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ABSTRACT. We show the existence and uniqueness of solutions (either local
or global for small data) for an equation arising in different aspects of surface
growth. Following the work of Koch and Tataru we consider spaces critical
with respect to scaling and we prove our results in the largest possible critical
space such that weak solutions are defined, which turns out to be a Besov space.
Similarly to 3D-Navier Stokes, the uniqueness of global weak solutions remains
unfortunately open, unless the initial conditions are sufficiently small.

1. INTRODUCTION

The analysis of mathematical models for the study of surface growth has at-
tracted a lot of attention in recent years, one can see for example the reviews in
[1, 11] and numerous recent publications [24, 25, 23, 7, 20, 19, 9].

In this article we consider a model arising in the growth of amorphous sur-
faces which is described by the following partial differential equation,

(1.1) ∂th+ ∆2h+ ∆|∇h|2 = 0.

on the whole Rd or with periodic boundary conditions. The function h(t, ·)
models a height profile at time t > 0, so d = 1 and d = 2 are the physically
relevant dimensions. In view of this and of Proposition 2.2 we will restrict the
analysis to the case d 6 3 throughout this paper (although most of the compu-
tation holds without restrictions on the dimension).

Equation (1.1), which is sometimes referred to as a conservative version of the
Kuramoto-Sivashinsky equation, arises also in several other models for surface
growth. The two–dimensional version was suggested in [24, 25, 23] as a phe-
nomenological model for the growth of an amorphous surface (Zr65Al7,5Cu27,5)
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and more recently as a model in surface erosion using ion-beam sputtering
[7, 20, 19]. The one-dimensional equation appeared as a model for the bound-
aries of terraces in the epitaxy of Silicon [9].

For simplicity of presentation we consider the rescaled version (1.1) with a–
dimensional length-scales. Furthermore, we have ignored lower order terms
like the Kuramoto-Sivashinsky term −|∇h|2 or a linear instability given by +∆h.
These terms can easily be incorporated in the result.

In the physical literature equation (1.1) is usually subject to space-time white
noise, which we also have neglected for simplicity of presentation. Indeed, us-
ing the standard method of looking at the difference between h and the sto-
chastic convolution, the stochastic PDE can be transformed into a random PDE.
If the stochastic convolution is sufficiently regular, then for each instance of
chance the path-wise solvability for the stochastic PDE is completely analogous
to the results presented here and one only needs to consider additional lower
order terms. This will be done with more details later in Section 5.

A crucial open problem for equation (1.1) is the fact that the uniqueness of
global solutions is not known. We remark that numerical experiments do not
report any problems of blow up, see Hoppe and Nash [14, 13], or the previ-
ously stated physics literature. Numerical experiments from Blömker, Gugg
and Raible [4] furthermore indicate a fast convergence of spectral Galerkin meth-
ods for averaged surface roughness for the stochastic PDE.

The existence of global weak solutions in dimension d = 1 on bounded do-
mains has been studied in [4] (see also the references therein), based on spectral
Galerkin methods. The crucial estimates are energy-type inequalities which al-
low for uniform bounds on the L2-norm. The method has been significantly
extended by Blömker, Flandoli and Romito [2] in order to verify the existence of
a solution that defines a Markov process. Winkler and Stein [27] used Rothe’s
method to verify the existence of a global weak solution, this result has been
recently extended by Winkler [30] to the two–dimensional case, using energy
type estimates for

∫
eh dx.

The authors have showed in [5] the uniqueness of local solutions with ini-
tial values in the critical Hilbert space H1/2 in the one dimensional case. Local
uniqueness of continuous solutions inW1,4 for the stochastic PDE in dimension
d = 1, 2 can be found in [3]. The existence and uniqueness of a regularized
problem with a cut-off in the nonlinearity in dimension d = 2 has been studied
in Hoppe, Linz and Litvinov [12].

In this paper, following the technique introduced in the remarkable paper by
Koch and Tataru [15] on the Navier–Stokes equations, we study existence and
uniqueness of solutions with initial data in the largest possible critical space
where weak solutions make sense. This space contains all previous spaces
where analogous results were proved. Let us remark that the same method
has been applied to other fourth order problems [16, 29].
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Our main motivation to study (1.1) in the largest possible space actually comes
from the stochastically perturbed equation, where, due to noise, solutions are
not regular enough. For instance, in dimension d = 2, for space-time white
noise, due to the nonlinearity neither the uniqueness nor the existence of global
solutions are known yet.

