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Abstract

Numerical results are presented to show that,
for small-amplitude roughness, individual wave
elevations attenuate at a far slower rate than the
corresponding effective wave elevation for both
ocean waves travelling over a rough seabed in
intermediate depth and waves in a thin plate in
vacuo. Use of the effective wave elevation, there-
fore, results in misleading predictions of attenu-
ation.
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1 Introduction

Ocean surface waves attenuate with distance tra-
velled into the sea-ice covered ocean. Wave prop-
agation in the ice-covered ocean is convention-
ally modelled using linear potential-flow theory
for the water and thin-plate theory for the ice
cover. Bennetts & Peter [1] conducted a prelim-
inary investigation of wave attenuation in the
ice-covered ocean due to ice roughness. They
modelled the roughness as random variations in
stiffness and mass of the ice and derived a semi-
analytic expression for the attenuation rate of
the effective wave field, i.e. the mean wave field
with respect to realisations.

In a recent paper, Bennetts et al. [2] showed
that individual wave fields attenuate far slower
than the effective wave field for the related prob-
lem of free-surface waves over a rough seabed
in intermediate depth, originally considered by
Mei & Hancock [3]. They used large ensembles
of numerical solutions for randomly generated
realisations of the bed profile. Further, they re-
view the existing literature on wave propagation
over a rough seabed.

Here, we extend the study of Bennetts et
al. [2] to problems involving thin plates, with
the aim of establishing whether effective media
theory is valid to study wave propagation in the
ice-covered ocean. We summarise the method
and results of [2] in §2 and apply the method to
a rough thin plate in vacuo in §3.

2 Free-surface/rough-bed problem

Consider a linear monochromatic wave propa-
gating in the positive x-direction. In open wa-
ter, the wavenumber, k, is related to the an-
gular frequency, ω, via the dispersion relation
k tanh(kh) = K, where K = ω2/g, h is the fluid
depth and g is the gravitational acceleration.

The seabed fluctuates about z = −h̄, where
h̄ is an intermediate depth, i.e. kh̄ = O(1). The
fluctuations have a known correlation length, l,
and root-mean-square amplitude, ε � 1. The
function z = −h(x), where h(x) = h̄−εp(x) and
p = O(1) is an autocorrelated random function,
denotes the location of the bed.

The water velocity field is defined as the gra-
dient of Re{(g/iω)φ(x, z)e−iωt}. The velocity
potential, φ, satisfies

∂2
xφ+ ∂2

zφ = 0 (−h < z < 0), (1a)

∂zφ+ h′(∂xφ) = 0 (z = −h), (1b)

and is coupled to the wave elevation, denoted
z = Re{η(x)e−iωt}, via

φ = η and ∂zφ = Kη (z = 0). (1c)

Consider the problem in which the roughness
extends over a long, finite interval x ∈ (0, L).
For given h(x), we approximate the rough bed
profile by a piece-wise constant function on M �
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1 sub-intervals and solve for the velocity poten-
tial using an iterative algorithm.

Wave elevations are calculated for a large en-
semble of randomly generated realisations of the
bed profile, cf. [2]. Two measures of the attenua-
tion rate are obtained from the ensemble of wave
elevations. First, an attenuation rate, Q

(rs)
eff , is

extracted from the effective wave elevation via

|〈η〉| ∝∼ e−Q
(rs)
eff x (0 < x < L). (2)

Second, an attenuation rate, Q
(rs)
ind , is calculated

as the ensemble average of attenuation rates of
individual wave elevations. The attenuation rate
is defined as Q

(rs)
ind = 〈Qi〉, where Qi is extracted

from the individual wave elevation η = ηi, i.e.

|ηi| ∝∼ e−Qix (0 < x < L). (3)

It turns out that both rates are proportional to
the bed amplitude squared but differ by orders
of magnitude for a large range of parameters [2].

Figure 1 shows example individual wave ele-
vations and corresponding effective wave eleva-
tions for k̄l = 0.9 and 5. The wavenumber k̄
corresponds to the mean depth h̄, and k̄h̄ = 1
is set. The smaller correlation length is chosen
to produce visible (though weak) attenuation of
the individual wave elevation. The correspond-
ing effective wave elevation attenuates slightly
more rapidly than the individual wave elevation.
The largest correlation length is chosen to pro-
duce maximal attenuation of the effective wave
elevation. The corresponding individual eleva-
tion does not attenuate (on the scale shown).
Attenuation of the effective elevation is, there-
fore, not related to the individual elevations.
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Fig. 1: Example individual wave elevations (grey)
and corresponding effective wave elevations (black),
for k̄ε = 10−2 and k̄l = 0.9 (left) and 5 (right).

3 In vacuo plate problem

Next, we consider an infinitely long rough thin
plate in vacuo. The problem is one-dimensional

in the horizontal coordinate x. The spatial part
u(x) of the plate deflection Re{u(x)e−iωt} satis-
fies the thin plate equation

β∂4
xu− γω2u = 0 (−∞ < x <∞), (4)

where β is the constant plate stiffness and γ(x)
is its varying mass.

We use an analogous iterative algorithm to-
gether with a step approximation as in the rough
bed problem, where the local wavenumber κm is
κ(x) = (ω2γ(x)/β)

1
4 , evaluated at the midpoint

of the mth sub-interval.
Again, solutions are calculated for large en-

sembles of different realisations of the varying
wavenumber function, which share a common
correlation length and roughness amplitude. Fig-
ure 2 shows the results for the in vacuo plate, in
analogy to figure 1 for the rough bed. As can
be seen, the behaviour is very similar and the
analogous conclusions are drawn.
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Fig. 2: As in Fig. 1 but for in vacuo plate problem.
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