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Abstract

An eigenfunction-matching method is developed for the problem of linear water-wave scat-
tering by a circular floating porous elastic plate, and a coupled boundary-element and finite-
element method is developed for the problem in which the plate is of arbitrary shape. The
methods are shown to produce the same solutions for a circular plate, and their convergence
properties are established. The impact of porosity on the far field (the wave field away from
the plate) is investigated using integral representations for the Bessel and Hankel functions.
It is shown that wave energy dissipation due to porosity initially increases as the plate
becomes more porous, but reaches a maximum and then slowly decreases as the porosity
increases further.

Keywords: Wave-Structure Interaction; Porous Elastic Plate; Eigenfunction Matching;
Boundary Element Method; Finite Element Method.

1. Introduction

Porous structures are often used to dissipate water-wave energy, e.g. in breakwaters or
at the end of wave flumes. Typically, single or multiple porous plates — horizontal, vertical
or inclined — or rubble-mount structures are used. A major advantage of horizontal plates
is that they have little effect on horizontal currents (Wang and Shen, 1999).

Water-wave interactions with fixed horizontal porous plates has been considered by many
authors. Chwang and Wu (1994) solved the problem of wave reflection by a thin submerged
porous circular disc. The related problem involving a porous plate of finite thickness was
later solved by Neves et al. (2000). Both of these works employ eigenfunction-matching as
the method of solution (using radial and axial eigenfunctions, respectively). Evans and Peter
(2011) considered a thin porous plate of semi-infinite or finite length in a two-dimensional
setting. They solved the semi-infinite problem analytically by the Wiener–Hopf and residue
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calculus techniques, using the Cauchy integral method to avoid requiring knowledge of eigen-
functions in the plate region, and the finite-length problem using a quickly convergent nu-
merical method. Liu and Li (2011) and Liu et al. (2012) solved the two-dimensional problem
using an eigenfunction-matching method, but with non-standard eigenfunctions in the plate
region, thereby avoiding complicated dispersion relations at the cost of increasing the num-
ber of unknowns in the numerical solution process considerably. Cho and Kim (2013) and
Cho et al. (2013) reported on comparisons with experiments conducted in a wave flume with
one and two submerged porous plates, respectively.

The references above assume linear boundary conditions to be satisfied at the plate,
which, in the thin plate case, enforce normal velocities of the fluid above and below the plate
to be continuous and proportional to the jump in pressure across the plate based on the
formulation of Chwang and Wu (1994), which, in turn, is based on the work of Taylor (1956)
and Tuck (1975). An and Faltinsen (2012) considered the problem of wave interactions with
a submerged porous plate with a higher-order nonlinear boundary condition for the porous
plate; they also solved the associated radiation problem. It is also worth pointing out that
more complex wave dissipation devices, in which a porous plate plays an integral role, have
been suggested and analysed, e.g. by Wu et al. (1998), Yip and Chwang (2000), Liu et al.
(2007) and Liu et al. (2008). Reviews are given by Chwang and Chan (1998), Yu (2002)
and Molin (2011), discussing vertical or inclined porous structures, in addition to horizontal
ones.

Similarly, the problem of water-wave diffraction by floating elastic plates has received
a great deal of research attention, mainly due to its application in ocean-wave interactions
with sea ice or with very large floating structures. Squire (2008) reviews literature for
both communities, pointing out their connections. The solution in two dimensions was first
found for a semi-infinite plate by Fox and Squire (1994) using an eigenfunction-matching
method, and for a finite plate by Meylan and Squire (1994) and Newman (1994) using
integral-equation formulations. The three-dimensional problem has been the subject of
significantly less research. Peter et al. (2004) solved the circular-plate problem using an
eigenfunction-matching method, and Bennetts et al. (2009) used a variation principle and
Rayleigh–Ritz method to solve the problem when the plate is partially submerged and its
thickness varies axisymmetrically. Meylan (2002) used a coupled boundary-element and
finite-element method to solve the problem for an arbitrary-shape plate. Bennetts and
Williams (2010) solved the arbitrary-shape plate problem by converting the governing partial
differential equations to a one-dimensional system of integro-differential equations, with the
restriction that the shape of the plate is smooth.