Our main results first show that the largest critical space introduced by Koch
and Tataru is in our setting and at least for dimension d 6 3 equivalent to the
homogeneous Besov space Ḃ0,∞∞ (Rd). This space is much simpler to work with,
and this simplifies our result on existence and uniqueness in that space, which
classically holds for small data or for short times (see Theorem 4.3). Moreover,
all such solutions are smooth in the space variable (Theorem 6.1).

The paper is organized as follows. In Section 2 we discuss the space of initial
conditions according to the ideas of [15] and we show that, in the physically rel-
evant case of small dimension, it coincides with the homogeneous Besov space
Ḃ0,∞∞ (Rd). Some admissible initial conditions and examples are discussed in
Section 3. Based on Banach’s fixed-point iteration scheme, Section 4 provides
the existence and uniqueness results. Section 5 contains some details on the ex-
tension of such results to the stochastically forced case. We close the paper with
Section 6, where we show smoothness of solutions.

2. FUNCTION SPACES

Recall first the following result, an easy consequence of Poincaré’s inequality,
which ensures that all integrals in (2.1) are well defined.

Lemma 2.1. If u is a distribution on Rd such that ∇u ∈ L2loc([0,∞) × Rd), then
u ∈ L2loc([0,∞)×Rd) and thus u ∈ L2loc([0,∞),H1

loc(R
d)).

A weak solution for (1.1) with initial condition h0 ∈ L1loc(Rd) is any distribu-
tion h on Rd with locally square integrable gradient∇h ∈ L2loc([0,∞)×Rd) such
that for every smooth and compactly supported function φ ∈ C∞c ([0,∞)×Rd),

(2.1)
∫∞
0

∫
Rd
h(t, x)

∂φ

∂t
(t, x)dxdt−

∫∞
0

∫
Rd
h(t, x)∆2φ(t, x)dxdt+

−

∫∞
0

∫
Rd

|∇h(t, x)|2∆φ(t, x)dxdt = −

∫
Rd
h0(x)φ(0, x)dx.

Lemma 2.1 ensures that all terms in the formula above are well defined. More-
over, the solution is only defined up to constants. As the equation is translation
invariant (in space) and invariant with respect to the scaling

(2.2) h(t, x) −→ h(λ4t, λx),



4 D. BLÖMKER AND M. ROMITO

we consider the scaling–aware invariant version of the L2loc space for the gradi-
ent∇h, defined by the following norm.

‖h‖X0 :=
(

sup
x∈Rd,R>0

{ 1

Rd+2

∫R4

0

∫
BR(x)

|∇h|2 dydt
}) 1

2

.

This definition follows the ideas of [15]. Our aim in this section is to prove a
simpler representation of the bi-caloric extension in this space.

Define therefore the linear space X of functions such that the following quan-
tity is finite,

‖k‖X = sup
t>0

{
t

1
4‖∇k(t)‖∞}.

A local in time version of this space can be defined for any R > 0 by

‖k‖XR := sup
t6R4

(
t

1
4‖∇k(t)‖∞).

for functions k : [0,R4] × Rd → R. Note that we always identify functions
that differ only by a constant. This is motivated by the fact that the equation is
mass-conservative, if the total mass

∫
hdx is finite.

In order to track the corresponding spaces for initial values, let A = ∆2. Con-
sider the Green’s function G : [0,∞) × Rd → R associated to the operator A,
where G(t, x) has the Fourier transform (with respect to the space variable)
Ĝ(t, ξ) = e−t|ξ|

4 . By scaling we obtain

G(t, x) = t−d/4g(xt−1/4), where g(x) = G(1, x).

The function g is in the Schwartz class since ĝ(ξ) = e−|ξ|4 (see [16] for decay
properties in the x variable).

Define the semigroup e−tA by the convolution e−tA k = G(t, ·) ? k, which is
also denoted as the bi-caloric extension of k.

Denote by B the homogeneous Besov space Ḃ0,∞∞ (Rd), and note that an equiv-
alent norm on B is given by

‖k‖B := ‖ e−tA k‖X
(see for instance [17] for a characterization of Besov spaces in terms of heat
kernels. Here we use the bi-Laplace operator A, which changes the scaling of
time). Define similarly the local version BR.

In contrast to the case of Navier–Stokes in dimension three [15], here for low
dimension the problem is easier, since their space coincides with B, as shown
by the proposition stated below. This proposition is the only reason why we
restrict to dimension d 6 3, as we rely for simplicity on the simpler structure of
B.

Proposition 2.2. Assume d 6 3. Then etAk ∈ X0 if and only if k ∈ B and the norm
in B is equivalent to the norm defined by the bi-caloric extension in X0.
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This means, that there are constants c1, c2 > 0 such that

(2.3) c1‖k‖B 6 ‖etAk‖X0 6 c2‖k‖B .

