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Abstract. For systems of partial differential equations (PDEs) with locally cubic nonlinearities, which are
perturbed by additive noise, we describe the essential dynamics for small solutions. If the system
is near a change of stability, then a natural separation of time-scales occurs and the amplitudes of
the dominant modes are given on a long time-scale by a stochastic ordinary differential equation.
We consider applications to dynamic pitchfork bifurcation, pattern formation below the threshold
of stability, and transient dynamics of stochastic PDEs near this deterministic bifurcations.
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1. Introduction. Amplitude equations are well known in the physics literature (see, e.g.,
[H83] or [W97]). They usually describe some order parameter for the system, which evolves on
a much slower time-scale. This separation of time-scales occurs, for example, very naturally
in a small neighborhood of bifurcations, where a change of stability occurs.

Amplitude equations can be used either for spatially extended systems, where they are
stochastic partial differential equations (SPDEs), or for systems on bounded domains, where
they are given as stochastic ordinary differential equations (SODEs). This paper will focus
on the second case, where an SODE describes the dynamics of the amplitudes of dominant
modes evolving on some slow time-scale. On the other hand, all nondominant modes evolve
rapidly on a fast time-scale, but they stay much smaller than the dominant ones. The modes
in our context are given by the Fourier series expansion with respect to the eigenfunctions of
the corresponding linearized operator.

For deterministic systems the theory is rigorously understood even for spatially extended
systems (see, e.g., [KSM92, vH91] for the first results). However, there is a lack of results for
stochastic systems. The only rigorous example is [BMS01] for a stochastic Swift–Hohenberg
equation with periodic boundary conditions on a bounded interval. In this example, a complex-
valued SODE was derived describing the amplitude of the dominant mode in a standard
complex Fourier series on a very long time-scale.

Our main theorems will extend the results of [BMS01] to a large class of SPDEs and
systems of SPDEs. Moreover, our applications will demonstrate the power of this approach,
when describing transient dynamics of stochastic equations.
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AMPLITUDE EQUATIONS 465

We consider the differential equation

∂tu(t) = Lεu(t) + f(ε, u(t), t) + ε2ξ(t), u(0) = u0,(1.1)

in a real Banach space X with norm ‖ · ‖X . Equations like this arise, for example, when
considering some SPDE (or systems of SPDEs) on bounded domains.

The stochastic perturbation is given by the (generalized) stochastic process ξ, which is
the derivative of some cylindrical Q-Wiener process W in X. Therefore, we can treat additive
noise that is white in time, but we allow correlations in space.

The main assumptions on the operator Lε will be that it generates a C0-semigroup
{etLε}t≥0 on X and that the nullspace N := N(Lε) of Lε is independent of ε and finite-
dimensional. In applications this operator is usually some differential operator equipped with
suitable boundary conditions.

The nonlinearity f depends not only on u(t), but it could also involve derivatives of u.
The important property is that f contains a small part that is linear in u but no quadratic
term in u. For example, f(ε, u) = ε2u− u3 or f(ε, u) = ε2u− u(∂xu)

2.

The fact that the linear part is small will reflect that the unperturbed deterministic system
is near a change of stability. Moreover, the reason for neglecting the much more complicated
quadratic terms is the following. If we want to separate the dynamics of the dominant modes
from the other modes, a cubic nonlinearity helps a lot. In contrast to that, quadratic nonlin-
earities tend to mix the dynamics of different modes much more strongly. In many examples,
quadratic nonlinearities map the dominant modes completely onto nondominant ones, allow-
ing complicated interaction of dominant and nondominant modes. This will be the topic of a
forthcoming paper [B03].

One typical example we have in mind is an SPDE such that the unperturbed deterministic
PDE exhibits a pitchfork-bifurcation. In a specific example, this was already treated in
[BMS01]. To be more precise, f should depend on an additional parameter ν such that
in the absence of noise there is a bifurcation at ν = 0 in the deterministic equation. One goal
of the presented approach is then to describe the dynamics of the SPDE near this deterministic
bifurcation, where the time-scales of the dynamics for stable and unstable modes separate.
We sketch briefly some results in section 6.3. We can identify regimes of the bifurcation
parameter ν, where the transient behavior of the SPDE is, for instance, almost deterministic
or independent of ν.

In contrast to the deterministic setting, the stochastic bifurcation is not that well un-
derstood. There are at least two main concepts. The first is a phenomenological bifurcation,
where a qualitative change in the unique invariant measure of the corresponding Markov semi-
group occurs. The second concept of bifurcation considers changes in the number of invariant
measures for the corresponding random dynamical system. Moreover, this second concept is
also related to structural changes in random attractors. See, for instance, [Ar98, section 9] for
precise definitions and discussions of both concepts. One of the major drawbacks of stochastic
bifurcation theory is that, only for one-dimensional SODEs (i.e., state space R), there is a
complete picture of possible bifurcations (see [CIS99]).

Note that we call the second concept simply bifurcation instead of dynamical bifurcation as
in [Ar98]. The reason is that this terminology also exhibits a completely different meaning (see
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466 DIRK BLÖMKER

section 6.1). We denote by dynamic bifurcation the situation when the bifurcation parameter
is slowly moved through a deterministic bifurcation point.

In our example of a deterministic pitchfork-bifurcation perturbed by additive noise, it is, at
least for simple examples, known that there is only a phenomenological bifurcation (see, e.g.,
[CF98]). In the general SPDE case the shape of the of the invariant measure for the Markov
semigroup is in general unknown, and the precise structure will be the topic of forthcoming
research.

The approach presented does not describe the stochastic bifurcation, as we characterize
only typical transient behavior on long time-scales, in contrast to the behavior for time to
infinity, which is usually not accessible in real-world experiments. Our results are on one hand
related to phenomenological bifurcations, as we could draw conclusions about the structure
of invariant measures, but on the other hand the approach reaches far beyond that, as it
is capable of describing the evolution in time of typical trajectories on very long transient
time-scales.

For multiplicative noise the picture is much more complicated, as in this case bifurcations
can occur easily (see, e.g., [CLR01]). We did not try to apply the machinery of amplitude
equations to these equations, but it is possible, at least on a nonrigorous level, to reduce the
dynamics to SODEs in some of the typical examples.

Our main results can be on a formal level described as follows. We make an ansatz of the
type

u(t) = εa(ε2t) · e+O(ε2),(1.2)

where e = (e1, . . . , en) is some basis in N = N(Lε). Then in many physical examples a
well-known formal calculation shows that plugging ansatz (1.2) into (1.1) yields a system of
SODEs for the amplitude a of the dominant modes corresponding to the basis e. This is
the amplitude equation, and it will be universal in the sense that it is actually independent
of ε. The classical example arising in many applications is the so-called Landau equation
a′ = νa− ca|a|2 + β̇, where β̇ is some noise and c, ν are constant coefficient matrices.

The main theorems of this article are first the attractivity (cf. Theorem 3.3) justifying the
ansatz (1.2) for some initial time, which is not too big. Second, we obtain the approximation
(cf. Theorem 4.3), showing by rigorous estimates of the error that (1.2) remains true on a very
long time-scale of order O(ε−2), where a is given by the amplitude equation. In the proofs we
will follow the strategy to reduce the probability of events giving approximation and attrac-
tivity to large deviation estimates for various random fields like the stochastic convolutions
and the amplitude a. These are usually easy to derive and treated in the applications.