If the porous plate is thin with respect to its size but not small with respect to the wave-
length it will respond elastically to the waves (also cf. Cho and Kim, 2008, for a discussion
of the associated disadvantages in using vertical porous plates). Therefore, it is an obvi-
ous question how to compute the wave response of a porous elastic plate. Some literature
involving porous elastic plates is available. Wang and Ren (1993) and Yip et al. (2002)
considered theoretically reflection and transmission by a thin vertical porous plate. Similar
problems were considered recently by Koley et al. (2015) and Kaligatla et al. (2015), and by
Mandal et al. (2015) for multiple structures. Related problem involving vertical porous elas-
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tic membranes instead of plates were considerd by Kumar and Sahoo (2006) and Williams
and Wang (2007). Finally, Behera and Sahoo (2015) solved the problem of a submerged
elastic porous plate. However, all of these works are in the two-dimensional setting, i.e. one
horizontal and one vertical dimension. Particularly for applications involving ocean waves,
a three-dimensional consideration is required.

It turns out that the wave response of a porous thin elastic plate in three dimensions can
be computed by the extension of powerful methods available for elastic plates. Two methods
are showcased for the case of a floating porous elastic plate. The first method considered is
an eigenfunction-matching method, in the case that the plate is circular. The second method
is a coupled boundary-element and finite-element method, which accommodates plates of
arbitrary shape. It should be noted that the results presented here could be extended to
multiple porous thin elastic plates using the method outlined by Peter and Meylan (2004)
for thin elastic plates.

The general problem and the solution methods are outlined in §§ 2–4. Convergence rates
of the methods with respect to truncations employed in them are investigated, and examples
of the plate displacements are shown, indicating the damping caused by porosity. The
displacements produced by the eigenfunction-matching method and the coupled boundary-
element and finite-element method for circular plates are shown to agree, providing validation
of the methods. In § 5, the far-field amplitude of the wave field is derived, and used to
determine the wave energy dissipated due to porosity. It is shown that energy dissipation
initially increases with increasing porosity, but then slowly decreases.

2. Equations of motion

Consider a three-dimensional water domain, extending to infinity in all horizontal direc-
tions and with finite depth. Locations in the water are defined by the Cartesian coordinate
system (x, y, z), where x ≡ (x, y) is the horizontal coordinate and z is an upward-pointing
vertical coordinate. The water is bounded below by a flat impermeable bed at z = −H, and
above by a free surface z = η(x, y, t). The origin of the vertical coordinate is set to coincide
with the equilibrium location of the free surface, i.e. η = 0 when the system is at rest.

The water is assumed to be homogeneous, inviscid and incompressible, and its motion
irrotational and time-harmonic with a prescribed real angular frequency ω. Therefore, the
water velocity field is defined as Re{(g/iω)φ(x, y, z)e−iωt}, where Re denotes the real part of
the included quantity, t is time, g ≈ 9.81 m s−2 is the constant of gravitational acceleration,
and the scalar function φ is a complex-valued velocity potential.

A thin, flexible, porous plate of uniform thickness h floats on the water surface, and
is set in motion by a plane incident wave. Kirchoff–Love thin-plate theory, modified to
include porosity, is used to model the plate motions. Therefore, the flexural motions of
the plate are defined in terms of the vertical displacements of its lower surface, denoted
z = Re {w(x, y)e−iωt} for (x, y) ∈ Ω ⊂ R2, where Ω is the orthogonal projection of the plate
onto the horizontal plane.

Linear theory is employed, on the basis of the wave elevation and plate displacements
being small perturbations from the equilibrium, with respect to the horizontal lengths (small
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Figure 1: Schmatic of the geometry.

wave steepness) and vertical lengths (small wave amplitudes relative to the water depth). It
follows that the velocity potential satisfies Laplace’s equation in the linearised water domain

∆φ = 0 for x ∈ R2 and −H < z < 0, (1a)

where ∆ ≡ ∂2
x + ∂2

y + ∂2
z is the Laplacian operator, and the impermeable-bed condition

∂zφ = 0 for x ∈ R2 and z = −H. (1b)

On the linearised free surface away from the plate, the velocity potential and surface ele-
vation, η, are related through dynamic and kinematic conditions. These are combined to
eliminate η, leaving the free-surface condition