Proof. We start by proving (2.3). The inequality on the right holds in any di-
mension d > 1 since it is straightforward to check that there is c > 0 such that
‖ · ‖X0 6 c‖ · ‖X. For the inequality on the left, we need to show that for k ∈ B0,
x ∈ Rd, t > 0,

|t
1
4∇(e−tA k)(x)| = t 1

4

∣∣∣∇ ∫
Rd
G(t, x− y)k(y)dy

∣∣∣ 6 c‖k‖B0 .

By scaling and translations invariance, it is sufficient to show the statement for
t = 1 and x = 0. Since

e−A =

∫ 1
0

e−(1−s)A e−sA ds,

it follows by the Cauchy Schwartz inequality that

|∇(e−A k)(0)| 6
∑
n∈Zd

∣∣∣∫ 1
0

(1− s)−
d
4

∫
Bn

g
(
y(1− s)−

1
4

)
∇(e−sA k)(y)dyds

∣∣∣
6
∑
n∈Zd

(∫ 1
0

(1− s)−
d
2

∫
Bn

g
(
y(1− s)−

1
4

)2
dyds

) 1
2

×
(∫ 1

0

∫
Bn

|∇(e−sA k)(y)|2 dyds
) 1

2

6 c‖k‖B0

∑
n∈Zd

(∫ 1
0

s−
d
2

∫
Bn

g
(
ys−

1
4

)2
dyds

) 1
2

,

where Bn are the balls of centre 2d−1/2n and radius 1 (so that their union covers
Rd). By a change of variables,

In :=

∫ 1
0

s−
d
2

∫
Bn

g
(
ys−

1
4

)2
dyds =

∫ 1
0

s−
d
4

∫
s−1/4Bn

g(z)2 dzds.

First, |In| 6 C for all n ∈ Zd, as d 6 3 and g ∈ L2(Rd). Note that d 6 3 is
necessary, as for 0 ∈ Bn we have

∫
s−1/4Bn

g(z)2 dz ↑ ‖g‖2L2 for s ↓ 0.
For the convergence of the series consider for s ∈ (0, 1) and 0 6∈ Bn (i.e. 2|n| >√
d) that ∫

s−1/4Bn

g(z)2 dz 6
∫
Rd

|g(z)|dz · sup
{
|g(z)| : |z| ∈ s−1/4Bn

}
6 C sup

{
|g(z)| : |z| > 2|n|d−1/2 − 1

}
,

which can be bounded by a summable term, since g is in the Schwartz class. �



6 D. BLÖMKER AND M. ROMITO

3. EXAMPLES

The Besov space B is well understood, it contains for example the space BMO
of functions of bounded mean oscillations. In view of Theorem 4.3 we wish to
discuss for which initial conditions it is possible to find R such that the initial
condition is small in the BR norm. To this aim define

Z = {k : Rd → R : ‖k‖BR → 0 as R ↓ 0}.

We will later see in Theorem 4.3 that functions in Z correspond to initial con-
ditions where it is possible to solve the equation (1.1) locally for a small time
interval.

In this section we give a few general examples (see the lemma below, which
also extends a result proved in dimension d = 1 in [5]) of subspaces of Z. Then
we show that L∞(Rd), although it is contained in B, is not contained in Z. Hence
the method of proof presented here fails to provide local uniqueness of solutions
for initial conditions in L∞(Rd) with large norm. In the last part of the section
we discuss our main example, which in particular shows, at least in space di-
mension 4, non–uniqueness of the mild formulation.

Lemma 3.1. The following statements hold,

if k : Rd → R is bounded and uniformly continuous, then k ∈ Z,
if k : Rd → R has bounded gradient on Rd, then k ∈ Z,
if k ∈ Ḣd/2(Rd), then k ∈ Z, where the homogeneous space is defined by (de-
noting by k̂ the Fourier transform of k)

Ḣd/2(Rd) =
{
k : Rd → R : ‖k‖Ḣd/2 :=

∫
Rd

|ξ|d|k̂(ξ)|2 dξ <∞}
Proof. For the first result fix ε > 0. By uniform continuity there is δ > 0 such that
|k(x) − k(y)| 6 ε for all x,y ∈ Rd with |x − y| 6 δ. Since the integral of ∇g is
zero,

t
1
4 |∇(e−tA k)(x)| 6

∣∣∣∫
t
1
4 |z|>δ

∇g(z)
(
k(x− zt

1
4 ) − k(x)

