COMPOSITE FINITE ELEMENTS FOR
ELLIPTIC INTERFACE PROBLEMS

DANIEL PETERSEIM

ABSTRACT. A Composite Finite Element method approximates linear elliptic
boundary value problems with discontinuous diffusion coefficient at possibly
high contrast. The discontinuity appears at some interface that is not nec-
essarily resolved by the underlying finite element mesh. The method is non-
conforming in the sense that shape functions preserve continuity across the
interface in only an approximate way. However, the method allows balancing
this non-conformity error and the error of the best approximation in such a
way that the total discretization error (in energy norm) decreases linear with
regard to the mesh size and independent of contrast.

1. INTRODUCTION

This research article considers the design of a Composite Finite Element (CFE)
method for Dirichlet problems with discontinuous coefficients across an interface.
The CFE method is a classical two-scale approach: The degrees of freedom are
related to a possibly coarse mesh, whereas the shape of the ansatz functions is
defined on a finer subgrid. In other words, finite element shape functions on a
coarse scale are composite by shape functions from some finer scale.

In previous CFEs [18,19,22], for the treatment of essential boundary conditions
on unfitted meshes (with respect to the boundary of the domain), the adaptation of
shape was done in such a way that the prescribed boundary condition was fulfilled
in an approximate way. Now, in the context of interface problems, finite element
shape functions are adapted on a submesh such that the continuity across the
interface is preserved in an approximate way. The new CFE approach has three
main advantages:

(1) The definition of basis functions is explicit, i.e., no local problems have to
be solved.

(2) The coarse mesh does not need to be aligned with the interface, whereas
this is necessary for classical finite element methods (see [14]) to converge
at an optimal rate. Moreover, the definition of the CFE method does not
put any condition on the intersection of mesh cells and the interface.

(3) If the given data (domain, interface, right-hand side, etc.) allow for a
(piecewise) smooth solution, the asymptotic order of convergence of the
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underlying discretization is preserved on coarse meshes which do not resolve
the interface.

Alternative approaches in the literature can be found, for instance, in [24], where
another CFE method is introduced, in [1,9], where the interface condition is im-
posed weakly via penalization, or in [4], where special basis functions are computed
by solving local problems on submeshes.

The present CFE method may be useful for problems with evolving interfaces.
Because of evolution, the interface cannot be well represented by edges or faces of
a stationary mesh. In classical finite element methods, an adaptation of the mesh
to the interface at every time step is required. This adaptation of the mesh in time
is considered to be too costly, especially in three space dimensions. The new CFE
approach allows the computing of the evolution in time on a fixed (possibly coarse)
mesh. It is sufficient to adapt the shape of the ansatz functions (slightly, close to
the interface) in time. As we will see later, the cost for this shape adaptation is
small when compared with the overall cost of updating the solution on the fixed
coarse mesh.

Note finally that our method is designed to efficiently treat the singularity caused
by the jump of the diffusion coefficient at the interface. Since the method does
not add any degrees of freedom to the coarse finite element space to resolve the
interface, it cannot be expected to resolve any singular behavior caused, e.g., by a
kink in the interface. The treatment of such singularities has to be organized on top
by classical techniques, e.g., by enrichment of the finite element space by certain
singular functions or by mesh adaptivity. In the context of adaptivity, CFEs offer
a coarse grid approximation that may serve as the initial guess for an a—posteriori—
driven adaptive refinement process. They allow the adaptivity toward singularities
to start long before the interface is resolved by the underlying finite element mesh.

Notation. In what follows, dist(-,-) denotes the Euclidean distance in R%.  We
use the same notation for the distance between non-empty subsets A, B C R?,
dist(A, B) := inf e 4 yep dist(z,y).

The measure |-| is also context-sensitive and refers to the volume of a set relative
to its dimension, i.e., |-| denotes the length of a curve, or the area of a domain.

Given some bounded domain €, standard notation for (fractional) Sobolev spaces
W (€2), m > 0,p € NU {oo}, and their corresponding norms ||~||W£n(9) and semi-
norms HW,;”(Q) is used; H™(2) abbreviates W3"(Q2) (m € N) and LP(2) abbrevi-
ates W]? (©2). Given two disjoint bounded Lipschitz domains ; and €, the space
H™(£2;UQs) denotes the space of all functions u € L?(2;UQs) with u|q, € H™(Q;)
and u|q, € H™(Q2). The dual space of a Hilbert space V is indicated by V*. The
space of R-valued continuous functions on a set © is denoted by C°(£2).