∂zφ = αφ for x /∈ Ω and z = 0, (1c)

where α = ω2/g is a frequency parameter.
Assuming all points on the lower surface of the plate remain in contact with the water

during its motion, the velocity potential, φ, is coupled to the plate displacement function,
w, via kinematic and dynamic conditions, respectively

∂zφ = αw + iPφ and φ = w + β∆2
xw − αγw (2a)

for x ∈ Ω and z = 0. Here, ∆x ≡ ∂2
x + ∂2

y is the Laplacian operator in the horizontal plane,
γ is the mass per unit area of the plate scaled with respect to the water density, and β is the
flexural rigidity of the plate scaled with respect to the water density. Porosity is included in
the model through the second term on the right-hand side of the first component of Eqn. (2a),
derived from Darcy’s law and assuming constant atmospheric pressure normalised to zero.
The porosity parameter P = ωKρ/(µh), where ρ and µ are the density and dynamic viscosity
of water, respectively, and K is the permeability of the plate, will act as the independent
variable for this study. The edge of the plate is unrestrained — the bending moment and
shearing stress vanish there — providing the conditions

∆xw − (1− ν){∂2
sw + Θ′∂nw} = 0 and ∂n∆xw + (1− ν)∂s∂n∂sw = 0 (2b)
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for x ∈ ∂Ω, the boundary of Ω. Here ν is Poison’s ratio and ∂n is the differential operator
corresponding to the normal vector n = (cos Θ, sin Θ), where Θ is a function of the parameter
s defining locations on the boundary (cf. Bennetts et al., 2007).

Eqns. (1) and (2) constitute a boundary-value problem for the velocity potential, φ, and
displacement function, w. The problem may be recast so that the velocity potential is the
only independent variable, by combining the two components of Eqn. (2a) into

φ =
{

1− αγ + β∆2
x

}
(∂zφ− iPφ) for x ∈ Ω and z = 0, (3)

and expressing the free-edge conditions (2b) in a similar manner.
In the far-field, r � 1, where r ≡ |x| is the radial coordinate, the solution is subject to

the Sommerfeld radiation condition

r1/2 {∂rφsc − ik0φ
sc} → 0 as r →∞, (4)

uniformly in the azimuthal coordinate θ ≡ arctan(y/x). Here φsc = φ− φin is the scattered
wave potential, where

φin = Aeik0(x cosψ+y sinψ)ξ0(z) with ξ0(z) =
cosh k0(z +H)

cosh k0H
, (5)

is the velocity potential of a plane incident wave with amplitude A and travelling at the
angle ψ with respect to the positive x-axis. The wave number k0 is calculated from α using
the dispersion equation which is given in the following section.

3. Eigenfunction-matching method for a circular plate

Consider a circular plate of radius a, i.e. Ω = {x : |x| < a}. In this case, the geometry
is separable with respect to the cylindrical polar coordinate system (r, θ, z), resulting in the
eigenfunction expansions

φ = φin +
∞∑
n=0

∞∑
m=−∞

an,mHm(knr)e
imθξn(z) for x /∈ Ω and −H < z < 0, (6a)

and φ =
∞∑

n=−2

∞∑
m=−∞

bn,mJm(knr)e
imθζn(z) for x ∈ Ω and −H < z < 0, (6b)

where Jm and Hm are order-m Bessel and Hankel functions of the first kind, respectively,

ξn(z) =
cosh kn(z +H)

cosh knH
and ζn(z) =

coshκn(z +H)

coshκnH
. (7)

The open-water wave numbers kn for n = 0, 1, . . . are the roots k of the dispersion relation

k tanh(kH) = α, (8)
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Figure 2: Loci of the plate-covered wave numbers κn for n = −2, . . . , 3 in the complex plane, for PH ∈ [0, 1],
with αH = 2 and β/H4 = γH = 0.01. Bullets indicate locations for PH = 0.

where k0 ∈ R+ supports propagating waves, and kn ∈ iR+ for n = 1, 2, . . . support evanes-
cent waves. The plate-covered wave numbers κn for n = −2,−1, . . . are the roots κ of the
dispersion relation

(βκ4 + 1− αγ)(κ tanh(κH) + iP ) = α. (9)

For P = 0, similarly to the open-water case, κ0 ∈ R+ supports propagating waves, and
κn ∈ iR+ for n = 1, 2, . . . support evanescent waves. As these wave numbers lie on the
real or imaginary axes of the complex plane, they may be calculated, for example, using a
bisection method. The two additional roots are, in general, such that κ−1 ∈ R+ + iR+ and
κ−2 = −κ−1, i.e. they are symmetric in the complex plane with respect to the imaginary
axis, supporting damped propagating waves. These wave numbers may be calculated, for
example, using Newton’s method.