)
dz
∣∣∣

+
∣∣∣∫
t
1
4 |z|6δ

∇g(z)
(
k(x− zt

1
4 ) − k(x)

)
dz
∣∣∣

6 2‖k‖∞
∫
t
1
4 |z|>δ

|∇g(z)|dz+ ε‖∇g‖L1(Rd),

hence lim supR→0 ‖k‖BR 6 ε‖∇g‖L1 and as ε ↓ 0, the claim follows.
The second claim follows easily from the bound t

1
4 |∇(e−tA k)(x)| 6 t 1

4‖g‖L1‖∇k‖L∞ .
Let us now turn to the third result. If t > 0 and x ∈ Rd, by using the properties
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of Fourier transform and convolution,

t
1
4 |∇(e−tA k)(x)| = 1

t
d
4

∣∣∣∫
Rd

∫
Rd
(∇g)

(
(x− y)t−

1
4

)
k̂(ξ) eiξ·y dydξ

∣∣∣
=
∣∣∣∫

Rd

∫
Rd
∇g(y) e−iξzt

1
4
k̂(ξ) eiξ·x dydξ

∣∣∣
6 t

1
4

∫
Rd

|ξ| |k̂(ξ)| e−|ξ|4t dξ.

Given a > 0, split the integral in the last line of formula above in two pieces, cor-
responding to the domains of integration {|ξ| 6 a} and {|ξ| > a} respectively. We
can now easily bound the terms using Cauchy-Schwarz inequality and change
of variables. In conclusion we obtain

‖k‖BR 6 caR‖k‖Ḣd/2 + c
(∫

|ξ|>a
|ξ|d|k̂(ξ)|2 dξ

) 1
2

.

So we see that lim supR→0 ‖k‖BR is bounded by a quantity which converges to 0
as a ↑∞. �

Example 3.2. There are functions in L∞(Rd) not belonging to Z. Since the Green’s
function tensorizes, it is enough to find a counterexample in dimension d = 1.
Define k(x) = 1[−1,1](x), then it is easy to see that

‖k‖BR > |g(0) − g( −2
R1/4 )| −→ g(0) > 0.

where we have chosen x = −1 and t = R and used g(x)→ 0 as x→∞.
On the other hand, the space Z contains unbounded functions, which are not

in B. Define forα > 0, kα(x) = |x|α. Now it is easy to see that ‖t 1
4∂x(e

−tA kα)‖∞ =
t
α
4 ‖∂x(e−A kα)‖∞. Hence ‖kα‖BR → 0 for R→ 0 but ‖kα‖B =∞.

We turn to the main example of the section. Consider first the case d = 1, then
k(x) = log |x| is (formally) a stationary solution for problem (1.1) (see [5]). Sim-
ilarly, there are other examples such as log(sin(x)) or log(cosh(x)), for instance.
Nevertheless, in dimension d = 1 these functions k are neither a weak nor a
mild solution, as ∇k is not locally square summable. Here we show that k ∈ B

but k 6∈ Z. Indeed, consider first, by a change of variables

t
1
4

∣∣(e−tA k)x(x)∣∣ = ∣∣∣∫
R

g ′(z) log |t−
1
4x− z|dz

∣∣∣ ,
where we used that the integral over g ′ is zero. Now x̃ = t−

1
4x yields

sup
x∈R

{
t

1
4 |(∂x e

−tA k)(x)|
}
= sup
x∈R

{∣∣∣∫
R

g ′(z) log |x− z|dz
∣∣∣} = ‖∂x e−A k‖∞ .

Thus ‖k‖B is finite, but ‖k‖BR is independent of R and does not converge to 0.
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This example becomes more interesting if one turns to higher dimension. Let
k(x) = αd log(|x|) for x ∈ Rd, where αd ∈ R is a suitable constant that will be
specified later. As before k ∈ B, but k 6∈ Z.

The function k is not even formally a weak solution for d = 2 and all αd 6= 0.
But as the weak derivative ∇k ∈ L2loc in dimension d > 3, it is straightforward
to check that both the weak formulation (2.1) and the mild formulation are sat-
isfied with αd = 2− d.

A special case is dimension d = 4, where k is a weak solution for any αd ∈ R.
But in that case the B-norm of k can be made arbitrarily small with αd → 0, and
thus by Theorems 4.3 and 6.1 there is also a smooth mild solution starting at k.

In conclusion this example shows the non-uniqueness and lack of smoothness
of mild solutions, at least in dimension 4. Nevertheless there is no contradiction
with Theorem 4.3, since k 6∈ X if considered as a function of time.