Another interpretation of the main results is the following. We describe a deterministic
approximate center-manifold given by the vector space N . For small solutions of order ε,
where ε2 denotes the noise strength, we show (up to small errors) that N locally attracts
solutions of (1.1) with high probability. Moreover, in an O(ε2)-neighborhood of N , most
solutions of (1.1) are described (up to small errors) by an SODE on N . This is in contrast
to the concept of random invariant manifolds (cf., e.g., [DLS03]). There one can describe the
transient dynamics of all solutions as a flow on the manifold, but the manifold is allowed to
move in time. Nevertheless, the presented result can be used to estimate probabilities of how
the random invariant manifold evolves in time.
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AMPLITUDE EQUATIONS 467

Our theory describes solutions with small noise strength, but in contrast to the well-
known Freidlin–Wentzell theory (cf. [FW98]), we consider small coefficients in the equation,
too. Therefore, we approximate the solutions of (1.1) by the solutions of an SODE, and not by
the solutions of the unperturbed PDE. This is motivated by the fact that we want to describe
a perturbed deterministic pitchfork-bifurcation when the noise strength is of comparable order
to the distance from the bifurcation.

The paper is organized as follows. In section 2 we give the main standing assumptions
valid throughout the whole paper and the formulation of the abstract results. Sections 3 and 4
provide the proofs of our main results, first for the local attractivity of N and then for the
approximation of solutions by the amplitude equation.

The last two sections are devoted to applications. Section 5 summarizes simple large
deviation results necessary to estimate various probabilities occurring in the application of
the main results. Finally, in section 6 we discuss examples. First we consider a dynamic
pitchfork-bifurcation, which was discussed for a one-dimensional SODE in [BG02]. Note again
that this is not the concept introduced in [Ar98]. In our case dynamic bifurcation means that
the bifurcation parameter is time-dependent and is moved slowly through the bifurcation.
Problems like this are for SPDEs still the topic of active numerical and experimental research
(see [MG99, GM03] and the references therein). In an example we carry over the results
of [BG02] to some SPDEs, allowing us to describe the transient behavior of solutions very
precisely.

Then we focus on pattern formation below the threshold of instability, where, due to the
presence of noise, a pattern appears in an otherwise stable deterministic system. This effect is
also well known from experiments (see, e.g., [SR94]) and, for instance, in the context of con-
vection problems still subject to recent experimental investigation (see [SA02]). Nevertheless
the problem is not fully understood and there is no rigorous mathematical verification of the
pattern being present (see, e.g., [HS92] or [SA02] and the references therein). We present a
method giving for an example a first step into that direction.

2. Notation and formulation of the problem. This section summarizes standing assump-
tions valid throughout the whole article. For the linear operator Lε in (1.1), we assume the
following.

Assumption 2.1. For all ε > 0 suppose Lε is some possibly unbounded linear operator on X.
The kernel (or nullspace) of Lε is denoted by N := {v ∈ D(Lε) : Lεv = 0}, and it is assumed
to be independent of ε. We denote a projection onto N by Pc and define n := dim(N ).

Later there will be further restrictions on the choice of the projection Pc. The typical
example we have in mind is the spectral projection onto N , and many assumptions would be
automatically fulfilled in that case.

One complementary projection to Pc is given by Ps := I − Pc. As the dimension of N is
finite, it is well known that both Pc and Ps are bounded linear operators (cf. [W80]).

The second assumption on Lε and Pc is the following.
Assumption 2.2. We assume that Lε from Assumption 2.1 generates a strongly continuous

semigroup {etLε}t≥0 of linear operators on X which is exponentially stable on PsX. To be
more precise, there are constants ω > 0 and M ≥ 1, independent of ε, such that

‖etLεPsx‖X ≤ Me−tω‖x‖X for all t ≥ 0, x ∈ X.(2.1)
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468 DIRK BLÖMKER

To deal with the nonlinearity, suppose there is a second Banach space Y , such that X is dense
and continuously imbedded into Y . Assume that etLε and Pc can be extended to operators on
Y , and for some α ∈ [0, 1) we have

‖PsetLεy‖X ≤ M(1 + t−α)e−tω‖y‖Y for all t > 0, y ∈ Y.(2.2)

Moreover, suppose that Pc, and hence Ps, commutes with etLε on X and Y .
Let us briefly comment on the previous assumption. First, the assumption that Pc com-

mutes with etLε is always true for the spectral projection of Lε onto N . For self-adjoint
operators Lε in Hilbert spaces, we can, for instance, simply choose the orthogonal projection.

Moreover, under the other assertions of Assumption 2.2 the spectral projection can be
extended to a continuous linear operator from Y to N (i.e., Pc ∈ L(Y,N )). The main ideas
are first to use (2.2) to verify that the residual of Lε is in L(Y,X) and second to use the
Dunford calculus giving a representation for Pc in terms of the residual (see, e.g., [K95]).

One typical example for Y that we have in mind is an interpolation space between the
dual of D(L) and X—for instance, the dual of fractional power spaces in the case when Lε
generates an analytic semigroup.

As Lε ≡ 0 on N , it is easy to verify that etLε = Id on N for all t ≥ 0. Therefore, we can
assume without loss of generality that M is large enough such that

‖etLεx‖X ≤ M‖x‖X for all t ≥ 0, x ∈ X.

Moreover, as N is finite-dimensional, we can also assume that M is sufficiently large such that

‖etLεPcy‖X ≤ M‖Pcy‖Y for all t ≥ 0, y ∈ Y.

For the stochastic perturbation the following assumption is true. For a detailed discussion of
Q-Wiener processes and stochastic convolutions, see [dPZ92].

Assumption 2.3. Suppose that ξ is the generalized derivative of some Q-Wiener process
{W (t)}t≥0 on some probability space (Ω,F ,P) such that the stochastic convolution

WLε(t) =

∫ t
0
e(t−τ)LεdW (τ)(2.3)

is a well-defined stochastic process with continuous paths in X.
As Pse

tLε = etLεPs, it is straightforward to verify that

Ps[WLε(t)] =

∫ t
0
e(t−τ)LεdPsW (τ) and Pc[WLε(t)] = PcW (t).

To give a meaning to (1.1) we will always consider mild solutions.
Assumption 2.4. We assume that for any (stochastic) initial condition u0 ∈ X, (1.1) has

a mild local solution u. This means we have a stopping time t∗ > 0 and a stochastic process
u such that u : [0, t∗] → X is P-a.s. a solution of

u(t) = etLεu0 +

∫ t
0
e(t−τ)Lεf(ε, u(τ), τ)dτ + ε2WLε(t) for t ≤ t∗.(2.4)

D
ow

nl
oa

de
d 

02
/2

5/
19

 to
 1

37
.2

50
.1

00
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



AMPLITUDE EQUATIONS 469

The existence of local solutions is standard if we consider locally Lipschitz-continuous
nonlinearities (see, e.g., [dPZ92], and for Lp-theory with application to the Navier–Stokes
equation see, e.g., [BP99, BP00]).

We can split the variation of constants formula (2.4) into two parts:

Psu(t) = etLεPsu0 +

∫ t
0
e(t−τ)LεPsf(ε, u(τ), τ)dτ + ε2

∫ t
0
e(t−τ)LεdPsW (t)(2.5)

and

Pcu(t) = Pcu0 +

∫ t
0
Pcf(ε, u(τ), τ)dτ + ε2PcW (t).(2.6)

We call us(t) = Psu(t) fast modes, as they are subject to an exponential decay on a
time-scale of order O(1). Moreover, uc(t) = Pcu(t) will be the slow modes.