For P 6= 0, the structure of the wave numbers is perturbed, with κ0 obtaining a positive
imaginary component, damping the propagating wave and resulting in energy loss. The
purely imaginary wave numbers, κn for n = 1, . . . , obtain real components, and κ−1 and κ−2

lose their symmetry. The roots in this case are calculated using a homotopy method, start-
ing with the corresponding roots for the zero-porosity case and incrementing the porosity
parameter to the specified value. Fig 2 shows an example of the loci of κn for n = −2, . . . , 3
in the complex plane with P ∈ [0, 1]. The parameter values used for this example (non-
dimensionalised with respect to the water depth, H) are αH = 2 and β/H4 = γH = 0.01.
These values are maintained for the remainder of the study.

The amplitudes of the scattered waves, bn,m, and the waves in the plate-covered re-
gion, an,m, are calculated using an eigenfunction-matching method. Expressions (6) for the
velocity potential are equated at the interface between the open-water and plate-covered
regions, x ∈ ∂Ω and −H < z < 0, providing continuity of pressure, and their radial deriva-
tives are equated, providing continuity of radial velocity. These continuity conditions are
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Figure 3: Example displacements of circular plate at t = 0 calculated using the eigenfunction-matching
method, for non-dimensional radius a/H = 2, incident-wave direction ψ = 0 and porosity parameter (a)
PH = 0, (b) PH = 0.5, and (c) PH = 1.

mapped to a linear system of equations by taking inner-products with respect to the verti-
cal eigenfunctions ξn for n = 0, . . . . For numerical calculation, all infinite series of vertical
eigenfunctions are truncated at N and azimuthal eigenfunctions at ±M , where N and M
are chosen sufficiently large to provide a desired level of accuracy. The free-edge conditions
(2b) are appended to the system to close it, using the eigenfunction expansion (6b). Noting
that the incident wave can be expressed

φin =
∞∑

m=−∞

eim(π/2−ψ)Jm(k0r)e
imθξ0(z), (10)

and, for the circular geometry, that the free-edge conditions reduce to{
∆r,θ −

1− ν
r

(
∂r +

1

r
∂2
θ

)}
w = 0 and

{
∂r∆r,θ −

1− ν
r2

(
∂r +

1

r

)
∂2
θ

}
w = 0 (11)

for r = a, where ∆r,θ ≡ ∂2
r + r−1∂r + r−2∂2

θ , the azimuthal modes decouple, i.e. the system
for each azimuthal mode m ∈ {−M, . . . ,M} is solved separately.

Fig. 3 shows three examples of plate displacements at t = 0, Re{w}, produced by incident
waves travelling in the direction of the positive x-axis, ψ = 0. One example is for zero
porosity and the other two are for non-zero porosity. The non-dimensional radius of the
plate is a/H = 2, with this value maintained for the remainder of the study. Truncations
M = N = 10 are used to calculate the displacements. The shape of the displacements are
dominated by the plane incident wave. Porosity damps the displacements, particularly at
the centre of the plate.

Fig. 4 shows the convergences of the eigenfunction-matching method with respect to the
truncations of the vertical and azimuthal eigenfunctions. Convergences are quantified by
L2-norms of the differences between successive approximations of the displacement function,
respectively,

δwvt
N =

(∫∫
Ω

∣∣∣∣w(N,M) − w(N−1,M)

A

∣∣∣∣2 dx

) 1
2

(12a)
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Figure 4: Convergences of the eigenfunction-matching method (−) and computational runtimes ( ), with
respect to truncations of (a) vertical eigenfunctions, N , with M = 10, and (b) azimuthal eigenfunctions, M ,
with N = 10.

and δwaz
M =

(∫∫
Ω

∣∣∣∣w(N,M) − w(N,M−1)

A

∣∣∣∣2 dx

) 1
2

, (12b)

where w(N,M) denotes the displacement function for vertical truncation N and azimuthal
truncation M . The corresponding computational runtimes are superimposed on the plots.

