.

Function getData will use the third method of specifying the task. It will return
a map where the key is the data variable Id and the value is the data variable.
Returned data variable can be used to access the value of the data variable
and other properties such as title, placeholder, behaviour attributes specifying
whether it is required, editable, hidden, etc.

Imagine that we have a net with transition with id "view limit", with data
variable with id "actual limit" such that data variable "actual limit" be-
longs to the dataset of transition "view limit".

Listing 1.5. Reading data values

de f usecase = f indCase ({ i t . t i t l e . eq ( ” Limits ” ) })
de f data = getData ( ” v i e w l i m i t ” , usecase )
change a c t u a l l i m i t va lue {

data [ ” r emote l im i t ” ] . va lue
}
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In the example above, first case with title "Limits" is returned to the local
variable usecase. Then the dataset of transition "view limit" is returned to
the local variable data in form of a map described above. Then value of the
data variable "actual limit" of the current case is set to the same value as the
value of data variable "remote limit" in first case with title "Limits" which
is stored in the local variable usecase. Writing data works similarly to reading,
the first parameter specifies a task, the second parameter is a map of new values
with data variable Id as the key.

Listing 1.6. Writing data values

de f aCase = f indCase ({ i t . t i t l e . eq ( ” Limits ” ) })
setData ( ” e d i t l i m i t ” , aCase , [ ” new l imi t ” : 10000 ] )

The example above set the value of the data variable "new limit" in the
dataset of the transition "edit limit" of the first case with title "Limits"

stored in local variable aCase to the value 10000.
It is not mandatory to provide values of all data variables that are bound

to the task. In some scenarios, you want to set new values in steps, especially
if the values are dependent on each other. For example, there can be one data
field where a user can enter a country name and a second data field where he
has to select a city of the chosen country. In that case, you would need to first
call setData to select the country, then call getData to read the list of cities
and finally select one city by calling setData again.

4 Conclusion

Inter-process communication is the future of Petriflow. This concept has proven
to be simple enough for customers to understand it and also simple to model
at the same time. Multiple applications using its modelling capabilities were
developed and deployed to production.

Inter-process communication opens new possibilities of modelling real-life
scenarios. Hotel reservations, online shopping, accounting information system,
these are just examples of applications that can be now developed using Petri-
flow. Whole user management could be replaced with a right Petriflow model
allowing to further customise the application.
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1 Introduction

Petriflow[1] is modelling language for developing process-driven applications. It is
based on Petri nets with an extension of reset, inhibitor, and read arcs to enable
multiple concurrent readings on a transition. Petriflow can be divided into several
layers. The first layer is a Petri net process model itself. Process roles are the
second layer of Petriflow language. They provide access control over transitions
of a process model. The third layer also called data-set of a process, consists of
all data variables of a model. The fourth and the last layer are actions. Actions
are small snippets of code written in Groovy programming language. Actions are
a powerful tool in Petriflow language. They can define relations between data
variables of a process, generate values, communicate with external services or
synchronise different instances of processes.

When a Petriflow process model is deployed to an application server, to
execute process, an instance of the process is created. In Petriflow, an instance
of a process is also called a case. A case is a deep copy of the original process with
its specific marking and data-set values. In Petriflow, each enabled transition is
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a task[2]. A task consists of four events: assign, cancel, delegate, finish. Each
task event can be triggered, by a user or a system, to execute a specific function
of a task. Petriflow provides means to react to such events via actions. It is also
possible to trigger process events inside of an action and created chain of events
and reaction influencing different instances of different processes.

2 Multi-process environment

The real world is very complex. It is one of many reasons why process-driven
applications consist of a vast number of processes. It is important to be able to
define a way of process communication. Petriflow allows to model inter-process
communication with process events and actions. All events can be invoked by
some system entity, like system user or another process. Also, a reaction can be
defined to every process event in a form of an action. The important part of inter-
process communication is the search of all entities of a process model. Petriflow
provides search capabilities via library QueryDSL that is easy to use and enables
to write both simple and complex queries on every entity of a process model.
With Petriflow capabilities, we can model processes that can communicate with
each other within an application environment.[3]

3 Process hierarchy

It is rather difficult to model a hierarchy in an observed system with original
concept of Petri nets. Even more, if the observed system is very large. A net that
tries to capture the hierarchy of a system often results to be large and cumber-
some to work with. For modelling hierarchy and encapsulation of components
of a system, Nested Petri nets[4] are usually used. Nested Petri nets model a
system behaviour in different levels of detail to define relations between parts
of an observed system. Nested Petri nets can become difficult to read when a
modelled system has multiple levels of complexity. However, modelling hierarchy
between processes can be also achieved by writing invocation and reaction to the
events in processes in Petriflow language.

Let us introduce an example of this problem. An observed system, which
behaviour will be synthesised into Petriflow process models, consists of three
entities.

1. Volume - An abstract representation of a whole space inside the system.

2. Folder - An abstract representation of a part of the system space that is a
specified part of the volume. The volume of the system can contain one or
more folders. A folder also can contain one or more sub-folders.

3. File - An abstract representation of the smallest entity of the system. Every
file has to be located inside a folder. A file cannot be further divided and
create other system entities.
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Fig. 1. The Volume process

From an analysis of the three system entities, three Petriflow models are
created. Each model consists of transitions to manage the modelled system entity
and its data-set.

The Volume process, in the Figure 1, contains data variables for a name of
a volume instance, a name for a new folder, and an array of reference objects to
all Folder process instances which are located inside the system volume.

Fig. 2. The Folder process

The Figure 2 illustrates the Folder process. The process has data-set con-
taining data variables of an array of its sub-folders and an array of its files.