2. COMPOSITE FINITE ELEMENT DISCRETIZATION OF A
MODEL POISSON PROBLEM

2.1. Model problem. Consider Poisson’s equation — div(aVu) = f in an open,
bounded, polyhedral domain Q C R¢, d € {2,3}, with homogeneous Dirichlet
boundary conditions on 9€2. The scalar coefficient a (permeability or conductivity)
jumps across an interface I' := ; N Qy that separates two disjoint, open Lipschitz
subdomains 9, C Q, Q = Q; U Qy. The corresponding variational problem
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reads: Find u* € H}(Q) such that
(2.1) / aVu* - Vudr = / fvodr  for all v € Hy(S).
Q Q

For simplicity, the coefficient a : 2 — R+ is chosen piecewise constant,

()_ 1 if x € Qq,
NEL) = Geont > 1 if x € Qo

The parameter a.q,; represents the contrast which is supposed to be large in prac-
tical applications, e.g., in the modeling of heat transfer in composite materials.
The bounded bilinear form a : Hj(Q) x H(2) — R given by

a(u,v) := / aVu-Vodr = Vu-Vodr + acont Vu-Vodr
Q Qq Q3
for u,v € Hg(Q) induces the norm ||| - ||| := [|/aV - |[12(q) in Hj(£2), the so-called
energy norm. Hence, problem (2.1) has a unique solution for all f € H=}(Q) :=
(Hy ()"

Usually, some finite-dimensional subspace V;, C H}(€2) based on piecewise poly-
nomials replaces H} () in a finite element discretization of (2.1). However, if the
underlying finite element mesh is not aligned with the interface, this ansatz suffers
from the lack of regularity of the solution at the interface; the solution is continuous
across, but its gradient may jump.

In this paper, this issue shall be fixed by considering a discrete space V}, that
violates conformity, V;, ¢ HJ(Q). We consider shape functions that are conform-
ing with respect to each of the subdomains but possibly discontinuous across the
interface, i.e.,

Vi, C HY(Q1 U Q) = {ue H'(Q1 UQ) : ulog = 0}.

Because of the lack of Galerkin orthogonality, the discretization error of a corre-
sponding method is not necessarily proportional to the error of the best approxi-
mation of the solution. The discretization error is bounded by the sum of the best
approximation error and the error related to the violation of conformity as in (3.1).
The aim of this paper is to construct a non-conforming discrete space Vj, (based
on piecewise affine ansatz functions) such that a balance is achieved between the
errors due to non-conformity and errors due to best approximation. This balance
yields linear convergence of the corresponding method with respect to the mesh
size parameter h without resolving the interface by degrees of freedom.

2.2. Construction of the finite element space. The construction in Subsec-
tions 2.2.1-2.2.3 below follows the methodology of CFEs [8].

2.2.1. Triangulations. Let T be some regular subdivision of  into closed non-
empty simplices (or triangulation for short) according to Ciarlet [3,5]. Two non-
disjoint distinct simplices in 7 share either a common face (d = 3), a common
edge, or a common vertex. By V(T') we denote the set of vertices (corners) of a
simplex T" € 7. The union of vertices in a (sub)triangulation 7 is denoted by
V(T) := Ugpes V(T). The T-piecewise mesh width function h : 4 — R is given
by

h(x) = pluax diam(T").
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Note that the coarse triangulation 7 does not necessarily match the interface
I', ie., I' is not the union of element edges or faces. Later on, the degrees of
freedom of the CFE space will be exclusively assigned to the vertices of the (coarse)
triangulation 7.

We consider the two triangulations 71,73 C T,

Te={TeT:Tc} k=12,

related to the subdomains. The union of these triangulations does not cover €2, in
general. Some neighborhood of the interface, the interface zone

Q" =\ (UT) U (UT2)),

is not covered by elements of 77 or 73 unless the interface is resolved by 7. We
introduce two triangulations of the interface zone, one associated with each subdo-
main. The elements 7" € T that are contained in none of the two triangulations are
collected in the set

T, =T\ (TLUTa).

A further fine triangulation 7{" of Q' will be employed to adapt the shape of the
ansatz functions in Q. This fine triangulation 77" is derived by regular refinement
of T3 (e.g., by red-green-refinement or newest vertex bisection) locally near the
interface. The corresponding 7'-piecewise mesh width function kY : |7} — Rso
is given by

nY(z) = ter%ra;);a diam(t).

