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Abstract

The Cahn-Hilliard equation is one of the fundamental models for phase separation
dynamics in metal alloys. On a qualitative level, it can successfully describe phe-
nomena such as spinodal decomposition and nucleation. Yet, as deterministic partial
differential equation it does not account for thermal fluctuations or similar random ef-
fects. In this survey we describe some dynamical aspects of a stochastic version of the
model due to Cook. These include recent results on spinodal decomposition, as well
as a brief discussion of nucleation and its relation to the deterministic attractor struc-
ture. In addition, differences between the deterministic and the stochastic dynamics
are discussed.
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1 Introduction

Phase separation phenomena in composite materials have drawn considerable interest over
the past few decades. Part of this interest can certainly be attributed to the wealth of intri-
cate phenomena which can be observed. Yet also the prospect of more or less immediate
implications for the design of new materials plays a significant role. One important aspect
of such design questions is the stability or instability of the composite material in the fol-
lowing sense. Many composites are formed by combining materials which would not occur
naturally within a compound. On the one hand, this fact is responsible for obtaining mate-
rials which exhibit novel and highly desirable properties. On the other hand, this artificial
combination of the components can cause problems. In many cases, the composite material
has to be used under service conditions, under which its components tend to separate, i.e.,
the alloy exhibits some form of instability. Traditionally, one distinguishes between two
different instability mechanisms:

• Spinodal Decomposition: If all the components of a metal alloy are heated to a suffi-
ciently high temperature, they quickly form an almost perfect homogeneous mixture.
If this mixture is rapidly quenched to a low temperature, the solution solidifies and
a process of phase separation may set in. The components start to separate again,
thereby forming a highly inhomogeneous fine-grained structure with snake-like pat-
terns exhibiting a characteristic length scale. If this experiment is repeated under
almost identical conditions, the generated structure still shows the same characteris-
tic features of snake-like patterns with a characteristic width, but the specific form of
the structure is significantly different.

• Nucleation: The occurrence of spinodal decomposition in metal alloys depends on
the nature of the quench — it has to be a deep quench to a low temperature. On the
other hand, shallow quenches leading to slightly higher temperatures can trigger a
different instability in the alloy which is called nucleation. In this process, island-like
regions, or droplets, which are rich in one of the components form at random posi-
tions within the alloy and start to grow. Also in this situation, different experiments
result in different sizes and locations of the droplets, regardless of how carefully the
initial conditions are chosen.

The occurrence of these instabilities in metal alloys can have profound implications on the
properties of the material. Depending on the situation these may be desirable or undesir-
able. Therefore, information regarding the nature and the time frame of the induced phase
separation is of utmost importance. In order to take these — in many situations unavoidable
— effects into account, one needs accurate information on the geometry of the patterns, on
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how exactly they depend on the initial conditions, and on how the wealth of different pat-
terns can be explained. It is clear from the above descriptions that both phenomena contain
some element of stochasticity. How does it enter precisely? What can one expect in a
“typical” situation? For example in nucleation, where does the first droplet nucleate most
likely?

One of the early models for phase separation phenomena in binary, or two-component,
alloys is due to Cahn and Hilliard [12, 13]. They introduced the partial differential equation

∂t w = −∆
(
ε2∆w+ f (w)

)
in G , (1)

subject to homogeneous Neumann boundary conditions for w and ∆w. The variable w is
an order parameter which describes the local composition of the material. For w ≈±1 the
material is in either of the two pure phases, values in between indicate a corresponding
mixture of the two alloy components. The domain G ⊂ R

d is bounded with appropriately
smooth boundary, d ∈ {1,2,3}, and the function − f is the derivative of a double-well
potential F , the standard example being f (w) = w−w3. See also Figures 1 and 2. The
small parameter ε > 0 models interaction length. The Cahn-Hilliard equation generates
gradient dynamics with respect to the standard van der Waals free energy functional [63]

Eε[w] =
�

G

(
ε2

2
· |∇w|2 +F(w)

)
dx , (2)

which in addition conserves the total mass � G wdx.
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Figure 1: The double-well potential F . The minima at ±1 correspond to the two alloy
components.

For (1), one can give the following heuristic explanation for both spinodal decomposi-
tion and nucleation [14, 25]. After quenching, the alloy is more or less homogeneous, i.e.,
we have w ≈ w̄ ≡ m. The constant function w̄ ≡ m is an equilibrium solution of (1), and
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Figure 2: The cubic nonlinearity f . The spinodal region lies between the dashed vertical
lines, the metastable region outside.

one can easily verify that its stability for small ε > 0 depends on the sign of the deriva-
tive f ′(m). For f ′(m) > 0, the equilibrium w̄ is unstable, leading to spontaneous phase
separation throughout the alloy, i.e., to spinodal decomposition. On the other hand, for
f ′(m) < 0 the equilibrium w̄ is asymptotically stable. While this obviously implies that for
small perturbations of w̄ the dynamics of (1) drive the system back to the homogeneous
state, it is possible that w̄ is only a local minimizer of the energy (2). If we perturb the
homogeneous equilibrium by a local, yet sufficiently large disturbance, we might push the
system into the domain of attraction of the global minimizer of the energy, or at least into
the domain of attraction of a state with lower energy. The solution then would converge to
this lower energy state, thereby leading to phase separation. This latter process is referred
to as nucleation.

The Cahn-Hilliard model has been used successfully for describing phase separation
phenomena, see for example the survey by Novick-Cohen [56] and the references therein.
Recent mathematical results address both spinodal decomposition [31, 48, 49, 57, 58, 65]
and nucleation [3].

Nevertheless, the model (1) is an idealization. It completely ignores thermal fluctua-
tions which are present in any material. In order to address this shortcoming, Cook [17]
extended the Cahn-Hilliard equation by incorporating random thermal fluctuations into the
model, see also Langer [43]. In the physics literature, the resulting model is called Model B
in the classification of Hohenberg and Halperin [36]. The Cahn-Hilliard-Cook equation
for binary metal alloys is given by

∂tw = −∆
(
ε2∆w+ f (w)

)
+σnoise ·ξ in G (3)

where the additive noise term ξ is usually chosen as space-time white noise or colored noise.
In our studies the noise coefficient may depend on ε, i.e. σnoise = σε.
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We are mainly interested in the evolution of (3) starting at the homogeneous state w(0)≡
m, in order to understand the effects of the additive noise term. Thus, we introduce the
change of variables w = m+u and consider the initial value problem

∂tu = −∆
(
ε2∆u+ f (m+u)

)
+σnoise ·ξ in G , and u(0) = 0 . (4)

As in the deterministic case, the stochastic partial differential equation in (4) is comple-
mented by homogeneous Neumann boundary conditions for both u and ∆u.

In this survey, we describe recent progress on studying the phase separation dynamics of
the initial value problem (4). In particular, we hope to demonstrate that for many aspects of
the separation process, the stochastic model is more natural than the deterministic version.
Yet, it will become clear that the deterministic model provides an enormous amount of
information relevant for the stochastic dynamics. Particular emphasis is put on describing
the similarities and the differences between the deterministic and the stochastic model. We
show that in order to understand phase separation phenomena in binary alloys, a thorough
understanding of both models is necessary.

The paper is organized as follows. In Section 2 we provide a self-contained introduction
to stochastic partial differential equations, geared towards our study of the Cahn-Hilliard-
Cook model. Section 3 surveys recent mathematical results on spinodal decomposition for
solutions of (4) from [9, 10]. In Section 4 we address nucleation in the stochastic model, in
particular its relation to the deterministic attractor structure.

2 The Cahn-Hilliard-Cook Model

In this section we provide a self-contained description of the Cahn-Hilliard-Cook model
from a dynamical point of view. We present the necessary background on Wiener processes
in Hilbert spaces to model the noise term ξ in (3), including a discussion of the correlation
functional, the covariance operator, the induced stochastic convolution, and its existence
and regularity theory. The existence of solutions to the nonlinear stochastic evolution equa-
tion corresponding to (3) is established using the fractional power space setting.

2.1 Wiener Processes in Hilbert Space

Noise processes ξ, such as the one in the Cahn-Hilliard-Cook equation (3), are usually
defined as the generalized derivative of some Wiener process in a suitable Hilbert space.
As such, they are not stochastic processes in the usual sense, but have to be interpreted in a
distributional setting. For classical references we refer the reader to [39] and the references
therein.

In order to explain the statements of the last paragraph in more detail, we begin with a
definition of generalized stochastic processes. Let G ⊂ R

d be a bounded domain with suf-
ficiently smooth boundary, and let D = C∞

0 (R+
0 ×G) denote the space of smooth functions

from R
+
0 ×G to R with compact support, where R

+
0 = [0,∞). Then the space of general-

ized functions or distributions is defined as the dual space D ∗ of D , see for example [62].
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Furthermore, we define the space D∗
2 consisting of all bilinear functionals on D . Finally,

(Ω,F ,P) denotes an abstract probability space. Using this framework, the definition of
generalized stochastic process is as follows.

Definition 2.1 A generalized stochastic process ξ is a D ∗-valued random variable. In other
words, it is given by a measurable function ξ : Ω → D ∗. Associated with a generalized
stochastic process one can consider the Gaussian system {〈ξ,ϕ〉}ϕ∈D , which is obtained by
evaluating ξ at elements ϕ ∈ D using the duality 〈·, ·〉 between D ∗ and D .

Finally, we say that the process ξ is a Gaussian process, if all vector-valued random
variables (〈ξ,ϕ1〉, . . . ,〈ξ,ϕn〉) are Gaussian, for all n ∈ N and ϕ1, . . . ,ϕn ∈ D .

Just as with standard stochastic processes, the mean value and the correlation functional are
important characteristics of a generalized stochastic process. They are defined as follows.

Definition 2.2 Let ξ denote a generalized Gaussian process. Then its mean value func-
tional Eξ ∈ D∗ is defined by

〈Eξ,ϕ〉 := E〈ξ,ϕ〉 for all ϕ ∈ D .

The correlation functional Cξ of ξ is the generalized function in D∗
2 defined by

Cξ : (ϕ,ψ) 7→ E〈ξ,ϕ〉〈ξ,ψ〉 .