The File process, in the Figure 3 is quite simple. Its data-set contains refer-
ence to its parent and raw bytes of it content.

It is clear, from the models in Figure 1, Figure 2, and Figure 3, that key
transitions are Create a folder in the Volume process, Constructor, Create
a folder, Create a file in the Folder process and Constructor in the File
process. As these models are written in Petriflow language each enabled tran-
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Fig. 3. The File process

sition is a Petriflow task with its process events. First, an action to the finish
event on the transition Create a folder is defined.

Listing 1.1. An action in the Volume process to create a new folder instance

<event type=” f i n i s h ”>
<a c t i o n s phase=” post ”>

<ac t i on>
Case f o l d e r = createCase ( ” Folder ” , folderName . va lue ) ;
change f o l d e r s va lue {

f o l d e r s . va lue . add ( f o l d e r . id ) ;
r e turn f o l d e r s . va lue ;

} ;
<ac t i on>

<a c t i o n s>
</ event>

When a user assigns a task Create a folder, fills out data about a new
folder, e.g. folder’s name, and then finishes the task, the action is executed. The
new folder instance is constructed by calling the createCase function with the
Folder process id and a new instance title stored in data variable folderName.
The created instance is stored in the local variable folder. Then the id of the
constructed instance is added to values of data variable folders.

This example perfectly expresses the parent-child relationship between the
Volume instance and the Folder instance. Likewise, the relationship between
different instances of the Folder process and between instances of the Folder and
the File process can be defined.

The Second important transition in the processes is the Constructor tran-
sition. It is the first transition in the process and it is responsible for initialising
and setting the process data of a new instance. In the example above, only a
name of an instance is sent to the new instance of the Folder process. If a new
file is created, it is required to set reference to the parent folder. To achieve this
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functionality, the required data value can be sent to the Constructor task of a
newly created File instance.

Listing 1.2. An action to create a new file and pass its parent folder in the Constructor
task

<event type=” f i n i s h ”>
<ac t i on phase=” post ”>

<ac t i on>
Case f i l e = createCase ( ” F i l e ” , f i leName ) ;
change f i l e s va lue {

f i l e s . va lue . add ( f i l e . id ) ;
r e turn f i l e s . va lue ;

} ;
Task cons t ruc to r = findTask {

i t . t i t l e . eq ( ” Constructor ” )
. and ( i t . ca se Id . eq ( f i l e . id ) )

} ;
i f ( c on s t ruc to r ){

con s t ruc to r = ass ignTask ( con s t ruc to r ) ;
setData ( cons t ructor , [ ” parent ” :useCase . id ] ) ;
f i n i shTask ( con s t ruc to r )

}
</ ac t i on>

</ ac t i on>
</ event>

The action to create and set up a new file instance is called when a user
finishes the task Create a file of the Folder process instance. The new file
instance is created by calling the createCase function with the File process id

and a name of the new file. The returned reference to the created file instance
is added to the data variable of the Folder process instance file, which stores
references to all files stored in the folder. The next step in the action is to send
the required data to the file instance. First, the Constructor task of the new file
instance is found via findTask function with QueryDSL expression parameter.
The entity search is based on ”Query by example” principle. As it can be seen
in the example, the Listing 1.2, the keyword it in the expression is the example
object of the task entity. If the Constructor task is returned, assign it to the
currently logged user. The parent folder reference is set by function setData

where the first parameter is the Constructor task and the second parameter
is a map of data variables. The key of the map is a data variable id of the
File process and the value of the map is a desired value of the data variable. In
the example above, the Listing 1.2, the data variable with id parent is set to
reference the current Folder process instance. At last, the Constructor task is
finished.
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4 Conclusion

Inter-process communication modelled in Petriflow language can be applied to
the countless applications. As the example illustrated in this paper, it can be
used to express hierarchy between instances of different processes. It can be also
used to separate often repeated parts of a process as a standalone process model
and then referenced from the original process. Even large and complex processes
can be modelled with communication via Petriflow process events with ease and
preserved readability of Petri nets.
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Abstract The application area of the Internet of Things (IoT) has con-
tinued to increase in recent years. However, adequate modeling meta-
phors regarding the design and specification of the relationships and
interactions between versatile entities are still lacking. Edge computing
provides a more specific design due to the given purpose or context of
entities (devices, services, and applications).
In this paper, we introduce a four-level architecture for edge computing
systems. It helps modelers gain clarity about the relationships and inter-
actions between entities and, thus, specify efficient and well-structured
IoT architectures. Using an exemplary context, we discuss the four levels
and point out the mental challenges that are addressed by this modeling
perspective.
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1 Introduction

The continuously increasing number of processors requires more and more ad-
vanced software architectures. Simple single processor-based machines have de-
veloped via simple networks and distributed computing systems to the current
highly distributed, large-scale systems/ultra large scale systems (ULSS) (see
[11]). With the notion of IoT (Internet of Things), an even larger scale of systems
has to be addressed. Processors and systems are now omnipresent and require a
conceptual embedding in the ULSS architectures. The challenge for informatics
is to provide adequate hardware and software systems for such environments.

Shah proposes to integrate IoT systems into (cognitive) agent systems [14].
This contribution does not focus on the technical aspects. Instead, we propose a
general modeling architecture that refers to entities at different modeling levels.
These relations are supposed to support modelers to choose the right level of
abstraction for each entity in ULSS architectures.

Specifically, we address the modeling problems of edge computing applica-
tions. Our proposed four-level reference architecture is called Edge-Mulan. In
this paper, we restrict our discussions to the general aspects that are relevant
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for modeling edge computing-based systems (which might be/are embedded in
ULSS). For the Edge-Mulan architecture, we will explain the main properties
of the four-levels and their three general relations briefly.