The refinement shall be done such that
(2.2) hY|, = diam(t) > C; 1 dist(t,T) forall t € T,

holds with a universal constant C; independent of the h}. This condition prevents
over-refinement in the interface zone and enforces a certain grading of ;' toward
the interface. This grading is essential for the stability, complexity, and accuracy
of our method. The condition enters our error analysis via the external result
[18, Theorem 4.4] which plays an essential role in the proof of Lemma 3.1 and,
hence, in the proof of our main result Theorem 2.3.

Note that condition (2.2) is satisfied with a constant C'; ~ 2 if the fine triangula-
tion T is computed by successive refinement of those simplices that are intersected
by T' (cf. [22, Section 2]). This shows that arbitrary small elements in a vicinity
of the interface are possible in 7. Still, 7' is not aligned with I" in general. The
analysis of Section 3 will show that the mesh size h'|r at the interface suffices to
be of size h3/2. This implies that the complexity of 7l depends only on the mesh
size of the coarse mesh 7 and not on the location of the interface relative to the
coarse mesh.

2.2.2. Additional structure. The meshes defined in the previous section cannot see
the interface. However, precise information about the location of the interface is
crucial for any reasonable approximation scheme. The exchange of information
between the interface and the meshes shall be introduced via two mappings.

Closest inner simplex. The mapping T(1.) : V(T{") — T is chosen such that
T} € argmingper; dist(z,T), i.e., T(l.) assigns a closest inner simplex (fully contained
in Q1) to every vertex z € V(T]). Zriu € P1(R?) denotes the globally affine



COMPOSITE FINITE ELEMENTS FOR ELLIPTIC INTERFACE PROBLEMS 2661

1 2

(a) The coarse triangulation 7.

91 92 Q ; >
(b) The triangulation T of QT (¢) The triangulation T2 related to Qa.
g 1 Q2 Q1 QZ

(d) The triangulation 77 related to 1. (e) The refined triangulation 77" of the in-
terface zone Q.

FiGUure 1. The triangulations introduced in Section 2.2.1. The
interface is not well represented in 7 shown in (a). It is better
represented by 7;' in (e) but still not resolved.
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function which interpolates u in the vertices of T)}. Accordingly, T (?) V(TE) = Ta
and Zr2u are defined.

Interface projection. The projection operator (-)'' : R — T' is chosen such that
= argmingcr dist(z,y). This projection encodes the geometrical information

about the interface that is required by our method.

2.2.3. The CFFE space. By Sk, k = 1,2, we denote the finite element space of
continuous Tg-piecewise affine functions

(2.3) S = {u: C'UTk) : ulp € P! for all T € Ti, ulooro7i)}

with the homogeneous Dirichlet boundary condition on 02 built in. These spaces
represent the degrees of freedom of the method, in that CFE shape functions are
derived by extending elements from S; resp. Sz to the interface zone.

In other words, CFE shape functions are certain elements of the target space

(2.4) ST :={ue HX(QNQ) : ulpno, €eP forall T € T, UTT,
u|rnq, € P for all T € T, UTS ).

Definition of shape functions via extensions. The CFE space S is given as
the image of S; x S5 under the bounded linear injective operator P : §; xSy — ST,
i.e., S .= Pefe(S). The definition of P is based on two mappings that relate
the different meshes and the interface. The projection operator P is defined in
the two subdomains as follows:

cfe ._ Pffe(ul,uz)(l') if z € Q,
25) P, ug)(z) = { Pseus (z) if z € Q

with Pffe and Pg™ given subsequently.

Definition of P¢®2. The operator P§ extends functions defined in |7 to the
interface zone QI'. Given uy € S, the continuous (T;UT, )-piecewise affine function
Psteuy is uniquely defined by nodal values

us (1) if x € V(T2),
(2.6)  (Ps*us)(x) := ¢ Zpzu(z) ifx e V(T))\V(Tz) and = ¢ 00" N9,
0 x € 00 N o,

with Zr2u defined in Section 2.2.2 above.

Definition of P°®,. The operator P extends functions defined in U 71 to the
interface zone Q in such a way that its trace on I" approximately coincides with
(PSfus)|pr. Given uy € S, up € Sa, PSe(uy, us) is the unique continuous (77 UT,)-
piecewise affine function which takes the following values at vertices x € V(TUT!):

(2.7) P (ur, uz)(x)

u1(x) itz eV(T)
orz € V(TN (UT),
= PsCuy)(2h) + (VIpuy,z—2") ifzeV(TH\(UT)
and = ¢ 0Q' N o9,
0 if 2 € 00" N0,
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with Zriu defined in Section 2.2.2 above. Note that the definition of Pste ensures
continuity of its images although 77 N7 is not necessarily a regular triangulation
in the sense that hanging nodes may appear (as in Figure 1(d)—(e)).