In general, the mean value functional Eξ is not a classical function of t and x, but rather
a distribution in D∗. Nevertheless, sufficiently smooth distributions may be represented as
functions of t and x. Therefore, we sometimes write Eξ = Eξ(t,x), if we want to emphasize
the usual physics notation. Similarly, we use Cξ = Eξ(t,x)ξ(s,y) for the correlation func-

tional. Notice also that since E〈ξ,ϕ〉2 ≥ 0 for all ϕ ∈ D , a generalized stochastic process
always has a positive semidefinite and symmetric correlation functional.

Constructing generalized Gaussian processes can be accomplished as in the case of clas-
sical stochastic processes. Starting from a mean value and correlation functional, the cele-
brated extension theorem of Kolmogorov ensures the existence of a corresponding Gaussian
generalized stochastic process, such that the Gaussian probability measure P

ξ induced on
the space of generalized functions D∗ is uniquely determined.

In our situation we are interested in generalized Gaussian stochastic processes having
mean value and correlation functionals of the form

Eξ(t,x) = 0 , Eξ(t,x)ξ(s,y) = δ(t − s) ·q(x,y) , (5)

where δ denotes the delta distribution and q is a positive semidefinite and symmetric kernel
on G×G. Recall that a kernel is called symmetric, if we have q(x,y) = q(y,x) for all x,y∈G.
Moreover, the kernel q is called positive semidefinite, if for all ϕ ∈C∞

0 (G) we have

�
G

�
G

q(x,y) ·ϕ(x) ·ϕ(y)dxdy ≥ 0 .
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Of particular interest in applications is homogeneous noise, for which the kernel q is only
a function of the difference x− y, i.e., we have q(x,y) = R(x− y) for some function R. In
this case, the kernel q is positive semidefinite if and only if R is positive semidefinite, which
means that for x1, . . . ,xn ∈ G and y1, . . . ,yn ∈ R we always have

n

∑
j,k=1

y j · yk ·R(x j − xk) ≥ 0 .

As we mentioned in the beginning of this section, noise processes ξ are generally generated
through a differentiation process from Wiener processes in Hilbert space. For this, define
the generalized derivative ∂t η of a generalized Gaussian stochastic process η in the sense
of distributions, i.e., let

〈∂t η,ϕ〉 := −〈η,∂t ϕ〉 for all ϕ ∈ D .

The generalized derivative is again a generalized Gaussian process. One can readily verify
that its mean value functional is given by ∂tEη(t,x) ∈ D∗, and its correlation functional
is given by ∂t ∂sEη(t,x)η(s,y) ∈ D∗

2 . Generalized derivatives with respect to x, or higher
derivatives, can be defined analogously. A well-known example of this situation is the
Brownian sheet, which has space-time white noise as its derivative with respect to all vari-
ables. For more details we refer the reader to [64, p. 284].

We now leave the discussion of generalized stochastic processes and turn our attention
to Wiener processes in Hilbert space. These processes are classical stochastic processes,
and their precise definition is as follows.

Definition 2.3 Let H denote an arbitrary real Hilbert space with inner product 〈·, ·〉H . Then
a Q-Wiener process W = {W (t)}t≥0 on H is defined as an H-valued stochastic process
{W (t)}t≥0 over (Ω,F ,P) with the following properties:

(a) W has continuous paths and satisfies W (0) = 0.

(b) W has independent increments, i.e., for all n ∈ N and 0 < t1 < .. . < tn the random
variables W (tn)−W (tn−1), . . . ,W (t2)−W (t1),W (t1) are independent.

(c) W is a Gaussian process in the sense that (〈W (t1),h1〉H , . . . ,〈W (tn),hn〉H) is a vector-
valued Gaussian random variable for all n ∈ N, ti ≥ 0, and hi ∈ H.

(d) EW (t) = 0 for all t ≥ 0, i.e., we have E〈W (t),u〉H = 0 for all t ≥ 0 and u ∈ H.

(e) W has a positive semidefinite symmetric covariance operator Q : H → H, i.e., we
have E〈W (t),u〉H〈W (s),v〉H = min{t,s} · 〈Qu,v〉H for all t,s ≥ 0 and u,v ∈ H.

For more details we refer the reader to [20, Section 4], which contains an extensive survey
of Q-Wiener processes.
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For a given Q-Wiener process we can define a corresponding noise process ξ by con-
sidering ξ = ∂tW in the sense of generalized stochastic processes. However, it is not imme-
diately clear how this differentiation process can generate a noise process ξ satisfying (5)
for a given correlation kernel q.

In order to explain this relation, we consider the Hilbert space H = L2(G) and define
the Hilbert-Schmidt operator Q : L2(G) → L2(G) with kernel q ∈ L2(G×G) by

(Q f )(x) :=
�

G
q(x,y) f (y)dy for all f ∈ L2(G) . (6)

The following result shows that choosing the function q in the definition of the covariance
operator is justified.

Theorem 2.4 [7, Theorem 3.3] Assume that G is a rectangular or circular domain. Let
q ∈ L2(G×G) be a symmetric and positive semidefinite kernel with corresponding Hilbert-
Schmidt operator Q on L2(G) given by (6). Moreover, assume that tr(Q) < ∞.

Then a Q-Wiener processes W defines a generalized Gaussian process ξ = ∂tW which
satisfies (5). Conversely, if ξ is a generalized Gaussian process satisfying (5), then there
exists a Q-Wiener process W such that the generalized derivative ∂tW is a version of ξ.

The above result shows that there is basically a one-to-one correspondence between gener-
alized Gaussian processes ξ satisfying (5) and Q-Wiener processes with covariance operator
as in (6). We would like to point out that results similar to Theorem 2.4 are well-known for
homogeneous noise processes on R

d or on a torus. The novelty of the above result is that
it extends these results to the case of non-homogeneous noise processes ξ satisfying (5).
Furthermore, we formulated Theorem 2.4 only for special domains, even though the result
holds for more general domains satisfying a certain geometric condition. For more details
we refer the reader to [7].

2.2 The Linearized Cahn-Hilliard Operator

Before we turn our attention to the linearized Cahn-Hilliard-Cook model, we have to re-
call some facts about the linearization of the deterministic model (1) at the homogeneous
state m.

Definition 2.5 Consider the linear operator Aε defined by

Aεv := −∆
(
ε2∆v+ f ′(m)v

)
(7)

on the domain

D(Aε) =

{
v ∈ X ∩H4(G) :

∂v
∂ν

(x) =
∂∆v
∂ν

(x) = 0 , x ∈ ∂G

}
,

where

X =

{
v ∈ L2(G) :

�
G

vdx = 0

}
.
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It is well-known that the operator Aε defined above is self-adjoint. In order to describe its
spectrum, let 0 < µ1 ≤ µ2 ≤ . . . → +∞ denote the eigenvalues of the negative Laplacian
−∆ : X → X subject to homogeneous Neumann boundary conditions, and let ψ1,ψ2, . . .
denote the complete L2(G)-orthonormal set of corresponding eigenfunctions. Then the
spectrum of Aε consists of the real eigenvalues

λk,ε = µk ·
(

f ′(m)− ε2 ·µk
)

, k ∈ N , (8)

and the eigenfunction associated with λk,ε is given by ψk, for k ∈ N.
For our applications it is essential to have precise knowledge of the asymptotic behavior

of the eigenvalues µk. For the case of domains G with piece-wise C1-boundary this behavior
is well-known. According to [18, p. 442] or [23] we have

lim
k→∞

µk · k−2/dimG = CG > 0 , (9)

where the positive constant CG depends only on the domain G. In order to describe the
spectrum further, we introduce

λmax
ε := sup

{
µ
(

f ′(m)− ε2µ
)

: µ > 0
}

=





f ′(m)2

4ε2 for f ′(m) > 0 ,

0 for f ′(m) ≤ 0 .

(10)

Using the operator Aε we can now introduce the Hilbert space that serves as phase space for
the nonlinear evolution equation (3). For this, recall that the operator −Aε is sectorial, i.e.,
we can use it to define fractional power spaces as in [35]. More precisely, for Cε = c ·λmax

ε ,
where c > 1, and arbitrary 0 ≤ s ≤ 1 we define the space

X s := D((Cε −Aε)
s) equipped with the norm ‖ · ‖s =

∥∥∆2s·
∥∥

L2(G)
.

We would like to point out that the norm ‖ · ‖s is not the canonical graph norm on X s, but
rather an equivalent one which is more appropriate for our applications.

In the following we will use the space X 1/2, which turns out to be a subspace of
the Sobolev space H2(G). Even though this is not immediately clear from its definition,
the space X1/2 is in fact independent of ε, see for example [49, Lemma 3.2] and [61,
Lemma III.4.2]. We equip X 1/2 with the norm ‖ · ‖∗ = ‖ · ‖1/2, which is equivalent to the
standard H2(G)-norm. One of the main advantages of using the norm ‖ · ‖∗ on X1/2 is that
it is ε-independent as well and can easily be written as a weighted `2-norm in Fourier space,
i.e., we have

∥∥∥∥∥
∞

∑
k=1

γk ·ψk

∥∥∥∥∥
∗
=

(
∞

∑
k=1

µ2
k · γ2

k

)1/2

for all
∞

∑
k=1

γk ·ψk ∈ X1/2 .

In fact, it was shown in [49] that a function u = ∑∞
k=1 γkψk is contained in the fractional

power space X 1/2 if and only if ∑∞
k=1 µ2

kγ2
k < ∞.
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2.3 The Stochastic Convolution

Next we turn our attention to the linearized Cahn-Hilliard-Cook model, since it will be the
key for obtaining existence and regularity results for the nonlinear model. Linearizing (3)
at the homogeneous state m we obtain the linear stochastic evolution equation

∂t v = Aεv+σε ·∂tW , (11)

where Aε was defined in Definition 2.5, and W in Definition 2.3. We assume that the range
of the covariance operator Q is orthogonal to the constant functions, which guarantees that
the linear equation (11) is mass conserving.

As in the deterministic case, it is possible to represent the solution of (11) explicitly. To
this end, define the stochastic convolution as

WAε(t) =

� t

0
e(t−τ)Aε dW (τ) , (12)

where etAε denotes the analytic semigroup generated by Aε. Then for given noise strength σε,
the process σε ·WAε solves (11) subject to the initial condition v(0) = 0. We would like to
point out that the integral in (12) is not a classical Riemann-Stieltjes integral, but rather a
stochastic integral. For more details on stochastic integration, we refer the reader to [20].
The stochastic convolution is fundamental for the study of stochastic evolution equations
and a detailed discussion of its properties can be found in [20, Section 5]. Of particular in-
terest for our study are the regularity properties of WAε , since they will be used to establish
the existence and regularity of solutions of the nonlinear Cahn-Hilliard-Cook model (3).