In the following Section 2 we will briefly give an overview of our previous
work, especially Mulan, on which we build our new proposal. The reference
architecture Edge-Mulan for edge computing is then introduced in Section 3
based on the Mulan reference architecture. In Section 4 we embed our work
into the work of others. We end with a brief discussion, a conclusion and an
outlook in Section 5.

2 Our Previous Related Work

This section covers an excerpt of our previous work that is highly relevant to
the context of this paper.

In our group, we have developed several proposals for modeling and imple-
menting complex system architectures. They all are based on Coloured Petri
nets [8] and Reference nets [9], which are high-level Petri nets and allow model-
ing complex systems while covering concurrency, non-determinism, conflicts and
several other essential properties of systems. With Renew we have an integrated
development environment (IDE) [3] that, among other purposes, serves for de-
signing, specifying, implementing and executing applications that are built with
Reference nets.

Our base reference architecture for the development of complex systems is
called Mulan (Multi-agent Nets Reference Architecture) [12,2]. Mulan has four
major modeling entities multi-agent system, Platform, Agent and Protocol with
three principal relationships (see Figure 1). Due to the flexibility of our modeling
technique, each entity can implement any of these three relationships (e.g., for
our Mulan system we often extend platforms to behave as agents). This allows
for arbitrarily nested hierarchies. Using value semantics for nets (at most one
reference to each Reference net is allowed within the whole system) nesting is
strictly hierarchical. Borusan et al. call this the physical relation [1] and commu-
nication can only be done in a clear context. Nevertheless, reference semantics
allow any number of references to an entity. Borusan et al. call this the logical
relation.

A Mulan model is used to specify an entire multi-agent system (MAS). The
multi-agent system net represents the complete system to be modeled including
the platforms. The relationship between the multi-agent system net and the
platforms is the provision and usage of communication services, respectively.
Platforms provide a more specific service environment for autonomous agents
depending on the purpose of the overall system. Agents are located on platforms
and consist of protocols.

One of the extensions of Mulan is called Organ. It takes a more abstract
perspective than Mulan and provides a reference architecture for organization-
oriented contexts [17]. In [18] organizations (as opposed to agents) are proposed
as the basic building blocks of systems and homogeneously published in [17] as

34



Figure 1: Mulan overview; from [12] / [2]

Organ. While [7] follows a similar idea and searches for more abstract entities
than agents, Hewitt does not discuss a general system reference architecture.
Like Mulan, Organ has four levels in which organizations are embedded in
markets/fields and consist of smaller entities (MAS). In this paper, we will go in
the other direction. Since agents and especially organizations offer a high degree
of abstraction and implement good general architectures, efficient system design
gets more difficult.

All above ideas and architectures are based on a homogeneous perspective
that is motivated by the Unit-Theory [16,15,10,6], which makes it possible to
map all concepts to infinite condition / event Petri nets (which in principle are
Turing-complete). The Unit-Theory comes into play again as a mental concept
in the modeling of IoT architectures. In [13] the unit theory ([10] building on
earlier work (see [16,1,15])) is applied to propose some generic units / entities
that are completed by internal entities. The purpose of these entities is to provide
an interface to the entities.

3 Proposal for Modeling Principle

While Organ introduced a more abstract kind of architecture for Mulan, we
now introduce a more specific one. By doing so, we hope to address more specific
needs while having a smooth embedding in our previous conceptual and technical
framework. Therefore, we briefly discuss the general ideas of entities and their
relationship at different levels of the system/software stack of IoT systems/edge
computing.

What is necessary for this approach is that again four levels for this kind of
abstraction are defined. Good technical examples can be found in [5]. A brief
discussion of this work will be given in Section 4. Here, we introduce the notion
of a Thing (in the IoT context) as the central abstraction level. A thing needs
a different, more straightforward interface than an agent. We do not consider
autonomy as a first-order concept of the things. Agents can, e.g., communicate
with the speech-act theory and ontologies via messages. In the context of IoT,
the things instead communicate indirectly by using and providing services.
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Taking the above considerations into account, we end up with our modeling
principle called Edge-Mulan (or for short EdgeN). The name indicates the
near relation to Mulan and Organ. This is necessary since the arbitrarily high
level of nesting of abstraction levels is a central feature of edge computing. Due
to the modeling bias / application area of our reference architecture we want to
achieve the top level as Cloud and not Edge or Fog. We define the four levels
from top to bottom as follows:

– cloud is the top-level environment that provides computing and storage
resource as well as communication, security, privacy, reliability and infras-
tructure services

– rooms reside in a cloud and provide a certain set of local services; also an
integration of multiple rooms within the cloud is allowed. The term room
implies a physical embedding. However, considering the room as context
will allow for a logical arrangement of overlapping modeling.

– things reside in rooms. They encapsulate the structure, minimal resources,
and their possible behavior. Things can provide services and can access the
services that are provided by other things, rooms and the cloud. Rules that
describe the thing handles certain behavior options and resources that might
enable behavior or provide means in general.

– parts implement the specific properties of the things. The direct usage of
rules and resources provided/ held/controlled by the thing might be used
via services.

Figure 2 illustrates the four levels and their relations analogously to Figure 1
that illustrates the Mulan architecture. Since we do not want to go into the
details of the individual units in this contribution, only some of the entities’
basic internal functionalities and references are depicted.