Although the one-dimensional case (2 is an interval and I is some point in )
does not share the numerical difficulties of the multi-dimensional setting (because
the interface can easily be resolved by adding the vertex I' to any mesh), it clearly
illustrates the definition of P and the derivation of our shape functions (see
Figures 2-3). Note that, in one dimension, our construction ensures continuity
across the interface and the method is conforming. In general, conformity is only
achieved in the limit At | — 0. However, the discontinuity of shape functions across
the interface (see Figure 4) is sufficiently small to preserve stability and accuracy
of our method.

Remark 2.1. There is some algorithmic freedom in the above construction:

(1) Tt is not essential that the subtriangulations 7,72, 75 form a partition of
some regular triangulation 7. They could have been chosen to be non-
matching overlapping triangulations representing €2, €25, and some neigh-
borhood Q' of the interface T'.

(2) It is not essential that the definitions of the mappings T(l.) and (-)' in the
above construction are based on the minimality of certain distances; any
point or simplex sufficiently close (distance proportional to local mesh size)
would do the job as well.

2.2.4. A local basis of the CFFE space. The degrees of freedom of the method are
function values at vertices

Vaot (T) :=V(T1) UV(T2) € V(T).

Hence, degrees of freedom are solely assigned to vertices in the coarse (interface
independent) mesh 7 and every vertex in T represents at most one basis function
of §¢fe.

The images of the nodal basis functions A\, € S} U Sy for 2z € Vyoe(7) yield a
basis of S i.e.,

S = span ({P°(X+,0) | 2 € V(T))} U{P(0,X) | 2 € V(Ta)})

where P\, and PCfe)\y are linearly independent if z # y.

Most of the basis functions are standard nodal basis functions. More precisely,
Pefe has no effect on functions that vanish in Q' plus one layer of coarse elements
T € T. Only a few basis functions are manipulated via the explicit linear operator
Pefe. Those basis functions have slightly enlarged supports when compared with
standard nodal basis functions on 7. However, the supports remain local in the
sense that their diameters remain proportional to the local coarse mesh size h.
Thus, the supports have finite overlap independent of the mesh size h.

2.3. Discrete problem. The discrete variational formulation of (2.1) reads: Find
ucte € S° such that

(2.8) / aVu® . Vo dr = / fodz for all v € S,
Q Q

Note that the basis given in the previous section turns this variational problem
into a system of linear algebraic equations. Since those basis functions have local
support, sparsity of the corresponding stiffness matrix is ensured.
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-0.2F = Ty 7'2

1 1 1
0.5 0.6 0.7 0.8 0.9 1

1 1 1 1
0 0.1 0.2 0.3 0.4
(a) Some functions uy € S1 (left) and ug € So (right) representing the degrees of freedom.

1 1
0.5 0.6 0.7 0.8 0.9 1

1 1 1
0 0.1 0.2 0.3 0.4

(b) Extension 'nge'ug of us to the interface zone QF.

Ficurge 2. Illustration of the definition of the CFE space in Sec-
tion 2.2.3.
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04F -

03f
cfe

P1 (u1,u2)

0.1r

| | 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Extension Pffeul of u1 to the interface zone QL.

04 n

03F 2 ,

0.1 n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(b) The corresponding CFE function P (u,u2) € S with degrees of freedom (o).

Ficure 3. Illustration (continued from Figure 2) of the definition
of the CFE space in Section 2.2.3.
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(a) Some function u; € S7 defined on |J77. (b) Extension P§te(uq,0) of uj.

FI1GURE 4. Illustration of the approximate trace matching across
the interface: I is the unit circle and €2, its interior, uy and, hence,
PSeuy|r are chosen zero.

Remark 2.2. The implementation of the method is similar to previous CFE methods
and we refer to [7,16,21,22] for computational insights.

One issue is that the solution of (2.8) requires the evaluation of integrals over
intersections 1" N Qi which is beyond the scope of this note. The forthcoming
theoretical results assume that all integrals are evaluated exactly. We refer to
[7,15,22] for a practical resolution of this issue.

2.4. Error estimates. The following theorem addresses the solvability of (2.8).
Moreover, assuming H?(€; U €y)-regularity, an optimal a priori error bound in
energy norm is given. Besides parameters already mentioned in the construction,
the constant in the error estimate depends on pr, which is the ratio between the
diameter of the largest ball that can be inscribed in T' € T and diam(7"). The trian-
gulations 7 and T are assumed to be non-degenerate, i.e., pr := minper pr > 0

(resp. prr = mingpcqr pr > 0).

