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Abstract—Modeling and executing business processes with the
help of software requires so much human work that the software
life-cycles can not keep up with the fast changing demands
of today’s global markets. Therefore, a mechanism is required
to adapt these process models automatically. In this paper we
introduce a novel approach for the adaptation of existing process
models using semantic technologies, thereby building on semantic
annotation of process models as well as on automatic planning
approaches.

Index Terms—Process; Modeling; SBPM; Token; Semantic

I. INTRODUCTION

Business Process Management (BPM) has been one of the
main topics in commercial information technology for many
years and is becoming even more important now. Formally
defined process models establish the basis for automatic exe-
cution of processes in enterprises. This becomes increasingly
important to compete in markets because of the possibility to
gain shorter time to market, increased customer satisfaction
and so on. But the graphical modeling of business processes
and their execution in software requires so much human work
that the software life-cycles can hardly comply with the fast
changing demands of today’s global markets.

These demands require that processes in a company as well
as between several companies need to be adapted frequently
with the result that often the process models are not actualized
at the same time and therefore get outdated soon. Since
these process models are adapted by hand, which is a time-
consuming job, a mechanism to automatically adapt these
process models is required when the underlying process has
been changed or the implementation has been modified. With
such an automatic adaptation a business analyst only needs to
review the computed models and can save time and money.

The research area Semantic Business Process Management
(SBPM) [1] transfers the concepts and technologies of the
Semantic Web to BPM. Thereby, it aims to achieve a higher
level of automation regarding the querying, manipulation, and
management of business processes and the usage and devel-
opment of corresponding process descriptions. This requires a
machine-accessible representation of the terms used in process
descriptions and in queries. In the context of process modeling
this means that the terms in process models are technically
described with concepts of an ontology. Using these semantic

annotations an automated planning of the control flow of
process models is possible as introduced in [2].

In this paper we build on this automatic planning and
introduce an approach for the adaptation of existing process
models using semantic technologies. When process actions
have been changed (either in their implementation as e.g.
discovered by process mining techniques, or as stated by a
management decision), the actions need to be identified in all
process models and automatically adapted.

The contribution of this paper is a [ramework for an auto-
matic adaptation of process models which is indispensable for
enterprises that consider to be exposed to intense competition.
The adaptation process first searches in all process models
for process actions that have been changed. For these process
actions the surrounding process fragments are identified. After
these steps that are syntax-based only, we now utilize the
specified semantic annotations and compute the start state and
end state of these fragments which are needed in the following
planning step. The result of planning is integrated into the
process model and validated afterwards.

The remainder of this paper is organized as follows. In Sec-
tion II we summarize some basics about (semantic) business
process modeling and the automated planning of process mod-
els using our planner SEMPA. Section III describes the tasks
that are necessary in order to adapt an existing process model
which is exemplified in a proof of concept in Section IV. We
show some related work in Section V, before we conclude
with directions for further research.

II. AUTOMATIC PLANNING OF PROCESS MODELS

For the automatic planning of new process models as well
as the adaptation of existing models we are only interested in
the control-flow perspective of a process [3]. Other details that
are normally part of a process model (roles, applications, etc.)
are neglected in this paper, but could easily be integrated.

We view a process (or workflow) model formally as a
directed graph G which is denoted by (N,E), where N is the
set of nodes and & the set of edges. A consists of the disjoint
subsets: Nstart’ Nstop» Nactiona Nfork’ -/\/join, Ndecisz’on and
/\/’mwge. The terms action, decision, etc. are thereby used in
analogy to UML activity diagrams [4].

