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Abstracts

Stabilization due to additive noise

Dirk Blömker

Amplitude Equations describe essential dynamics of a complicated (stochastic)
partial differential equation near a change of stability. The approximations are de-
rived using the natural separation of time-scales near a bifurcation for a multi-scale
analysis. Here we focus on results for equations with locally quadratic nonlinearity
and show various applications (stabilization, random invariant manifolds, modu-
lated pattern)

1. General setting - examples

Consider an Equation of the type

du = (Lu + B(u, u) + ǫ2Au + B(u, u))dt + ǫ2dW ,

where L is a non-positive operator with non-empty kernel N , B is a bilinear
operator and Au a linear perturbation. The noise ∂tW is Gaussian and white in
time. Typical examples are

• Burgers: ∂tu = ∂2
xu + νu + u∂xu + σξ

• Kuramoto Shivashinsky: ∂tu = −∆2u − ν∆u + |∇u|2 + σξ
• Surface Growth: ∂tu = −∆2u − ν∆u − ∆|∇u|2 + σξ

or the Rayleigh Benard system (3D-Navier-Stokes coupled to a heat equation).

2. The general approximation result

One aim of amplitude equations is to show on large time scales:

u(t) = ǫa(ǫ2t) + O(ǫ2)

where on the slow time-scale a ∈ N solves an equation of the type

da = (νa + F(a))dT + dβ ,

where F is a cubic, β Brownian motion in N given by the projection β = PcW of W
onto N . Note that in the case PcW = 0, the dynamics is essentially deterministic,
as the dominant modes are only driven by noise acting directly on the dominant
modes. We could consider larger noise then.

3. Stabilization by degenerate additive noise

In a special case [10], rigorously verified in [6], for highly degenerate noise the
amplitude equation for u(t) ≈ a(ǫ2t) sin (in Stratonovic sense) is

(A) da = (ν − σ2

88 )a dT − 1
12a3dT + σ

6 a ◦ dβ,

In the SPDE σǫ is strength of the noise and ν distance from bifurcation. For
sufficiently large additive noise in the SPDE the dominating mode is stabilized
(i.e. the bifurcating pattern destabilized).
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As numerical example consider the following Burgers-type SPDE

(B) ∂tu = (∂2
x + 1)u + ǫ2u + u∂xu + σǫξ ,

where u(t, x) ∈ R for t > 0, x ∈ [0, π] subject to Dirichlet b.c. Set ǫ = 0.1 and
use highly degenerate noise ξ(t, x) = ∂tβ(t) sin(2x), which acts only on the second
Fourier mode, where β(t) is a standard one-dimensional Brownian motion.

Figure 1. Time evolution of the first Fourier mode of the solu-
tion of a Galerkin truncation of (B) for σ = 2 (left) and for σ = 10
(right) for a single typical realization. Stabilization by additive
noise on that mode is clearly seen (cf. [8]).

4. Large domains - modulated pattern

Amplitude or modulation equations are a standard tool for spatially extended
deterministic PDEs, which help to overcome the lack of center manifold theory in
such a setting. Despite long use in physics (cf. [9]), starting from [12, 11] (see also
[13]) the rigorous theory of modulation equations has only been developed in the
last two decades.

Little is known about modulation equations for extended SPDEs. There is some
work in this direction, for the example the study of the motion of solitons in the
stochastic Korteweg-de-Vries [1] and the derivation of the stochastic Ginzburg-
Landau equation as the amplitude equation for the Swift-Hohenberg equation [7].

Consider as an example an equation of Kuramoto Sivashinsky type:

∂tu = −(∂2
x + 1)2u − νǫ2∂2

xu + |∂xu|2 + ǫ3/2ξ

with u = u(t, x), t > 0, x ∈ R, and ξ is space-time white noise.
The expected result is a modulated pattern

u(t, x) ≈ ǫA(ǫ2t, ǫx)eix + compl.conj. + O(ǫ2) ,

where A ∈ C solves a complex Ginzburg-Landau equation of the type

∂T A = ∂2
XA + νA − cA|A2 + η ,

and η is complex valued space-time white noise. See [7, 14].
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Random attractors for stochastic Navier-Stokes equations in some
unbounded domains

Zdzis law Brzeźniak

In this talk I will present new developments in the theory of infinite dimensional
random dynamical systems. The starting point is my recent paper with Y. Li [4].
In that paper we constructed a RDS for the stochastic Navier-Stokes equations in
some unbounded domains O ⊂ R2. We proved that that RDS is asymptotically
compact, what roughly means that if a sequence xn of initial data is bounded in
the energy Hilbert space H and the sequence of initial times (−tn) converges to
−∞, then the sequence u(0,−tn, xn), where u(t, s, x), t ≥ s is a solution of the
SNSEs such that u(s, s, x) = x, is relatively compact in H. A RDS satisfying
this condition is called an asymptotically compact one. We also proved that for
any asymptotically compact RDS on a separable Banach space, the Ω-limit set
of any bounded deterministic set B is non-empty, compact and forward invariant
with respect to the RDS (and attracting the set B). We were not able to show
existence of a random attractor, as such a proof would require that there exists a
family of closed and bounded random sets such that each element of it is absorbed