Theorem 2.3 (Linear convergence with respect to mesh size). The discrete problem
(2.8) always has a unique solution u® € S°e.

If, in addition, the solution of (2.1), u* € Ha(S), is piecewise smooth, u* €
Hz(Ql U Qg), and Zf

(2.9) 17 /B2 oo (UgeeTr oy < Ca
for some generic constant Cy, then the following a priori error estimate holds:
(2.10) Ila* = ul] < Clhlle o) IVaV2ul| 12 g, 0y -

The constant C = C(pr, PTT C4,Cs) does not depend on the mesh width functions
h,h" and the contrast parameter aeons .-
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Proof. The unique solvability of (2.8) follows from the fact that ||| - ||| is a norm in
Scfe. Since, in the limit AY|r — 0, S is conforming, the latter is quite obvious
if hﬂ(u (teTranr0y) 18 sufficiently small. Otherwise, this property can be proven
along the lines of [18, Lemma 4.10].

The proof of the error estimate will be given in Section 3. U

The error estimate in the above theorem rests on the regularity of the solution
u* € H?(Q;UQs). In general, this regularity does not hold for solutions of problem
(2.1). Moreover, even though the constant in the error estimate does not depend
on the contrast acont, the H?(£2; U Q) seminorm of the solution on the right-hand
side of estimate (2.10) may do. In Section 4 we will prove that f € L?(2), the
Lipschitz properties of the subdomains €, and, in addition, convexity of Q C R?
and the assumption I' € Cb! imply u* € H?(Q; U €y) and

: C :
(2.11) HV2U*HL2(&21) < Creg Hf“Lz(gz) ) Hv2u*||L2(522) S ﬁ Hf”m(&l)

with some universal constant C,., that depends only on the geometry of the sub-
domains €2 and the interface I' but not on f and acont. Hence, under those as-
sumptions on the geometry, the error of the CFE method does not depend on the
contrast parameter acont.

Theorem 2.4 (Contrast independence). If Q C R? is conver, I € C"', and if
(2.9) is satisfied, then the following a priori error estimate holds:

[[u* = w[|] < CllhllL@) I1f ]l 20 -

The constant C' = C’(p7—7p7—1r,C'1,C'2,C'reg) does not depend on f, the mesh width
functions h, hlf, and the contrast acont -

Remark 2.5. As already mentioned in the introduction, our method is designed to
capture the kink of the solution across the interface. Further lack of regularity,
caused, e.g., by singularities at kinks of the interface, is not addressed by the
proposed method and leads to reduced convergence rates. The actual rate depends
on the strength of the singularities as usual, i.e., if u* € H'T5(Q;Uy) for some s €
[0, 1[, then standard interpolation theory of Sobolev spaces allows one to estimate

llu* — || < CllAll g (a)-

Standard techniques may be applied to improve the convergence rate of the method
for singular solutions, e.g., adding certain singular functions to the approximation
space, or adaptive refinement of the coarse mesh 7 toward the singularity.

2.5. Complexity. Let us briefly discuss the complexity of our method. Consid-
ering a uniform coarse-scale grid of width A, the number of degrees of freedom in
our method is proportional to h~¢, where d € {2,3} denotes the dimension of the
physical space as before. The cost of setting up and storing the basis functions can
be estimated as follows. Because of Theorems 2.3 and 2.4, it is sufficient to adapt
the shape functions on a submesh with minimal mesh size h!|; ~ h3/2 close to the
interface. Since the dimension of the interface I' is d — 1 and owing to (2.2), the
number of elements in the submesh is proportional to h=3/2(d=1) je h=3/2 for
d =2 and h™3 for d = 3. Hence, the cost caused by the adaptation of the shape
functions is at most proportional to the number of degrees of freedom h~¢.
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3. DETAILED ERROR ANALYSIS

This section proves the error estimate in Theorem 2.3. The error of the CFE
approximation can be estimated as in [3, Lemma 10.1.7] by

‘Cl(u* _ uc’fe7 U)‘

(3.1) llu" —u|ll < inf [[Jlu* —of||+ sup
vesere 0veseTe [Tl

The first term in the above estimate reflects the best approximation error which

is further addressed in Section 3.1. The additional second term is due to non-

conformity (see Section 3.2).