Each node n € AV has a set of incoming and outgoing edges
denoted as E;,(n) and Eyy¢(n) respectively. Furthermore, the
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graph G has to satisfy the following conditions:
o Ntart (tesp. Nyiop) has exactly one element 14, (resp.
”stop), such that |Ein(nstart)| =0A |gout("start)| =
1 (called entry edge ecniry) and [Epu(Nsiop)| = 0 A
|Ein(nsiop)| = 1 (called exit edge ecyit).
e Vn € (-/\[fork UNdeciswn): |gzn(n)| =1A |gout(n)‘ >=
2,Yn € WNjoin UNmerge): [Ein(n)] >=2 A [Epui(n)] =
1 and VYn € Nyction: [Ein(n)| =1 A [Epue(n)| = 1.

e Vn €N : 3 path p= (Nstart,- - -, Nstop) C G n € p (all

nodes are reachable from the start).

As pointed out in [5], the semantics of meta-model elements
for process modeling and their relations are defined already by
well established approaches for process modeling. However,
the terms used to specify individual model elements (e.g. the
name of a particular function or the name of an input parame-
ter) and their semantics are still left to the modeler. It is quite
common that different people tend to use different terms for
the same real-world concepts. Problems in comprehension or
ambiguities are the consequence of inconsistently used terms
in these models which makes them difficult to understand.

By means of ontologies, terms in process models are
conceptualized and their relations are technically defined.
This allows for an advanced and automatic processing of
semantically annotated process models and their elements.

A Semantic Business Process Model describes a set of
activities including their functional, behavioral, organiza-
tional, operational as well as non-functional aspects. These
aspects are not only machine-readable, but also “machine-
understandable”, i.e. that they are either semantically anno-
tated or already in a form which allows a computer to infer
new facts using the underlying ontology.

We define semantic annotation formally as a function
that returns a set of concepts from the ontology for each
node and edge in the graph, SemAn NUE —
Conts. SemAn describes all kind of semantic annotations
which can be input, output, metamodel annotation, etc.
The semantic annotation can either be done manually or
computed automatically considering word similarities, etc.
We can now define a semantic annotated graph Ggepn, =
(Nsem, Esem, Onts) with Ngem = {(n, SemAn(n))|n € N'}
and Esem = {(Msems Naerm) |Nsem = (0, SemAn(n))Anl,,, =
(n', SemAn(n'))A(n,n’) € E}. Cons is a set of concepts of
(possibly different) ontologies of the set of ontologies Onts
(COnts C Onts)

An ontology Ont € Onts is a “(formal) explicit specifica-
tion of a (shared) conceptualization” [6] and in our context
defined as a quadruple Ont := (C, R, I, A) which consists of
different classes C' and relations R between them. A relation
connects a class either with another class or with a fixed literal.
It can define subsumption hierarchies between classes or other
relationships. Additionally, classes can be instantiated with a
set of individuals I. An ontology might also contain a set of
axioms A which state facts (what is true) in a domain. Please
note that [6] actually speaks of “classes, relations, functions
and other objects”, whereby current languages of the semantic
web such as OWL [7] also include individuals and axioms.

In SEMPRO, a project funded by the German Rescarch
Foundation, a (semi-)automatic creation of process models
with AI planning algorithms is envisioned which uses these se-
mantic annotated process actions. We speak of semi-automated
because the planned process models (which are created fully
automatically) are considered as proposals that afterwards
need to be assessed by an expert regarding business aspects.

For the automatic planning of process models we require
that each node n € A is at least annotated with some kind of
semantic input and output data. SemIn(n) : Nsem — Conts
(SemOut(n) analogous) is a filter function on the semantic
annotation (SemAn(n)) to return only the input (resp. output)
data. Using semantic annotation allows us to exploit advan-
tages such as checking for equivalence of concepts, inference
techniques and so forth.

Thercfore, we use parameters that arc defined as
(label, domain, restriction) for each input and output and all
possible parameters constitute the set of parameters P. The
label provides the name of this parameter and the domain
specifies the ontological class that is the basis. Each semantic
input or output can similar to [8] be further refined by
restrictions in order to specify specific values (e.g. an order
has been submitted, {rue, etc.) or ranges (e.g. order amount
between 0 and 500).

