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Stabilization due to additive noise

Dirk Blömker

Stabilization due to noise is a well-known phenomenon, and there are numerous
publications over the last decades. But most examples are for multiplicative noise
only. Stabilization can arise somewhat artificially by adding Itô-noise, due to the
Itô-Stratonovich correction, as only multiplicative Stratonovich-noise is neutral for
the linear stability. In other cases stabilization arises due to averaging over stable
and unstable directions. A celebrated example is Kapiza’s problem of the inverted
pendulum [13]. This averaging is also effective in case of deterministic rotation of
the system [10]. But there are very few examples due to additive noise. Very nice
is the blow-up through a small tube [15].

We consider two very simple examples of stochastic partial differential equa-
tions (SPDEs) close to bifurcation. Using the natural separation of time scales,
one derives effective stochastic differential equations (SDEs) for the amplitudes
of the dominating pattern. Due to averaging, the noise not acting directly on
the dominant pattern may appear as a stabilizing deterministic correction to the
SDEs.

Swift-Hohenberg equation. In a series of papers [11, 12], it was numerically
and formally (using a center-manifold argument) justified that additive noise is
capable of removing patterns in the one-dimensional Swift-Hohenberg equation.
See also [9]. The Swift-Hohenberg equation is an SPDE given by

(SH) ∂tu = −(1 + ∂2x)
2u+ νǫ2u− u3 + σǫ∂tβ

subject to periodic boundary conditions on [0, 2π] and β being a real-valued Brow-
nian motion. The constants σ and ν measure the noise strength and the distance
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from bifurcation, respectively. The eigenfunctions of the differential operator are
sin(kx) and cos(kx), k ∈ Z. The kernel span{sin, cos} is the space of the dominant
pattern. Using the Ansatz

u(t, x) = ǫA(ǫ2t)eix + c.c.+ ǫσZ(t) +O(ǫ2) ,

with a fast Ornstein-Uhlenbeck (OU) process Z(t) =
∫ t

0 e
−(t−τ)dβ(τ) and complex-

valued amplitude A, we obtain the following amplitude equation [6]:

(A) ∂TA = (ν − 3
2σ

2)A− 3A|A|2 .
It is interesting that the amplitude equation for the dominant behavior is deter-
ministic, and noise leads to a stabilizing deterministic correction. For a precise
statement and proof of the approximation result see [6], which treats a more general
situation. Numerical approximation [9] shows that any moment of the uniform in
space and time error grows logarithmically with the time-interval, while moments
of the error for a fixed time seem to stay small for very long times.

Averaging with error bounds. In formal calculations for the derivation of the
amplitude equation, the additional constant terms arise from square of noise in
3Aσ2(ǫ∂T β̃)

2, where β̃(T ) = ǫβ(T ǫ−2) is a rescaled Brownian motion on the slow
time-scale T = ǫ2t. In the proofs, using the mild formulation (i.e., variation of
constants), we consider the fast OU-process

Z(T ǫ−2) = Zǫ(T ) = ǫ−1

∫ T

0

e−(T−s)ǫ−2

dβ̃(s) ≈ ǫ∂T β̃(T ) .

Crucial for the derivation of averaging with explicit error bounds is the following
Lemma based on Itô’s formula:
Lemma [4, 7] Let X be a stochastic process with bounded initial condition and

differentials, i.e. dX = O(ǫ−r)dt+O(ǫ−r)dβ̃ and X(0) = O(ǫ−r) for some r > 0.
Then ∫ T

0

X(s)Zǫ(s)
2ds = 1

2

∫ T

0

X(s)ds+O(ǫ1−2r) .

Similar results hold true for other even powers of Zǫ. For odd powers we have
∫ T

0

X(s)Zǫ(s)ds = O(ǫ1−r) ,

∫ T

0

X(s)Zǫ(s)
3ds = O(ǫ1−3r) , · · ·

Note that X = O(fǫ), if for all p > 1 and T > 0 there is a C > 0 such that

E sup
s∈[0,T ]

|X(s)|p ≤ Cfǫ
p .