4. THE FIXED POINT ARGUMENT

Define the map

V (h,k)(t) =

∫ t
0

∆
(
e−(t−s)A∇h(s) · ∇k(s)

)
ds

and set

(4.1) F (h)(t) = e−tA h0 − V (h,h)(t).

We will use the following concept of a mild solution, which is given as a solution
of the variation of constants formula in (4.2).

Definition 4.1. We say that h ∈ X solves (1.1) with initial condition h0 ∈ B, if
for all t > 0

(4.2) h(t) = e−tA h0 − V (h,h)(t) .

We call h ∈ XR a local solution, if (4.2) holds only for t ∈ [0,R4].

The following Lemma is crucial for the proof of uniqueness and existence. It
verifies that the nonlinear part is locally Lipschitz continuous.

Lemma 4.2. The map V is bi-linear continuous from X × X to X and from XR × XR
to XR, for all R > 0.
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Proof. The bilinearity is obvious. For the boundedness let x ∈ Rd and t > 0,
then

|∇V (h,k)(t, x)| =
∣∣∣∫ t

0

∫
Rd
∇∆G(t− s, x− y)∇h(s,y)∇k(s,y)dyds

∣∣∣
=
∣∣∣∫ t

0

1

(t− s)
d+3
4

∫
Rd
(∇∆g)

( x− y

(t− s)1/4

)
∇h(s,y)∇k(s,y)dyds

∣∣∣
6 ‖h‖X‖k‖X

∫ t
0

1

(t− s)
d+3
4

√
s

∫
Rd

∣∣∣(∇∆g)( x− y

(t− s)1/4

)∣∣∣dyds
6 ‖h‖X‖k‖X‖g‖W3,1(Rd)

∫ t
0

1

(t− s)3/4
√
s
ds

6 t−1/4B(1
2
, 1
4
)‖h‖X‖k‖X‖g‖W3,1(Rd)

= c4t
−1/4‖h‖X‖k‖X,

where B is the Beta function. The corresponding inequality for the local space
XR proceeds similarly. �

Using the previous Lemma, we can now state and prove our main result. The
first part states global existence of unique solutions, while the second part is
about local existence of solutions. Let us point out, that the theorem holds in
any dimension, but for dimension d > 4, the space B might not be the largest
possible one.

Theorem 4.3. Fix 0 < δ < 1/4c4, where c4 is the constant defined in the proof of
Lemma 4.2.

If ‖h0‖B 6 δ, then there exists a unique (global) solution in X of (1.1) with initial
condition h0.

Moreover, if ‖h0‖BR 6 δ, then there is a unique local solution in XR of (1.1) on
[0,R4] with initial condition h0.

Finally, if h0 is periodic and small in BR for some R > 0 (or it is small in B), then
the solution is also periodic.

In particular, ‖h0‖BR 6 δ is true for a suitable value of R for all h0 ∈ Z.

Proof. We prove the first statement by a fixed point iteration argument. Choose
K > 0 such that

1

2c4

(
1−

√
1− 4c4δ

)
6 K <

1

2c4
.

Define

(4.3) H0 = 0, Hn+1 = F (Hn) = e−tA h0 − V (Hn,Hn),

then ‖H1‖X 6 δ and it is easy to check by induction (and by the choice of δ and
K) that ‖Hn‖X 6 K for all n. Then

‖Hn+1 −Hn‖X = ‖V (Hn,Hn) − V (Hn−1,Hn−1)‖X 6 2c4K‖Hn −Hn−1‖X
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and so (Hn)n∈N is convergent in X to a fixed point of F .
The same proof works for local spaces, since both constants c1 and c4 do not

depend on R. Finally, if h0 is periodic, the statement of periodicity follows by
translation invariance and uniqueness. �

Remark 4.4 (Forward self–similar solutions). The theorem above allows to show
the existence of self–similar solutions, namely solutions invariant under the
scaling (2.2). Indeed, assume to have h0 ∈ B (or in a local space) such that
h0(λx) = h0(x) for all λ > 0, then it is easy to verify that H1 is invariant under
the scaling (2.2) and that V (h,h) is also invariant if so is h. In conclusion the
whole sequence (Hn)n∈N defined in (4.3) is invariant, as well as its limit.

Given a (forward) self–similar solution h, one can write h(t, x) = ψ(x/t1/4),
where ψ(x) = h(1, x) solves the equation

∆2ψ+ ∆|∇ψ|2 − 1

4
x · ∇ψ = 0.