The developed planning algorithm SEMPA (SEMantic-based
Planning Approach) proceeds in three steps. First, each seman-
tic input SemIn and output SemQut of all process actions
stored in a process library (called liby) are semantically
matched (recursively, starting with one or more specified goal
parameters) and dependencies between them are calculated
and stored for the following steps. The matching between
parameters uses reasoning on the ontology concepts and
additionally considers the restrictions in order to evaluate
whether two parameters (SemlIn(n;) vs. SemOut(n;)) match
completely, partial or not at all.

Goal parameters belong to a state that shall be reached at
the end with one or more goal states being defined. Each
parameter in a goal state must be fulfilled by the SemOut(n)
of precedent process actions or by parameters that are part of
the initial state.

In the second step a forward-search collects all applicable
process actions from the stored graph that can help to achieve
such a goal state. Therefore, a planning algorithm computes
the state after the execution of each action considering the
semantic outputs and calculates which other actions can be
executed in this state (using SemIn). This is performed until
all specified goal states are attained or the planning is stopped,
because a failure has happened or a goal state will never be
achieved.

The result is then used in the last step to create the process
model. Therefore, the action-state-graph computed in the step
before is extended with different control structures and finally
a specific modeling notation, e.g. UML activity diagram [4],
is returned. An overview about these planning steps can also
be seen in Figure 1.
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Fig. 1. Three Steps of SEMPA

III. TASKS FOR PROCESS MODEL ADAPTATION

The adaptation of process models as well as their execution
is necessary for companies in order to be flexible and therefore
to have an advantage over competitors. The term flexibility
has been widely discussed in information systems (IS) and
two areas of flexibility are commonly distinguished (cf. [9] or
[10]): flexibility in the pattern of use and flexibility for further
changes. Flexibility-to-use is thereby the range of process
requirements that is supported by the IS without requiring a
major change of the IS. On the other side, flexibility-to-change
requires a major change of the IS considering the flexibility
of the IT personnel, the integration of data and functionality
and the modularity of system components [10].

For process models we can transfer these definitions: a
process model has an internal flexibility-to-use, if different
kinds of processes that only vary slightly are covered. It has
an inherent flexibility-to-change, if most parts of the process
model stay the same for major changes of the business process
and only some parts need to be adapted. A process model is not
flexible at all, if the complete model needs to be redesigned,
when changes of the underlying process appear. In this paper
we focus on flexibility-to-change, i.e. only some parts of the
process model need to be adapted to fit to the business process
again.

In order to automatically adapt a process model to changing
requirements we assume that the process model has already
been planned and therefore all process actions are described
at least with their semantic inputs and outputs using ontology
concepts (SemAn). Furthermore, we assume that we know
the process actions that have been changed and how they
have changed. The process of identifying those process actions
is often a manual task, but process mining techniques or
monitoring tools could be used, too. Since new regulations
or customer requests can mostly be reduced to changes on
a few actions this assumption is not too restrictive anyway.
After the changed actions have been identified in the existing
process models (which is a simple search according to their
name), the adaptation process can start.

The tasks for process model adaptation are the following:

1) Computation of the fragments that need to be adapted
(where a fragment can be more than the known process
action that changed. Basically, it could be made up of
several process actions around the changed one)

2) Identification of the initial statc of cach process fragment

3) Calculation of the goal state of each process fragment

4) Re-planning the process [ragments considering the
changed process actions

5) Integration of the planning result into the process model

6) Validation of the adapted process model

We will now elaborate each task in further detail.

A. Computation of the fragments that need to be adapted

All process actions that have been changed in the process
library liby are searched for in all existing process models
and are marked for further processing. In the next step we
need to search for the entailing fragments of these process
actions in order to re-plan these fragments. The calculation
of the surrounding fragment allows us later to start planning
with one initial state and a single goal state and makes the
integration of the planning result easier afterwards.