For f we suppose the following.
Assumption 2.5. There is an ε0 > 0 such that f defines a family of (nonlinear) operators

f(ε, ·, t) : X → Y for all ε ∈ (0, ε0] and t > 0, where Y was defined in Assumption 2.2.
Suppose we have the following Taylor expansion for f with respect to u:

f(ε, u, t) = ε2f1(ε, t)u+ f3(ε, t)[u]
3 + g(ε, u, t),(2.7)

where f1(ε, t) ∈ L(X,Y ) is a continuous linear map that leaves N invariant (i.e., f1(ε, t)N ⊂
N ), and f3(ε, t) ∈ L3(X,Y ) is a continuous trilinear operator.

Suppose there are constants all denoted by Cf such that

sup
t∈[0,T0ε−2]

‖g(ε, u, t)‖Y ≤ Cf‖u‖4
X for ‖u‖X ≤ δ0, ε ∈ (0, ε0],(2.8)

sup
t∈[0,T0ε−2]

‖f1(ε, t)‖L(X,Y ) ≤ Cf for ε ∈ (0, ε0],(2.9)

sup
t∈[0,T0ε−2]

‖f3(ε, t)‖L3(X,Y ) ≤ Cf for ε ∈ (0, ε0].(2.10)

There are functions ν : [0, T0] → L(X,Y ) and µ : [0, T0] → L3(X,Y ) and an η > 0 such that

sup
t∈[0,T0ε−2]

‖f1(ε, t)− ν(ε2t)‖L(X,Y ) ≤ Cfε
η for ε ∈ (0, ε0](2.11)

and

sup
t∈[0,T0ε−2]

‖f3(ε, t)− µ(ε2t)‖L3(X,Y ) ≤ Cfε
η for ε ∈ (0, ε0].(2.12)

Example 2.6. The simplest examples fulfilling Assumption 2.5 are for some given constants
ν̃ ∈ R and τ0 > 0

f(ε, u, t) = ν̃ε2u− u3 or f(ε, u, t) = ν̃ε4(t− τ0ε
−2)u− u3,(2.13)
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470 DIRK BLÖMKER

for example, with X = Y = C0([a, b]), which is the space of continuous functions from [a, b]
to R. We will use these nonlinearities in our examples in section 6. Note that we can take
η > 0 arbitrarily large and g ≡ 0.

Remark 2.7. We will see later in the proof that the assumption on f1(ε, t) to leave N
invariant is important to decouple the dynamics of (2.6) for the slow modes from the dynamics
of the fast modes. The assumption is true, for example, if f1 commutes with Lε, which in
turn is obviously true if f1(ε, t) is just multiplication by a scalar.

The time-dependence of ν and µ (cf. (2.11) and (2.12)) reflects the fact that the slow
modes should change on a slow time-scale T = ε2t.

2.1. The amplitude equation. The amplitude equation is a (system of) SODE that de-
scribes the essential dynamics of mild solutions of (1.1) near 0. Some constants in this equation
depend heavily on the choice of some basis e in N . One can try to simplify the structure by
changing e.

Consider some basis e = (e1, . . . , en) of N with ‖ek‖X = 1 for all k = 1, . . . , n. For
a ∈ R

n denote a · e =
∑n
k=1 akek. Moreover, define the canonical projection Π : X → R

n

by Π(a · e + z) = a for all a ∈ R
n and all z ∈ kernel(Pc). As the spaces N and R

n are
finite-dimensional, we easily obtain that Π is continuous; i.e., there is a constant Cπ > 0 such
that |Π(x)| ≤ Cπ‖x‖ for all x ∈ X.

We define the cubic nonlinearity µe(T )[·]3 : R
n → R

n for T ∈ [0, T0] by

µe(T )[a]
3 = Π{µ(T )[a · e]3} =

n∑
i,j,k=1

aiajakΠ{µ(T )[ei, ej , ek]}(2.14)

and the linearity νe(T ) : R
n → R

n by

νe(T )a = Π{ν(T )(a · e)} =

n∑
i

aiΠ{ν(T )ei}.(2.15)

The amplitude equation is now given by

a(T ) = a0 +

∫ T
0

νe(s)a(s)ds+

∫ T
0

µe(s)[a(s)]
3ds+ β(T ),(2.16)

where {β(T )}T≥0 is a Wiener process in R
n given by β(T ) = εΠ(W (ε−2T )).

Remark 2.8. The distribution of β is actually independent of ε due to the scaling properties
of a Wiener process. Hence the distribution of solution of (2.16) is independent of ε.

2.2. Sketch of the results. Our main results are the attractivity (see Theorem 3.3) and
the approximation (see Theorem 4.3). In the following we sketch these main results.

For the attractivity result assume that the initial condition is of order O(ε) and we have
large deviation bounds on the stochastic convolution. Then there is a time tε = O(ln(ε−1))
such that with high probability for all mild solutions of (1.1) we have

u(tε) = εaε · e+ ε2Rε with |aε|Rn = O(1) and ‖Rε‖X = O(1).
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AMPLITUDE EQUATIONS 471

εa0 · e

O(ε2−κ + ε1+η−κ)

εa(T ) · e

O(ε)

u0

in X

time-scale O(ε−2)time-scale O(ln(ε−1))
Attractivity Approximation

N

Figure 2.1. Two typical trajectories of solutions of (1.1).

For the approximation result consider some solution a(T ) of the amplitude equation (2.16)
and define the approximation εψ(t) := εa(ε2t) · e. Assume that we have nice large deviation
bounds on the stochastic convolution and on the solution a(T ), and fix some small 0 < κ � η.
Then we obtain for all mild solutions u of (1.1) that

sup
t∈[0,T0ε−2]

‖u(t)− εψ(t)‖X < Const ·
(
ε2−κ + ε1+η−κ

)
(2.17)

with high probability provided ‖u(0) − εψ(0)‖X = O(ε2−κ + ε1+η−κ) with high probability.
The optimal bound in (2.17) would be O(ε2). Nevertheless, for technical reasons, we are by
some κ slightly smaller than that. The constant η > 0 was defined in (2.11) and (2.12), and
we expect η ≥ 1 in many examples.

Combining the attractivity and approximation results, we get a good description of the
typical trajectories of (1.1), once we have a good control on various probabilities. A sketch of
the typical dynamics is given in Figure 2.1.

Moreover, we can give estimates for the stopping time t∗ from Assumption 2.4 like t∗ ≥
Teε

−2 with high probability.

The O-notation is used in the following way. A term Gε = O(gε) if and only if there are
positive constants ε0 and C depending only on other constants such that |Gε| ≤ Cgε for all
ε ∈ (0, ε0].

3. The attractivity. First we establish a bound on mild solutions u of (2.4). We show
that solutions with initial conditions of order O(ε) stay of order O(ε) on a large time-scale of
order O(ε−1).
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472 DIRK BLÖMKER

Lemma 3.1. Suppose all assumptions of section 2 are true. For all times tε ≤ ε−1 and all
constants 0 ≤ κ < 1, δ > 0, and D := 2Mδ, there is an ε0 > 0 sufficiently small such that for
all ε ∈ (0, ε0] we obtain{

sup
t∈[0,tε]

‖WLε(t)‖X ≤ ε−κ, ‖u0‖X ≤ δε

}
⇒ sup
t∈[0,tε]

‖u(t)‖X ≤ Dε.(3.1)

Remark 3.2. The bound ε−κ on the supremum of the stochastic convolution looks strange
at first glance; nevertheless, it is natural. In general we expect (cf. section 5)

P

(
sup
t∈[0,tε]

‖PsWLε(t)‖X ≤ Cw

)
→ 0 for tε → ∞.