Results are shown for the zero-porosity case of Fig. 3. The convergence rate with respect
to the vertical eigenfunctions is M−3. The convergence rate with respect to the azimuthal
eigenfunctions is exponential, presumably because the incident forcing (10) drops off ex-
ponentially with respect to azimuthal order at r = a. Convergence rates are identical for
non-zero porosity cases tested, although the difference between successive approximations are
smaller due to the smaller displacements. The runtimes increase at a rate of approximately
N1.8 with respect to the vertical eigenfunctions, as the azimuthal modes are decoupled. The
runtimes for non-zero porosities are slightly longer due to the homotopy method used to
calculate the perturbed wave numbers.

4. Coupled boundary-element and finite-element method for an arbitrary-shape
plate

The solution for a non-circular plate is found using a very different method based on a
coupled boundary-element and finite-element method. In this method, the plate motion is
expanded in modes of free vibration — the standard method for solving complex hydroelastic
problems. The expansion is

w =
∞∑
j=1

ujwj (13)
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with coefficients uj, where the modes wj(x), j = 1, 2, . . . , satisfy the eigenvalue problem for
the biharmonic operator,

∆2
xwj = µ4

jwj for x ∈ Ω, (14)

together with the free-edge conditions (2b), where µ4
j are the eigenvalues numbered in as-

cending order of their magnitude. The modes represent the free vibrational modes of the
plate in vacuo and they depend on the shape of the plate only. Since the operator ∆2

x sub-
ject to the free-edge boundary conditions is self-adjoint the eigenspaces are orthogonal for
different eigenvalues. We form an othornormal basis for these eigenspaces numbered with
increasing eigenvalue in the normal way, i.e.∫∫

Ω

wi(x)wj(x) dx = δij, (15)

where δij is the Kronecker delta. The eigenfunctions are calculated using the finite element
method as outlined by Meylan (2002). Inserting expansion (13) into Eqns. (2) gives

∂zφ =
∞∑
j=1

ujwj + iPφ, for x ∈ Ω and z = 0, (16a)

φ =
∞∑
j=1

(
1 + βµ4

j

)
ujwj − αγ

∞∑
j=1

ujwj, for x ∈ Ω and z = 0. (16b)

By linearity, the velocity potential is expanded as

φ = φin + φdi −
∞∑
j=1

ujφ
ra
j , (17)

where φin is the incident wave potential, cf. Eqn. (5). The sum of the incident wave and
diffraction potentials, φin + φdi, is the solution of the problem in which the plate is held in
place. The radiation potentials, φra

j , j = 1, 2, . . . , are solutions of the problems in which the
plate oscillates in one of its free modes with unit amplitude.

On the linearised water surface, z = 0, the diffraction and radiation potentials can be
expressed as

φdi(x, 0) =

∫∫
Ω

G(x, 0; x′)
(
α
(
φin(x′, 0) + φdi(x′, 0)

)
− iP

(
φin(x′, 0) + φdi(x′, 0)

))
dx′,

(18a)

φra
j (x, 0) =

∫∫
Ω

G(x, 0; x′)
(
αφra

j (x′, 0)− iPφra
j (x′, 0)− wj(x′)

)
dx′, j = 1, 2, . . . (18b)

Here, G(x, z; x′) is the free surface Green’s function for a point source located at the water
surface, which can be expressed as

G =
∞∑
n=0

i cosh knH

4HN2
n

cosh kn(z +H)H0(knR), where N2
n =

1

2

(
1 +

sinh 2knH

2knH

)
, (19)
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Figure 5: Displacements of circular plates calculated, as in Fig. 3, but computed with the coupled boundary-
element and finite-element method, which approximates the circular shape with square panels.

R is the distance of the field point from the source point and km are the roots of the dispersion
relation (8) (cf., e.g., Linton and McIver, 2001, Eqn. B.91). Expressions (18) are solved for
x ∈ Ω using a constant panel method (see Meylan, 2002).