A process fragment (or Single-Entry-Single-Exit fragment,
short: SESE fragment) can be either a single process action or
a part of the model that has only one incoming (the entry edge
e) and one outgoing (the exit edge ¢’). It can be defined as a
nonempty subgraph of G with N/ C A and &' = EN(N'xN7)
such that there exist edges ¢, ¢’ € € with EN((N\N')xN') =
{e} and EN(N' x (M\N)) = {e’} (cp. [11]). In our further
work we are only interested in canonical process fragments,
i.e. fragments that do not overlap and are either nested or
disjoint.

We calculate the (canonical) process fragments as well
as the strongly connected components (SCC) of the marked
process actions that have been changed. SCCs of a directed
graph G are the maximal strongly connected subgraphs, i.e.
there is a path p from each node in the subgraph to every other
node in the same subgraph. The computation of fragments
and SCCs is done using a token-flow algorithm that has been
introduced in [12]. We shortly summarize this algorithm here.

This algorithm builds on a token propagation mechanism.
Tokens and token algorithms have already been described
elsewhere, e.g. in [13]. The token-flow is calculated in two
steps: first, single tokens propagate through the graph and
second, tokens from the same origin are re-combined.

In the first step, tokens are created at the out-flow of splitting
gateways carrying information on their origin. They propagate
along the flow and can re-combine with other tokens. To each
edge a subset of tokens called foken labeling is assigned.

For a single token, the propagation through the graph
is calculated by tracking its route along the edges. When
tokens arrive at a gateway with several outgoing edges (either
Niccision of Nyorr), all of the gateway’s outgoing edges
e € &, are labeled with the same token: At nodes with out
degree > 1, new tokens are created. The outgoing edges are
labeled with the union of the arriving token sets and the newly
generated tokens. At merging gateways (./\fmerg@ or ./\fjgm),
Eout 18 labeled with the union of all incoming tokens.

Calculating the flow for each token separately is inefficient,
because edges have to be visited several times, once for each
token. It becomes more efficient when handling complete sets
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Fig. 2. Example of Converging Token Flow

of tokens, by successively calculating the out-flow at nodes
where all entering flow has been labeled.

In the second step, the recombination of tokens is calcu-
lated. When all tokens belonging to the same gateway have
arrived at one edge, they are removed from the labeling (re-
combination). Components can be derived by matching pairs
of edges with equal token sets.

Different to [13], the process does not stop whenever a
component is encountered but continues until all the edges
have been labeled. The procedure does not have to start again,
and also enables the recognition of more advanced, interleaved
structures.

We now define the set of tokens T. A token carries
information on the parallelization for which the token was
generated, i.e. the origin node 7 and a number 7 referring to
the corresponding outgoing edge:

’]I‘(N’g) = {(’I’l,Z) | neNANIeENAT< |€Out(n)|} .

Each edge in the graph is assigned a subset of T by the token
labeling function t : £ — P(T) U {_L}. Token creation occurs
at nodes with |E,,:(n)| > 1. Tokens propagate and unite
at nodes with |&;,,(n)| > 1. Figure 2 illustrates the flow of
tokens created at nodes 1 and 2. After all edges have been
labeled, tokens originating from the same node converge and
are removed from the labeling (indicated in the figure by the
curly brackets).

Finally, the labeling is used to determine the components of
the graph. If for two edges e1,es € £,e1 # €3 : t(e1) = t(ea)
holds, they mark the beginning and the end of a component
C, ie. {e1,ea} = {source(C),sink(C)}.

The resulting components can be overlapping, ambiguous,
and include trivial components. In Figure 2 the converged
labeling {(1,1)} appears at four edges. Each pair of these
edges marks a valid component, but not all of them are
desirable. This can be avoided by a strategy which shows
how to derive the correct partitioning, covering sequences, and
further component types.