Figure 2: Edge-Mulan overview

To illustrate the advantages of this modeling principle, we consider the fol-
lowing smart workplace. The building is the cloud and consists of several physical
spaces. These physical spaces can each be a room, and some physical spaces can
even be combined into one digital room. Each room consists of several things
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and may provide services through these things. Every employee is wearing a
transponder. The transponder is a thing that is build up by multiple parts (e.g.
RFID chip, battery, storage, Bluetooth, WiFi). When the employee enters the
digital room kitchen, the water in the coffee machine may be preheated, or the
kettle turned on because the employee prefers to drink tea at this time of day.
In this case, the transponder and the coffee machine or the kettle are related
because both are digitally located in the same room. The room interacts with the
transponder and asks for the habits of the employee. Next, the room interacts
with a thing (the coffee machine or kettle) to serve the employee.

In the above example, the kitchen (room) is the context in which the ben-
efits of edge computing are used. The transponder does not have to communi-
cate with a central data center in the building (cloud); instead, it just uses the
kitchen to communicate with the named devices (things). On the other hand, the
kitchen provides the communication infrastructure and thus, the communication
between the devices is standardized. The intuitive mapping of real entities and
their relations to Edge-Mulan entities and their relations is one of the main
advantages of this modeling principle.

In the individual units of Edge-Mulan, their structure, internal behavior
and relevant IoT concepts such as security, privacy, energy, resources, and com-
munication must be covered. In this contribution, we will not further examine
these specific characteristics. The explicit specification of entities, possible re-
lationships, and standardized interfaces facilitates modeling within each level.
If these concepts were too abstract, efficiency in designing and specifying such
systems would suffer. Modelers could not build the models and systems quickly
and well enough. The same applies when sufficient abstract concepts are missing.

4 Related Work

Carrez et al. published a comprehensive investigation and their results from
the Internet of Things – Architecture project [5]. Among others, they propose
a functional-composition for their architecture. Locality principles similar to
today’s edge computing method are also taken into account. Additionally, they
provide well-descriptive and motivating real-world examples. However, they do
not consider a clear modeling strategy for a hierarchical / reference architecture.

In [4] health tracking is addressed. Edge computing is used to implement
an optimal environment for such applications. However, safety and privacy, as
well as functionality, are relevant topics that need to be addressed besides the
technical efficiency. For these topics, modeling proposals are missing so far.

Health systems are good examples of the challenges posed by new opportu-
nities in the development of distributed applications. For a user and its environ-
ment (containing, for example, doctors, family, pharmacies, medical institutions,
insurances, technical equipment, medical devices and supporting machines, le-
gal or social requirements, security, and privacy) several different contexts exist.
There are often inconsistencies in the requirements for each context. This type
of context separation and the separation of a user’s interests/roles must be ad-
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dressed both by user support systems and by the user’s environment systems.
Edge-Mulan provides such means in a generic form. We cover concepts such
as logical and physical entities and their relationship, autonomy, encapsulation,
concurrency, (non-)determinism, conflict, synchronization, abstraction.

5 Conclusion

In this contribution, we presented our ideas on supporting modelers for edge com-
puting architectures with an adequate modeling principle to allow an optimal
application/IT-alignment. These ideas lead to the proposal of a four-level refer-
ence architecture called Edge-Mulan that contains a cloud, platforms, things
and parts from top to bottom and their relations and interactions. This archi-
tecture supports modelers in their mental challenges in modeling well-structured
and efficient IoT architectures. It is based on Reference Nets, which can hold
references to other nets, allowing any desired hierarchical structuring. Each en-
tity contains its structure and internal behavior, which is not fully covered by
our proposed architecture and often depends on the specific context.

However, without powerful tool support, such an architecture will not be ap-
plicable in practice. Suitable modeling constructs must be provided for designing
and specifying the properties and relationships of individual entities. The mod-
elers must be empowered to use such concepts intuitively, easily, directly and
efficiently. We will consider complex social systems (like large worldwide dis-
tributed teams and organizations) with complex processes and numerous devices
and subsystems to test our proposal. How to ensure privacy and security in het-
erogeneous systems is of particular interest. Future work should be in line with
our current efforts of meta-modeling, distributed simulation, expressive model-
ing concepts/constructs within our Petri net environment and incorporation of
leading-edge technology.
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Abstract Renew as a simulator for reference nets does not offer a
native web based communication technology. To bring it towards run-
ning a single distributed simulation implementing modern communica-
tion means is a crucial step. The Java Spring Framework offers interest-
ing capabilities to achieve this goal. However, the implementation is not
straightforward and therefore advantages and disadvantages are investi-
gated in this paper. Concluding the advantages outweigh the disadvan-
tages.
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1 Introduction

Reference nets have been introduced by Kummer around the year 2000[11]. They
are a high-level Petri net formalism based on the Java Programming language1
and colored Petri nets. One crucial part of reference nets is the differentiation
between net and net instance. Similar to a class in object oriented programming
a net only fixes structural aspects and initial markings, but is never simulated
itself. Using this analogy a net instance correlates to an object, in a way, that
arbitrary amounts of net instances may be generated from one net during the
simulation. Reference nets follow the nets within nets paradigm [18] and realize it
by enabling to hold references to other net instances as token value. Net instance
reference tokens may be used to create new or destroy net instances and also
to interact with them. As for communication the mechanism of synchronous
channels are used [5,10].