Due to the scaling property, the only admissible initial conditions are the 0–
homogeneous functions, namely h0(λx) = h0(x) for all λ > 0. The simplest
case corresponds to d = 1, where the only 0–homogeneous functions are those
constant on (−∞, 0) and on (0,∞) (possibly with different values on the two
half–lines). For any such function h0, ‖h0‖BR = |h0(1) − h0(−1)| ‖g‖L∞ .

Backward self–similar solutions might provide examples of solutions with
blow–up. Due to the scaling of the problem, the quantity blowing up is related
to the derivative of the solution. We do not know if backward self–similar so-
lutions exist (notice that backward self–similar solutions do not exist for the
Navier–Stokes equations, see [21]).

5. THE STOCHASTIC PROBLEM

In this section we give a short outline of the proof of local existence for the
stochastic PDE, without many details on probability theory. For details we refer
to [8, 6, 18]. Consider

(5.1) ∂th+ ∆2h+ ∆|∇h|2 = ∂tW ,

where ∂tW is the generalized derivative of a Hilbert-space value Wiener pro-
cess. Define the corresponding Ornstein-Uhlenbeck process for t > 0 as the
following Itô-integral

(5.2) Z(t) =

∫ t
0

e−(t−s)AdW .

Note that Z solves ∂tZ + ∆2Z = ∂tW with Z(0) = 0. The mild solution of (5.1)
is analogous to Definition 4.1 given by a solution of

h(t) = e−tA h0 − V (h,h)(t) + Z(t)
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Now the main problem in this setting is to determine the regularity of Z, which
can be read in terms of the covariance of the driving noise. Once we know this,
we can solve the equation using again Banach’s fixed point argument.

This is a standard extension to Theorem 4.3 which can be carried on for in-
stance in the case of bounded intervals (i. e. d = 1) with periodic boundary
conditions and space–time white noise. In fact in this case the stochastic con-
volution Z and its derivative ∂xZ are continuous in both space and time (this
can be verified using the methods in [8], see for example [22]) and almost surely
‖Z‖XR → 0 for R → 0. Hence the equation can be uniquely solved in XR, for a
random R > 0.

An interesting question appears in the case of periodic boundary conditions
and d = 2, since for space-time white noise the convolution Z just fails to be dif-
ferentiable in space (Zwill be differentiable if we consider slightly more regular
noise). In this case one can consider the new unknown v = h − Z, solution to
the following random PDE,

(5.3) ∂tv+ ∆
2v+ ∆|∇v|2 = −∆|∇Z|2 − 2∆|∇v · ∇Z|2, v(0) = h0.

The new variable v is expected to be more regular than h, since the above equa-
tion contains only some additional lower order terms that do not change the
proofs, once Z is sufficiently regular. Nevertheless, using renormalisation tech-
niques it is in some cases possible to define ∆|∇Z|2 for Gaussian fields that are
not differentiable (this is the subject of a work in progress).

For stochastic PDEs on unbounded domains one can use the formulation of
Walsh [28], although one has to consider that for space–time white noise both
the stochastic convolution Z(t, x) and its derivative ∇Z(t, x) (if it exists) are
unbounded for |x|→∞.

6. SMOOTHNESS OF SOLUTIONS

Following the same methods of [10], we show that solutions in X (or XR) are
smooth. Define form > 1,

‖k‖X,m := sup
t>0

{
t
m+1
4

∑
|α|=m+1

‖Dαk‖∞
}

and denote by ‖·‖XR,m the corresponding local version, where forα = (α1, . . . ,αd)
we used Dα = ∂α1

x1
. . .∂αdxd and |α| = α1 + · · ·+ αd.

Let Xm be the space

Xm = {k : Rd → R : ‖k‖Xm := max
06j6m

‖k‖X,j <∞},

and denote by XmR the corresponding local version. For simplicity of notations
we understand that ‖ · ‖X,0 = ‖ · ‖X and for R =∞ that Xm∞ = Xm. The main the-
orem of this section is the following result on smoothness in space. Smoothness
in time then follows from the PDE by a standard bootstrapping argument.
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Theorem 6.1. Let h be a solution of (1.1) in XR, with 0 < R 6 ∞. Then h(t) ∈
C∞b (Rd) for all t ∈ (0,R).

Proof. If the initial condition is small enough in BR, the statement follows from
Proposition 6.3 below. In the general case we notice that if h ∈ XR, then ∇h(t)
is bounded for all t ∈ (0,R), therefore h(t) ∈ Z, by Lemma 3.1. The conclusion
then follows again from Proposition 6.3. �

Remark 6.2. A more careful estimate of the constants appearing in the results
that follow (for instance the constants Km in Lemma 6.6) would show that the
solutions are analytic in space. We point out that Koch and Lamm [16] have a
shorter and more elegant proof of analyticity (in a different context). An advan-
tage of the method used here is to provide the behaviour at t = 0 of solutions
through the spaces Xm and XmR .