Algorithm 1 summarizes the Token Flow procedure. For
an acyclic graph with start node Ny, call the tokenFlow
function with an initial labeling ¢(Nsiqre) := 0. The [unction
pick(e € & | prop : e — B) nondeterministically selects
an element e from &, that meets a required property, i.e.
prop(e) = true. The function timestamp assigns an in-
crementing index to the visited elements, thus imposing an
ordering on them. The main loop of the algorithm in line 14
picks an arbitrary node, for which all incoming edges have
been labeled with tokens, and calls the processNode function

Algorithm 1 Calculate Token-flow

Require: ¢t : £ — P(T) U {L} / initial marking
O C N J/ to-do set of nodes

Ensure: ¢t : £ — P(T)

1: processNode(n € N) {
20 P(T) Mi=Uerce,, (n)) &

Lif [Eoui(n)| = 1 then

(elt(Eaue(n))) = M;
. else

3
4
5
6: int i := 0;
7
8
9

for all e € £,,:(n) do
tle) == MU{(n,i++)}
end for
10: end if
11: }

13: tokenFlow(t, O) {

14: while O # 0 do

15: pick(n € O | t(Ein(n)) # L):
16: processNode(n):

17: O =O0\n;

18:  timestamp(n);

19: end while

20: for all ¢ € £ do

21:  for all n € first(t(e)) do

22: ift(e) 2 {(n,i) | i < |Eout(n)|} then
23: #(e) = HON{ () | 1 < |Eoue(m)]}
24: end if

25: end for

26: end for

27: }

for it. This function computes the leaving flow from the
entering flow by first merging all token sets from the entering
edges (line 2), and then propagating the resulting set to the
outgoing edges. For multiple outgoing edges, a new token is
assigned to each edge in line 8. After processing, to each
edge a timestamp (line 18) is assigned, which can later be
used to identify sequence-boundaries. Once the main loop in
tokenFlow terminates, converged tokens are removed (line 22).

Please note that cycles in process models need a special
treatment (which is why SCCs are also computed) and are only
considered in an extended version of this algorithm which is
elaborated in further detail in [12].

Regarding the complexity of the Token Flow algorithm we
assume a constant runtime of the functions pick, t, timestamp
and first. For the remaining parts of the algorithm the com-
plexity is O(|N] + |&]).

By using the described algorithm we found the components
that contain changed process actions and therefore need to be
adapted. We set these as the process fragments and calculate
the initial and goal state of each fragment for re-planning in
the further steps.

B. Identification of the initial state of each process fragment

In this step we need to identify the initial state of the process
fragment that shall be actualized. A state s is a subset of the
set of parameters P, s C P. For this identification we have
two possibilities:

The first one would be to compute the state that has been
reached where the process fragment starts. This state can then
be used as initial state for the re-planning. Therefore, we build
a planning graph starting with the first action of the process
model until the beginning of the fragment has been reached.
The disadvantage of this solution is, that, if we have a rather

304



Algorithm 2 Compute Initial State

Require: Strongly connected component C

1: computelnitialState(C) {

2: n :=getFirstNode(C)

3: init := SemIn(n) // inital state

4: removelList := SemOut(n)

5: for all n:=getFollowingNodeInComponent(n, C) do
6: for all Parameter P € SemIn(n) do
7.
8
9

if =(P € init) A =(P € removelList) then
init = init U P
: end if
10:  end for
11: removelist := removeList U SemlIn(n)
12: end for
13: return init

big process model, probably hundreds of process actions and
states need to be computed again. Additionally, we face the
problem how to compute the initial state if the process action
that has been changed is the first one of the whole process
that has been executed. Then, there is no chance to determine
this state.

The second possibility only looks at the process fragment
that needs to be re-planned. This process fragment is probably
much smaller which results in a faster computation than for the
whole process model. Here, we compute all input parameters
of the actions of this fragment. We remove the generated
output parameters again, because those had been created as
part of the fragment before and therefore are not available for
the initial state anymore during re-planning.

This leads to a set of parameters that was neces-
sary before for the execution of the process actions
and should be sufficient for the re-planning, too. For-
mally, we take as initial state init = SemlIn(n;) U
Uviza. i (SemIn(n)\SemOut(n;—1)) (compare Alg. 2).
The complexity of this algorithm is O(|N| + | P|).