Moreover, for the Brownian motion PcW = PcWLε

P

(
sup
t∈[0,tε]

‖PcWLε(t)‖X ≤ Cw

)
= O(ectε/C

2
w) for tε and Cw > 0 large.

Proof. Using the Assumption 2.5 on f for εD ≤ δ0, we easily show that there is a constant
still denoted by Cf such that for ‖v‖X ≤ Dε and τ ≤ tε

‖f(ε, v, τ)‖Y ≤ Cf (ε
2‖v‖X + ‖v‖3

X).(3.2)

Define the stopping time τ∗ε := inf{τ > 0 : ‖u(τ)‖X > Dε}. Hence, as long as τ < τ∗ε , we
obtain

‖f(ε, u(τ), τ)‖Y ≤ Cfε
3(1 +D2)D.(3.3)

Now we derive from (2.4) for t ≤ min{tε, τ∗ε }

‖u(t)‖X ≤ M‖u0‖X +M

∫ t
0
(1 + (t− τ)−α)‖f(ε, u(τ), τ)‖Y dτ + ε2‖WLε(t)‖X

≤ [Mδ + ε1−κ]ε+MCfε
3(1 +D2)D

∫ tε
0

(1 + τ−α)dτ

≤ [Mδ + ε1−κ]ε+MCf (1 +D2)D
2− α

1− α
· ε2

< Dε

for ε sufficiently small. This yields immediately τ∗ε ≥ tε on the set on interest, which finishes
the proof.

Theorem 3.3 (attractivity). Suppose all assumptions of section 2 are true. Fix the time
tε = 1

ω ln(ε
−2) with ω from (2.1) and some 0 ≤ κ < 1. We can write the mild solution of

(1.1) as

u(tε) = εaε · e+ ε2Rε
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AMPLITUDE EQUATIONS 473

with aε ∈ R
n and Rε ∈ PsX such that for all δ > 0 and Cw > 0{

‖u0‖ ≤ δε, sup
t∈[0,tε]

‖WLε(t)‖ ≤ ε−κ, ‖PsWLε(tε)‖ ≤ Cw

}

⇒
{
|aε|Rn ≤ 2CπMδ, ‖Rε‖ ≤ 2Cw

}
for sufficiently small ε > 0.

Proof. Define εaε = Π(u(tε)) and ε2Rε = Psu(tε). By Lemma 3.1 all we need to show is
a bound on Psu, as |εa| = |Π(u(tε))| ≤ CπDε with Cπ from subsection 2.1.

Using (2.5) and (2.1), we obtain

‖Psu(tε)‖X ≤ Me−ωtε‖u0‖X + ε2‖PsWLε(tε)‖X
+M

∫ tε
0

(1 + (tε − τ)−α)e−(tε−τ)ω‖f(ε, u(τ), τ)‖Y dτ.

As τ ≤ ε−1 and ‖u(τ)‖ ≤ Dε by Lemma 3.1, we use (3.3) to finally end up with

‖Psu(tε)‖X ≤ Mδε3 +MCfε
3(D +D3)

∫ ∞

0
(1 + τ−α)e−τωdτ + Cwε

2.

This implies the result.

4. Approximation. For a solution a of (2.16) we define the approximation εψ depending
on a slow time-scale T = ε2t by

εψ(t) := εa(ε2t) · e.

The residual of εψ is given by

Res(εψ(t)) = −εψ(t) + etLεεψ(0) +

∫ t
0
e(t−τ)Lεf(ε, εψ(τ), τ)dτ + ε2WLε(t).(4.1)

In order to show that εψ is a good approximation of a solution u of (2.4), we have to control
the residual.

Theorem 4.1 (residual). Suppose all assumptions of section 2 are true. Fix 0 < κ < η and
constants Ca, Cw > 0. Then there exists a constant Cres > Cw such that for sufficiently small
ε > 0 we obtain for all solutions a of (2.16){

sup
s∈[0,T0]

|a(s)|Rn ≤ Caε
−κ/4, sup

t∈[0,T0ε−2]

‖PsWLε(t)‖X ≤ Cwε
−κ
}

⇒ sup
t∈[0,T0ε−2]

‖Res(εψ(t))‖X ≤ Cres(ε
1+η−κ + ε2−κ).

Remark 4.2. The results of Theorem 4.1 obviously remain true if we replace sups∈[0,T0] |a(s)|
≤ Caε

−κ/4 by sups∈[0,T0] |a(s)| ≤ Ca.
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474 DIRK BLÖMKER

Proof. Let T = ε2t be the slow time. Now (2.7) and etLε = Id on N readily imply

Res(εψ(t)) = ε2PsWLε(t)(4.2)

− εa(T ) · e+ εa(0) · e+ ε2PcW (Tε−2)(4.3)

+

∫ Tε−2

0
[ε2f1(ε, τ)(εa(ε

2τ) · e) + Pcf3(ε, τ)[εa(ε
2τ) · e]3]dτ(4.4)

+

∫ t
0
e(t−τ)LεPsf3(ε, τ)[εa(ε

2τ) · e]3dτ(4.5)

+

∫ t
0
e(t−τ)Lεg(ε, εa(ε2τ) · e, τ)dτ.(4.6)

Now (4.2) is bounded by Cwε
2−κ by assumption, and Cres > Cw is necessary. We choose

Cres > 3Cw. Using (2.8), we obtain for t ≤ T0ε
−2

‖(4.6)‖X ≤ M

∫ t
0
(1 + (t− τ)−α)‖g(ε, εa(ε2τ) · e, τ)‖Y dτ

≤ MCfε
4 sup
τ∈[0,T0ε−2]

‖a(ε2τ) · e‖4
X

∫ t
0
(1 + (t− τ)−α)dτ

≤ MCf sup
s∈[0,T0]

|a(s)|4n2

(
T0ε

−2 +
(T0ε

−2)1−α

1− α

)

≤ MCfC
4
an

2T0

(
1 +

T−α
0

1− α

)
· ε2−κ <

1

3
Cresε

2−κ,

which gives us a second condition on Cres. Note that for all a ∈ R
n, ‖a · e‖X ≤ ∑ni=1 |ai| ≤

n1/2|a|Rn (as ‖ei‖X = 1). Using (2.10) and (2.1), we analogously derive

‖(4.5)‖X ≤ MCfn
3/2 sup

τ∈[0,t]
|εa(ε2τ)|3

∫ t
0
(1 + (t− τ)−α)e−τωdτ

≤ MCfn
3/2C3

a

∫ ∞

0
(1 + τ−α)e−(t−τ)ωdτ · ε3−3κ/4.

This can be also bounded by 1
3Cresε

2−κ, which implies a third condition on Cres.
For (4.4) recall that N is invariant under f1(ε, τ) by Assumption 2.5. Using the substitu-

tion s = ε2τ together with (2.11) and (2.12), we obtain

(4.4) =

∫ T
0

[
εΠ
{
f1(ε, ε

−2s)a(s) · e+ f3(ε, ε
−2s)[a(s) · e]3} · e] ds

= ε

∫ T
0

[
νe(s)(a(s)) + µe(s)[a(s)]

3
] · e ds

+ εT0CπCfε
η ·
[
n1/2Caε

−κ/4 + n3/2C3
aε

−3κ/4
]

= ε

∫ T
0

[
νe(s)(a(s)) + µe(s)[a(s)]

3
]
ds · e+O(ε1+η−κ).
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AMPLITUDE EQUATIONS 475

Now we can use the amplitude equation (2.16) to cancel out the remaining terms in (4.3) and
(4.4). This yields a fourth condition on Cres if we compute the O-terms explicitly.