In order to guarantee that the stochastic convolution WAε is a continuous Gaussian pro-
cess in certain fractional power spaces X s, we need to introduce conditions on the covari-
ance operator Q of W . More precisely, the stochastic convolution has a version in the
space C([0,T ],X s), provided we have

tr

( � T

0
τ−α∆2seτAεQeτAε∆2s dτ

)
< ∞ , (13)

for some α > 0. For the case s = 0 this result was established in [20, Section 5.3], the case
s = 1 can be found in [19, Proposition 1.2]. The general case can be obtained in a similar
way.

The condition in (13) relates the covariance operator to both the Laplacian and the
linearized Cahn-Hilliard operator. All of these operators are symmetric, and it was shown
in Section 2.2 that the latter two have a joint complete set of eigenfunctions. It would
simplify matters greatly, if also Q had the same set of eigenfunctions — but for which
correlation kernels q can this be achieved? One can easily show that Q and the Laplacian ∆
have the same set of eigenfunctions if and only if Q and ∆ commute. This latter property
can be related to the correlation kernel q in (6).
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Theorem 2.6 [7, Theorem 4.2] Consider a symmetric and positive semidefinite function
q ∈ L2(G×G), and let the corresponding operator Q on L2(G) be defined as in (6). Then Q
commutes with ∆ if and only if

�
G

�
G

q(x,y) · (∆y −∆x) ·ϕ(x)ψ(y)dxdy = 0 for all ϕ,ψ ∈ D(∆) . (14)

Theorem 2.6 holds for a variety of boundary conditions associated with ∆, in particular
for homogeneous Dirichlet or Neumann boundary conditions, as well as periodic boundary
conditions. For more detail we refer the reader to [7]. The condition (14) can easily be rec-
ognized as the weak formulation of a suitable partial differential equation for q. For simple
domains, such as rectangular domains, this partial differential equation can be solved, and
hence be used to characterize correlation kernels q which imply that Q and ∆ commute. For
the case of an interval and homogeneous Neumann boundary conditions, one obtains the
following result.

Corollary 2.7 [7, Theorem 4.8] Let G = (0,L) be an interval, and consider a symmet-
ric, positive semidefinite, and sufficiently smooth kernel q, say q ∈ C2(G×G). Moreover,
consider the operator Q defined in (6). Then Q commutes with ∆ subject to homogeneous
Neumann boundary conditions if and only if there exists a 2L-periodic even function R such
that q(x,y) = R(x− y)+R(x+ y).

The correlation kernels q in the above corollary are not homogeneous, see Figure 3 for
a typical example. In fact, if the correlation kernel q is homogeneous and nonzero, then
the covariance operator Q never commutes with the Laplacian subject to homogeneous
Neumann boundary conditions [7, Corollary 4.9].

−1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

R

Figure 3: A positive semidefinite correlation kernel q(x,y) = R(x− y) + R(x + y), whose
covariance operator Q commutes with the Laplacian subject to Neumann boundary condi-
tions.

Despite the restrictiveness of the assumption that Q commutes with the Laplacian, it is
widely used — and we will make no exception. This assumption allows us to expand the
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stochastic convolution in a Fourier series with respect to the eigenfunctions of the Lapla-
cian ∆. Moreover, since Q also commutes with the linearized Cahn-Hilliard operator Aε,
we can study the dynamics of the stochastic convolution restricted to subspaces spanned by
the eigenfunctions of Aε.

Thus, in the following we assume that Q commutes with ∆, and hence also with Aε, and
that the range of Q is orthogonal to the constant functions. In this situation, the three opera-
tors Q, ∆, and Aε have a joint set of eigenfunctions in X ⊂ L2(G), and [20, Proposition 4.1]
shows that a Q-Wiener process W can be written as a Fourier series of the form

W (t) =
∞

∑
k=1

ak ·βk(t) ·ψk . (15)

In this representation, {βk}k∈ � denotes a family of independent real-valued standard Brow-
nian motions, the functions ψk are the eigenfunctions of the Laplacian subject to homoge-
neous Neumann boundary conditions, and Qψk = a2

k ·ψk . Using the representation (15) in
combination with (12), we further obtain

WAε(t) =
∞

∑
k=1

ak ·
� t

0
e(t−τ)λk,ε dβk(τ) ·ψk , (16)

where the integrals are real stochastic integrals.
We now return to our study of the regularity properties of the stochastic convolution,

and hence to the condition given in (13). Its validity crucially depends on the asymptotic
behavior of the coefficients ak in (15) or (16), in particular relative to the eigenvalues µk

of the negative Laplacian. For simplicity, we assume that there exists a regularity constant
s∗ > 0 such that

a2
k ·µs∗

k →C for k → ∞ .

Then one can easily show that (13) is satisfied as long as s∗ +2−4s > d/2, i.e., we have

WAε ∈C ([0,T ],X s) if and only if s∗ > 4s−2+
d
2

, (17)

where d = dimG. This regularity result will suffice to study existence and regularity ques-
tions for the nonlinear Cahn-Hilliard-Cook equation in Section 2.4. Moreover, it can be
used to establish spatial regularity of the stochastic convolution in the spaces C`(G) for
` ≥ 0. One can easily show that the fractional power space X s is continuously embedded in
the Sobolev space H4s(G). If we then combine (17) with Sobolev’s embedding theorem [1],
one can see that

WAε ∈C
(
[0,T ],C`(G)

)
, as long as s∗ > `−2+d .

We would like to point out, however, that this last inequality is not a necessary condition.
By imposing fairly restrictive conditions on the base domain G one can show that in fact

WAε ∈C
(
[0,T ],C`(G)

)
, as long as s∗ > `−2+

d
2

. (18)
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This result can be proved using Kolmogorov’s test. For ` = 0 we refer the reader to [20,
Theorem 5.20], the case ` > 0 can be found in [6, Section 2.2.2]. We will encounter the
precise definition of the necessary conditions on the domain G later in Assumption 3.1.
These conditions are satisfied for example for rectangular domains in one, two, and three
space dimensions, but they are not satisfied for discs in two dimensions.

Before addressing existence and regularity results for the nonlinear Cahn-Hilliard-Cook
model, we summarize our assumptions on the noise process.

Assumption 2.8 Let W be a Q-Wiener process with covariance operator Q as in (6), and
consider the associated generalized Gaussian noise process ξ = ∂tW satisfying (5). In
addition, assume that the symmetric and positive semidefinite correlation kernel q satisfies

�
G

q(x,y)dx = 0 for all y ∈ G ,

and that q implies the commutativity of Q and the Laplacian subject to homogeneous Neu-
mann boundary conditions (via (14)). Finally, assume that the coefficients ak in the resulting
Fourier series expansion (15) satisfy

lim
k→∞

a2
k ·µs∗

k = C , where s∗ >
d
2

.

Notice that in terms of regularity, the above assumption corresponds to s = 1/2 in (17). In
other words, Assumption 2.8 implies that the stochastic convolution WAε has a version in the
space C([0,T ],X 1/2). As we mentioned above, the space X 1/2 is continuously embedded in
the Sobolev space H2(G).

In the situation of Assumption 2.8, one can easily derive an explicit representation for
the correlation kernel q. If {ψk}k∈ � denotes the system of L2(G)-orthonormalized eigen-
functions of −∆ on X subject to homogeneous Neumann boundary conditions, then

q(x,y) =
∞

∑
k=1

a2
k ·ψk(x) ·ψk(y) for all x,y ∈ G .

It is a consequence of Mercer’s theorem [18, Section 3.5.4] that for continuous q this series
converges uniformly on G×G. The correlation kernel q in Figure 3 corresponds to the
choice a2

k = 1/2k for k ∈ N.
Let us close with a comment on the considered noise processes ξ. In order to keep our

presentation as accessible as possible, we considered only the case of a sufficiently smooth
correlation kernel q and assumed that the covariance operator Q has a finite trace tr Q. In
fact, notice that the condition tr Q < ∞ is equivalent to obtaining an H 2(G)-valued stochas-
tic convolution WAε . This condition can of course be relaxed. It is possible to consider
cylindrical Wiener processes W which do not converge in L2(G), but in larger spaces of
distributions. In this case, the smoothing effect of the analytic semigroup generated by Aε
still increases the regularity, and it is possible to obtain the expansion (16). In this way,
space-time white noise can be treated. For more details we refer the reader to [6, 9, 20].



14 Dirk Blömker, Stanislaus Maier-Paape and Thomas Wanner

2.4 Existence and Regularity Results

We finally turn our attention to the nonlinear Cahn-Hilliard-Cook equation. Rather than
studying its original form (3), we concentrate on the transformed equation (4) from now
on. Formally, this equation can be rewritten as the abstract nonlinear stochastic evolution
equation

∂tu = Aεu+F(u)+σε ·∂tW , (19)

where the nonlinearity F is given by

F(u) := −∆g(u) and g(u) := f (m+u)− f ′(m)u− f (m) . (20)

In order to define a suitable solution concept for (19) we formally integrate the equation.
Thus, a stochastic process u is called mild solution of (19), if it satisfies the variation of
constants formula

u(t) = etAεu(0)+
� t

0
e(t−τ)AεF(u(τ))dτ+σε ·WAε(t) , (21)

where WAε denotes the stochastic convolution defined in (12).
Under suitable conditions on the nonlinearity f , the global existence of a unique mild

solution of the Cahn-Hilliard-Cook equation (19) has been established in [19]. However,
for the situation considered in this paper we only need the existence of a local mild solution
in the fractional power space X 1/2. For this, we need the following assumption on the
nonlinearity g.

Assumption 2.9 Let g and F be as in (20), and assume that g : R → R is smooth and at
least quadratic for small u. More precisely, suppose that g(u) = u1+κ · g̃(u), where κ ≥ 1
and g̃ is a C2-function on an interval containing 0.