In figure 1 an example of a simulation of two reference nets can be found.
Upon start of the simulation a net instance of NetA is created. The net instance
of NetA then proceeds to create a net instance of NetB and passes the string
"Hello!" over the synchronous channel "ch". The single transition of NetB may
only fire if it can synchronize with another transition to bind a value to parameter
msg. After all transitions have fired, the bottom most place in the sole instance
of NetA holds a reference to the net instance of NetB created earlier, while the
bottom most place in NetB holds the string value "Hello!".
1 http://www.java.com/
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NetA NetB

Figure 1: NetA example and NetB example with synchronous channel ch

A simulator capable of simulating reference nets is the reference net workshop
(Renew)2 [3] maintained by our research group at the University of Hamburg.
Renew is based on Java and essentially allows for reference nets to utilize arbi-
trary Java code as transition inscription.

2 Motivation, Vision and Goals

As the number of simulated net instances is essentially unknown prior to exe-
cution of the simulation, and also Renew in its current form is optimized for
single machine execution, the question arises to utilize multiple machines for
very large simulations. The central topic this paper is to be filed under therefore
is scalability of the Renew simulator. The vision behind the research and the
ultimate goal is to be able to dynamically launch additional simulation parts
upon demand, that are communicating with each other using synchronous chan-
nels. As this is a vision it is most definitely not addressed in total here, but given
to draw the big picture. This paper is related to but in itself independent from
earlier publications [14] [13].

3 Related Work

Early steps towards distribution have already been taken early on by using Java
network code in transition inscriptions. While this basically allows communica-
tion between multiple simulations, it essentially breaks the formalism and the
true concurrency semantics of Petri nets. Communication should be done using
synchronous channels. Several further early approaches were made and published
in respective papers, e.g., [7,17,9,4,8,12].

[1] utilizes virtual machines in cloud environments. However the usage is
limited to single execution runs and the solution does not distribute the entire

2 http://www.renew.de/
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model itself. The simulations in virtual machines are run in isolation and are not
part of one big simulation.

An approach by [2] used web technologies, but only for external communica-
tion. The core simulation by itself is not altered.

A first attempt in really distributing the simulation in itself was undertaken
by Simon [15,16] . The method rewrote some parts of the Renew core simulation
to use Java RMI. However, this method was limited in regard to binding search
for activation checks of transitions. Also, setting up Java RMI can be tedious
work, when connecting new instances dynamically.

4 Implementing a RESTful Renew Core

Looking at recent developments in distributed systems a trend towards RESTful
webservices [6] based on HTTP is apparent. RESTful services are stateless and
usually also offer interfaces, that implement idempotency. To implement a REST
service in Java there are several options, like implementing it directly using a
Tomcat webserver or frameworks. One of the most popular frameworks is the
Spring Framework3 by Pivotal. Spring is in essence a dependency injection and
inversion of control framework useful for enterprise level development. Coming
with a built-in webserver and using annotations it also features extremely ac-
celerated development of RESTful webservices. Spring is therefore a very strong
candidate to be included in Renew to achieve flexibility in regards to dynami-
cally launching simulation parts.

This paper addresses thoughts about what needs to be changed within the
Renew software to incorporate the Java Spring Framework. Combining Spring
with our previous research will enable us to bundle Renew/Spring instances
using containerization like Docker4 to deploy multiple instances dynamically.
The way this will be achieved, will be covered in a later paper and is out of
scope here.

5 Spring in Renew

For the remainder of this paper it will be discussed how REST/Spring may
be integrated into Renew. A general idea of the change can be found within
figure 2. On the left side the current implementation is depicted. Several plugins
access the simulation core. (Not every plugin needs to interact necessarily with
the simulation core itself) On the right side the proposed new method can be
seen. The core has been splitted into independent parts, which are tied together
by Spring. Plugins are now interacting with the Spring layer instead of the core
directly.

3 https://spring.io/
4 http://www.docker.com/
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Figure 2: System net example and Object net example with synchronous chan-
nel ch

5.1 Data Transfer

First of all using Spring the data transfer is usually realized with JSON5. There-
fore only key value tuples may be passed limiting the use of objects to serializable
ones. Also, to use custom Java objects a converter for simple objects need to be
implemented or the programmer needs to implement a JSON-serialization. This
requires synchronous channels to utilize value semantics or more sophisticated
techniques like global unique object identifiers. Transferring nets by value is pos-
sible, as Renew can serialize nets into .rnw files. Transferring net instances may
require more thought as they might hold complex tokens, that possibly reference
objects, which are not inherently serializable.

5.2 Compatibility With Existing Renew Plugins

Spring should also be realized as Renew plugin, so the base simulator could
still be used without this addition. Also, compatibility to the present plugin
ecosystem would be highly desirable to make the Spring based simulation core
available to previous research based on the original core. This could be achieved
by implementing existing interfaces, but certainly constrains the development of
the Spring based core.

In general such a plugin would change behaviour of the underlying simulation
core similar to the Distribution plugin by Simon [15,16]. It should be considered
to define a special type of plugin like "core plugin" for plugins changing base
functionality and by that possibly breaking other plugins.

5.3 Compatibility With Other Services

RESTful webservices are widespread throughout organizations, companies and
the internet. Using an underlying framework capable of the same protocol would
enable far easier communication and integration of foreign services and by that
easing the further research and development of the Renew software.
5 Java Script Object Notation
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5.4 Architecture

A typical Spring application listens to events and fires actions upon events, which
correlates pretty well with the simulation of net instances, especially distributed
ones, that listen for incoming messages. Spring also synergizes well with a micro-
service architecture, so the simulation core might be broken down into separate
parts even more.

Further, the dependency injection functionality of spring can be utilized to
dynamically load nets and net instances of these.

5.5 Development Activity

Spring is very active in terms of development and new emerging technologies and
protocols are likely to be implemented into Spring by the community. Renew
could take advantage of this fact to stay up to date more easily. As an example
Spring also supports the relatively new GraphQL6, which was initially released
in 2015. GraphQL is in direct competition with REST and might likely replace
it in the future.