Burgers type equation. Stabilization effects were observed numerically in [1, 14]
for an equation of the following type;

(B) ∂tu = −(1 + ∂2x)u+ νǫ2u+ 1
2∂xu

2 + σǫ∂tβ sin(2·)
subject to Dirichlet boundary conditions on [0, π] with dominant space span{sin}.
The highly degenerate noise acts only on the 2nd mode by β. Consider:

u(t, x) = ǫa(ǫ2t) sin(x) + ǫσZ(t) sin(2x) +O(ǫ2)
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with fast OU-process Z(t) =
∫ t

0 e
−3(t−τ)dβ(τ). This is rigorously justified by a-

priori estimates. In [4] we obtain the following amplitude equation:

(A2) da = (ν − σ2

88 )a dT − 1
12a

3dT + σ
6a ◦ dβ̃

in Stratonovich sense, with rescaled Brownian motion β̃(T ) = ǫβ(ǫ−2T ). Obvi-
ously, 0 is stabilized for ν ∈ (0, σ2/88). For a precise statement of the approxima-
tion result and its proof in a significantly generalized situation see [4]. Numerical
justification in [9] verified the validity of the approximation for large times and
moderate or even large ǫ.

Outlook – Open problems. We comment on a series of related results, gener-
alizations and open problems. Interesting questions in regularity and scaling arise
for example for Levy noise [5].

Averaging of martingals of the type
∫ T

0 XZq
ǫ dβ is necessary for (B) with high-

dimensional noise or for higher order corrections for (SH). The averaging is well
known, but for error estimates in [4] we are based on Levy’s characterization
theorem, restricting the result to one-dimensional dominant modes.

Modulated patterns arise if the underlying domain is large or unbounded. Here
we need to approximate by a modulated wave of the type A(ǫ2t, ǫx)eix+c.c., where
A solves a SPDE of Ginzburg-Landau type. See [4, 8]. The truly unbounded space
with space-time white noise is still open. Solutions seem to be both spatially
unbounded and not sufficiently regular for the tools available.

The results presented are limited to long transient time-scales. For the approx-
imation of long-time behavior in terms of invariant measures for (SH) see [2].
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Homogenization of random parabolic operators. Diffusion

approximation

Andrey L. Piatnitski

(joint work with Marina Kleptsyna and Alexandre Popier)

The talk focuses on homogenization problem for divergence form second order
parabolic operators whose coefficients are rapidly oscillating functions of both
spatial and temporal variables. The corresponding Cauchy problem takes the
form

(1)

∂uε

∂t
= div

(
a
(x
ε
,
t

εα

)
∇uε)), (x, t) ∈ R

d × (0, T )

uε(x, 0) = g(x), uε
∣∣
∂G

= 0,

with g(x) ∈ L2(Rd). We assume that the coefficients of a(z, s) are periodic func-
tions of spatial variables while their dependence of time is random stationary er-
godic, α > 0. Moreover, the matrix a(z, s) is real symmetric, uniformly bounded
and positive definite.

It was proved in [1], [2] that the solutions of the original problem converges
almost surely to a deterministic limit, the limit function being a solution of ho-
mogenized equation with constant coefficients:

(2)
∂u0

∂t
= div(aeff∇u0), u0(x, 0) = g(x),

The question of interest is the asymptotic behaviour of the normalized difference
of the original and homogenized solutions.

It turns out that the limits behaviour of the said normalize difference depends
crucially on whether α < 2, or α = 2, or α > 2. In the talk we mostly dwell on
the the self-similar case α = 2.

In order to formulate the diffusion approximation result we need an auxiliary
function, so-called corrector.

Lemma (see [3]). The equation

∂sχ(z, s) = divz
(
a(z, s)[∇zχ(z, s) + I]

)

has a stationary in s and periodic in z solution. The solution is unique up to an
additive (random) constant.


