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The 5th Chinese–German Workshop on Computational and Applied Mathematics was held at the Uni-
versity of Augsburg, Germany, from September 21st to 25th, 2015. The symposium enhanced themutual un-
derstanding of the state of the art of current research on both sides and stimulated future Chinese–German
collaborations; it was kindly funded by the Sino-German Center for Research Promotion (grant no. GZ1228).
The bilateral workshop followed previous ones in Berlin (2005), Hangzhou (2007), Heidelberg (2009), and
Guangzhou (2011) chaired by Carsten Carstensen (Humboldt-Universität zu Berlin, Germany) and Zhong-Ci
Shi (Chinese Academy of Science, China). The Augsburg workshop brought together 13 Chinese scientists,
22 participants from German universities and one from a Swiss institution.

In the preceding 14 papers in the journal CMAM, namely ten in the previous issue and four preceding
this epilogue in this issue, leading numerical and applied mathematicians of both sides demonstrate the re-
markable advances in computational and applied mathematics. The topics range from numerical analysis to
scientific computing and include highly current aspects of mathematical modeling, optimization and multi-
scale problems.

Bartels andMilicevic compare experimentally the Heronmethod, the H1/2-primal–dual method, and the
augmented Lagrangian (splitting) method for total variation regularized minimization problems, where the
minimization by numerical methods poses a challenging problem due to the non-differentiability of the BV-
seminorm. They investigate the choice of stopping criteria, influence of rough initial data, step sizes as well
as mesh sizes, and found that the Heron method outperforms the other two examples in their paper [1].

Chen and Xie propose a weak Galerkin finite element method for two- and three-dimensional linear elas-
ticity problems on conforming or nonconforming polyhedral meshes in [2]. The resulted scheme is in fact
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equivalent to a hybridizable discontinuous Galerkin finite element scheme, which allows for a robust opti-
mal error estimate with respect to the Lamé constant.

Dörfler, Findeisen, and Wieners propose a space–time discretization for linear first-order hyperbolic
evolution systems with a discontinuous Galerkin approximation for the space discretization and a Petrov–
Galerkin scheme for the time discretization. They show well-posedness and convergence of the discrete sys-
tem in their paper [3]. Furthermore they introduce an adaptive strategy based on goal-oriented dual-weighted
error estimation, and solve the full space–time linear system with a parallel multilevel pre-conditioner.

Feng, Lu, andXupropose and analyze a hybridizable discontinuousGalerkin (HDG)method for the three-
dimensional time-harmonic Maxwell equations coupled with the impedance boundary condition in the case
of high wave number. They prove that the HDGmethod is absolutely stable for all wave numbers k > 0 in the
sense that no mesh constraint is required for the stability. A wave-number-explicit stability constant is also
obtained in [4]. The main ingredients for the analysis consist of a specific penalty parameter 1

kh (where h is
the meshsize of the mesh) and a PDE duality argument. Utilizing the stability estimate and a non-standard
technique, the authors establish the error estimates in the L2-norm and the energy-norm.

Harbrecht and Schneider investigate the a posteriori error estimation of finite element approximations to
the solution of the Poisson equation in their note [5]. By incorporating the discrete residual in terms of theBPX
pre-conditioner into the traditional error estimator, they derive a reliable and efficient error estimator. If the
finite element approximation is a Galerkin solution, the derived error estimator coincides with the standard
element and edge-based a posteriori error estimator. The analysis relies on a hypothetical infinite and dense
collection of nested finite element spaces, where the infinite BPX scheme provides a frame in H−1(Ω).

Ke, Li, andXiao study the extremepoints of a set ofmulti-stochastic tensors in [6]. They establish twonec-
essary and sufficient conditions for amulti-stochastic tensor to be an extreme point. Those conditions charac-
terize the generators of multi-stochastic tensors, and develop an algorithm to search the convex combination
of extreme points for an arbitrary given multi-stochastic tensor. They derive some expression properties for
third-order and n-dimensional multi-stochastic tensors, where all extreme points of three-dimensional and
four-dimensional triply-stochastic tensors can be produced.