Under this assumption, one can easily show that the nonlinearity F is a differentiable op-
erator from X 1/2 to X with F(0) = 0 and DF(0) = 0, see for example [31, Section 4.1]. If
we further assume that the stochastic convolution WAε is sufficiently regular, then one can
employ standard fixed point arguments as in [35, Section 3.3] to solve (21) pathwise. This
leads to the following result.

Proposition 2.10 Suppose that Assumptions 2.8 and 2.9 are satisfied, and assume that
u(0) ∈ X1/2 almost surely. Then the Cahn-Hilliard-Cook equation (19) has a unique lo-
cal mild solution u originating at u(0). In other words, u is a stochastic process satis-
fying u ∈ C([0,T ∗),X1/2) for some positive stopping time T ∗, which satisfies (21) for all
t ∈ [0,T ∗). In addition, we either have T ∗ = ∞ or ‖u(T ∗)‖∗ = ∞.

The main reason for working in the fractional power space X 1/2 ⊂ H2(G) is that we want
to control the L∞(G)-norm of the solution in three space dimensions. Otherwise, we could
easily use spaces of less regularity allowing for less regular noise. Notice also that the
specific local growth of g near the origin is not necessary for obtaining Proposition 2.10.
Yet, this local growth is crucial for our subsequent considerations.
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3 Spinodal Decomposition

As we mentioned in the beginning of this survey, the two major phase separation phenom-
ena described by the Cahn-Hilliard models are spinodal decomposition and nucleation —
and this section is devoted to the study of the former. For the deterministic Cahn-Hilliard
equation spinodal decomposition has been studied extensively in recent years [31, 48, 49,
57, 58, 65]. In this section we survey recent results for the stochastic model [9, 10].

3.1 Assumptions and Basic Framework

In the deterministic situation, spinodal decomposition is a consequence of the instability of
the homogeneous equilibrium w̄ ≡ m of (1) for f′(m) > 0. Most solutions originating in
a small neighborhood of the homogeneous state are driven away, thereby exhibiting phase
separation.

In the stochastic model, the homogeneous state is no longer an equilibrium solution due
to the additive noise term. Thus, in order to understand spinodal decomposition in (3), it
suffices to describe the dynamics of the solution originating exactly at the homogeneous
state. In other words, our goal is to understand the behavior of “generic” solution paths
of the transformed initial value problem (4). Following the notation of the last section, we
consider the mild solution u of the abstract initial value problem

∂tu = Aεu+F(u)+σε ·∂tW with u(0) = 0 , (22)

where Aε was defined in (7) and F in (20). Recall that F(0) = 0 and DF(0) = 0. For the re-
mainder of Section 3, we will always assume that Assumptions 2.8 and 2.9 are satisfied, and
that f ′(m) > 0. The results presented in this section also require the following assumption
on the domain G.

Assumption 3.1 Let G ⊂ R
d , where d ∈ {1,2,3}, be a bounded domain with piece-wise

C1-boundary. Furthermore, assume there exist positive constants C1 and C2 such that for
all k ∈ N we have

‖ψk‖L∞(G) ≤C1 and ‖∇ψk‖L∞(G) ≤C2 ·
√

µk , (23)

where µk and ψk denote the eigenvalues and L2(G)-orthonormalized eigenfunctions of the
negative Laplacian on X subject to homogeneous Neumann boundary conditions as in Sec-
tion 2.2.

While this assumption is satisfied for one-dimensional domains, it is fairly restrictive in
two and three space dimensions. It can easily be verified for rectangular, hexagonal, or
triangular domains, but general conditions on the geometry of G which would imply (23) are
not known. Nevertheless, these assumptions are frequently used, and for example crucial
to establish regularity of WAε in spaces of continuous functions. See [20, p. 139] and the
discussion of (18).
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Let us return to the dynamics of the mild solution u of (22). Initially, one expects that the
dynamics of u is determined by the linearization of the Cahn-Hilliard-Cook equation, which
is given by (11). Thus, the spectrum of Aε, in particular its unstable part, plays a dominant
role. Using (8) and (9) one can easily show that the number of positive eigenvalues of Aε is
proportional to ε−dimG as ε → 0. Not all of these eigenvalues are equally important for the
initial dynamical behavior. Only the largest ones corresponding to the strongest unstable
directions should play a significant role. Isolating these strongly unstable directions leads to
the following splitting of our phase space X 1/2 — which will be fundamental for our study.

Definition 3.2 Consider two constants 0 < γ < γ+ < 1, which will be specified in more
detail later, and define two complementary subspaces of X 1/2 by

X+
ε = span{ψk : λk,ε ≥ γ ·λmax

ε } and X−
ε = span{ψk : λk,ε < γ ·λmax

ε } .

We denote the index sets corresponding to X +
ε and X−

ε by Λ+
ε and Λ−

ε , respectively. The
L2(G)-orthogonal projections of an element v ∈ X 1/2 onto X+

ε and X−
ε are denoted by v+

and v−. In addition, consider the subspace X ++
ε ⊂ X+

ε defined by

X++
ε = span

{
ψk : λk,ε ≥ γ+ ·λmax

ε
}

,

and denote the corresponding index set by Λ++
ε ⊂ Λ+

ε .

The space X+
ε consists of all unstable eigendirections which are important for the initial

dynamics of u. Thus, it was called dominating subspace in [48]. Even though this space
corresponds normally only to a small percentage of the unstable eigenvalues, its dimension
remains proportional to ε−dimG as ε → 0. The subspace X++

ε has to be introduced for
technical reasons, which will be addressed later.

Our description of spinodal decomposition will be given in two stages, each of which
corresponds to a certain region in the phase space X 1/2 ⊂ H2(G). Recalling that X 1/2 was
equipped with the norm ‖ · ‖∗ = ‖ · ‖1/2 in Section 2.3, these regions can be defined as
follows.

Definition 3.3 For given positive constants δ, R, q0, and r0, we define the following three
subsets of X 1/2:

Cδ :=
{

v ∈ X1/2 :
∥∥v−

∥∥
∗ ≤ δ

∥∥v+
∥∥
∗

}
,

Kδ,R :=
{

v ∈ X1/2 : ‖v‖∗ ≤ R and v ∈ Cδ

}
,

Zq0,r0 :=
{

v ∈ X1/2 :
∥∥v+

∥∥
∗ ≤ r0 and

∥∥v−
∥∥
∗ ≤ q0

}
.

We would like to point out that since the splitting X = X +
ε ⊕X−

ε is ε-dependent, the same
applies to the cone Cδ, the truncated cone Kδ,R, and the cylinder-shaped region Zq0,r0 . How-
ever, we will not mention this dependence explicitly.

Using the above-defined sets, we can give an intuitive description of the dynamics of
spinodal decomposition for (22). As we mentioned before, initially we expect the solution
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δr

Zδr,r0

rr0

X−
ε

Kδ,R

Cδ

X+
εR

Figure 4: The sets Zδr,r0
, Kδ,R, and Cδ. See Figure 1 of [10].

paths of u to exhibit linearized behavior. Thus, the X +
ε -component of u should grow con-

siderably faster than the X−
ε -component. This implies that solution paths of (22) are likely

to reach the dark shaded regions of Zδr,r0 in Figure 4, at some time t0. Moreover, we would
expect to be able to choose this cylinder fairly narrow, with δr � r0. In fact, the first stage of
spinodal decomposition presented in Section 3.2 shows that there exists some deterministic
time t0 > 0 such that the subset of Ω defined by

N1 :=
{

u(t) ∈ Zδr,r0
for all t ∈ [0, t0] ,

∥∥u+(t0)
∥∥
∗ ≥ r

}

has probability close to one. At the end of the first decomposition stage, the X +
ε -component

of u is considerably larger than the X−
ε -component. Due to [48, Section 4], this implies

that the patterns of the functions u(t0) already exhibit the complicated geometry which is
characteristic for spinodal decomposition.

The result on the first stage is a consequence of the smallness of the nonlinearity F on
a neighborhood of the initial state 0. In fact, the radius r0 is a measure for how close one
has to stay to 0, before the nonlinearity gets too large. One would therefore expect that
after the first stage, nonlinear effects dominate the dynamics of (22) — but this is not the
case. In Section 3.3 we will see that for sufficiently small δ, the nonlinearity F remains
small on the cone Cδ up to a large distance R, even though this is not true outside the
cone. Consequently, we find that solution paths of (22) are likely to stay close to X +

ε much
further. If Tc > 0 denotes the exit time of u(t0 + ·) from the cone Kδ,R, then it will be shown
in Section 3.3 that the event

N2 :=
{

u(t + t0) ∈ Kδ,R for all t ∈ [0,Tc] , ‖u(t0 +Tc)‖∗ = R
}

still has probability close to one. Since δ is small, this guarantees that the solution u remains
close to X+

ε until it reaches norm R, and therefore it exhibits the spinodal decomposition
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X−
ε

2r0,ε
rε
2

X+
ε

u(t0,ε) Z4δεrε,2r0,ε

4δεrε

Figure 5: A sketch of three typical trajectories of u during the first decomposition stage.
Solution paths exhibiting this behavior correspond to the event N1,ε.

patterns of functions in the dominating subspace. In fact, we will show that the dynamics
of u is driven by the linearized equation (11) throughout Kδ,R. This phenomenon is called
second phase spinodal decomposition.

Before presenting the results on the two decomposition stages in more detail, let us
mention again that (22) is a family of problems depending on the small parameter ε. There-
fore, in addition to the splitting X 1/2 = X+

ε ⊕X−
ε , all the parameters mentioned above will

depend on ε as well, such as δ and r < r0 < R. Moreover, the geometric parameters in
the above definitions of the sets N1 and N2 will have to be slightly rescaled for the actual
nonlinear results. Their definition in this subsection was based on our desire to provide an
intuitive description of the decomposition process.

3.2 First Decomposition Stage

We begin by describing the first decomposition stage in more detail. During this stage,
solution paths of (22) remain in a cylinder-shaped region which is centered at the origin,
small in the X−

ε -direction, but large in the direction of the dominant subspace X +
ε ; see

Figure 5. The stage covers a time horizon from t = 0, at which the solution starts at the
origin, up to a deterministic time t = t0,ε, at which the X+

ε -component of u is large with
high probability. More precisely, at the end of the first decomposition stage, solution paths
will be contained in the dark shaded regions of Figure 5.