3.1. Approximation property. For G € {7, 71,72, T, T2}, let Zgu denote the
unique G-piecewise affine function that interpolates a sufficiently smooth function
u at the vertices of G. The solution u* € H?(Q; Uy) of (2.1) is well approximated
by the discontinuous function wy, with up|q, = (Z7,u)|a,, ¥ = 1,2. The error in
the energy norm is proportional to h. This approximation property is preserved if
uy, is suitably mapped onto the finite element space S as the following lemma
states.

For the ease of notation, observe that Py := P(Zr u,Zr,u) defines P
for arguments u € H{(2) N H?(Q; U Q). Accordingly, Psu := PSTr u (resp.
Psley i= P(Tru, Iy, u)) extends PS® (resp. P§e) to HE () N H2(Q, U Q).

Lemma 3.1 (Approximation property of S). There is a constant C > 0 which
may depend on pr, pyr,C1,Cy bul not on h and hY such that for all w € H}(Q) N

H?(Q, USy) it holds that

[llu = Pull| < C[|VahV?ul g, a0,

Proof. The proof picks up some standard techniques for CFEs as they are used,
e.g., in the proof of Theorem 4.4 in [18]. In addition, we will frequently make use of
classical error estimates of nodal interpolation with respect to simplices. Following
[5, Theorem 16.1], there exists a universal constant Cj, such that

d_d

C’i o (\2—S—&— m
(3.2) |u—Itu\W;n(t)§p—jd1am(t)2 270 Jul ey

for all w € H?(t), m € {0,1}, provided W} (t) C H?(t); Zyu denotes the affine
interpolant of u at the vertices of a triangle ¢.

The main tool for exploiting the piecewise regularity is a suitable extension
operator. It is known that, since 2 is assumed bounded and Lipschitz, there exists
a continuous, linear extension operator & : H?(Qy) N HY(Q) — H?(Q) N H(Q),
k € {1,2}, such that for all u € H?(2) N H}(Q) there holds
(3.3) (’Eku|Qk =u and HV2GUHL2(Q) < Coext ||V2u||L2(Qk)
with a constant Cey that depends only on € and Q [25]. Moreover, Cex is
moderately small under mild assumptions on the geometry [23]. Throughout the
rest of the paper, u; abbreviates € u, k =1,2.

Our proof rests upon the splitting

u=1uy + (u—ug)
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and the observation that (u— us)|qo, € HE(21) N H?(Q) and (u — us)|q, = 0. The
splitting and the linearity of P lead to the upper bound

2

(34)  u—Pul|* < [[Juz = Pus|||* + |V (w0 = w2 = P (w = 2)) ||, -

The second term on the right-hand side of (3.4) can be bounded by classical tech-
niques for the analysis of CFEs. In particular, [18, Theorem 4.4] and (3.3) show
that

(3.5) |V ((u—uz) — P (u— us))

with some constant C' that depends only on pr, pTT, Ch, C9, and Ceyy.

Thus, we are left to bound the first term on the right—-hand side of (3.4). The
advantage of the splitting is that, compared to the initial assertion, we can now
make use of the fact that uy € H?(Q) regardless of the interface.

Throughout the rest of the proof, a < b abbreviates a < Cb with some constant
C that depends only on the constants Cy, Cy, Cip, Cext, p7, and prr-

By repeated use of the triangle inequality we separate the elements where stan-
dard estimates apply from those where more involved techniques are required:

lluz = P usl [ = [z = P ua)[ 2, + o [V iz = P ) [,

(2.6),27) ) )
< ||V(U2 — ITUQ) ||L2(521) + Geont ||v(u2 - ITU’2)||L2(S'22)

< C||hv?

2
HLZ(Ql) uH}12(Ql)

+ HV(IT“Q — PffeuQ)H;(QF) + Geont ||V(I7-u2 — ngeuz)Hiz(Qr)

3.2

N
—~

2 2
< ||hv2“2HL2(s'zl) + Geont Hhv2u2”L2(sz2)

cre 2 cIe 2
(3.6) IV (Zruz = P us)|| 1 qr) + Geont ||V (Zruz = Pseus) || qor) -
Let t € TV and T € T3 such that ¢t C T (recall that 7' was derived from

T+ C T by refinement). Then, by an inverse estimate,

(3.7) [|[V(Zruz — P us)| .,y < 2diam(t)"? diam(T) " || Zruz — Piusl|, o, -

We fix ¢ € V(t) with ||ITu2 - PffeugnLoo(t) = |Trus(z) — Pffeu2(x)| and define
T} =T}, T? :=T?. In addition we introduce neighborhoods

wr :=U{K€T: TNK #0}
containing both coarse elements T} and T7?. The definition of P¢f in (2.7) and the

application of Lemma 4.1 from [18] lead to
(3.8)