We finally derive ‖Res(εψ(t))‖ ≤ Cres(ε
1+η−κ + ε2−κ) for all t ∈ [0, T0ε

−2].
Theorem 4.3 (approximation). Suppose all assumptions of section 2 are true. Fix the con-

stants Cres, T0, Ca, δ > 0, and κ ∈ (0, η). Then there is a constant Catt such that for sufficiently
small ε > 0 we obtain for all solutions u of (2.4) and all solutions a of (2.16){

‖u0 − εψ(0)‖X ≤ δε2, sup
s∈[0,T0]

|a(s)|Rn ≤ Can
−1/2,

sup
t∈[0,T0ε−2]

‖Res(εψ(t))‖X ≤ Cres(ε
2−κ + ε1+η−κ)

}

⇒ sup
t∈[0,T0ε−2]

‖u(t)− εψ(t)‖X ≤ Catt(ε
1+η−κ + ε2−κ).

Proof. Define ε2R(t) := u(t)− εψ(t). Now (2.4) and (4.1) imply

R(t) = etLεR(0) + ε−2Res(εψ(t))(4.7)

+ ε−2

∫ t
0
e(t−τ)Lε [f(ε, u(τ), τ)− f(ε, εψ(τ), τ)]dτ.

The Taylor expansion of f from (2.7) yields

f(ε, u(τ), τ)− f(ε, εψ(τ), τ)

= ε4f1(ε, τ)R(τ) + f3(ε, τ)[εψ(τ) + ε2R(τ)]3 − f3(ε, τ)[εψ(τ)]
3

+ g(ε,+ε2R(τ), τ)− g(ε, εψ(τ), τ).

First expand the trilinear form to cancel [εψ(τ)]3. Then using the bound on a(s), it is easy
to derive ‖ψ(τ)‖X ≤ Ca. Therefore, as long as ‖R(τ)‖X ≤ ε−1,

‖f(ε, u(τ), τ)− f(ε, εψ(τ), τ)‖Y
≤ ε4‖R(τ)‖XCf + ε4‖R(τ)‖XCf [3C2

a + 3Ca + 1] + Cfε
4([Ca + 1]4 + C4

a)

≤ 3ε4‖R(τ)‖XCf [Ca + 1]2 + 2ε4Cf [Ca + 1]4.

By assumption ‖R(0)‖X ≤ δ. In a first step we prove that ‖R(t)‖X ≤ ε−1 for all t ∈ [0, T0ε
−2].

Therefore, we further split

R = Rc +Rs = PcR+ PsR.

Hence, as long as ‖R(t)‖X ≤ ε−1 and t ≤ T0ε
−2, we obtain from (4.7)

‖Rs(t)‖X ≤ M‖Rs(0)‖X + Cres(ε
−κ + ε−1+η−κ)‖Ps‖L(X)

+ ε2M

∫ ∞

0
(1 + τ−α)e−τωdτ [3ε−1 + 2]Cf [Ca + 1]4‖Ps‖L(X)

≤ 2Cres(ε
−κ + ε−1+η−κ)‖Ps‖L(X)(4.8)

<
1

2
ε−1 for sufficiently small ε > 0.(4.9)
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476 DIRK BLÖMKER

Additionally we obtain

‖Rc(t)‖X ≤ M‖Rc(0)‖X + Cres(ε
−κ + ε−1+η−κ)‖Pc‖L(X)

+ 3Cf [Ca + 1]2‖Pc‖L(X)ε
2M

∫ t
0
‖R(τ)‖Xdτ +O(1).

Now we use ‖R(t)‖X ≤ ‖Rc(t)‖X + O(ε−κ + ε−1+η−κ) by (4.8) and the Gronwall inequality
to obtain

‖Rc(t)‖X ≤ O(ε−κ + ε−1+η−κ) · exp{3Cf [Ca + 1]2T0M‖Pc‖L(X)}(4.10)

<
1

2
ε−1.(4.11)

Hence, for sufficiently small ε > 0 we obtain from (4.9) and (4.11) first that ‖R(t)‖X < ε−1

for all t ≤ T0ε
−2.

Moreover, (4.8) and (4.10) imply supt∈[0,T0ε−2] ‖R(t)‖X = O(ε−κ + ε−1+η−κ).

5. Large deviation results. This section provides large deviation results to control the
various probabilities that arise in our application of the abstract result to SPDEs. First
we provide estimates for solutions of the amplitude equation (2.16). Then we discuss the
stochastic convolution WL in C0([a, b]), where the operator L is a differential operator.

5.1. Amplitude equation. Consider any solution a(T ) of (2.16). Without the cubic non-
linearity or with Lipschitz-continuous nonlinearities there are numerous results, especially for
small noise strength (see, e.g., [FW98]). Nevertheless, for our examples we provide an elemen-
tary result, which is based only on a priori estimates and large deviation results for Wiener
processes. In our cubic case we have to distinguish between the case of stable or unstable
cubic nonlinearities.

Theorem 5.1. Suppose Assumption 2.5 is true, and fix some solution a(T ) of (2.16). Then
there is a constant c > 0 depending only on the covariance matrix of β such that the following
are true:

(I) The unstable case: For all constants Ca > 0 and all T1 ∈ (0, T0] with T1 < (2Cf (1 +
C2
a))

−1 we obtain

P

(
sup
s∈[0,T1]

|a(s)| ≥ Ca

)
≤ P

(
|a(0)| ≥ Ca/4

)
+ 4ne−cC

2
a/T1n.

(II) The stable case: Suppose that µe(T )[b]
3 · b ≤ −Ce|b|4 for all b ∈ R

n. Then there is a
constant C > 0 depending only on Cf and Ce such that for all constants T1 ∈ (0, T0] and all
Ca > C we obtain

P

(
sup
s∈[0,T1]

|a(s)| ≥ Ca

)
≤ P

(
|a(0)| ≥ Ca/2

)
+ 4n exp

{
− c

T1n

√
C4
a

C4
− 1

}
.

Remark 5.2. Unfortunately the unstable case has serious drawbacks. High probability is
paid by validity of the result only on small time-intervals, although this still gives us for the
original equation a time-scale of order O(ε−2).
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AMPLITUDE EQUATIONS 477

Proof. Using (2.10) and (2.12), we easily obtain that there is a constant also denoted by
Cf such that

|µe(T )[a]3| ≤ Cf |a|3 for all a ∈ R
n, T ∈ [0, T0],(5.1)

where Cf actually depends only on Cπ, n, and the constants in Assumption 2.5. Analogously
we obtain

|νe(T )[a]| ≤ Cf |a| for all a ∈ R
n, T ∈ [0, T0].(5.2)

Using (5.2) and (5.1), we obtain from (2.16)

|a(T )| ≤ |a(0)|+ Cf

∫ T
0

(|a(s)|+ |a(s)|3)ds+ |β(T )|.