It is one of the consequences of the stochasticity in the Cahn-Hilliard-Cook model that
one is able to obtain a definite deterministic time t0,ε at which the first decomposition stage
is complete and the complicated solution patterns have started to develop. Since the precise
definition of t0,ε is fairly involved [10], we restrict ourselves to describing its asymptotic
behavior as ε → 0. For this, the following assumption and definition prove to be useful.
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Assumption 3.4 Let s∗ denote the regularity exponent from Assumption 2.8, and let d de-
note the dimension of the domain G. Then we define

D := 2s∗−d−2 ,

and assume further that

Θε :=
r2

ε
σ2

ε · εD → ∞ for ε → 0 . (24)

Notice that due to Assumption 2.8 we have D > −2.

Definition 3.5 Let fε and gε denote two real quantities depending on the small parame-
ter ε > 0. Then we say that gε is of order fε, provided there are (ε-independent) positive
constants c and C such that c · fε ≤ gε ≤C · fε for all sufficiently small ε > 0. In this case
we write gε = O( fε). If on the other hand we have gε/ fε → 0 for ε → 0, then we write
gε = o( fε). Finally, we write gε ∈ Pε if and only if there are positive constants c and C such
that |gε| ≤C · εc for all sufficiently small ε > 0.

The quantity Θε introduced in Assumption 3.4 relates the noise strength σε to rε, the latter
of which is one of the defining parameters of the cylindrical region in Figure 5. In addition,
Θε plays an inportant role in describing the asymptotics of the main parameters involved in
quantifying the decomposition process.

One of these main parameters is certainly the end time t0,ε of the first decomposition
stage. According to [10], it is of the form

t0,ε =
1

2γ+λmax
ε

· lnO (Θε) , (25)

where γ+ was introduced in Definition 3.2, and λmax
ε was defined in (10). We will see

in Section 3.3 that Θε normally is of the order O(εϕΘ) for some ϕΘ < 0. Thus, the first
decomposition stage — which is responsible for the initial pattern selection and formation
— takes only a very small amount of time, which is of the order ε2 · ln(1/ε).

The quantity Θε also determines the relative size of the parameters rε and r0,ε. Accord-
ing to [10], they satisfy

r0,ε = rε ·O
(

Θ(1−γ+)/(2γ+)
ε

)
. (26)

As is shown in Figure 5, the parameters rε < r0,ε determine the possible range for the size
of the X+

ε -component of the solution u at the end of the first stage.
The following result is the main theorem on the first decomposition stage. The presented

version is taken from [10, Corollary 4.10] and provides a precise estimate on the probability
of the random event

N1,ε :=
{

u(t) ∈ Z4δεrε,2r0,ε for all t ∈ [0, t0,ε] ,
∥∥u+(t0,ε)

∥∥
∗ ≥

rε

2

}
. (27)

This event corresponds to all solution trajectories exhibiting the dynamics of the first de-
composition stage.
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Theorem 3.6 Suppose that Assumptions 2.8, 2.9, 3.1, and 3.4 are satisfied, and assume
that f ′(m) > 0. Consider the operators and spaces introduced in Definitions 2.5 and 3.2.
Furthermore, let u denote the mild solution of the stochastic initial value problem (22), and
define

δε := δ0 · ε2−d/2 for some δ0 > 0 . (28)

Consider a suitably chosen time t0,ε satisfying (25), and parameters rε < r0,ε satisfying (24),
(26), as well as r0,ε ·δε = o(1). Finally, suppose that −2 < D < 2, and that for small positive
constants ζ1 and ζ2 we have

(S1) δ−2
ε ·Θ−1+γ̃/γ+

ε ∈ Pε, where γ̃ := γ · (1+ζ1) < γ+, and

(S2) lim
ε→0

rκ
ε ·δκ−1

ε ·Θκ̃+1/2
ε = 0, where κ̃ := (ζ2 +(κ+2) · (1− γ+))/(2γ+) > 0.

Then for any q > 0 there exists a constant Cq > 0 such that

P
(
N c

1,ε
)
≤Cq · εq

for all sufficiently small ε > 0, where N1,ε was defined in (27). In other words, the probabil-
ity that a solution path of (22) exhibits the first stage of spinodal decomposition converges
to 1 faster than any polynomial in ε.

Proof outline: The proof of the above result splits naturally into two parts. The first part
consists of introducing a stochastic event Ω1,ε which is defined similar to N1,ε, but for the
solution σε ·WAε of the linearized Cahn-Hilliard-Cook equation (11) instead of u. Using the
smallness of the nonlinearity F in a small neighborhood of the origin, one can then estimate
the difference between the solutions u(t) and σε ·WAε(t). This implies that the nonlinear
solution paths corresponding to the event Ω1,ε exhibit dynamical behavior analogous to the
trajectories of the solution to the linearized equation — and by suitably defining Ω1,ε this
establishes the inclusion Ω1,ε ⊂ N1,ε. In the second part of the proof, one has to obtain a
lower bound on the probability of the event Ω1,ε. Notice that this event is defined completely
in terms of the stochastic convolution WAε . Thus, the probability estimates can be obtained
by careful estimates of large deviations type. For more details on the proof of Theorem 3.6
we refer the reader to [10]. 3

The conditions of Theorem 3.6, in particular (S1) and (S2), are fairly elaborate, and it
is far from clear whether the involved constants can be chosen appropriately. This question
will be answered in the affirmative in Section 3.3. A slightly weaker result than Theo-
rem 3.6 had already been established earlier in [9]. In contrast, the version presented above
furnishes additional upper bounds on the norm of the solution paths at the time t0,ε, which
is crucial for the result on the second phase of the decomposition process.

Before we move on to the second decomposition stage, let us briefly comment on
the differences between Theorem 3.6 and the corresponding result for the Cahn-Hilliard
model (1). The above result is closest in spirit to the studies in [48, 49] — yet the ap-
proaches and proof techniques differ considerably. As we mentioned before, the homoge-
neous state w̄ ≡ m is an equilibrium in the deterministic case, i.e., spinodal decomposition
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can only be observed by considering non-homogeneous initial conditions. However, not
all initial conditions close to the homogeneous state lead to spinodal decomposition. Thus,
one has to identify suitable initial conditions that lead to phase separation, and then show
that the set of these initial conditions is large. In [48, 49], the former problem is solved by
determining a power law shaped region near w̄ containing the appropriate initial conditions.
Using a tangency property of the power law, one can then show that on small balls around w̄
the size of the set of initial conditions leading to spinodal decomposition is large compared
to its complement.

Nevertheless, the results in [48, 49] have several drawbacks. For technical reasons, the
results were obtained by considering a finite-dimensional inertial manifold which contains
the homogeneous state. The measure theoretic part concerning the size of the set of appro-
priate initial conditions uses a Lebesgue measure on this manifold. Even though it is shown
that solutions outside the inertial manifold converge exponentially fast to it, all results are
stated in terms of the finite-dimensional projection of the solutions, and not in terms of the
full infinite-dimensional phase space of (1). Furthermore, the deterministic result allows for
initial conditions arbitrarily close to the homogeneous state. This implies that there is no
common time frame for the first decomposition stage. In fact, it was pointed out in [30, 48]
that initial conditions which are too close to the homogeneous state can lead to nonphysical
dynamical behavior. We will address this point in more detail in Section 3.4, where recent
results describing the evolution of the pattern complexity will be discussed. Finally, while
the results in [48, 49] identify appropriate initial conditions that lead to spinodal decompo-
sition, there is no intrinsic selection mechanism for the physically relevant initial states in
the deterministic model.

The situation is different for the stochastic case discussed above. Now the result ad-
dresses spinodal decomposition in the full infinite-dimensional phase space, it furnishes
a common time frame for the pattern generation, and the additive noise term provides an
intrinsic selection mechanism for the observed patterns.

3.3 Second Decomposition Stage

As we mentioned in Section 3.1, the first stage of spinodal decomposition does select the
complicated patterns characteristic for this phase separation phenomenon. Yet, at the end
of the first stage the amplitude of the patterns, i.e., the L∞(G)-norm of u(t0,ε), is still small.
In contrast, numerical simulations indicate that these patterns more or less persist while the
maximum norm of u grows, until the norm reaches an ε-independent threshold. This growth
phase constitutes the second stage of spinodal decomposition, and for the deterministic
Cahn-Hilliard model it was studied in [57, 58]. For the stochastic model a description has
been obtained only recently in [10] — and this description will be presented in more detail
in the remainder of this section.

Consider again the stochastic solution process u of the initial value problem (22), and
recall the stochastic event N1,ε defined in (27). In order to describe the second decomposi-
tion stage, we define the event
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Figure 6: A sketch of three typical trajectories on Sε.

N2,ε :=
{

u(t + t0,ε) ∈ K21δε,Rε for all t ∈ [0,Tc,ε] , ‖u(t0,ε +Tc,ε)‖∗ = Rε
}

,

where t0,ε + Tc,ε denotes the first exit time of u from the truncated cone K21δε,Rε after t0,ε.
In this definition, the time t0,ε denotes the deterministic end time of the first decomposition
stage as in (27), and δε is the small positive number defined in (28). The cone K21δε,Rε was
introduced in Definition 3.3. Since we are interested in solution trajectories which exhibit
both stages of spinodal decomposition, we further define

Sε := N1,ε ∩N2,ε . (29)

Typical solution trajectories corresponding to the event Sε are shown in Figure 6. We would
like to point out that for the sake of readability, the figure does not correctly reproduce the
true size relations. The opening of the cone is determined by the constant δε defined in (28).
Thus, the cone is actually an extremely narrow cone around the dominating subspace X +

ε ,
and therefore solutions in K21δε,Rε exhibit the patterns of functions in X +

ε . Moreover, the
radius Rε up to which we can describe the second decomposition phase will be extremely
large compared to rε < r0,ε.