C. Calculation of the goal state of each process fragment

Goal states = G1,Go,..., Gy specify the set of £k € N
different (sets of) parameters G, C P (with x = 1,...,k)
which shall be reachable in a feasible solution. The calculation
of the goal state works analogous to the computation of
the initial state. Again, we have two possibilities: The first
possibility computes the initial state of the rest of all process
actions in the process model that follow the fragment. The
other possibility considers only the process fragment that
should be adapted and calculate the sum of all outputs of all
actions in this fragment ({J;_, |5/ SemOut(n;)).

For performance issues we again take the second possibility,
thus the complexity is equal to the step before: O(|N|+ | P)).

D. Re-planning the process fragments the

changed process actions

considering

Now that we have the initial state and the goal state we
can re-plan the process fragment. The automatic planning of
business processes has already been described in [2], but did
not specify how the adaptation of process models can be
realized. Shortly summarized the planning steps consider all
existing process actions n € Neion that have been stored

in the process library lib4 (where the changed process actions
have been stored, too). SEMPA first computes the dependencies
between the process actions 7 considering their semantic input
(SemIn(n)) and output descriptions (SemOut(n)). After-
wards, the planning computes an action-state-graph which
has two partitions: the process actions Nyce0n and states
which capture the state of the world after the execution of
the action considering SemIn and SemOut. Thereby, the
algorithm performs a non-deterministic planning [14] with
initial state uncertainty [15]. This action-state-graph is the
basis to build the process model in the last step and to identify
control structures such as €.g8. Nyccision OF /\/Jom There is no
estimation regarding complexity of the aforementioned step as
it is not examined in further detail here. We refer to [2] for
further details.

E. Integration of the planning result into the process model

The result of the planning is first put into an own embedded
subprocess (available e.g. as StructuredActivityNode in UML)
and this subprocess is connected with edges that before were
the entry and exit edges of the process fragment. In a second
step this embedded subprocess can be removed as well as
Nitare and Nstop of the subprocess and the rest of the content
can directly be connected with e¢p4py and eqz; of the subpro-
cess. If SEMPA computes more than one result that could be
integrated, then all planning results are integrated in copies of
the original process model and the different alternatives are
shown to the user who must then decide which one conforms
best to the business requirements. If SEMPA does not return a
result, e.g. because not all actions for achieving the goal states
exist in the process library, then the planning is stopped and
the user is notified which parameter could not be fulfilled. This
part of the algorithm basically can be achieved by depth-first
search that results in complexity of O(|N|+ |€]).

F. Validation of the adapted process model

The resulting process model needs to be validated in the end
in order to ensure that still all dependencies have been fulfilled.
First, it is validated automatically: therefore, it is evaluated
whether each process action has all necessary input parameters
and whether there is any deadlock or lack of synchronization.
Therefore, we applied the algorithm presented in [12] again
that is using the already computed components as well as the
re-planned fragments.

If no errors have been detected, then the resulting process is
shown to the business analyst who can then decide whether it
should be further refined or it can be enacted directly as it has
been planned. The business analyst might for example identify
parts of the process model that can be further simplified: since
the adaptation only computes process fragments again but not
the whole process, there could now be optimization potential
in the process model.

The overall complexity of our method is composed of
the discrete parts we described in this section. Although we
analyzed most of the steps regarding complexity not all parts
have been detailed as some of them are outside the scope of
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this paper. That is why we cannot give the exact costs for the
entire process.

IV. PROOF OF CONCEPT

For a proof of concept we chose an example from the
financial services industry. This industry seems to be dedicated
for the adoption of technologies facilitating the automatic
planning of business processes. Electronic commerce has
radically changed the competitive landscape in the financial
services industry and provides new business opportunities (see
e.g. [16]). The internet constitutes e.g. a flexible delivery
channel for sclling financial products. Product life cycles
have been accelerated dramatically and at the same time
{inancial products have become more varied and complex. This
determines more difficult and permanently changing processes
that need to be managed including external suppliers and
partners. The ability to rapidly adapt processes to new business
requirements constitutes a significant competitive advantage.