2.7
||ITuz — PffeugnLoo(t) @D ‘IT’UQ(:E) — ITtZUQ(ZUF) — (VITt1u2,:L‘ — xr)‘

< ‘ITuz(a:) - Ithug(m)‘ + ‘<V(ITt2'll/2 —Iriuz),w — TF>)‘

< diam(T) /2 (HITUQ - IthuQH o dian() Hv (ITUQ - Ithu2> ‘

L2 ()
+ dian(t) |V (Zrzuz — Tryus )|

)
diam(t)<diam(T')
U ()24 || 92

L2(T)

(wr)”
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The summation over all ¢ € T yields

|V (@ruz = Pfou)||fa o) < D V(@ = Pua) |2,
teTy
<> (V@ = Piu)
TeT teTltcT
(3.7),(3.8) (

S

TeT

(3.9)
3 |t|) dian( T [V

teThtcT

(3.3)

<

2
Hhv2uHL2(Q2) :

Similar arguments as in (3.7), (3.8), and (3.9) lead to an estimate of the last term
on the right-hand side of (3.6),

(3.10) HV(ITQUQ - ’ngEUQ)HQLz(UEF) < HhVQUHQLQ(Qz) )

The combination of (3.4), (3.5), (3.6), (3.9), and (3.10) proves the assertion. [
3.2. Non-conformity. If the solution is sufficiently smooth, i.e., u* € H3/?(Q;, U

2y), the second term in (3.1) can be estimated using Greens’s identity, (2.1), (2.8),
the classical jump relation, and the Cauchy-Schwarz inequality as follows:

ou™*
8VQl

|a(u* — ucfe, v)| Ilolrll 22y

Loy 0tvegee Ol

(3.11) sup <C H
0vesete [H[o]l]

Here, v, denotes the outer normal of €; and [[v]]r denotes the jump of v across I
By picking up ideas from [18, Lemma 4.9], one checks that the discontinuity [[v]|r
is in fact small.

Lemma 3.2 (Non-conformity). There is a constant C = C(Cy,C3) > 0 with C3 :=
maxperr.rarzp |I 0 T|/ diam(T") @), such that

[[ol]rllzzry < CllAll e () IBY /122 | oo (Ugrerrorarzaon 101l
for all v € S°e,

Proof. Let v = P(Trv,IZr,v) € S%¢. Let t € T with t NI # (). We start with
some pointwise estimate of the jump of v on t:

oIl Lo ey = 0loz = vloull Lo ey < Ivlos = vloy e sy »

where v|g, (resp. ulg,) is identified with its unique affine extension onto t. The
definitions (2.6) and (2.7) yield

(312) 0l = max fola () — vlay ") = (VZryvy —o")|

< diam(t) Hh_d/QVv‘

L2(T}UT?)
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Hence, the L?-norm of v on 95 is estimated as follows:

2 2
lollzeey < D > T Tl T o )

TieT,To€T2 teT NI, TF=T}

(3.12) TN ¢t| diam(t)? 9
N Z Z - d ||V”||L2(T1UT2)
diam(T")
TieT1,TaeTe teT anT#0,TF=T)

2
N ||h1;/\/ﬁ||2Lm(u{te7]F: tNT#0}) HVU“Lz(Q) :
U

If hl'|r is chosen proportional to h(3/2), as it is assumed in (2.9), Theorem 2.3
follows from (3.1), Lemma 3.1, and Lemma 3.2.

Remark 3.3. The constant Cy introduced in Lemma 3.2 reflects the smoothness of
the interface I'. Note that C3 may be large if I' is highly oscillating. However, the
proof of Lemma 3.2 shows that a possibly large constant can be controlled by simply
choosing h'|p appropriately small. This modification concerns only the submesh
T and does not affect the overall number of degrees of freedom.

4. REGULARITY

This section proves the regularity result (2.11) under the following assumptions
on the geometrical setting:

(R1) © C R? is a convex polygon,

(R2) 91,9, C Q are disjoint open Lipschitz domains with Q = Q; UQ,, and

(R3) T':=Q,NQy is a CT! curve that separates ; and €.
The conditions (R1)—(R3) guarantee that both subdomains € have a piecewise
smooth boundary with interior angles less than m. In particular, the interface is
not tangential to 9€2 in intersection points I' N1 0€2. Two relevant cases covered by
these conditions are depicted in Figure 5.

F1qUrRE 5. Two geometric situations in which conditions (R1)-
(R3) are satisfied: (left) interface cuts through the boundary of
Q at some positive angle, (right) smooth separated inclusions dis-
persed in some matrix.