The following result is taken from [10, Theorem 4.13]. It shows that the probability of
the event Sε is close to 1 for small ε. In fact, for ε → 0 the probability converges to 1 faster
than any polynomial in ε. The result is stated in terms of fairly complicated conditions
on rε, σε and Rε, which will be discussed in more detail afterwards.
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Theorem 3.7 Let u denote the mild solution of the stochastic initial value problem (22),
and consider the situation of Theorem 3.6. In addition to the assumptions of Theorem 3.6,
suppose that for a small positive constant ζ3 we have

(S3) lim
ε→0

r−ρ̃
ε ·δκ−1

ε ·Rκ+ρ̃
ε ·Θ(1−γ+)/(2γ+)

ε = 0, where ρ̃ := (1+ζ3 − γ)/γ > 0, as well as

(S4) lim
ε→0

Rε ·δε = 0, and

(S5) lim
ε→0

rε ·R−1
ε ·Θ(1−γ+)/(2γ+)

ε = 0 (which is equivalent to rε < r0,ε < Rε).

Then for any q > 0 there exists a constant Cq > 0 such that

P(S c
ε ) ≤Cq · εq

for all sufficiently small ε > 0, where Sε was defined in (29).

Proof outline: Similar to the proof of Theorem 3.6, the result on the second decomposition
stage is achieved by relating the dynamics of the nonlinear solution u of (22) to the lin-
earized stochastic dynamics given by (11). This time, however, it is not sufficient to relate
the dynamics to the solution σε ·WAε(t), which originates at the origin. Rather, we have to
consider the solution v(t) of (11) satisfying v(0) = u(t0,ε). At this point, it is convenient
that the end time t0,ε of the first decomposition stage is deterministic. This fact implies that
we can represent v as

v(t) = etAεu(t0,ε)+σε ·W̃Aε(t) ,

where W̃Aε denotes the stochastic convolution with respect to the shifted Q-Wiener process
W̃ (t) = W (t + t0,ε)−W(t0,ε), t ≥ 0. Furthermore, one can show that

u(t + t0,ε) = etAεu(t0,ε)+W̃Aε(t)+

� t

0
e(t−τ)AεF(u(τ+ t0,ε))dτ for t ≥ 0 ,

and that both WAε and W̃Aε have the same distributions.
Using this setting, the first part of the proof of Theorem 3.7 consists of introducing a

stochastic event Ω2,ε defined in terms of exponential growth conditions for the stochastic
convolution W̃Aε . Combined with the nonlinearity estimate

‖F(u)‖L2(G) ≤C ·δκ
ε · ‖u‖1+κ

∗ for all u ∈ K21δε,Rε , (30)

which was derived in [58], one can then show that the relative distance of the nonlinear
solution trajectory u and the linear solution v satisfies

‖u(t + t0,ε)− v(t)‖∗
‖v(t)‖∗

≤ δε for all 0 ≤ t ≤ Tc,ε . (31)

In other words, the solution u follows v closely on the set Ω2,ε, and this can be used to
establish the inclusion Ω1,ε ∩Ω2,ε ⊂ Sε.
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The second part of the proof consists of determining a lower bound on the probability
of the event Ω2,ε. By using the fact that both WAε and W̃Aε have the same distributions, this
step can basically be reduced to the second step of the proof of Theorem 3.6. 3

The above result gives a precise description of both decomposition stages by relating
the dynamics of u to the linearized dynamics. Moreover, the characteristic spinodal decom-
position patterns are a consequence of the closeness of u(t) to the dominating subspace X +

ε
for t0,ε ≤ t ≤ t0,ε +Tc,ε. For more details, see [48, Section 4].

To close this section, let us discuss the fairly involved conditions in Theorems 3.6
and 3.7. In particular, we would like to demonstrate which radii Rε can be achieved for
various values of κ. For the sake of simplicity, assume that the relevant ε-dependent quan-
tities are given as powers of ε in the form

rε = εϕr , Rε = εϕR , and σε = εϕσ .

Then the auxiliary variable Θε defined in (24) satisfies Θε = εϕΘ , where

ϕΘ = 2ϕr −2ϕσ −2s∗ +d +2 = 2ϕr −2ϕσ −D .

Using the definition of δε in (28), one can then easily show that (S1) through (S5) are
equivalent to

ϕΘ < − 2γ+

γ+ − γ̃
·
(

2− d
2

)
, (32)

ϕr >
1−κ

κ
·
(

2− d
2

)
− 1+2κ̃

2κ
·ϕΘ , (33)

ϕR >
1−κ
κ+ ρ̃

·
(

2− d
2

)
+

ρ̃
κ+ ρ̃

·ϕr −
1− γ+

2γ+(κ+ ρ̃)
·ϕΘ , (34)

ϕR > −
(

2− d
2

)
, (35)

ϕR < ϕr +
1− γ+

2γ+
·ϕΘ . (36)

We are mainly interested in the exponents ϕR, ϕσ, and s∗. To simplify our considerations,
we assume that m = 0 and f (u) = u−u1+κ in Theorem 3.7. Then the optimal values of ϕR

can be determined as follows:

• Using (32), choose and fix the quantity ϕΘ. The best possible value for ϕR can be
achieved by choosing ϕΘ as large as possible, i.e.,

ϕΘ
<≈ − 2γ+

γ+− γ̃
·
(

2− d
2

)
,

which generally is a large negative number.
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• Next, use (33) to choose and fix the auxiliary exponent ϕr as

ϕr
>≈
(

1−κ
κ

+
γ+(1+2κ̃)

κ(γ+ − γ̃)

)
·
(

2− d
2

)
,

which is a large positive number.

• The remaining estimates (34), (35), and (36) now determine the possible range for ϕR.
One can easily show that the optimal choice of ϕR implied by (34) is given by

ϕR
>≈

(
1−κ
κ+ ρ̃

+
ρ̃γ+(1+2κ̃)

κ(κ+ ρ̃)(γ+ − γ̃)
+

ρ̃(1−κ)

κ(κ+ ρ̃)
+

1− γ+

(γ+ − γ̃)(κ+ ρ̃)

)

·
(

2− d
2

)
,

and that the remaining bounds (35) and (36) can then be achieved as well.

• The order of magnitude for the noise intensity exponent ϕσ is given by

ϕσ
>≈ −D

2
+

(
1−κ

κ
+

γ+(1+κ+2κ̃)

κ(γ+ − γ̃)

)
·
(

2− d
2

)
.

This expression is generally a large positive number, which effectively limits the
allowable intensity of the noise process.

By choosing the parameters γ < γ̃ < γ+ < 1 close enough to 1, as well as choosing κ̃ > 0
and ρ̃ > 0 sufficiently small, the expression for ϕR can be simplified significantly. The last
two terms in parentheses can be made arbitrarily small. Moreover, due to the definition of ρ̃
in Theorem 3.7, the expression ρ̃γ+/(γ+ − γ̃) is always bigger than 1, yet it can be chosen
arbitrarily close to 1. Altogether, one obtains

ϕR
>≈
(
−1+

1
κ

+
1
κ2

)
·
(

2− d
2

)
. (37)

In other words, our main Theorem 3.7 describes the dynamics of spinodal decomposition
in the stochastic Cahn-Hilliard-Cook equation (22) until the solution u reaches distances of
the order εϕR from the homogeneous state, where ϕR is given by (37). Notice that for κ ≥ 2
this order becomes unbounded for ε → 0. This at first sight strange fact is a consequence of
the underlying norm. Our studies are performed in the phase space X 1/2 ⊂ H2(G) equipped
with the norm ‖ · ‖∗ defined in Section 2.2, which is equivalent to the standard H 2(G)-
norm. Thus, the norm includes a measure of curvature — and for the extremely irregular
spinodally decomposed states this implies large values of the norm.

From a physical point of view, one is of course interested in the amplitude of the so-
lution u, i.e., its L∞(G)-norm. It was shown in [49] that passing from the H 2(G)-norm to
the maximum norm for functions near X +

ε can be achieved by the multiplicative factor ε2.
In other words, our main result describes the dynamics of spinodal decomposition until
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the maximum norm of the solution u reaches an order of ε2+ϕR . For large values of κ, we
can therefore achieve orders close to εd/2 for the maximum norm. Even though this order
is smaller than the anticipated ε-independent constant, it is a significant improvement of
earlier results.

How do our stochastic results compare to the deterministic result in [58]? The expo-
nent ϕR in (37) is slightly worse than the one obtained in the deterministic case, which
furnished an exponent of

ϕR
>≈
(
−1+

1
κ

)
·
(

2− d
2

)
. (38)

However, for large values of κ the deviation is very small. In addition, our stochastic
result provides the first description of the complete decomposition process, including a
satisfactory explanation of the transition between the two stages.

3.4 Further Discussion and Possible Extensions

The results on the two stages of spinodal decomposition described in Sections 3.2 and 3.3
provide a clear picture of instantaneous phase separation in the Cahn-Hilliard-Cook model.
Yet, these results do not tell the complete story. First of all, we already pointed out that
the end of the second stage in Theorem 3.7 occurs too early. The pattern amplitude at
this point is still small in ε, even though one would expect an ε-independent threshold. Is
it possible to obtain a complete description of the second stage? Our results also raise a
more fundamental question. Both the deterministic and the stochastic results on spinodal
decomposition relate the nonlinear dynamics to the linearized dynamics. This fact is of
course not surprising, since both approaches rely on properties of the nonlinearity — and the
nonlinearity remains the same for both models. Moreover, both results explain the pattern
morphology by the closeness of the linear evolution to the dominating subspace X +

ε . While
we did describe differences between the deterministic and the stochastic results at the end
of Sections 3.2 and 3.3, these were mainly technical in nature. Do the results differ in more
essential aspects? In the following, we address both of these questions in more detail.

(a) Toward a complete description of the second decomposition stage.

Theorem 3.7 and its deterministic counterpart in [58] mark a big step toward explaining the
second stage of spinodal decomposition. They establish linear behavior in the respective
model until the H2(G)-norm of the solution u reaches a distance proportional to εϕR , for
small ε > 0. Yet, as we pointed out above, the exponent ϕR, given by (37) in the stochas-
tic case and by (38) in the deterministic case, falls short of the numerically determined
exponent −2. For more details we refer the reader to [54, 57].

Nevertheless, even a quick glance at the specifics of the above results shows that there
is considerable room for improvement. The nonlinear evolution is linked to the linear evo-
lution by establishing the smallness of the relative distance in (31) — and at the end of
the second stage, this distance is proportional to ε2−d/2. Since it would be enough to show
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that the relative distance is bounded by a sufficiently small ε-independent constant, it seems
reasonable to hope that an iterative application of the techniques in [10, 58] would furnish
the desired order.