We envision financial services companies that are able to
design new products and at the same time can automatically
configure their processes reducing time-to-market. The basic
idea for this example has been extracted from a real life
case which has been conducted in the SEMPRO-project at a
large financial service institution. However, it has been highly
simplified for this paper.

The process depicted in Figure 3 describes the processing
of an order (e.g. stock order). After an order has been
submitted to a financial institute, the responsible employee
checks the competencies and validity of the customer and
routes the order, if it is valid, to the stock market. If it is
not valid, then the customer is contacted first and afterwards
the validity is checked by a second person again (4-eyes
authorization). If the competencies and validity are fulfilled
now, then some extended competencies are checked, otherwise
the basic checks are started again. In parallel to this process,
the order request is stored in a database and the customer gets
a confirmation email stating that the order request has been
received. After that, some statistics are updated which allow
the derivation of possible improvements later on.

The following changes have now been made to the process
actions (marked in a rectangle in Figure 3):

Fig. 4. Tokens in the Graph
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Fig. 5. Ontology in the Proof of Concept

o Store request in database had before as input an order
request and now requires additionally the person that
works on the order request. This is not covered by the
process model yet and therefore other process actions of
the process library lib4 need to be integrated.

o Update statistics first required only an order request and
gave a statistics as output, now it requires a valid order
and gives an order statistics as output. The management
has decided that they only want to see statistics about
valid orders.

o Check competencies is not allowed anymore and has been
deleted from liby. Now always the extended competen-
cies must be checked (not only whether the employee
has the rights to work on the order, but also whether
the customer has the authority to buy or sell the order
corresponding to the assigned risk class).

The ontology that is used here (an excerpt is shown in
Figure 5) defines an order as a composite parameter which
includes an order state (e.g. valid or invalid), an order amount
(typically a positive numeric value) and the order type (should
the order be bought or sold). Orders are integrated in order
statistics and have one requesting customer. A customer is a
person which might also be an employee. Each order has an
associated risk class.

As first task we need to compute the fragments that need to
be adapted. Therefore, our token-flow algorithm analyzes the
process model and discovers several components (including
loops in the process model, cf. Figure 4). For the calculation
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Fig. 7. Determined Process Fragments for Planning

of fragments it is required to split some control nodes (like
the first fork node) into two different ones in order to compute
the process fragments. These can be seen in Figure 6. In this
figure Co and Cg need to be adapted as some of their entailing
actions have been changed.

As sccond task we compute the initial states of compo-
nent Co and Cg (both are shown in Figure 7 again). The
initial state of Cy is defined as SemIn(Check competen-
cies) U SemIn(Check validity) \ SemOut(Check compe-
tencies). The input of Check competencies has been an in-
coming order with a positive order amount, more formally
defined as (Order, {(OrderState, OrderStates, {incoming}),
({OrderAmount, int, > 0}), (OrderType, OrderTypes, {Buy,
Sell})}) whereas the output had an OrderState that was not
{incoming} anymore, but {checked}. Check validity requires
a checked order and a customer (Customer, Person, Per-
son) and returns an order that is {valid}. Hence, the initial
state of Cq is {(Order,{(OrderState, OrderStates, {incoming}),
({OrderAmount, int, > 0}), (OrderType, OrderTypes, {Buy,
Sell})}), (Customer, Person, Person)}.

As third task we compute the goal states of component Cy
and Cg. The goal state of component Co can be computed
as an order that needs to be valid (Order, {(OrderState, State,
{valid}), ({OrderAmount, int, > 0}), (OrderType, Type, {Buy,
Sell}h)})

Now the planning for both fragments can start. This re-
sults in two (small) independent process models which are
integrated as embedded subprocesses into the already existing
process model. For component C, the new action Check

extended competencies has been found which is now the only
process action that returns a checked order which is the input
of Check validity that again returns a valid order.