Suppose |a(0)| < Ca/4 and supT∈[0,T1] |β(T )| < Ca/4. As long as |a(T )| < Ca we obtain

|a(T )| ≤ Ca/2 + CfT (Ca + C3
a) < Ca,

as long as T ≤ 1/(2Cf (1 + C2
a)). Hence

P

(
sup
s∈[0,T1]

|a(s)| < Ca

)
≥ P

(
|a(0)| < Ca/4, sup

s∈[0,T1]
|β(s)| < Ca/4

)
.

To finish the proof of the unstable case, use, e.g., [DZ98, section 5.2]. As β is a Brownian
motion in R

d, we easily obtain the existence of a constant c depending only on the covariance
matrix of β such that

P

(
sup
s∈[0,T1]

|β(s)| > Ca/4

)
≤ 4ne−cC

2
a/T1n.(5.3)

In the stable case define b = a− β. Hence

b ∈ C1 with ∂T b = νe[b+ β] + µe[b+ β]3.

In the following we denote all constants depending only on Cf or Ce simply by C. Using (5.2),
the assumption on µe, and Young’s inequality, we obtain

1

2
∂T |b|2 ≤ Cf |b+ β||b|+ µe[b+ β]3 · b

≤ −Ce
2
|b|4 + C|β|4 + C.

Suppose |β|4 < R and |a(0)| < δ. Then Lemma 5.3 implies

|b(T )|2 < max

{
δ2, C

√
R4 + 1

C
1/2
e

}
.
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478 DIRK BLÖMKER

Hence

|a(T )| < 1

2
C(R4 + 1)1/4 + δ

for all T > 0.

Define R4 = (Ca/C)4 − 1 and δ = Ca/2; then for all T1 and all Ca > C

P

(
sup
s∈[0,T1]

|a(s)| ≤ Ca

)
≥ P

(
|a(0)| < Ca/2, sup

s∈[0,T2]
|β(s)| < 4

√
(Ca/C)4 − 1

)
.

By (5.3) we easily finish the proof.

Lemma 5.3. Suppose for some constant d, c > 0 we have a real-valued function y such that
y(0) ≥ −c/d and y′ ≤ −d2y2 + c2. Then

y ≤ max{y(0), c/d} for all t > 0.

Proof. A comparison principle (see, e.g., [Ha80]) yields y ≤ x with x(0) = y(0) and
x′ = −d2x2 + c2. For the proof we just have to use first that ±c/d are the only stationary
solutions for x and then that x is growing if and only if |x| ≤ c/d.

5.2. Stochastic convolution. There are many general results for exponential tail esti-
mates for stochastic convolutions in Banach or Hilbert spaces. One of the first results is
[CM90]; for recent results, see, for instance, [BP00b] and the references therein. A recent new
approach relying on Zygmund’s interpolation inequality is [SS03].

For our applications we need estimates for sectorial differential operators in the space of
continuous functions. We need especially the dependence of the constants on the time-interval
[0, T ] which is frequently not covered. For simplicity we will basically apply the results of [P92].
This is not optimal, but it is sufficient for our examples.

Assumption 5.4. Suppose Assumption 2.2 is true, and let L be some nonpositive self-adjoint
differential operator of order 2m subject to suitable boundary conditions on some sufficiently
smooth bounded domain G ⊂ R

d (e.g., L = p(∆) for some polynomial p of degree m). Suppose
that Assumption 2.1 is true with Pc as the L

2-orthogonal projection onto N = N(L) and that
L generates an analytic semigroup {etL}t≥0 on L2(G) and therefore also on H = PsL

2(G),
where Ps = I − Pc as before.

Define E = PsC
0(G), where C0(G) is the standard space of continuous functions with

sup-norm. Then it is easy to verify that the assumptions (E.1) and (E.2) of [P92] are fulfilled
(see, e.g., [L94, section 3]). Also, Assumption 2.2 is true with X = E = Y . Note that the
L2-orthogonal projection Pc is still the spectral projection for L defined on E.

Suppose W is a Q-Wiener process as in Assumption 2.3. Then we can write W (t) =
Q1/2W̃ (t) with W̃ (t) =

∑∞
k=1 βk(t)fk, where {βk}k∈N is some family of independently and

identically distributed real-valued Brownian motions, and {fk}k∈N is an orthonormal basis in
L2(G) of eigenfunctions of Q.
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AMPLITUDE EQUATIONS 479

For all γ0 ∈ (0, 1/2) and p0 > 1 define as in [P92]

κp0T :=

∫ T
0

t(γ0−1)p0‖etL‖p0L(H,E)dt,(5.4)

ηT := sup
t∈[0,T ]

∫ t
0
τ−2γ0trL2

(
Q1/2Pse

2τLQ1/2
)
dτ.(5.5)

Provided κT and ηT are finite, then [P92, Theorem 1.1] implies

P

(
sup
t∈[0,T ]

‖PsWL(t)‖C0 ≥ δ

)
≤ C(T, p0) exp

{ −δ2

κ2
T ηT

}
,

with C(T, p0) = 4T exp{(4Tn0!)
1/n0} and n0 = [p0(2p0 − 2)−1] + 1.

For s > d/2 we easily check using Sobolev imbedding of E into Hs(G) that Assumption 2.2
is also true with X = E, Y = H, α = s/2m, and some ω > 0 which is some spectral gap to
the first nonzero eigenvalue of L. Now for u ∈ H

‖etLu‖E = ‖PsetLu‖C0 ≤ M(t−s/2m + 1)e−ωt‖u‖L2 .

We easily obtain κT < Cκ for all T > 0 with some constant Cκ > 0 (depending only on s, m,
p0, γ0, and ω) if and only if (1/p0 − 1+γ0)2m > s. If we choose p0 near 1 and γ0 near 1

2 , then

we will always find such an s > d
2 provided 2m > d. Moreover, if γ0 = 1

4 , we will always find
s provided m > d.

If tr(Q) < ∞, then tr(Q1/2Pse
2tLQ1/2) ≤ tr(Q)Me−2ωτ . This implies the existence of

some constant Cη depending only on α0 and ω such that ηT < CηMtr(Q).
For Q = I we obtain

ηT = sup
t∈[0,T ]

∫ t
0
τ−2γ0

∑
λk 
=0

e2τλkdτ ≤
∑
λk 
=0

1

|λk|1−2γ0

∫ ∞

0
s−2γ0e−2sds.(5.6)

As λk is proportional to −k2m/d (cf., e.g., [EE87]), we obtain that (5.6) is finite if and only if
2m(1− 2γ0) > d, which in turn is true for γ0 = 1

4 and m > d.
Applying the results of [P92], we immediately prove the following.
Theorem 5.5. Let Assumption 5.4 be true, and let W be a Q-Wiener process as in As-

sumption 2.3. Fix some arbitrary small ζ > 0, and suppose either tr(Q) < ∞ and 2m > d or
Q = I and m > d.

Then there are constants c1, c2 > 0 such that for all T, δ > 0 we have

P

(
sup
t∈[0,T ]

‖PsWL(t)‖C0 > δ

)
≤ exp{c1T ζ − c2δ

2}.

We remark without proof that the condition m > d is not optimal for Q = I; here 2m > d
should be also true.
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480 DIRK BLÖMKER

Using a result similar to (5.3) for PcW , we obtain the following.
Corollary 5.6. Let the assumptions of the previous theorem be true. Then there are con-

stants ci > 0 such that for all T,Cw > 0, we obtain

P

(
sup
t∈[0,T ]

‖WL(t)‖C0 > Cw

)
≤ c3 exp{−c4C

2
w/T}+ exp{c1T ζ − c2C

2
w}.