In order to complete the proof of the above theorem, we need the following
proposition, which also gives a better estimate of the solution near t = 0 if the
initial condition is small enough.

Proposition 6.3. There exists δ > 0 such that if ‖h0‖B < δ, then the solution to (1.1)
granted by Theorem 4.3 is in Xm for allm > 1.

If R > 0 and ‖h0‖BR < δ, then the solution to (1.1) granted by Theorem 4.3 is in XmR
for allm > 1.

We start by giving a slight generalization of (2.3).

Lemma 6.4. Let 0 < R 6∞ and k ∈ BR, then for everym > 0,

(6.1) sup
t6R

{
t
m+1
4

∑
|α|=m+1

∥∥Dα(e−tA k)∥∥∞} 6 cmd(m+ 1)
m+1
4 ‖∇g‖mL1(Rd)‖k‖BR .

Proof. Since for |α| = m+ 1,

Dα(e−tA k) =

d∏
i=1

(∂αixi e
−

αi
m+1tA)k,

it is sufficient to show that the operator ∂xi e
−tA maps L∞(Rd) into itself with

operator norm ‖∂xi e−tA ‖L∞→L∞ 6 t−1/4‖∇g‖L1(Rd). This is immediate since by
a change of variables,

t
1
4 |∂xi(e

−tA k)(x)| = t
d
4

∣∣∣∫
Rd
(∂xig)

(
x−y
t1/4

)
k(y)dy

∣∣∣ 6 ‖∇g‖L1(Rd)‖k‖∞.
Finally, #({α : |α| = m+ 1}) =

(
m+d
d−1

)
6 cmd. �
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Lemma 6.5. There is c5 > 0 such that form > 1, 0 < R 6∞ and h,k ∈ XmR ,

(6.2)

‖V (h,k)‖XR,m 6 c5md(m+ 1)
m+3
2 ‖∇g‖mL1(Rd)‖g‖W3,1(Rd)‖h‖XR‖k‖XR

+ c5‖h‖XR‖k‖XR,m + c5‖h‖XR,m‖k‖XR

+ c5m
d

m−1∑
j=1

(
m

j

)
‖h‖XR,j‖k‖XR,m−j.

Proof. Fix m > 1, 0 < R 6 ∞, t 6 R and h,k ∈ XmR . Consider a value ε ∈ (0, 1)
which will be specified later, and let |α| = m + 1. Since |α| > 1, there is i 6 d
such that αi > 1. So assume without loss of generality that a1 > 1 and let
α ′ = α− (1, 0, . . . , 0).

DαV (h,k)(t) =

∫ t
0

Dα∆
(
e−(t−s)A(∇h(s)∇k(s))

)
ds

=

∫ t(1−ε)
0

Dα∆
(
e−(t−s)A(∇h(s)∇k(s))

)
ds

+

∫ t
t(1−ε)

Dα∆
(
e−(t−s)A(∇h(s)∇k(s))

)
ds

= 1©+ 2©.

For the term 1© we use the factorization introduced in the previous lemma and
we proceed as in the proof of Lemma 4.2,

| 1© | 6 (m+ 1)
m+3
4 ‖∇g‖mL1‖∂x1∆g‖L1‖h‖XR‖k‖XR

∫ t(1−ε)
0

s−
1
2 (t− s)−

m+3
4 ds

6 2
√
1− ε

(
m+1
ε

)m+3
4 t−

m+1
4 ‖∇g‖mL1‖∂x1∆g‖L1‖h‖XR‖k‖XR .

For the second term we use Leibniz formula,

2© =
∑
β6α ′

(
α ′

β

) ∫ t
t(1−ε)

∂x1∆ e−(t−s)A(Dβ∇h)(Dα ′−β∇k)ds

and, as in the proof of Lemma 4.2,

2© 6
∑
β6α ′

(
α ′

β

)
‖∂x1∆g‖L1‖h‖XR,|β|‖k‖XR,m−|β|

∫ t
t(1−ε)

1

s
m+2
4 (t− s)

3
4

ds

6
4ε

1
4

(1− ε)
m+2
4

t−
m+1
4 ‖∂x1∆g‖L1

∑
β6α ′

(
α ′

β

)
‖h‖XR,|β|‖k‖XR,m−|β|

If we set ε = 1
(m+d)4d

the term 4ε1/4(1−ε)−(m+2)/4(m+d)d is uniformly bounded
in m (we recall that the number of multi–indices α such that |α| = m + 1 is
bounded by (m + d)d) and so by summing up over α the estimates for 1© and
2© together show the lemma. �
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As in the proof of Theorem 4.3, define H0 = 0 and

Hn+1(t) = e−tA h0 − V (Hn,Hn)(t).