Under the conditions (R1)—(R3) [13] shows piecewise H? regularity in the sense
that f € L%(Q)) implies u* € H?(Q; U §y) and

IV2u¥|| 220y + V0¥ n2(0,) < Cllflln2(0)-
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The subsequent theorem clarifies the dependence of the constant in the estimate
above on the contrast parameter a.ont. In this respect, the theorem generalizes the
previous result [4, Theorem B.1], which assumes a smoother interface and, more
importantly, the inclusion Q; C € with some positive distance between ©; and 9€.

Theorem 4.1. Under the assumptions (R1)-(R3) the unique solution u* of (2.1)
is piecewise smooth, u* € H?(1 UQy). Moreover, the estimates (2.11) hold with a
generic constant Creg that does not depend on f and acon.

Proof. Let u} := u*|q, for k = 1,2. As discussed earlier, the assumptions (R1)-
(R3) yield uy € H%(Q) for k = 1,2. Since Q, k = 1,2, is piecewise smooth with
interior angles less than 7, classical a priori bounds yield

||V2uT||L2(Ql) = reg (||f||L2(Q ) + Hu1||H3/2(F))

ou}
VZ U C// + 2 .

|| ||L2(Q ) = Yreg contHfHLz(Qz) 81/92 Ty
Since the above estimates are solely performed in the subdomains, the constants
Cleg and Cf, do not depend on acons- The classical jump relations at the interface

ou oul

imply ||u1||H3/2(F) = ||u§||H3/z(r) and ‘ vy || ey = Gcont ﬁ 2T Hence,
(41) ||V2UT”L2(91) < C;eg (||f||L2(Q1) + ||u§||H3/2(I‘)) )

ouy
4.2 V3uj < o' azl + H 1 :
( ) || 2HL2(Q2) = egAcont HfHLz(QQ) ayﬂl HU2(T)
The combination of (4.2), the trace theorem ‘ Do ) < Clluillyz(ayy. (41),
and the trace theorem [[u3| a2y < C [|u3| 2 (q,) leads to

V23

2llL2(Qy) = < C;gg c_ont (Hf”L”(Q) + ||u*||H1(Q) + Hv u2HL2(Qz))

Since Cyg, does not depend on acont, coercivity of the bilinear form a and the energy
estimate |||u*H| < | fll2(0) prove the estimate

V23] 2 ) < Chregteont I fll2(0):

provided acont > Cjly/2. Since for small contrast acont < Ciey/2 nothing is to
show, one assertion is proved. The estimate for ||V2u§H £2(0) is analogous by

interchanging the application of (4.2) and (4.1) as well as the corresponding trace
inequalities. 0

For a characterization of the singularities that may appear if the conditions (R1)—
(R3) are not satisfied, we refer the reader to [2,6,10,11] among many others. A
comprehensive regularity analysis for the three-dimensional case is more technical
and beyond the scope of this paper; we refer to [12] for necessary conditions under
which H?(£; U €y)-regularity is achieved. If the geometric setting allows H?(Q; U
)y)-regularity, then the proof of (2.11) could be treated in a similar way as in
Theorem 4.1.

We shall emphasize that the above result is not explicit with respect to the
geometric setting, e.g., the constants C,, and Cj,, may depend on oscillations of

reg
the interface, minimal distances between iIlLlllbl()Ilb the distance between inclusions
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and the boundary, etc. The dependence on the geometry is involved and has been
studied only for special cases, e.g., the case of densely packed, perfectly conducting,
circular inclusions in 2d [17]. We further mention that reularity estimates for the
case of diffusive interfaces may be found in [20].

5. CONCLUSION

We have described a finite element method for the Poisson equation with discon-
tinuous diffusion coefficient across some interface. The method does not require the
underlying finite element mesh to resolve the interface exactly. Overlapping, and
possibly structured, simplicial meshes can be used instead. Moreover, the definition
of the basis functions is explicit, and no local problems have to be solved. On a
quasi-uniform coarse grid of width A, the complexity of our method is proportional
to h~¢, whereas the error is proportional to h. This is optimal in comparison with
the approximation of a Poisson problem with overall constant coefficient on the
same mesh.

This paper focuses on the difficulty of treating discontinuous coefficients. To
keep notation and technicalities at a minimum, the simplest possible setting has
been chosen. Generalizations, not only to general linear elliptic problems but also
saddle point problems such as Stokes’ problem, are straightforward with regard to
the previous work [18,19].
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