For sufficiently large t > 0 and all δ > 0 it is well known that

P

(
‖PsWLε(t)‖C0 > Cw

)
≤ c6 exp{−c5C

2
w}.(5.7)

This is, for example, easily proven by using the imbedding of C0 into Hs for s > d/2 and
by calculating that for some small h > 0 the exponential moment E exp{h‖PsWL(t)‖2

Hs} is
uniformly bounded with respect to t.

6. Applications. In our applications we consider for simplicity of presentation only ex-
amples which are restricted to scalar SPDEs in one space dimension d = 1. Moreover, we will
consider only examples where the amplitude equation is only an SODE in R. We could treat
systems of SPDEs in higher dimension or higher-dimensional SODEs as amplitude equations,
but we want to keep the notation as simple as possible in order to demonstrate the main ideas
of our applications.

Let us fix some notation needed in what follows. Suppose W is some Q-Wiener process
with either tr(Q) < ∞ or Q = I. Define L = −(1 + ∂2

x)
2, which is a self-adjoint operator on

L2([0, π]) subject to zero Dirichlet boundary conditions for u and ∂2
xu.

It is well known that the fourth order differential operator L generates a bounded semi-
group on Y = X = C0([0, π]), which fulfills Assumptions 2.1 and 2.2 with N = span{sin}
and α = 0 in (2.2). Therefore, we fix Pc to be the L2-orthogonal projection onto N , which
coincides in this case with the spectral projection of L defined on X. It is also easy to check
that Assumption 2.3 is true.

Moreover, we have the L2-orthogonal basis of eigenfunctions ek(x) = sin(kx) in X with
‖ek‖X = 1. Note that Assumption 5.4 is true with m = 2 and p(z) = −(1 + z2)2. Therefore,
we can apply all large deviation results of the previous subsection.

6.1. Dynamic pitchfork-bifurcation. The dynamic pitchfork-bifurcation is a well-studied
experimental effect (see, e.g., [BK99, ME87, GM03] and the references therein). It refers to a
system which is moved slowly though some deterministic bifurcation point by slowly changing
the bifurcation parameter with time. This leads to hysteresis-type effects, where the solution
stays near the unstable equilibrium after passing through the deterministic bifurcation point.
This result was studied rigorously for the deterministic and the stochastic equations (see
[BG02] and the references therein), both in an ODE setting. We will describe how the latter
result can be immediately carried over to SPDEs by the results presented in the previous
sections.

Consider as an example the scalar SPDE

∂tu(t) = Lu(t) + ν̃ε4(t− τ0ε
−2)u(t)− u3(t) + σε2∂tW (t) for t > 0,(6.1)

D
ow

nl
oa

de
d 

02
/2

5/
19

 to
 1

37
.2

50
.1

00
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



AMPLITUDE EQUATIONS 481

subject to zero Dirichlet boundary conditions on [0, π] and initial condition u(0) = u0. Here
ν̃ and τ0 are some constants fixed later on. It was already discussed in Example 2.6 that
Assumption 2.5 is true with X = Y = C0([0, π]).

As obviously N = span{sin}, the corresponding amplitude equation describes the ampli-
tude a ∈ R of the sine. It is given by an easy calculation (cf. section 2.1):

a′(T ) = (s− τ0)ν̃a(T )− 3π

8
a3(T ) + σβ′(T ) for T > 0,(6.2)

where β(T ) = 〈εW (Tε−2), sin〉L2 is a real-valued Brownian motion.
We will first state rigorous results that verify u(t) ≈ a(ε2t) sin. After that we briefly

comment on the dynamic pitchfork-bifurcation. Note that (6.2) exhibits exactly the same
structure as the equations discussed in [BG02]. Therefore, an analogue of their result for (6.1)
follows immediately.

Theorem 6.1 (attractivity). There are constants ci > 0 such that for any choice of τ0 > 0
and ν̃, σ ∈ [−1, 1], all mild solutions u of (6.1), and all solutions a of (6.2), we obtain the
following.

For tε = ln(ε−1) we can write u(tε) = εaε sin + ε2Rε with

P

(
|aε| ≤ 2CπMδ, ‖Rε‖C0 ≤ 2Cw

)
≥ P

(
‖u0‖C0 ≤ δε

)
− c1e

−c2ε−1 − c3e
−c4C2

w

for all Cw, δ > 0, and sufficiently small ε > 0.
Note that the probability bound on the right-hand side is in general only positive for ε

small and Cw large.
Proof. The proof is by straightforward application of Theorem 3.3 together with Corol-

lary 5.6 and (5.7) to bound the probabilities.
Theorem 6.2 (approximation). For all T0 > τ0 > 0 and 0 < κ < 1 there are constants

ci > 0 such that the following is true.
Given δ > 0, Ca > 0, Cw > 0, there is a constant Catt > 0 such that for any choice of

ν̃, σ ∈ [−1, 1], all mild solutions u of (6.1), and all solutions a of (6.2),

P

(
sup

t∈[0,T0ε−2]

‖u(t)− εa(ε2t) sin‖C0 ≤ Cattε
2−κ
)

(6.3)

≥ 1− P

(
‖u0 − εa(0) sin‖C0 > Cwε

)
− P

(
|a(0)| > Ca

)
− c1e

−c2ε−κ − c3e
−c4C2

a/T0

for sufficiently small ε > 0.
Proof. The proof is by application of Theorems 4.3 and 4.1 together with Theorems 5.5

and 5.1 to bound probabilities.
We can further bound (6.3) in Theorem 6.2 by Theorem 6.1. Summarizing both theorems,

we can write with high probability all mild solutions u of (6.1) with ‖u(0)‖ = O(ε) as

u(t) = εa(ε2t) sin +O(ε2−κ)(6.4)
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482 DIRK BLÖMKER

for all t ∈ ln(ε−1)+[0, T0ε
−2], where a is a solution of the amplitude equation (6.2) with initial

condition a0 = ε−1Πu(tε), where the projection Π was defined in section 2.1.

Now we can immediately apply the results of [BG02] first to (6.2) and then via (6.4) to
solutions of (6.1). Hence, for ε sufficiently small, (6.1) exhibits the same dynamics as the
one-dimensional dynamic pitchfork-bifurcation, but on a much slower time-scale. To keep
the presentation short, we refrain from restating the elaborate description of the transient
dynamics from [BG02]. Note, finally, that it is essential to derive a one-dimensional kernel N ,
as the results of [BG02] are only valid for one-dimensional amplitude equations.

6.2. Pattern formation. The formation of a pattern below the threshold of a change of
stability is a well-known experimental phenomenon. See, for example, [SA02] or [SR94] for
noise-induced convection rolls below the onset of convection in Bénard’s problem. In this case
the system is slightly below a change of stability in the unperturbed (deterministic) system,
which undergoes a pitchfork-bifurcation.

Unfortunately, this problem is out of reach for the present approach, as it consists of a
three-dimensional Navier–Stokes equation which is coupled to a heat equation. We could
treat systems of SPDEs on three-dimensional domains, but we cannot treat the quadratic
nonlinearity with the method presented in this article. This will be a topic of further research
(see [B03]).

We sketch a simple problem, which exhibits pattern formation below threshold of stability.
Let us consider the well-known Swift–Hohenberg equation, which is in the theory of convection
frequently used as a simplified model for the first convective instability. It is similar to the
equations of the previous section,

∂tu(t) = Lu(t) + νε2u(t)− u3(t) + ε2∂tW (t) for t > 0,(6.5)

subject to zero Dirichlet-type boundary conditions on [0, π] and initial condition u0 = 0, where
L and W are given in the beginning of section 6 and ν is some parameter.