Lemma 6.6. There is δ ′ > 0 such that if 0 < R 6 ∞ and ‖h0‖BR < δ, then for every
m > 0 there is Km > 0 such that

‖Hn‖XR,m 6 Km.

Proof. If ‖h0‖BR is small enough, the proof of Theorem 4.3 shows that there
is K0 such that ‖Hn‖XR 6 K0. By possibly taking ‖h0‖BR smaller, we can as-
sume that λ = 2c5K0 < 1, where c5 is given in Lemma 6.5. We prove the
statement by induction: the case m = 0 has been already proved. Set am =
c5m

d(m + 1)(m+3)/2‖∇g‖mL1‖g‖W3,1 (this is the coefficient appearing in the first
line of formula (6.2)) and bm = cmd(m + 1)(m+1)/4‖∇g‖mL1 (this appears in for-
mula (6.1)), then by Lemmas 6.4 and 6.5,

‖Hn+1‖XR,m 6 ‖H1‖XR,m + ‖V (Hn,Hn)‖XR,m
6 bmK0 + amK

2
0 + 2c5K0‖Hn‖XR,m

+ c5m
d

m−1∑
j=1

(
m
j

)
‖Hn‖XR,j‖Hn‖XR,m−j

6
(
bmK0 + amK

2
0 + c5m

d

m−1∑
j=1

(
m
j

)
KjKm−j

)
+ λ‖Hn‖XR,m,

so that by recurrence and again Lemma 6.4,

‖Hn+1‖XR,m 6

6
(
bmK0 + amK

2
0 + c5m

d

m−1∑
j=1

(
m
j

)
KjKm−j

)
(1+ · · ·+ λn−1) + λn‖H1‖XR,m

6
1

1− λ

(
bmK0 + amK

2
0 + c5m

d

m−1∑
j=1

(
m
j

)
KjKm−j

)
+ bmK0,

and the last line in the formula above provides Km. �

Proof of Proposition 6.3. Theorem 4.3 ensures that if ‖h0‖BR is small enough, then
there is λ = 2c4K0 < 1 (where the number K0 is given by previous lemma) such
that ‖Hn+1 − Hn‖XR 6 cλn. We prove by induction that there are numbers
Cm > 0 and µ ∈ (0, 1) such that

‖Hn+1 −Hn‖XR,m 6 Cmµn, m > 0,

if ‖h0‖BR is small enough. Let λ = 2c5K0 (where c5 has been introduced in
Lemma 6.5), assume λ < 1 and let λ < µ < 1. We have already verified that the
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inductive claim is true form = 0. Assume the claim is true for 0, . . . ,m−1, then
by Lemma 6.5 and the inductive assumption,

‖Hn+1 −Hn‖XR,m
6 ‖V (Hn,Hn −Hn−1)‖XR,m + ‖V (Hn −Hn−1,Hn−1)‖XR,m
6
[
am(‖Hn‖XR + ‖Hn−1‖XR) + c5(‖Hn‖XR,m + ‖Hn−1‖XR,m)

]
‖Hn −Hn−1‖XR

+ c5(‖Hn‖XR + ‖Hn−1‖XR)‖Hn −Hn−1‖XR,m

+ c5m
d

m−1∑
j=1

(
m
j

)
(‖Hn‖XR,j + ‖Hn−1‖XR,j)‖Hn −Hn−1‖XR,m−j

6 λ‖Hn −Hn−1‖XR,m + K̃mµ
n−1,

where we have set am = c5m
d(m + 1)(m+3)/2‖∇g‖mL1‖g‖W3,1 (the coefficient in

the first line of (6.2)), K̃m = 2C0(amK0 + c5Km) + 2c5m
d
∑m−1
j=1

(
m
j

)
KjCm−j, and

the constants Kj are given by the previous lemma. By recurrence (notice that
µ > λ), it is easy to see that for every n,

‖Hn+1 −Hn‖XR,m 6 λn+1‖H1 −H0‖XR,m + K̃m
(
λn−1 + λn−2µ+ · · ·+ µn−1

)
6
(
λKm + 1

µ−λ
K̃m
)
µn,

which concludes the induction. In conclusion, the sequence (Hn)n∈N converges
in all spaces XmR . �
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