5.6 Drawbacks

On the downside, Spring is a very large framework, increasing the difficulty for
further contributors to the Renew project. Another negative aspect is the de-
pendency on another framework, that requires maintenance and possibly security
relevant updates to be implemented.

5.7 Challenges

The main challenge in implementing Spring into the simulation core is to keep the
proven algorithms for binding search, firing and unification intact. Distributing
these algorithms has been discussed by Kummer back in 2002[11] and a first
attempt at Java RMI based distribution was undertaken by [16] in 2016. Similar
problems are bound to arise while implementing a Spring based version of the
simulation core.

6 Conclusion and Outlook

The idea of incorporating the Java Spring framework into the simulation core of
the reference net simulator software Renew has been presented. Spring comes
with a great amount of possibilities for Renew as the drawback of increased com-
plexity of the application itself. Transferring the simulation core into a Spring
based version enables compatibility to other REST based webservices and pos-
sibly yields a far more scalable architecture.

Further research will include a first prototype of a Spring based Renew core,
as well as considerations about a possible microservice architecture of Renew.
6 https://graphql.org/
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In [1], Dumas advocates event structures, and in particular labelled prime event
structures (LPES), as the unifying representation of process models and event logs in
the context of process mining. In [2], a new technique for the representation of the non-
sequential behavior of concurrent systems based on LPES is presented. This technique
extends LPES by a list of cutoff events in order to finitely represent inifinite behavior.
The resulting model is the most compact and the most expressive existing representation
of the non-sequential behavior of concurrent systems. In particular, it may represent the
behavior of arbitrary bounded place/transition Petri nets (p/t-nets).

Based on these results, we are developing a synthesis-based two-step approach for
process discovery in the area of process mining:

– First step (preprocessing): Construct an LPES with cutoff-list from an event log
through detecting noise, causality, concurrency and loops.

– Second step (synthesis): Synthesize a Petri net from the result of the first step.

Since LPES with cutoff-lists are the most general existing model representing the
behavior of concurrent systems, in the first step, causal structures can be detected with
less loss of information than with approaches using other models, as for example Petri
net based models. That means, LPES with cutoff-lists have a lower representational bias
in the context of process mining compared to other models.

Concerning the second step, in [2], the authors present a theory for the token flow
region based synthesis of bounded p/t-nets from LPES with cutoff-lists. The unfolding
of the synthesized p/t-net includes the given LPES and has minimal additional behavior.
In [3], a practical implementation is provided together with first experimental results.

An important aspect of the first step is the detection of noise. We present a new
approach for the detection of noise using statistical methods. The main advantage of
this new approach is the obtained statistical foundation of the results including an upper
bound for the risk of false classification of traces (as noise or not as noise) and flexible
adaptability of the used probability for the occurrence of noise.

Our approach is based on counting the number of occurrences of a pair of direct
neighbors ab within the traces of the event log (frequency of ab). Roughly speaking,
we identify such an occurrence as noise if the number of occurrences is ”very low”
compared to the number of all pairs xy with predecessor x = a or follower y = b. For
the decision, we use one-sided hypothesis tests based on the binomial distribution for
each pair ab. We formulate the following two hypotheses:

– Null hypothesis H0 : p ≤ p0: The occurrence of ab should be considered as noise.
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– Alternative hypothesisH1 : p > p0: The occurrence of ab should not be considered
as noise.

The value p0 is the probability for the occurrence of noise and p is the probability for
the occurrence of the pair ab within a trace of the event log. The choice of p0 depends
on the considered event log and field of application. A higher value of p0 leads to the
classification of more pairs xy as noise.

The aim is to restrict the risk of falsely inferring that H1 is true when indeed H0

is (error type 1), by fixing an upper bound α. That means, we determine the smallest
value k, such that

p(frequency of ab ≥ k | p ≤ p0) ≤ α,
and decide for H1 if the frequency of ab is greater or equal to k.1

If a trace contains a pair ab which is classified as noise, we omit the whole trace,
i.e. we delete the trace from the event log and do not consider it for the construction of
the LPES.

Note that not all kinds of noise can be detected through considering frequencies of
direct neighbors. The classification and treatment of such kinds of noise is a direction
of future research.

Further steps in the construction of an LPES from an event log are the detection of
causality, concurrency and loops. A simple possibility for the detection of causality and
concurrency is to proceed as in the α-algorithm and its improvements using information
about direct neighbors from the noise-free event log.

The detection of loops is a direction of future research, since existing techniques
cannot be adapted to LPES with a list of cutoff events.
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Overview For the support of our teaching projects Web-based support of the
learning process is needed. Here we discuss the development of our browser-
based tool for workflow guided tutorials with JointJS and Vue.js frameworks in
Javascript and HTML templates.
Keywords: Petri nets, workflow nets, education, tutorials, Javascript

Motivation As described in [1] we support our teaching project workflows with
detailed process descriptions during the first weeks. To support automation of
these processes we strived for a browser-based tool support to allow for an even
better teaching process. So we were looking for the best solution.

Problem For the description of the processes, we use a kind of workflow nets. A
natural implementation would be to use Renew as the execution engine. How-
ever, we experienced that students expect access to such a tool from anywhere
with their usual look and feel. A browser-based alternative had, therefore, to be
discussed. Former solutions were outdated, as can be seen in our browser-based
implementation in the project Sisol1 from 2005.