Unfortunately, the situation is more complicated than that. To make this clear, we con-
sider the deterministic result in [58]. This result indicates that as the dimension of the
domain G increases, the radius to which linear behavior can be observed decreases signifi-
cantly. In fact, both the exponent ϕR in (38) and the bound on the relative distance in (31)
are worse for higher dimensions. This dimension-dependence is in stark contrast to the
numerically observed exponent ϕR ≈−2 which is dimension-independent.

A natural starting point for any attempt to improve the result of [58] is therefore a test
of its optimality. For G = (0,1)2, m = 0, and f (u) = u− u3, i.e., κ = 2, such a test can be
found in the introduction of [65]. By following linear and nonlinear solutions originating
at randomly chosen initial conditions close to 0 until their relative distance exceeds ε/9,
and then recording the H2(G)-norm of the nonlinear solution, one can obtain a numerical
estimate for the optimal exponent ϕR subject to the constraint (31). The simulation results
for various ε-values in [65, Figure 2] furnish ϕR ≈−3/2, which is considerably smaller than
the exponent ϕR ≈−1/2 predicted by (38). These simulations seem to indicate that [58] is
highly sub-optimal in two dimensions, and that the estimates of [58] are not sharp.

As it turns out, the above indication is false. Wanner [65] was able to construct a family
of functions wε ∈ X+

ε which establishes the optimality of the crucial nonlinearity estimate
in [58]; this estimate is stated in (30). In addition, if one repeats the above numerical exper-
iment starting at small multiples of these functions wε, then the exponent ϕR is numerically
confirmed as −1/2.

Figure 7: Functions in the dominating subspace X +
ε which establish the optimality of (30).

In each case we use γ = 0.95 in Definition 3.2. The left diagram is for ε = 0.02 and
dimX+

ε = 49; the right diagram is for ε = 0.01 and dimX +
ε = 183.

The numerical results presented in the introduction of [65] show that there is no hope
of universally improving the results in [58]. Yet, a closer look at the shape of the func-
tions wε establishing the optimality of (30) points to a possible solution. Figure 7 shows the
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function wε for G = (0,1)2 and two different ε-values. While these functions are contained
in the dominating subspace X+

ε , their patterns do not resemble the ones normally observed
during spinodal decomposition. The functions wε exhibit a very localized structure, which
is not shared by the majority of functions in or close to X +

ε . One can therefore hope that by
excluding functions of this type, the result of [58] can be improved.

For the deterministic Cahn-Hilliard equation (1), the results in [65] achieve exactly this
for one-, two-, and three-dimensional rectangular domains. By excluding a small subset
of a cone around X+

ε , one can show that the nonlinearity estimate (30) can be improved
significantly, with δε being replaced by the dimension-independent quantity

δ∗ε = δ0 · ε2 ·
√
| lnε| . (39)

This improvement uses results on Fourier series with random coefficients in order to quan-
tify the size of the excluded subset. Based on the new nonlinearity estimate, one can then
prove the following main result of [65].

Theorem 3.8 Consider the deterministic Cahn-Hilliard equation (1) on a rectangular do-
main G in R

d , where d ∈ {1,2,3}, and assume f ′(m) > 0. Suppose that Assumption 2.9
is satisfied, and let ρ > 0 be arbitrarily small, but fixed. In addition, consider an initial
condition w0 close to the homogeneous state w̄ ≡ m such that w0 −m is sufficiently close
to the dominating subspace X+

ε defined in Definition 3.2. Finally, let w denote the solu-
tion of (1) starting at w0, and let v(t) = etAε(w0 −m) denote the solution of the linearized
Cahn-Hilliard equation starting at w0 −m. Then for most such initial conditions w0, as
long as

‖w(t)−m‖∗ ≤C · ε−2+ρ+2/κ · ‖w0‖ρ
∗ ,

we have
‖w(t)− v(t)−m‖∗

‖v(t)‖∗
≤ δ∗ε .

The dimension-independent bound δ∗
ε was defined in (39).

For more details we refer the reader to [65, Theorem 4.7]. The above result shows that linear
behavior determines the dynamics of (1) until the nonlinear solution reaches a distance
proportional to εϕ∗

R from the homogeneous state, with the dimension-independent exponent

ϕ∗
R

>≈ −2+
2
κ

.

For large values of κ, Theorem 3.8 therefore furnishes the dimension-independent expo-
nent −2 which was observed in numerical simulations. In view of the smallness of δ∗

ε and
its dimension-independence, a complete description of the second decomposition stage for
arbitrary f seems to be within reach as well, at least for the deterministic model. As men-
tioned above, such a description can probably be obtained by an iterative application of the
estimates in [65]. It remains to be seen whether it is possible to adapt these results to the
stochastic case.
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(b) Pattern complexity evolution during spinodal decomposition.

We now turn our attention to the second question raised in the beginning of this subsec-
tion: Are there any fundamental differences between the deterministic model (1) and the
stochastic model (3) concerning spinodal decomposition? The results described so far ex-
plain spinodal decomposition by the dynamics of the linearized model — and even though
the linearized models in the deterministic and the stochastic case differ by an additive noise
term, both appear to qualitatively reproduce the complicated patterns observed during spin-
odal decomposition.

It is not immediately clear how one can characterize these complicated patterns in a
more quantitative way. Due to the complete lack of any symmetry or periodicity, most
standard methods do not seem to be applicable. One possible approach has been proposed
recently in [30, 40] and is based on algebraic topology, in particular, homology theory.
Consider a solution w(t) of either (1) or (3) at time t, and assume that w(0) is either equal
or close to the homogeneous state m in the spinodal interval. Then we can define the set

M(t) = {x ∈ G : w(t,x) > m} ⊂ G for all t ≥ 0 ,

which describes the microstructure formed by w(t). For one-dimensional domains G, this
set generally consists of several components, and the number of components can be viewed
as a coarse measure of the complexity of w(t). Similarly, in two and three space dimensions
one can study the number of components of M(t) as a quantitative measure for the complex-
ity of the microstructure. In Figure 8 we depict two sets M(t) generated through spinodal
decomposition for the two-dimensional domain G = (0,1)2. The left microstructure was
generated by the deterministic Cahn-Hilliard model (1), the right one is a realization of the
stochastic model (3). One can show that the left pattern consists of 61 components, while
the right pattern has only 34 components. Yet, in the higher-dimensional setting, additional
quantities are of interest. It can easily be seen that both microstructures in Figure 8 form
loops. In fact, the left microstructure has exactly 14 loops, while the right one has only 7.

But, what exactly do the above numbers tell us about the patterns shown in Figure 8?
From a qualitative point of view, both patterns appear similar. The only visible difference is
that the right pattern seems coarser than the left one — and this is one of the facts captured
by the number of components or loops.

From a mathematical point of view, the microstructure M(t) ⊂ G is nothing but a topo-
logical space with respect to the topology induced by G. As such, we can use topological
invariants which capture only the essential topological information in our study of M(t).
In homology theory, such invariants are given by abelian groups Hk(M(t)) for k ∈ Z, as
well as certain integral quantities derived from them. We are particulary interested in the
so-called Betti numbers. The k-th Betti number of the topological space M(t) is defined as
the rank of the free subgroup of the k-th homology group Hk(M(t)). Despite their abstract
definition, these numbers have a straightforward interpretation. The zeroth Betti number is
precisely the number of components of M(t). Similarly, the first Betti number counts the
number of nontrivial independent loops in M(t), i.e., loops that cannot be contracted to a
point within M(t) or morphed into each other.
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Figure 8: Two-dimensional microstructures M(t) generated through spinodal decomposi-
tion for G = (0,1)2 , ε = 0.005, and t = 0.0015. The left structure was generated by the
deterministic model, the right one by the stochastic model for σε = 0.01.

Having identified coarse, but quantitative, measures for the complexity of a microstruc-
ture, we return to the question posed in the beginning. Are there any essential differences
between the spinodal decomposition dynamics of (1) and (3)? One possible approach would
be to consider solutions of either model starting at random initial conditions close to the
homogeneous state, and determine the temporal evolution of the Betti numbers of M(t).
By considering ensembles of solutions, it is then possible to compute averaged complex-
ity evolution curves which are in some sense characteristic for each model. This numerical
approach has been implemented in [30], based on computational homology software associ-
ated with [40]. The results of this study are surprising and point toward a distinct difference
between the models. In both models, the smoothing effect of the parabolic equation causes
a rapid complexity decrease during the initial evolution from the highly irregular initial con-
dition. For the stochastic model subject to sufficiently strong noise, this monotone decrease
continues throughout the spinodal decomposition phase. In contrast, the complexity of the
patterns generated by the deterministic model (1) starts to grow again, leading to finer mi-
crostructures. Only at the end of the spinodal decomposition phase — when coarsening sets
in — does the complexity fall again. This difference in complexity can easily be seen in the
microstructures of Figure 8. For more details we refer the reader to [30] or [40, Sections 1.1
and 8.2].

The results of [30] indicate that there are considerable differences between the spin-
odal decomposition patterns of the deterministic and the stochastic Cahn-Hilliard model.
Therefore, it is only natural to wonder which of the two models is more appropriate. Re-
cent advances in experimental methods have allowed materials scientists to obtain high-
resolution images of decomposing metal alloys. For example, spinodal decomposition in
iron-chromium alloys has been studied in [50, 37, 38]. In particular, the last part of this
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three-paper series is concerned with topological properties of the generated microstructures.
The authors determine the temporal evolution of the handle density of the microstructure,
which corresponds to its first Betti number. The due to the enormous experimental effort
limited results in [38] indicate that this topological quantity decays monotonically as time
increases. In other words, for the specific situation considered in [50, 37, 38], the stochastic
model appears to be more adequate than the classical deterministic Cahn-Hilliard equation.

4 Nucleation

Spinodal decomposition is only one of the two main phase separation phenomena described
by the Cahn-Hilliard models. In this section, we address the second phenomenon, namely
nucleation. We describe known results for the deterministic equation in Section 4.1. These
considerations naturally lead to questions concerning the structure of the global attractor
of the deterministic Cahn-Hilliard model, which will be addressed briefly in Section 4.2.
However, it is our belief that a complete description of nucleation is only possible in the
stochastic setting. This is outlined in Section 4.3.