Afterwards, the embedded subprocesses can be resolved and
directly integrated into the process model (cp. Figure 8). In the
end the validation algorithm affirms that all dependencies have
been fulfilled and that there are no deadlocks.

Please note that our planning algorithm is currently not
capable to calculate loops. The existing loop in the upper
part of the original process model has been created by a
human modeler. The business analyst might notice that the
process actions in the new planned area are similar to existing
process actions. Therefore, a re-combination of the process
model might make sense, but this up to the business analyst.

The process model adaptation mechanism uses the im-
plementation of the planner SEMPA on top of Eclipse
JWT [17]. For the calculation of the components using the
introduced token-flow algorithm we integrated the Workflow-
Codegeneration framework that has been described in [18].
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Fig. 8. Final Planning Result

V. RELATED WORK

Already some work exists on using semantic annotations
of process models: often semantic annotation is used to iden-
tify suitable semantic web services for execution (e.g. [19]).
In [20] the authors apply annotations to verify interoperating
processes that are captured in process models and try to find
inconsistencies between actions that have been semantically
annotated with effects. Thereby, they also consider control
structures such as Nyecision and Nyopg.

Koschmider shows in her dissertation [21] how a user can
be assisted during the modeling of processes by calculating the
similarity between the existing process model and fragments
from other models. Thereby, not only semantic dependencies,
but also syntactic, structural and linguistic similarities are
considered. However, already completed process models can
not be adapted.
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In [22] the authors use business rules to provide a mech-
anism to adapt the control-flow of a business process. The
underlying idea here is that business rules often are already im-
plicitly contained in a process model and therefore should be
extracted to make it more agile. In difference (o our approach
no reasoning technologies are used which makes it difficult to
resolve ambiguities. Similarly, [23] shows how business rules
and processes can be combined during modeling.

[24] describes an adaptation of process models when
the underlying web services have changed. Thereby, business
processes need to be captured in OWL-S [25] and when a
service has been changed, the sequence of services can be
calculated again. However, this approach does not consider
more complex control structures or compute advanced process
models to our knowledge.

There is also ongoing work concerning (semantic) correct-
ness of BPM systems: Especially changes and their effects
during execution are analyzed [26], [27]. However, this is not
the focus of our research as we investigate the design time of
process models and therefore handle a different phase of the
business process lifecycle.

Furthermore, the planning of process models has similarities
with (semantic) web service composition approaches (see
e.g. [28], [29], [30], [31]). These approaches aim at composing
(executable) workflows, consisting of individual semantic web
services which are arranged together to achieve one distinct
goal. Most approaches either do not plan complex compo-
sitions comprising e.g. alternative or parallel control flows
or cannot handle numerical variables and enumerate states
explicitly which is necessary in our context.

Additionally, there are important conceptual differences
between the planning of process models and web service
composition. We want to support process modelers in the task
of designing (technology-independent) process models. Thus,
the result of planning should be a visual and (for a human
being) comprehensible representation of the process, whereas
in the context of web service composition the specification of
the workflow above all should be machine-interpretable. Also,
the planning of process models is conducted on a higher level
of abstraction. Since actions do not need to be executable
in the first place, their semantic annotation can be more
“lightweight”. Thereby, a major disadvantage of semantic
web service technologies (see the discussion in [32]) may be
alleviated.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper we have introduced an adaptation mechanism
for existing process models. If the demands of customers
change, new jurisdiction and regulations appear or a supplier
adapted its process, then only the process actions that already
exist in a process library need to be changed and all pro-
cess models can be adapted automatically. Thereby, we use
semantic technologies and perform a re-planning of identified
process fragments.

In the future we work on the identification of duplicates
in the re-planned process model. This will be done as part

of the validation step and we aim to automatically simplify
the process model. Additionally, we work on improving the
planning algorithm (e.g. including arbitrary cycles during
planning as well as considering business rules in addition to
process actions).
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