The pattern in our toy-model us just the sine representing the convection roll in the full
problem. Due to the special size of the domain, we have only one period of the sine. If we
would consider large domains, we would get several periods of the pattern depending on the
size of the domain. Nevertheless, for sake of simplicity we stay with this very simple model.

For the unperturbed deterministic equation it is well known that it undergoes a pitchfork-
bifurcation at ν = 0. There sin ∈ N(L) becomes unstable. For ν < 0 the homogeneous
solution u = 0 is the only stable solution, and for ν > 0 we end up with a stable pattern that
is a small deformation of the sine. To verify this result is a lot of work but is standard, using,
for instance, the celebrated theory of Crandel and Rabinowitz. In contrast to that, we will see
that also in the case of ν < 0 due to additive noise the pattern appears and sustains for long
times, although it should decay due to the stability of the homogeneous solution u = 0. In the
following we will verify a result that the probability P(pattern visible for “most” t ∈ [0, T0ε

−2])
is near 1, where T0 is just some arbitrary constant.

Let us first apply the main results of this paper to (6.5). Due to u(0) = 0 it is obvious
that the assertion of the attractivity result readily holds with tε = 0, aε = 0, and Rε = 0.

Moreover, an easy calculation (see section 2.1) establishes that the corresponding ampli-
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AMPLITUDE EQUATIONS 483

tude equation is

a′ = νa− 3π

8
a3 + β′,(6.6)

where β(T ) = 〈εW (Tε−2), sin〉L2 as before in section 6.1. Now we can easily verify an ap-
proximation result as in Theorem 6.2 to obtain

u(t) = εa(ε2t) sin +O(ε2−κ) uniformly for all t ∈ [0, Teε
−2](6.7)

with high probability for all ε ∈ [0, ε0]. We are free to choose any T0 > 0 we want, but we
have to pay for that with ε0 > 0 small. We refrain from restating the precise result, as it is
completely analogous to Theorem 6.2.

To prove a pattern result, we can, for example, verify that |a(T )| ≥ Cε1/2 for “a lot of”
times T ∈ [0, T0]. In what follows we give a short argument for this.

First define

lε(T ) := |{s ∈ [0, T ] : |a(s)| ≤ ε1/2}|.
This is the “bad” set of times, where we possibly do not see the pattern. However, we will
definitely see the pattern for all times in [0, T0ε

−2]− lε(T0). The following remark summarizes
the result, which is now possible to verify. We refrain from stating an abstract theorem.

Remark 6.3. For a main result on pattern formation, we will verify

P(lε(T0) ≥ ε1/4) ≤ Cε1/4T0(6.8)

for T0 large and ε small enough.
Hence the probability is high to see the pattern on a set of times with measure (T0 −

Cε1/4)ε−2 for any choice of the bifurcation parameter ε2ν, provided, for example, |ν| ≤ 1.
Note finally that there is nothing special about dimension one. Similar results will apply

in case n = dim(N ) > 1, where N is then some space of pattern. The only thing we rely
on are some technical assumptions for the existence of an invariant Markov measure for the
amplitude equation.

To establish (6.8) first recall that the distribution of a is independent of ε by Remark 2.8.
Moreover, it is well known under certain assumptions on the noise (e.g., full rank of the covari-
ance matrix) and the stability of the cubic nonlinearity that there exists a unique invariant
Markov measure P

∗ for the amplitude equation. Moreover, the Lebesgue-density p∗ := dP
∗/dλ

of this measure is continuous.
By the definition of lε

Elε(T ) =

∫ T
0

P(|a(s)| ≤ ε1/2)ds.

Now the celebrated Birkhoff ergodic theorem (cf., e.g., [dPZ96]) for invariant Markov measures
implies

1

T
Elε(T ) → P

∗([−ε1/2, ε1/2]) for T → ∞.
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484 DIRK BLÖMKER

Moreover, we obtain 1
2ε

−1/2
P
∗([−ε1/2, ε1/2]) → p∗(0) by the continuity of the density. Fur-

thermore, by the Chebyshev inequality,

P(lε(T ) ≥ ε1/4) ≤ ε−1/4
Elε(T ) ≈ 2ε1/4Tp∗(0),

and it is straightforward to establish (6.8).

6.3. Bifurcation. In this section we briefly sketch transient stochastic dynamics near a
deterministic pitchfork-bifurcation. As mentioned in the introduction, we will not describe
the whole bifurcation but rather will focus on examples of parameter regimes, where we can
establish the amplitude equation describing finite time behavior of solutions.

As we will see, there are different scenarios depending on the ratio between noise-strength
and bifurcation parameter. This will give another indication to the well-known fact that a
stochastically perturbed bifurcation leads to a soft transition of the transient dynamics (cf.,
e.g., [Ar98]), in contrast to the sharp separation in case of a deterministic bifurcation.

Consider the same type of equation as in the previous section, which is for σ = 0 a classical
example of a pitchfork-bifurcation in a PDE:

∂tu = Lu+ µu− u3 + σ2∂tW,(6.9)

subject to zero Dirichlet-type boundary conditions on [0, π].
We can distinguish between three different regimes, and in the following we just give

the corresponding amplitude equation and discuss the transient dynamics that we expect.
Moreover, in the end we sketch the basic ideas of how to modify our results to derive the
amplitude equations for the different cases. Note that we do not specify the constant c
appearing in the equations, as it depends on the normalization of the function e spanning N .

1. Case |µ| ≈ σ2 ≈ ε2.
Fix σ2 = ε2 and µ = νε2. The amplitude equation is a′ = νa− ca3 + β′.

2. Case |µ| � σ2 ≈ ε2.
Fix σ2 = ε2 and |µ| ≤ ε3. The amplitude equation is a′ = −ca3 + β′.

3. Case σ2 � |µ| ≈ ε2.
Fix ε2 = |µ| and σ ≤ ε3. The amplitude equation is a′ = sgn(µ)a− ca3.

Case 2 corresponds to the case when we are very near to the deterministic bifurcation point.
The amplitude equation and the dynamics are independent of the bifurcation parameter in
this case. Hence the deterministic bifurcation point is widened to a longer interval.

Case 3 corresponds to the case when we are far away from the bifurcation. Here the
dynamics is essentially given by the stable equilibria of the deterministic equation. The
stochastic nature of the original SPDE is only seen in small fluctuations around these fixed
points.

In Case 1, we have an intermediate regime, when we are of order noise-strength away
from the bifurcation. Here the amplitude equation is stochastic, and the dynamical behavior
interpolates between the deterministic behavior (Case 3) and the bifurcation regime (Case 2).

Let us finally comment on how to rigorously derive the amplitude equations in the previous
statements. Case 1 was already discussed in the previous sections. The second case is rather
easy. We can, for instance, follow our proofs of the approximation result to see that all ν-
dependent terms are now of lower order. Hence they disappear into the error terms, and there
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AMPLITUDE EQUATIONS 485

will be no contribution to the amplitude equation. For Case 3 we can also follow our approach.
This would give an amplitude equation of the type a′ = sgn(µ)a − ca3 + σ2ε−2β′. Then we
can add a Freidlin–Wentzell-type argument to eliminate the noise term, as σ2ε−2 → 0.
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