A linear system for the modal weights u = [ui]i is obtained by applying the dynamic
coupling condition (16b) to the expanded velocity potential (17) and taking inner products
with respect to the free vibrational modes of the plate. After truncation of the number of
modes, the system is expressed in matrix form as(

K + C− αM− ω2A(ω)− iωB(ω)
)
u = f(ω). (20)

Here K, M and C are stiffness, mass and hydrostatic-restoring matrices, respectively. They
are given by

K = dβµ4
jcj, M = γI and C = I, (21)

where dcici denotes a diagonal matrix with diagonal entries ci, and I is the identity matrix.
Moreover, the elements of the real added mass matrix A = [Aij]ij and real damping matrix
B = [Bij]ij are defined as

ω2Aij + iωBij = −
∫∫

Ω

φra
j wi dS, (22)

and the elements of the forcing vector f = [fi]i are given by

fi =

∫∫
Ω

(
φin + φdi

)
wi dS. (23)

Fig. 5 shows three examples of the displacement of a circular plate, calculated using the
coupled boundary-element and finite-element method, in direct analogy to Fig. 3 for valida-
tion. Even though the circular shape is approximated by square panels, the displacements
compare very well.

Fig. 6 shows example displacements of porous plates at t = 0, for three different plate
shapes: a square, a right-angled triangle and a rhombus. The shapes are the maximum
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Figure 6: Example displacements of (a) square, (b) triangular and (c) rhombic plates, for porosity parameter
PH = 0.5 and incident angle ψ = 0.
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Figure 7: Convergences of the coupled boundary-element and finite-element method (•, −) and computa-
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L, with Q = 25.

11



sizes of their type fitting into the bounding box for the circular plate, i.e. a square with side
lengths of 2a. It can be seen that their responses to the incident wave are all quite similar
for the parameter values chosen.

Fig. 7 shows the convergence behaviour of the coupled boundary-element and finite-
element method for the square plate with zero porosity. Denoting by Q the truncation value
for the number of radiation potentials (i.e. the number of free vibrational modes) used in the
computation and by L the number of points in the discretisation of each side of the plate,
convergence is quantified by L2-norms of the differences between successive approximations
of the displacement function, respectively,

δwmo
Q =

(∫∫
Ω

∣∣∣∣w(Q,L) − w(Q−1,L)

A

∣∣∣∣2 dx

) 1
2

(24a)

and δwel
L =

(∫∫
Ω

∣∣∣∣w(Q,L) − w(Q,(L+1)/2)

A

∣∣∣∣2 dx

) 1
2

, (24b)

where w(Q,L) denotes the displacement function for modal truncation Q and spatial discreti-
sation L. Note that only Q ≥ 4 is considered in order to include at least the rigid-body
heave, pitch and roll modes and that the number of panels is given by L2 for the square
plate. The corresponding computational runtimes are superimposed on the plots.

The convergence rate with respect to the free vibrational modes is very rapid beyond
Q ∼ 10, suggesting that high frequency vibrational modes are hardly excited by the (low-
frequency) incident wave. It is interesting to note that the quantity w(Q,L) drops very close
to zero occasionally and this can be attributed to: (i) symmetry of the square plate causing
some modes appear in pairs that have to be added to the computation simultaneously in
order to increase accuracy; and (ii) modes not being excited in the square plate by the
normally incident wave. The runtime is hardly affected by the number of modes as the main
part of the computational time is in the boundary-element part. The convergence with
respect to number of points in the discretisation of each side of the plate is roughly L−3.
Note that the increase in runtime is considerable. Again, the results for non-zero porosities
are very similar. Wang and Meylan (2004) provide a more comprehensive convergence study
of the coupled boundary-element and finite-element method for the non-porous elastic plate.

5. Far-field amplitude and energy dissipation

The evanescent wave components of the scattered wave field decay exponentially away
from the plate, leaving only the propagating wave component. For the circular plate, the
scattered wave potential, φsc, reduces to

φsc ∼
∞∑

m=−∞

a0,mHm(k0r)e
imθξ0(z) in the far field r � 1. (25)
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Figure 8: Moduli of (a) transmitted and (b) reflected amplitude functions for the circular plate, produced
by the continuous incident amplitude A = A cos16 χ, for PH = 0 (−), PH = 0.5 ( ) and PH = 1 ( ).