4.1 Nucleation in the Deterministic Model

Throughout this subsection we consider the deterministic Cahn-Hilliard equation (1). It
has already been mentioned in the introduction that the dynamics of this partial differential
equation for initial conditions close to the homogeneous state m depends crucially on the
sign of f ′(m). In the case f ′(m)> 0, the homogeneous state is unstable, and this fact leads to
spinodal decomposition as described in the previous section. In contrast, for f ′(m) < 0 the
homogeneous state is asymptotically stable, i.e., orbits starting close to the homogeneous
state will converge to it as t → ∞. It is therefore somewhat surprising that even in this latter
case one can observe phase separation dynamics.

In their seminal paper [3], Bates and Fife address the problem of nucleation for the case
of one-dimensional domains G. Assuming f ′(m) < 0, they establish the following results
for the Cahn-Hilliard equation (1):

• The constant function w̄ ≡ m is an asymptotically stable equilibrium of (1).

• There exists an equilibrium solution wglobal of (1) which is a global minimizer of the
energy (2), and which has lower energy than w̄. This solution exhibits one sharp
transition layer between the pure states w = −1 and w = +1.

• In addition, there is an unstable equilibrium solution wnuc of index 1, whose one-
dimensional unstable manifold limits to w̄ and wglobal, respectively. This solution
is almost everywhere close to m, but it exhibits a small amplitude spike near the
boundary of the one-dimensional domain G.

If the homogeneous equilibrium w̄ is perturbed beyond the critical nucleus wnuc, then the
solution of (1) will follow its unstable manifold and converge to the decomposed global
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energy minimizer wglobal. See also the diagram in Figure 9. Moreover, the necessary per-
turbation is relatively small in the sense that it is localized at the boundary of the domain
and of a small amplitude. Bates and Fife also describe the actual phase separation dynamics
as the solution of (1) follows the unstable manifold of the critical nucleus. Thus, their re-
sults provide a clear and convincing explanation of the dynamics of nucleation in one space
dimension — once the initial perturbation has been introduced.

E ε

nuc global

Energy

w ww

Figure 9: Schematic energy diagram: The homogeneous equilibrium w̄, the canonical nu-
cleus wnuc, and the global minimizer wglobal.

0 100 200
0

λ

||w
 −

 m
||

Figure 10: Continuum of equilibrium solutions for the deterministic Cahn-Hilliard equation
for mass m = −0.6 and G = (0,1)2, with λ = 1/ε2.
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Figure 11: The canonical nucleus (left diagram) and the corresponding global minimizer
(right diagram) for G = (0,1)2 and ε = 0.0637, or λ = 25π2.

The basic picture described in [3] can probably be carried over to the case of higher-
dimensional domains as well. Numerical results for two-dimensional rectangular domains
have produced solution branches of equilibrium solutions as shown in Figure 10 which are
created through saddle-node bifurcations. While the equilibria on the upper branch are
stable, the equilibria on the lower branch have a one-dimensional unstable manifold. Fur-
thermore, in the limit ε→ 0, the solutions on the lower branch converge to the homogeneous
equilibrium m. It seems plausible to assume that for each value of ε, the equilibrium on the
lower branch is a critical nucleus, and the one on the upper branch represents the global
energy minimizer — and a look at the equilibria shown in Figure 11, which correspond to
the diamonds in Figure 10, reinforces this assumption. For more details on the involved
numerical methods we refer the reader to [21, 44].

Mathematically rigorous results for higher-dimensional domains are mainly concerned
with identifying equilibrium solutions which can serve as canonical nuclei, and discussing
their stability properties. See for example [2, 4, 5, 53, 66, 67, 68]. To the best of our knowl-
edge, higher-dimensional dynamical results analogous to the study in [3] are not available
at this time.

4.2 Deterministic Attractor Structure

The results of [3] highlight significant differences between the study of spinodal decompo-
sition and nucleation in the deterministic Cahn-Hilliard model. While the study of spinodal
decomposition is essentially aimed at understanding transient dynamics far from any non-
trivial equilibrium solution of (1), the study of nucleation depends critically on a profound
understanding of the structure of the equilibrium set. Moreover, in order to understand the
droplet growth during nucleation, one has to describe the dynamics along certain hetero-
clinic solutions of (1). In this way, the study of nucleation leads naturally to a study of the
global attractor of the Cahn-Hilliard equation, whose existence was established in [55], see
also [61].
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The first step in studying the attractor of any evolution equation consists in understand-
ing the set of its equilibrium solutions. For the one-dimensional Cahn-Hilliard model, this
has been accomplished completely only recently by Grinfeld and Novick-Cohen [32]. For
higher-dimensional base domains only partial results are available. On the one hand, these
are results targeting specific types of equilibria for general domains G, such as the spike
solutions mentioned in Section 4.1. In addition, there are a number of studies aimed at de-
scribing the complete bifurcation structure, but for specific simple domains G such as rect-
angles. See for example [26, 41, 42, 47]. Recent numerical studies indicate that even for the
case of the unit square G = (0,1)2 a complete, rigorous description of the set of equilibria
is currently out of reach [44, 45], and that one has to resort to the use of computer-assisted
proofs similar to the ones in [34, 60, 69, 70].

In order to describe the flow on a compact attractor, Conley [16] introduced the notion
of Morse decomposition, which decomposes the attractor into invariant sets called Morse
sets and connecting orbits between them. For gradient systems such as the Cahn-Hilliard
equation, the Morse sets correspond to the equilibrium solutions. Obtaining a description of
the Morse decomposition of an attractor in particular examples may be difficult, although it
has been achieved completely in several cases. One particularly promising approach based
on Conley’s connection matrix [27, 28] is due to Mischaikow [51, 52], and has already
been applied successfully to several partial differential equation models, including the one-
dimensional Cahn-Hilliard equation [33, 52]. Extending these results to higher-dimensional
domains relies crucially on an understanding of the set of equilibria, in particular their
stability properties. Only partial results are available at this time [45, 46].

4.3 Toward a Theory of Stochastic Nucleation

The explanation of nucleation in the deterministic Cahn-Hilliard model due to Bates and
Fife [3] gives a detailed description of the process — once the initial state has been per-
turbed to an initial condition outside the domain of attraction of the stable homogeneous
state. Unfortunately, however, the results of [3] do not address the question of how the
initial perturbation is generated, or when. Yet these are questions of crucial importance for
materials design. How long does it take before the first droplet nucleates? If this time frame
exceeds certain thresholds, one might still be able to characterize the material as stable for
all practical purposes. It is therefore necessary to consider a model for nucleation which
intrinsically can describe the mechanism responsible for the appearance of the droplets, and
the deterministic Cahn-Hilliard model (1) is not capable of such a description.

On an intuitive level, the Cahn-Hilliard-Cook model can easily describe the mechanism
responsible for nucleation. The random force σnoise · ξ in the right-hand side of (3) will
perturb the composition of the alloy away from the homogeneous state w̄≡m, which, as we
already pointed out, is no longer an equilibrium solution. While in the short term this will
not significantly affect the material, the cumulative effect of these perturbations can cause
the function w to reach the boundary of the domain of attraction of w̄, and to eventually
enter the domain of attraction of a state with lower energy. Depending on the strength of
the noise, which in turn is determined by σnoise, this domain exit takes place sooner or later.
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In addition, one would expect that the solution can exit the domain of attraction at a variety
of points — leading to different nucleation patterns.

Figure 12: Snapshots of Cahn-Hilliard-Cook trajectories indicating nucleation behavior on
the unit square G = (0,1)2 with ε = 0.01, σε = 2, and m = −0.6. The left column shows
snapshots of one trajectory at times t = 0.0628, t = 0.0942, and t = 0.1256, from top to
bottom. The right column shows nucleation morphologies generated by three additional,
different trajectories.
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Numerical results confirm this intuition. In the left column of Figure 12 we show solu-
tion snapshots of a trajectory w(t) of (3) originating at w(0) = m =−0.6. After an initial pe-
riod of small fluctuations around the homogeneous state, a droplet forms and subsequently
grows. The actual growth dynamics after the initial droplet formation is reminiscent of the
one-dimensional results in [3]. The center of the droplet increases to values close to +1; at
the same time, on an annulus around the droplet center the values of w drop to −1. This ini-
tial phase separation is then followed by a growth phase of both the droplet and the region
on which w is close to −1. While this simulation shows the formation of one droplet, other
scenarios can be observed for different solution trajectories. Some of the resulting shapes
of w are shown in the right column of Figure 12. These snapshots indicate that droplets can
form at various positions in the base domain, even more or less simultaneously at different
locations.

The few simulation results shown in Figure 12 already demonstrate that, at least from a
qualitative point of view, the Cahn-Hilliard-Cook model is capable of intrinsically describ-
ing both the droplet formation and the subsequent dynamics. In [22] we performed a more
extensive statistical study of nucleation dynamics in a multi-component version of (3). Us-
ing Monte Carlo type simulations for ternary alloys, we were able to derive distribution
functions for quantities such as the time it takes for the first droplet to nucleate, or the posi-
tion of the first droplet within the domain G. For more details, we refer the reader to [22].

From a mathematical point of view, the situation outlined so far is reminiscent of results
due to Freidlin and Wentzell [29] in finite dimensions. They consider ordinary differential
equations perturbed by additive white noise. In particular, they show that if the unperturbed
deterministic equation has an attracting equilibrium w̄, then with probability one, solutions
of the stochastic equation originating at w̄ leave any given bounded neighborhood of the
equilibrium. Furthermore, for small intensities of the additive noise process they derive
precise estimates for the exit time from the neighborhood, the most likely exit points, and
the most likely exit paths. Finally, for the particular case of dissipative gradient systems,
they relate the most likely exit points and the most likely exit paths to specific solutions of
the unperturbed deterministic equation, i.e., to the structure of its global attractor. For more
details we refer the reader to [29, Chapter 4]. Infinite-dimensional related results can be
found in [11, 15, 20, 24, 59].

It seems that adapting the results of [29] to the Cahn-Hilliard-Cook model (3) can pro-
vide a complete and detailed description of nucleation, and preliminary results confirm
this [8]. Yet, such results have to rely heavily on information concerning the attractor of the
deterministic model (1). In this sense, a thorough understanding of both models is necessary
to completely uncover their phase separation dynamics.
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