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1 Introduction

At the workshop in Athens in 2011, Peter & Meylan (2011) described how band-structure computa-
tions for periodic lattices (crystals) of arbitrary bodies can be performed using interaction theories
and how this observation can be used to compute band structures for periodic lattices of arbitrary
scatterers of water waves. Moreover, they discussed how truncated (i.e. finite number) periodic ar-
rangements of bottom-mounted cylinders can be used to focus water waves, where the arrangement
of cylinders acts as a lens of effective negative refractive index.

On the other hand, in acoustics, Cebrecos et al. (2014) showed that a so-called chirped crystal
of cylinders, with lattice spacing decreasing in the direction of the incident wave, can be used to
amplify (acoustic) pressure in certain regions. They showed this experimentally but also argued that
the effect is due to the incident wave reaching a region inside the grating where its effective group
velocity vanishes so that the incident energy accumulates. Band-structure calculations were used to
support this argument, and, clearly, only mild lattice spacing variations are allowed in order for each
cylinder to ‘feel’ as if being one member of a regular crystal. Different frequencies are amplified in
different regions, leading to the phenomenon being referred to as rainbow trapping.

Here, we provide, to our knowledge, the first demonstration of rainbow trapping of water waves.
Specifically, we show how the energy of a normal incident wave can be amplified in truncated chirped
crystals of rigid bottom-mounted cylinders, with N columns and M rows. Figure 1 illustrates the
form of crystals considered, which are analogous to those of Cebrecos et al. (2014) but with increasing
spacing in order to trap relevant frequencies. This idea could be used to increase the efficiency of
power take-off devices in the ocean.

=

φinc = eikx

Figure 1: Schematic of a chirped crystal with N = 8 columns and M = 5 rows (top view).



2 Statement of the problem and solution method

We consider water-wave scattering by an arrangement of (non-overlapping) surface-piercing rigid
bottom-mounted circular cylinders. The equations of motion for the water are derived from the
linearised inviscid theory assuming irrotational motion. Restricting to time-harmonic motion with
radian frequency ω (which is the spectral parameter), the velocity potential Φ can be expressed as
the real part of a complex quantity, Φ(y, t) = Re {φ(y)e−iωt}, where y = (x, y, z) denotes a point in
the water. The notation x = (x, y) denotes a point on the undisturbed water surface, assumed at
z = 0, i.e. x = (x, y, 0).

Writing α = ω2/g, where g ≈ 9.81 m s−2 is the acceleration due to gravity, the potential φ has to
satisfy the standard boundary-value problem

−∆φ = 0, y ∈ D, (1)

∂φ

∂z
= αφ, x ∈ Γf , (2)

∂φ

∂z
= 0, y ∈ D, z = −d, (3)

where D = (R2×(−d, 0))\⋃j ∆j is the domain occupied by the water (∆j is the jth cylinder) and Γf

is the free water surface. The normal derivative of the potential on the cylinder surfaces is required
to vanish. For future reference, we note that the positive wavenumber k is related to α by the
dispersion relation α = k tanh kd. Owing to the constant cross-section of the cylinders, the depth
dependence can be factored out of the problem, and restricting to incident waves of propagating
nature, outside of the escribed cylinder of a scatterer any solution can be written as

φ(x, y, z) = f0(z)φ0(x, y), where f0(z) = cosh k(z + d) sech(kd) (4)

is the vertical eigenfunction and φ0 has to satisfy the corresponding Helmholtz equation

−∆φ0(x, y) = k20φ0(x, y), where ∆ = ∂2/∂x2 + ∂2/∂y2. (5)

The potential can be solved for efficiently using a modified version of the recursive algorithm devel-
oped by Montiel et al. (2016) and Bennetts et al. (2017).

2.1 The periodic problem

Let a1 and a2 be two (two-dimensional) vectors that span the lattice: that is every translation
between the mean-centre position of bodies in the horizontal plane has the form of a lattice vector
R = m1a1 + m2a2, where m1,m2 ∈ Z. The corresponding reciprocal lattice vectors K satisfy
K · R = 2πp, where p ∈ Z. If the reciprocal lattice vectors are written as K = n1b1 + n2b2 for
n1, n2 ∈ Z, the relation of the reciprocal lattice vectors is satisfied provided that ai · bj = 2πδij,
where δij is the Kronecker delta. Bloch’s theorem justifies looking for solutions of the form

φ(y + (R, 0)) = eiq·Rφ(y), (6)

for all lattice vectors R. The real part of q measures the change in the phase, while the imaginary
part encodes the change in amplitude.

If φ(y;q) is a solution then so is φ(y;q + K), meaning we can restrict attention to the first
Brillouin zone {q |Re q1 ∈ (−π/L, π/L], Re q2 ∈ (−π/W, π/W )}. For a specified frequency ω, we
solve for possible q values using the method of McIver (2000) as described in Peter & Meylan (2011).
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Figure 2: Band diagrams (•) for cell width W = 0.8L0, and cell lengths set as the spacing between
the (a) first and second column, (b) eighth and ninth columns, and (c) eleventh and twelfth columns.
Nondimensional incident wavenumbers kL0 = 3.550 and 4.625 are superimposed ( ).

3 Results

We present results for a plane incident wave, φinc = eikx, on a chirped crystal with M = 6 rows and
N = 14 columns, as in Cebrecos et al. (2014). The spacing between the rows is constant W , and
the spacing between columns n and n+ 1 is Ln, where

Ln = L0e
−αxN−n for n = 1, . . . , N − 1, (7)

and xn is the x-location of column n, with x1 = 0.
Figure 2 shows band diagrams for cell widths W and lengths L = Ln, at different positions n

along the chirped crystal. As can be seen, a gap opens up as the position moves into the crystal. In
particular, non-dimensional wavenumbers kL0 = 3.550 and 4.625 are in the band gap between the
eighth and ninth and the eleventh and twelfth columns, respectively. Figure 3 shows corresponding
plots of the normalised energy fields, in which the amplification of the incident energy by factors
∼ 30 and ∼ 20, respectively, can be observed inside the crystal.

4 Conclusions

We showed how an arrangement of surface-piercing bottom-mounted rigid circular cylinders resem-
bling a truncated chirped crystal can be used to amplify incident water-wave energy at a position
inside the crystal depending on the frequency of the incident wave (rainbow trapping). The ampli-
fication factors were of the order of 30 and 20 for the two examples presented. This idea has the
potential of being used to increase the efficiency of power take-off devices in the ocean.
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Figure 3: Normalised energy fields for (a) kL0 = 3.550 and (b) kL0 = 4.625.
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