Approach Since the workflows were created with the help of the tool Renew2,
they were available in the tool’s rnw file format. Import and export functions to
the XML based file format PNML already exist in Renew. The planned Web ap-
plication needs to read, parse, display and simulate these files. Since the PNML
exporter does not provide all formatting information (e.g. arc waypoints), the
application should also contain an editor for the loaded nets. The desired process
using the application is to step through the workflow by clicking on task tran-
sitions, starting from the initial marking of the net. Meanwhile, the application
displays the corresponding exercise texts for the activated tasks.

A prototype was created using HTML and Javascript. In the first step, var-
ious graphics frameworks for Javascript were tested for their fitness. There are
multiple ways to create a web-based application. A framework provides much
help getting started since templates can be used to output values from JavaScript
to the HTML document. Frameworks also provide a predefined structure and

1 http://www.informatik.uni-hamburg.de/TGI/forschung/projekte/sisol/
tutorial_big.gif

2 Renew homepage: http://www.renew.de
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already implement a structure for inter-component communication. In the fast-
moving world of Javascript development, one of the first experiences was that
active development and maintenance of the frameworks had to be one decisive
selection criteria.

The first prototype developed with Draw2d Touch3 as a graphical framework
was no longer executable after the switch to the next browser generation. At
the time of writing this text, the further development of the framework was
discontinued. JointJS4 and mxGraph5 were shortlisted because they have an
active developer community. mxGraph offers all the classic editing features, while
JointJS provides better support for simulations. The current prototype is based
on JointJS, which already offers a simple Petri net plugin.

Vue.js6 was chosen as the basic framework since it is lightweight and uses
native Javascript without syntax extensions. This combined with the large, active
community makes it easy to learn the framework. Additionally, Vue.js is used by
large companies like Alibaba, Baidu, and Tencent which increases the probability
that it will be further developed in the future.

Results The current prototype already supports the functionality to read and
display PNML files by converting these into JSON Objects which are then ren-
dered with JointJS. Basic editing and simulation functionality is available. At
this point, it is evident that the tools currently chosen are well suited for the
intended tutorial support. Reading through the tasks on the tutorials can now
be simulated in corresponding workflow nets.

Open problems and outlook For the next prototypes, the editing functions have
to be extended, and the persistence of the tutorials has to be ensured. The
synchronization between workflow simulation and task display still has to be
implemented. The project could then prove its usefulness in lessons by using
the application instead of the worksheets. The workflows also show the progress
the students have made in the exercise. In future works, this could be used to
analyze the progress and optimize the exercises. There could be a version of the
tool for the teacher that displays the current status of the learners in different
colored tokens. A connection of the tool to Redmine to open task related tickets
could also be a useful addition.
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Overview / Motivation Several inscription languages for Petri net simulators
exist to extend the expressibility and usability of Petri nets in system develop-
ment. Renew uses Java and attempts to add a functional language (Scheme)
were successful with respect to language, however, the performance was poor
and the language (and its implementation) do not allow for side effect free de-
velopment. CPN-Tools uses Standard ML as the inscription language. This tool
is very widely used, however, ML has side effects. A former tool inscribed with
Haskell had only poor usability.

Avoiding side effects has the underlying promise that analysis of such nets
might be easier. Therefore, a new attempt was made to develop a Petri net
simulator that incorporates a language without side effects. After some investi-
gations about the best options the purely functional logic programming language
Curry was chosen. Haskell as the implementation language was therefore a nat-
ural choice. In the following, we briefly sketch the development and the main
features of the newly introduced Petri net formalism.

Approach Following the Paose-Approach (Petri net-based, Agent- and
Organization-Oriented Software Engineering) the most critical aspects
were addressed in a stepwise approach. Based on our experiences with Renew
and Java as the implementation language and a thorough investigation about the
state-of-the-art of similar simulators several features were identified that should
be covered in the new simulator. The complete work and the development process
are described in the master thesis of the first author.

As in Renew the concurrency and the practical usability of the simulator
was a of high priority. Since Coloured Petri nets (CPN) by Kurt Jensen is the
basic formalism the transition binding was of central interest. To avoid the devel-
opment of a whole graphical interface just for CCPN Renew was used for the
graphical user interface (gui). This required some modification within the Re-
new framework what was also done in context of the master thesis as a smaller
portion of the workload. Several milestones were set up to reach a fully usable
simulator. In a systematic way the key features of the tool were developed.

Results A graphical user interface was made available via a new Renew plugin.
Editing, inspection, observation and control of CCPN nets and simulations was
implemented via an XML interface. As the first step for the provision of analysis
tools the reachability graph can be generated under the gui control.

53



CCPN can be used as a software library by other Haskell programs. Several
interfaces are available to control the simulation. Access to the net markings and
the firing of specific transition sequences are made available.

The Petri net formalism allows the inscription of the nets with Curry code.
Concurrent Haskell implementation allows for the execution in an efficient man-
ner. Most important is that transition execution happens without side effects.
The strictly strongly typed programming language environment allows to ensure
this together with the software design of the binding and firing rules implemented
for CCPN. The evaluation of functions does not have side effects and the logic
program evaluation for the transition binding search are of central importance.

Overall, CCPN provides a new powerful Petri net formalism based on a logic
programing language, what is the central idea of the master thesis. The starting
time of a simulation is relatively high due to the prototypical implementation.
Emphasize was laid on the usability study of the different features within the
simulation. All features could be implemented in a very efficient way. The search
for transition bindings to fire is delegated to the underlying Curry compiler.
It is central to the simulation algorithm which is inspired by Renew and im-
plemented in Haskell. Doing so, the upcoming developments within the Haskell
and Curry language development can directly improve the CCPN simulator.
Therefore, important parts heavily rely on the KiCS2 Curry compiler1.

