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Amplitude Equations – natural slow-fast systems

Dirk Blömker

Focusing on the stochastic Swift-Hohenberg equation (SH) only, we review re-
sults on the rigorous error estimates for amplitude equations. We discuss the
impact of various models of the noise, together with open problems.

Introduction. Complicated models near a change of stability generate slow-fast
systems in a natural way. The dominant pattern (or modes) evolve on a slow time-
scale, while stable pattern decay and disappear on a fast time-scale. The evolution
is then given by simplified models for the amplitudes of dominant pattern, the so
called amplitude equations. There are many examples of formal derivation for such
equations. For a review see [7].

For PDEs on bounded domains the theory of invariant or center manifolds is
available, where solutions are well approximated by an ODE on the manifold.
Unfortunately, invariant manifolds for stochastic PDEs move in time. Moreover,
there is a lack of center manifold theory. This is similar to PDE on unbounded
domains, where a whole band of eigenvalues changes stability, and amplitude or
modulation equations are successfully applied. See [8, 10, 11].

Using amplitude equations, our aim is to understand the impact of noise on the
dominant pattern and how noise is transported by the nonlinearity. For simplicity
we consider only (SH) on the real line. In pattern formation (SH) is a celebrated
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toy model for the convective instability in the Rayleigh-Bénard model.

(SH) ∂tu = Lu+ νε2u− u3 + ξε ,

where L = −(1 + ∂2x)2. The dominant modes are N = span{sin, cos}. Moreover
ξε is some small noise process, which may change for different applications.

Slow-Fast System. (SH) naturally generates a system, given by a slow SDE
and a fast SPDE. To illustrate this, consider ξε = ε2∂tW in (SH). Split u(t) =
εvc(ε

2t) + εvs(ε
2t) with vc ∈ N and vs ⊥ N . Then

(SLOW) ∂T vc = νvc − Pc(vc + vs)
3 + ∂T W̃c ,

(FAST) ∂T vs = ε−2Lvs + νvs − Ps(vc + vs)
3 + ∂T W̃s ,

where Pc projects onto N , Ps = I − Pc, and W̃ (T ) = εW (Tε−2) is a rescaled
version of the driving Wiener process W .

Full Noise. Consider (SH) subject to periodic boundary conditions on [0, 2π]
with noise ξε = ε2∂tW , where W is some suitable Q-Wiener process W .

Theorem 1 (Approximation, [1]). Consider u(0) = εa(0) + ε2ψ(0) with a(0) and
ψ(0) both O(1). Let a(T ) ∈ N solve

∂T a = νa− Pca
3 + ∂T W̃c ,

and let ψ(t) ⊥ N be an OU-process solving ∂tψ = Lψ + ∂tWs. Then u(t) =
εa(ε2t) + ε2ψ(t) + O(ε3−) for t ∈ [0, T0ε

−2] .

The Approximation remains true for invariant measures. Moreover, Attractivity
verifies that any solution scales as needed for the Theorem after some time.

Degenerate noise. Additive noise may lead to stabilization (or a shift of bi-
furcation) of dominant modes (pattern disappears). See [9]. Consider the noise
ξε = σε∂tβ for some real-valued Brownian motion β.

Ansatz: u(t, x) = εA(ε2t)eix + c.c.+ εZ(t) + O(ε2)

with some fast OU-process Z(t) =
∫ t

0
e−(t−τ)dβ(τ) and a complex-valued ampli-

tude A. Using explicit averaging results with error bounds, we obtain the Ampli-
tude equation [5]

(A) ∂TA = (ν − 3
2σ

2)A− 3A|A|2 .

Open Problems. For higher order corrections [5] or quadratic nonlinearities and
degenerate noise [3], averaging results with explicit error estimates for integrals

of the type
∫ T

0
X(τ)Z(τε−2)qdβ(τ) are necessary. These results [3] are based on

Levy’s representation theorem, which restricts the result to dim(N ) = 1. It remains
open, how to obtain error estimates for the limit, if X(t) ∈ R

n, n > 1.
Interesting results arise for (SH) on large [2] (full noise) or unbounded domains

[6] (degenerate noise). In both cases the complex amplitude A is slowly modulated
in space and given by a stochastic Ginzburg-Landau PDE. Here many questions
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are still open, due to the lack of regularity and unboundedness of solutions of the
stochastic Ginzburg-Landau equation on R with space-time white noise.

Another interesting question [4] is for non-Gaussian noise without scale invari-
ance. For the driving process L we need limits of εαL(ǫ−2t) with error estimates.
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Nonlinear Dispersive Equations, Solitary Waves and Noise

Anne de Bouard

(joint work with A. Debussche, R. Fukuizumi, E. Gautier)

Nonlinear dispersive waves in general, and solitons in particular are universal ob-
jects in physics. They may as well describe the propagation of certain hydrody-
namic waves, as localized waves in plasma physics, signal transmission in fiber
optics, or phenomena such as energy transfer in excitable molecular systems. In
all those cases, the formation of stable, coherent spatial structures have been ex-
perimentally observed, and may be mathematically explained by the theory of
nonlinear integrable (or soliton) equations. However, none of those systems is
exactly described by soliton equations, and those equations may only be seen as
asymptotic models for the description of the physical phenomena. Moreover, as
soon as microscopic systems are under consideration, thermal fluctuations may
not be negligible. They give rise in general to stochastic fluctuations in the corre-
sponding model, and their interaction with the waves has to be studied. In some
other situations, the underlying asymptotic model is not even an integrable equa-
tion, even though it is a nonlinear dispersive equation. Solitary waves may still
exist in this latter situation, and even if the mathematical theory is then much less