Ling, Marth, Praetorius, and Voigt consider a hydrodynamic multi-phase field problem to model the in-
teraction of deformable objects in [7]. They use an operator splitting approach to discretize in time, and apply
the finite element method to discretize in space, where a P2/P1 Taylor–Hood element approximates the flow
problem and all other quantities are discretized in space with P2 elements. To improve the efficiency of the
numerical approach further, the authors take one phase field variable for each object, where an independent
adaptivemesh refinement is allowed for each variable, and the special structure of various terms admits inter-
polating the solution on one mesh onto another without loss of information. They demonstrate, on an exam-
ple describing the interaction of red blood cells in an idealized vessel, that the resulting multi-mesh adaptive
algorithm shows improvements by a factor of two or higher in computational time, if compared with a clas-
sical finite element approach with one adaptively refined mesh.

Schulz and Siebenborn compare numerically the usage of differentmetrics for themodel shape optimiza-
tion problemofminimizing energy dissipation in Stokes flowaround an obstacle in two and three dimensions
in [8]. The choice of the surfacemetric has amajor impact in the shape optimization approach based on shape
calculus. The paper shows the advantages of the Steklov–Poincarémetric over the classical Laplace–Beltrami
metric in terms of convergence properties, overall computational effort, and mesh quality.

Shao, Han, and Hu combine the two-level technique and the bivariate spline method of degree ≥ 5 to
propose a new numerical approach within the stream function formulation for Navier–Stokes equations in
[9]. A low-order spline approximation is obtained by solving a nonlinear problem, and a fine approximation
based on the Newtonmethod taking the aforementioned rough solution as the initial guess in a high-order C1

piecewise polynomial approximation. The authors prove the optimal convergence of the schemewith respect
to the mesh-size and the degree of polynomials.

Su, Chen, Li, and Xu prove the validity of the Ladyzenskaja–Babuska–Brezzi (LBB) condition for the tri-
angular spectral method for the Stokes equations in [10]. The proof uses the equivalence of the LBB condition
to the existence of an H1

0-stable Fortin projection operator. Moreover, an optimal lower bound for the associ-
ated constant is shown (in terms of the degree of the basis polynomials) and used to derive an error estimate
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for the pressure. The estimates are confirmed numerically with a generic example up to large polynomial
order. In particular, the results clarify previous speculations on the behavior of the constant.

Gräser, Kahnt and Kornhuber consider a multi-phase extension of the classical Penrose–Fife system de-
rived from a general entropy functional and an associated thin-film approximation variant in [11]. The en-
tropy functional combines a Ginzburg–Landau energy with the thermodynamic entropy and the unknowns
of the resulting problem are the phase field and the inverse temperature. The paper focuses on the numerical
approximation based on an implicit discretization in time (with explicit treatment of the concave terms) and
a discretization by piecewise linear finite elements with adaptive mesh refinement based on hierarchical a
posteriori error estimation in space. Numerical experiments are presented to illustrate the properties of the
discretization method; simulation results for a liquid phase crystallization process are provided as well.

Huang andYang propose a class of new tailored finite pointmethods (TFPM) for the numerical solution of
parabolic equations in [12]. Their finite point method has been tailored based on the local exponential basis
functions. By the idea of their TFPM, they can recover all the traditional finite difference schemes. They can
also construct somenewTFPMschemeswith better stability condition andaccuracy. Furthermore, combining
with the Shishkin mesh technique, they construct the uniformly convergent TFPM scheme for the convection
dominant convection–diffusion problem.

Kanschat and Lucero review the derivation of weakly penalized discontinuous Galerkinmethods for scat-
tering dominated radiation transport and extend the asymptotic analysis to non-isotropic scattering. Their
paper [13] focuses on the influence of the penalty parameter on the edges and they derive a new penalty for
interior edges and boundary fluxes. Finally, they study how the choice of the penalty parameters influences
discretization accuracy and solver speed.

Peterseim and Scheichl present a new approach to the numerical upscaling for elliptic problems with
rough diffusion coefficient at high contrast in [14]. It is based on the localizable orthogonal decomposi-
tion of H1 into the image and the kernel of some novel stable quasi-interpolation operators with local
contrast-independent L2-approximation properties. They propose a set of sufficient assumptions on these
quasi-interpolation operators that guarantee in principle optimal convergence without pre-asymptotic ef-
fects for high-contrast coefficients. They also provide an example of a suitable operator and establish the
assumptions for a particular class of examples.

Funding: The authors acknowledge financial support by the Sino-German Science Center (grant id 1228)
on the occasion of the Chinese–GermanWorkshop on Computational and Applied Mathematics in Augsburg
2015 and thank the German Research Foundation DFG.
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