Following Montiel et al. (2015a,b), this potential can be expressed as an integral of plane
waves,

φsc ∼
∫
C
D(χ)eik0r cos(θ−χ) dχ ξ0(z) for r � 1, (26)

where the integral contour C(θ) = (−π/2, π/2) + θ, and D is the amplitude function of the
scattered wave field with respect to the directional spectrum. The amplitude function is
related to the standard far-field amplitude D, defined by

φsc ∼
√

2

iπkr
D(θ)eik0rξ0(z) for r � 1, and D(θ) =

∞∑
m=−∞

a0,meim(θ−π/2), (27)

simply by D = D/π.
The incident wave potential is written as the integral of plane waves

φin =

∫ 3π/2

−π/2
A(χ)eik0r cos(θ−χ) dχ ξ0(z), (28)

where, for the plane incident wave at angle ψ given in Eqn. (5), the amplitude function
A(χ) = Aδ(χ−ψ), with δ the Dirac delta distribution. Reflected and transmitted amplitude
functions are defined, respectively, as

R(χ) = D(ψ + χ+ π) and T (χ) = A(ψ + χ) +D(ψ + χ) for χ ∈ (−π/2, π/2) , (29)

where arguments are understood to be modulo 2π and in the appropriate interval.
Fig. 8 shows absolute values of transmitted and reflected amplitude functions for the

non-porous plate and porous plates with P = 0.5 and 1. For presentational purposes, the
continuous function A = A cos16 χ is used for the incident amplitude, providing an inte-
gral of plane incident waves in a narrow band around the positive x-direction. Following
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Figure 9: (a) Wave energy dissipated due to porosity, as a function of the porosity parameter, for the circular
plate. (b) Derivatives, with respect to the porosity parameter, of the energy transmitted in the incident
wave direction ( ) and scattered in all other directions ( ).

Montiel et al. (2015a), the transmitted and reflected amplitude functions for a continuous
incident amplitude are calculated at sampled points in the directional spectrum using sam-
pled reflection and transmission kernels, with 101 uniformly distributed points in the interval
(−π/2, π/2) used for these results.

The wave field transmitted by the non-porous plate is dominated by the incident spec-
trum. Porosity damps transmission in the direction of the incident field, with the damping
increasing as the porosity parameter increases but the rate of increase slowing. The poros-
ity creates side bands around the incident direction in the transmitted field, causing the
amplitudes of the waves in these directions to exceed those for the non-porous plate.

The wave field reflected by the non-porous plate peaks in the direction opposite to the
incident wave direction. Porosity smoothes the reflected spectrum, producing a net increase
in the reflected amplitude, presumably due to a greater impedance mismatch between open
water and the plate-covered water when porosity is introduced. The mean of the reflected
amplitude increases as the porosity parameter becomes larger.

Fig. 9(a) shows the quantity

E =

∫ 3π/2

−π/2
|A(χ)|2 dχ−

∫ 3π/2

−π/2
|A(χ) +D(χ)|2 dχ, (30)

which is proportional to the energy dissipated due to porosity, as a function of the porosity
parameter. For the purpose of numerical calculations, the incident amplitude function is
approximated as

A(χ) ≈ A

2π

100∑
m=−100

eim(χ−ψ), (31)

i.e. a truncated version of the (formal) Fourier series for the delta distribution. For non-
dimensionalised porosity parameter, PH, less than approximately unity, dissipation in-
creases with increasing porosity, as expected. As indicated in Fig. 8(a), the increase in
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dissipation with respect to the porosity parameter is initially rapid, but levels off as PH
approaches unity. For PH greater than unity, dissipation decreases as the porosity increases.
This is not surprising, since if the porosity vanishes then the problem conserves energy and
if the porosity is large then the boundary condition under the plate becomes approximately
φ = 0, which is also energy conserving.

Fig. 9(b) shows the corresponding derivatives of the quantities

Eψ =

∫ ψ+ε/2

ψ−ε/2
|T |2 and Esc =

∫ 3π/2

−π/2
|R|2 + |T |2 dχ− Eψ, (32)

where ε is the distance between sampled points in the directional spectrum, with respect
to the porosity parameter. The quantites Eψ and Esc represent the energy transmitted in
the incident wave direction and scattered in all other directions, respectively. As indicated
in Fig. 8, the transmitted energy in the incident wave direction decreases as the porosity
increases, whereas the energy in the other directions increases as the porosity increases. For
PH less than unity the decrease in transmission outweighs the increase in scattering, but
for PH greater than unity the opposite is true, explaining the rollover in the energy with
respect to the porosity parameter shown in Fig. 9(a).