Modelers can define purely functional logic programs for initial place mark-
ings and transition inscriptions. Two main libraries allow, via the Curry compiler
and its libraries, for dynamically compiled and loaded nets and software. The
simulator core is agnostic to the inscription language and does not depend on the
KiCS2 Curry compiler integration. Other CPN formalisms are therefore possi-
ble in the future. Three interface provide sufficient means and different levels to
use and control of CCPN. Embedding into the Renew environment via XML
allows a convenient usage.

Open problems and outlook Optimization of the compilation can be acquired by
the pre-compilation of time intensive parts. Usage of compilation results should
reduce the setup time for a simulation considerably. For this some strategies have
to be designed for our domain and the intended use of CCPN. Once everything
is compiled the simulation is executed fast. User experiences are therefore much
better during the simulation runs. CCPN is based on the current 0.6.0 stable
version of the KiCS2 compiler. KiCS2’s current development release adds type
classes similar to Haskell, a major type system improvement. Porting CCPN is
necessary to use this new feature and future KiCS2 improvements.

Most interesting is the extension of the CCPN formalism itself. Test arcs or
nets-within-nets or other hierarchy concepts are highly interesting. Due to the
concurrent implementation and the functional language background distributed
simulation is of high interest. Most importantly the options of analysis of the
net formalism is very promising.

1 see http://www-ps.informatik.uni-kiel.de/kics2/
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Overview / Motivation For most of it’s existence, the user interface of Renew
has used the same graphical framework and window management. For several
usage scenarios this was not the state-of-the-art anymore. Here we discuss some
improvements for a better user experience of Renew.

Problem The original graphical interface was developed on the basis of the frame-
work JHotDraw1 by Erich Gamma. There was no architectural design for a plu-
gin system, when Renew branched from JHotDraw. In the master thesis of
the first author2 two main goals were addressed: 1) (Maintainability) Enable
the graphical interface to be more easily extendable via plugins. 2) (Usability)
Improve the general usability of Renew.

Approach Former attempts to improve the Renew GUI were used to check
options. Other tools that are used in a similar manner as Renew (e.g. other
Petri Net editors such as CPN-Tools or graphical editors such as GIMP) were
analyzed for useful features and design patterns. Furthermore experiences from
several smaller development studies, student thesis and teaching projects were
collected and checked for the most pressing needs of improvement.

A list of improvements were set up and systematically tested for possible
realizations. It is important to notice that the two main goals required different
levels of investigation. For the plugin extensibility the internal design of Renew
had to be improved. Some technical debts had to taken into account and parts
of the software had to be re-engineered. For the usability, alternative designs of
the interface and features of the software had to investigated.

Based on these thorough investigations several decisions had to be made
about what could be done within the given timeframe of the master thesis
of Wincierz. For the methodological setting the software development Paose-
approach3 (Petri net-based, Agent- and Organization-Oriented Software Engi-
neering) was applied: involvement of users (at the architectural and the appli-
cation level respectively). deep analysis of the given system; definition of clear
sprint results; systematic prototyping with state-of-the-art agile methods; sepa-
ration of concerns by dividing problems into manageable parts.
1 JHotDraw: http://www.jhotdraw.org
2 Wincierz, Martin: Verbesserung der Erweiterbarkeit und Benutzbarkeit der grafis-

chen Oberfläche des Petrinetz Simulators Renew, University of Hamburg, 2018
3 Paose: http://paose.de
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Results Improving the maintainability required the main efforts during this de-
velopment process. Integrating the Docking Frames framework4 allowed shifting
several functionality to an external library. Workload of maintaining the code
within the Renew development team now changes. The framework will need to
be monitored and continuously be integrated into our code base. Future devel-
opment will, however, be much easier since extensibility is improved due to the
better support of plugin architectures by the framework.

Via the usage of several design patterns (bridge, adapter, factory, observer,
etc.) the maintainability of the Renew code base could be enhanced consider-
ably. Reimplementation of the DrawApplication class improved the readability
of the corresponding code base. Many code comments were added to the in-
spected code (improvement of readability) and new code was created directly
with comments (ensuring readability). Java assertions were partially applied to
allow for validation of interface conditions. Overall the maintainability of the
Renew code base was improved considerably. At the same time new features
could and can be added in an easier way.

Usability improvements resulted directly from the usage of the new graphical
framework. The look-and-feel with respect to the window management follows
now more modern styles. Zooming was implemented and hence directly supports
task adequacy. Context-sensitive information can now be acquired more easily
by new plugin-based tools. Control of the program was shifted from a purely
menu-based system to the usage of buttons with graphical icons which clearly
communicate their meaning. This facilitates easier learning of the application’s
features and their faster control by expert users. Tool bars can now be adapted
via individual configurations and at runtime the window management is more
flexible with dock-able windows. Overall the usability has been improved in many
facets without losing former features.

Open problems and outlook While several aspects could be improved, multiple up
to now hidden problems were revealed. Future work can be done by improvement
of the menu management. Since future plugins need to register their own new
menus, general conventions regarding naming and menu usage as well as more
automation in ordering these menus would be of help. I/O Operations can be
improved. Due to the new framework and the decoupling of representation and
I/O operations other kinds of graphics than Renew drawings could be opened
and displayed. The aesthetics of the Renew GUI still does not match current
expectations of UI design. For acceptance at teaching and practical use the intu-
itive representation and usage of the functionality has to be taken into account.
Newest trends in usability have to be obeyed to keep the motivation high. Due
to the size of Renew and its whole eco system of tools and frameworks a com-
plete analysis of the user interface has not been done. Further improvements are
possible in many parts.

4 http://www.Docking-Frames.org
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