For an arbitrary-shape plate, the far-field amplitude, D, is defined as

D(θ) =
i(k2

0 − α2) cosh2(k0H)

2{H(k2
0 − α2) + α} K(θ), (33)

where K is the Kochin function

K(θ) =

∫∫
Ω

(
αw − (α− iP )φ

)
e−ik0(x′ cos θ+y′ sin θ) dx′, (34)

(see Mei et al., 2005, § 8.4, for details of the non-porous, rigid case).
Fig. 10(a) shows the modulus of the scattered amplitude function, D, for the circular plate

with porosity PH = 0.5, in response to a plane incident wave at angle ψ = π/6, calculated
using the coupled boundary-element and finite-element method, and also for the plates shown
in Fig. 6. The amplitudes peak in the direction of the incident wave for all plate shapes, with
the square plate attaining the maximum amplitude. The peak of the rhombic plate shows
significant asymmetry, with the peaks for the other plates approximately symmetric. The
amplitude functions for all shapes possess side bands around the main peak, with maxima
approximately ±π from the incident wave direction. For the square and triangular plates,
the side band above the main peak are wider than below it, and the triangular plate produces
an additional peak in approximately the opposite direction to the incident wave.

Fig. 10(b) shows the energy dissipated by the different shaped plates, as functions of the
porosity parameter. For the circular plate, results calculated by the eigenfunction-matching
and the coupled boundary-element and finite-element methods are provided, validating the
two approaches. The dissipation behaviours are consistent for the different plate shapes
— as shown in Fig. 9(a) for the circular plate, dissipation initially increases rapidly with
increasing porosity, reaching a maximum and then slowly decreasing as porosity further

15



(a)

circle
square
triangle
rhombus

χ/π

-0.5 0 0.5 1 1.5

|D
|/A

0.0

0.2

0.4

0.6

0.8

0.1

porosity

D
is

si
pa

tio
n

(b)

/◦ circle
square
triangle
rhombus

PH

0 1 2 3 4

E
/A

2

0.0

0.4

0.8

1.2

1.6

Figure 10: (a) Moduli of scattered far-field amplitude functions for different plate shapes, with porosity
PH = 0.5 and incident angle ψ = π/6. (b) Energy dissipated due to porosity as a function of the poros-
ity parameter, for different plate shapes. For the circular plate, the broken line is calculated using the
eigenfunction-matching method and the symbols are calculated using the coupled boundary-element and
finite-element method.

increases. The square plate, which covers the greatest area of the water surface, produces
the most dissipation over the range of porosities considered. The circular plate, which covers
the second greatest area, produces the second most dissipation for approximately PH < 0.6,
but the least dissipation for approximately PH > 1.4. The rhombic plate produces more
dissipation than the triangular plate, which covers the same area, although they dissipate
almost identical amounts for the largest values of the porosity parameter considered.

6. Conclusions

Two solution methods have been outlined for the problem of water wave scattering by a
floating porous elastic plate in three dimensions. A computationally efficient eigenfunction-
matching method was developed for a plate of circular shape, requiring complex-valued
wave numbers to be located. A more numerically costly coupled boundary-element and
finite-element method was developed for a plate of arbitrary shape. For a circular plate, the
coupled boundary-element and finite-element method was shown to produce the same plate
displacements and scattered far field as the eigenfunction-matching method.

A representation of the far field as an integral of plane waves over the directional spectrum
was used to investigate the impacts of porosity on the reflection and transmission produced
by the plate. It was shown that porosity damps transmission in the direction of the incident
wave, but increases scattering in all other directions. The rate of wave energy dissipation
due to porosity was found not to monotonically increase as the plate became more porous,
but, rather, to attain a maximum value for a finite value of the porosity parameter and then
slowly decrease as the porosity increased. Moreover, the strength of the porosity was found
to depend on the shape of the plate.
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